1
|
Adams JC. Thrombospondins: Conserved mediators and modulators of metazoan extracellular matrix. Int J Exp Pathol 2024. [PMID: 39267379 DOI: 10.1111/iep.12517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/17/2024] Open
Abstract
This review provides a personal overview of significant scientific developments in the thrombospondin field during the course of my career. Thrombospondins are multidomain, multimeric, calcium-binding extracellular glycoproteins with context-specific roles in tissue organisation. They act at cell surfaces and within ECM to regulate cell phenotype and signalling, differentiation and assembly of collagenous ECM, along with tissue-specific roles in cartilage, angiogenesis and synaptic function. More recently, intracellular, homeostatic roles have also been identified. Resolution of structures for the major domains of mammalian thrombospondins has facilitated major advances in understanding thrombospondin biology from molecule to tissue; for example, in illuminating molecular consequences of disease-causing coding mutations in human pseudoachrondroplasia. Although principally studied in vertebrates, thrombospondins are amongst the most ancient of animal ECM proteins, with many invertebrates encoding a single thrombospondin and the thrombospondin gene family of vertebrates originating through gene duplications. Moreover, thrombospondins form one branch of a thrombospondin superfamily that debuted at the origin of metazoans. The super-family includes additional sub-groups, present only in invertebrates, that differ in N-terminal domain organisation, share the distinctive TSP C-terminal region domain architecture and, to the limited extent studied to date, apparently contribute to tissue development and organisation. Finally, major lines of translational research are discussed, related to fibrosis; TSP1, TSP2 and inhibition of angiogenesis; and the alleviation of chronic cartilage tissue pathologies in pseudoachrondroplasia.
Collapse
|
2
|
Hay AM, Rhoades MJ, Bangerter S, Ferguson SA, Lee H, T. Gill M, Page GL, Pope A, Measom GJ, Hager RL, Seeley MK. Serum Cartilage Oligomeric Matrix Protein Concentration Increases More After Running Than Swimming for Older People. Sports Health 2024; 16:534-541. [PMID: 37697665 PMCID: PMC11195858 DOI: 10.1177/19417381231195309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Knee osteoarthritis is common in older people. Serum cartilage oligomeric matrix protein (sCOMP) is a biomarker of knee articular cartilage metabolism. The purpose of this study was 2-fold: to (1) determine acute effects of running and swimming on sCOMP concentration in older people; and (2) investigate relationships between sCOMP concentration change due to running and swimming and measures of knee health in older people. HYPOTHESES Running would result in greater increase in sCOMP concentration than swimming, and increase in sCOMP concentration due to running and swimming would associate positively with measures of poor knee health. STUDY DESIGN Cross-sectional. LEVEL OF EVIDENCE Level 3. METHODS A total of 20 participants ran 5 km and 19 participants swam 1500 m. sCOMP concentration was measured immediately before, immediately after, and 15, 30, and 60 minutes after running or swimming. sCOMP concentration change due to running and swimming was compared. Correlations between sCOMP concentration change due to running and swimming, and other measures of knee health were evaluated, including the Tegner Activity Scale and Knee injury and Osteoarthritis Outcome Score. RESULTS sCOMP concentration increased 29% immediately after running, relative to baseline, but only 6% immediately after swimming (P < 0.01). No significant relationship was observed between acute sCOMP change due to running and swimming, and observed measures of knee health (P > 0.05). Participants with clinically relevant knee symptoms exhibited greater sCOMP concentration before and after running and swimming (P = 0.03) and had greater body mass (P = 0.04). CONCLUSION Running results in greater acute articular cartilage metabolism than swimming; however, the chronic effects of this are unclear. Older people with clinically relevant knee symptoms possess greater sCOMP concentration and are heavier, independent of exercise mode and physical activity level. CLINICAL RELEVANCE These results describe the effects of exercise (running and swimming) for older physically active persons, with and without knee pain.
Collapse
Affiliation(s)
- Alexandra M. Hay
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | | | | | - Seth A. Ferguson
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Hyunwook Lee
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Martha T. Gill
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Garritt L. Page
- Department of Statistics, Brigham Young University, Provo, Utah
| | - Andrew Pope
- Department of Statistics, Brigham Young University, Provo, Utah
| | - Gary J. Measom
- Department of Nursing, Utah Valley University, Orem, Utah
| | - Ronald L. Hager
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Matthew K. Seeley
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| |
Collapse
|
3
|
Bennett JI, Boit MO, Gregorio NE, Zhang F, Kibler RD, Hoye JW, Prado O, Rapp PB, Murry CE, Stevens KR, DeForest CA. Genetically Encoded XTEN-based Hydrogels with Tunable Viscoelasticity and Biodegradability for Injectable Cell Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2301708. [PMID: 38477407 PMCID: PMC11200090 DOI: 10.1002/advs.202301708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 01/08/2024] [Indexed: 03/14/2024]
Abstract
While direct cell transplantation holds great promise in treating many debilitating diseases, poor cell survival and engraftment following injection have limited effective clinical translation. Though injectable biomaterials offer protection against membrane-damaging extensional flow and supply a supportive 3D environment in vivo that ultimately improves cell retention and therapeutic costs, most are created from synthetic or naturally harvested polymers that are immunogenic and/or chemically ill-defined. This work presents a shear-thinning and self-healing telechelic recombinant protein-based hydrogel designed around XTEN - a well-expressible, non-immunogenic, and intrinsically disordered polypeptide previously evolved as a genetically encoded alternative to PEGylation to "eXTENd" the in vivo half-life of fused protein therapeutics. By flanking XTEN with self-associating coil domains derived from cartilage oligomeric matrix protein, single-component physically crosslinked hydrogels exhibiting rapid shear thinning and self-healing through homopentameric coiled-coil bundling are formed. Individual and combined point mutations that variably stabilize coil association enables a straightforward method to genetically program material viscoelasticity and biodegradability. Finally, these materials protect and sustain viability of encapsulated human fibroblasts, hepatocytes, embryonic kidney (HEK), and embryonic stem-cell-derived cardiomyocytes (hESC-CMs) through culture, injection, and transcutaneous implantation in mice. These injectable XTEN-based hydrogels show promise for both in vitro cell culture and in vivo cell transplantation applications.
Collapse
Affiliation(s)
| | - Mary O'Kelly Boit
- Department of Chemical EngineeringUniversity of WashingtonSeattleWA98105USA
| | | | - Fan Zhang
- Department of BioengineeringUniversity of WashingtonSeattleWA98105USA
| | - Ryan D. Kibler
- Department of BiochemistryUniversity of WashingtonSeattleWA98105USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98105USA
| | - Jack W. Hoye
- Department of Chemical EngineeringUniversity of WashingtonSeattleWA98105USA
| | - Olivia Prado
- Department of BioengineeringUniversity of WashingtonSeattleWA98105USA
| | - Peter B. Rapp
- Flagship Labs 83, Inc.135 Morrissey Blvd.BostonMA02125USA
| | - Charles E. Murry
- Department of BioengineeringUniversity of WashingtonSeattleWA98105USA
- Institute of Stem Cell & Regenerative MedicineUniversity of WashingtonSeattleWA98109USA
- Department of Laboratory Medicine & PathologyUniversity of WashingtonSeattleWA98195USA
- Department of Medicine/CardiologyUniversity of WashingtonSeattleWA98109USA
| | - Kelly R. Stevens
- Department of BioengineeringUniversity of WashingtonSeattleWA98105USA
- Institute of Stem Cell & Regenerative MedicineUniversity of WashingtonSeattleWA98109USA
- Department of Laboratory Medicine & PathologyUniversity of WashingtonSeattleWA98195USA
| | - Cole A. DeForest
- Department of Chemical EngineeringUniversity of WashingtonSeattleWA98105USA
- Department of BioengineeringUniversity of WashingtonSeattleWA98105USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98105USA
- Institute of Stem Cell & Regenerative MedicineUniversity of WashingtonSeattleWA98109USA
- Department of ChemistryUniversity of WashingtonSeattleWA98105USA
- Molecular Engineering & Sciences InstituteUniversity of WashingtonSeattleWA98105USA
| |
Collapse
|
4
|
Tucker RP, Adams JC. Molecular evolution of the Thrombospondin superfamily. Semin Cell Dev Biol 2024; 155:12-21. [PMID: 37202276 DOI: 10.1016/j.semcdb.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Thrombospondins (TSPs) are multidomain, calcium-binding glycoproteins that have wide-ranging roles in vertebrates in cell interactions, extracellular matrix (ECM) organisation, angiogenesis, tissue remodelling, synaptogenesis, and also in musculoskeletal and cardiovascular functions. Land animals encode five TSPs, which assembly co-translationally either as trimers (subgroup A) or pentamers (subgroup B). The vast majority of research has focused on this canonical TSP family, which evolved through the whole-genome duplications that took place early in the vertebrate lineage. With benefit of the growth in genome- and transcriptome-predicted proteomes of a much wider range of animal species, examination of TSPs throughout metazoan phyla has revealed extensive conservation of subgroup B-type TSPs in invertebrates. In addition, these searches established that canonical TSPs are, in fact, one branch within a TSP superfamily that includes other clades designated mega-TSPs, sushi-TSPs and poriferan-TSPs. Despite the apparent simplicity of poriferans and cnidarians as organisms, these phyla encode a greater diversity of TSP superfamily members than vertebrates. We discuss here the molecular characteristics of the TSP superfamily members, current knowledge of their expression profiles and functions in invertebrates, and models for the evolution of this complex ECM superfamily.
Collapse
Affiliation(s)
- Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California at Davis, Davis, CA, 95616 USA
| | | |
Collapse
|
5
|
Cardoneanu A, Rezus II, Burlui AM, Richter P, Bratoiu I, Mihai IR, Macovei LA, Rezus E. Autoimmunity and Autoinflammation: Relapsing Polychondritis and VEXAS Syndrome Challenge. Int J Mol Sci 2024; 25:2261. [PMID: 38396936 PMCID: PMC10889424 DOI: 10.3390/ijms25042261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Relapsing polychondritis is a chronic autoimmune inflammatory condition characterized by recurrent episodes of inflammation at the level of cartilaginous structures and tissues rich in proteoglycans. The pathogenesis of the disease is complex and still incompletely elucidated. The data support the important role of a particular genetic predisposition, with HLA-DR4 being considered an allele that confers a major risk of disease occurrence. Environmental factors, mechanical, chemical or infectious, act as triggers in the development of clinical manifestations, causing the degradation of proteins and the release of cryptic cartilage antigens. Both humoral and cellular immunity play essential roles in the occurrence and perpetuation of autoimmunity and inflammation. Autoantibodies anti-type II, IX and XI collagens, anti-matrilin-1 and anti-COMPs (cartilage oligomeric matrix proteins) have been highlighted in increased titers, being correlated with disease activity and considered prognostic factors. Innate immunity cells, neutrophils, monocytes, macrophages, natural killer lymphocytes and eosinophils have been found in the perichondrium and cartilage, together with activated antigen-presenting cells, C3 deposits and immunoglobulins. Also, T cells play a decisive role in the pathogenesis of the disease, with relapsing polychondritis being considered a TH1-mediated condition. Thus, increased secretions of interferon γ, interleukin (IL)-12 and IL-2 have been highlighted. The "inflammatory storm" formed by a complex network of pro-inflammatory cytokines and chemokines actively modulates the recruitment and infiltration of various cells, with cartilage being a source of antigens. Along with RP, VEXAS syndrome, another systemic autoimmune disease with genetic determinism, has an etiopathogenesis that is still incompletely known, and it involves the activation of the innate immune system through different pathways and the appearance of the cytokine storm. The clinical manifestations of VEXAS syndrome include an inflammatory phenotype often similar to that of RP, which raises diagnostic problems. The management of RP and VEXAS syndrome includes common immunosuppressive therapies whose main goal is to control systemic inflammatory manifestations. The objective of this paper is to detail the main etiopathogenetic mechanisms of a rare disease, summarizing the latest data and presenting the distinct features of these mechanisms.
Collapse
Affiliation(s)
- Anca Cardoneanu
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.C.); (A.M.B.); (P.R.); (I.B.); (I.R.M.); (L.A.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ioana Irina Rezus
- Discipline of Radiology, Surgery Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania;
| | - Alexandra Maria Burlui
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.C.); (A.M.B.); (P.R.); (I.B.); (I.R.M.); (L.A.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Patricia Richter
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.C.); (A.M.B.); (P.R.); (I.B.); (I.R.M.); (L.A.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ioana Bratoiu
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.C.); (A.M.B.); (P.R.); (I.B.); (I.R.M.); (L.A.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ioana Ruxandra Mihai
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.C.); (A.M.B.); (P.R.); (I.B.); (I.R.M.); (L.A.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Luana Andreea Macovei
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.C.); (A.M.B.); (P.R.); (I.B.); (I.R.M.); (L.A.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Elena Rezus
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.C.); (A.M.B.); (P.R.); (I.B.); (I.R.M.); (L.A.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| |
Collapse
|
6
|
Hannani MT, Thudium CS, Karsdal MA, Ladel C, Mobasheri A, Uebelhoer M, Larkin J, Bacardit J, Struglics A, Bay-Jensen AC. From biochemical markers to molecular endotypes of osteoarthritis: a review on validated biomarkers. Expert Rev Mol Diagn 2024; 24:23-38. [PMID: 38353446 DOI: 10.1080/14737159.2024.2315282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Osteoarthritis (OA) affects over 500 million people worldwide. OA patients are symptomatically treated, and current therapies exhibit marginal efficacy and frequently carry safety-risks associated with chronic use. No disease-modifying therapies have been approved to date leaving surgical joint replacement as a last resort. To enable effective patient care and successful drug development there is an urgent need to uncover the pathobiological drivers of OA and how these translate into disease endotypes. Endotypes provide a more precise and mechanistic definition of disease subgroups than observable phenotypes, and a panel of tissue- and pathology-specific biochemical markers may uncover treatable endotypes of OA. AREAS COVERED We have searched PubMed for full-text articles written in English to provide an in-depth narrative review of a panel of validated biochemical markers utilized for endotyping of OA and their association to key OA pathologies. EXPERT OPINION As utilized in IMI-APPROACH and validated in OAI-FNIH, a panel of biochemical markers may uncover disease subgroups and facilitate the enrichment of treatable molecular endotypes for recruitment in therapeutic clinical trials. Understanding the link between biochemical markers and patient-reported outcomes and treatable endotypes that may respond to given therapies will pave the way for new drug development in OA.
Collapse
Affiliation(s)
- Monica T Hannani
- ImmunoScience, Nordic Bioscience A/S, Herlev, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
| | | | - Jonathan Larkin
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- SynOA Therapeutics, Philadelphia, PA, USA
| | - Jaume Bacardit
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - André Struglics
- Department of Clinical Sciences, Orthopaedics, Lund University, Lund, Sweden
| | | |
Collapse
|
7
|
Liu Y, Li X, Cheng L, Zhan H, Huang Y, Li H, Li Y. Progress and challenges in the use of blood biomarkers in relapsing polychondritis. Clin Exp Immunol 2023; 212:199-211. [PMID: 36751132 PMCID: PMC10243844 DOI: 10.1093/cei/uxad014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/15/2022] [Accepted: 02/07/2023] [Indexed: 02/09/2023] Open
Abstract
Relapsing polychondritis (RP) is a rare inflammatory disease with significant individual heterogeneity that involves systemic organs. The diagnosis of RP mainly depends on the clinical manifestations; currently, there are no molecular biomarkers routinely evaluated in clinical practice. Biomarkers have diagnostic or monitoring values and can predict response to treatment or the disease course. Over the years, many biomarkers have been proposed to facilitate diagnosis and prognosis. Unfortunately, ideal biomarkers to diagnose RP have not yet been discovered. Most of the molecular biomarkers in RP are immunological biomarkers, with autoantibodies and proteins related to cartilage damage in the blood being the most common. Alterations in some genes (HLA typing and UBA1 somatic mutation) were detected in patients with RP, which could serve as a potential biomarker for the diagnosis of RP. Moreover, proinflammatory cytokines and lymphocyte levels, and certain laboratory tests, have certain values of RP diagnosis and disease activity assessment but lack specificity and sensitivity. This review describes the different types of biomarkers and their clinical correlation with respect to the diagnosis of RP and disease activity. Research on biomarkers and disease pathology is ongoing to identify the ideal biomarkers that are sensitive and specific for RP.
Collapse
Affiliation(s)
- Yongmei Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaomeng Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linlin Cheng
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haoting Zhan
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuan Huang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haolong Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Pervaiz N, Kathuria I, Aithabathula RV, Singla B. Matricellular proteins in atherosclerosis development. Matrix Biol 2023; 120:1-23. [PMID: 37086928 PMCID: PMC10225360 DOI: 10.1016/j.matbio.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023]
Abstract
The extracellular matrix (ECM) is an intricate network composed of various multi-domain macromolecules like collagen, proteoglycans, and fibronectin, etc., that form a structurally stable composite, contributing to the mechanical properties of tissue. However, matricellular proteins are non-structural, secretory extracellular matrix proteins, which modulate various cellular functions via interacting with cell surface receptors, proteases, hormones, and cell-matrix. They play essential roles in maintaining tissue homeostasis by regulating cell differentiation, proliferation, adhesion, migration, and several signal transduction pathways. Matricellular proteins display a broad functionality regulated by their multiple structural domains and their ability to interact with different extracellular substrates and/or cell surface receptors. The expression of these proteins is low in adults, however, gets upregulated following injuries, inflammation, and during tumor growth. The marked elevation in the expression of these proteins during atherosclerosis suggests a positive association between their expression and atherosclerotic lesion formation. The role of matricellular proteins in atherosclerosis development has remained an area of research interest in the last two decades and studies revealed these proteins as important players in governing vascular function, remodeling, and plaque formation. Despite extensive research, many aspects of the matrix protein biology in atherosclerosis are still unknown and future studies are required to investigate whether targeting pathways stimulated by these proteins represent viable therapeutic approaches for patients with atherosclerotic vascular diseases. This review summarizes the characteristics of distinct matricellular proteins, discusses the available literature on the involvement of matrix proteins in the pathogenesis of atherosclerosis and suggests new avenues for future research.
Collapse
Affiliation(s)
- Naveed Pervaiz
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, USA
| | - Ishita Kathuria
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, USA
| | - Ravi Varma Aithabathula
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, USA
| | - Bhupesh Singla
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, USA.
| |
Collapse
|
9
|
Wu T, Jin Y, Chen F, Xuan X, Cao J, Liang Y, Wang Y, Zhan J, Zhao M, Huang C. Identification and characterization of bone/cartilage-associated signatures in common fibrotic skin diseases. Front Genet 2023; 14:1121728. [PMID: 37082197 PMCID: PMC10111020 DOI: 10.3389/fgene.2023.1121728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Fibrotic skin diseases are characterized by excessive accumulation of the extracellular matrix (ECM) and activation of fibroblasts, leading to a global healthcare burden. However, effective treatments of fibrotic skin diseases remain limited, and their pathological mechanisms require further investigation. This study aims to investigate the common biomarkers and therapeutic targets in two major fibrotic skin diseases, namely, keloid and systemic sclerosis (SSc), by bioinformatics analysis.Methods: The keloid (GSE92566) and SSc (GSE95065) datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified, followed by functional enrichment analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). We then constructed a protein–protein interaction (PPI) network for the identification of hub genes. We explored the possibility of further functional enrichment analysis of hub genes on the Metascape, GeneMANIA, and TissueNexus platforms. Transcription factor (TF)–hub gene and miRNA–hub gene networks were established using NetworkAnalyst. We fixed GSE90051 and GSE76855 as the external validation datasets. Student’s t-test and receiver operating characteristic (ROC) curve were used for candidate hub gene validation. Hub gene expression was assessed in vitro by quantitative real-time PCR.Results: A total of 157 overlapping DEGs (ODEGs) were retrieved from the GSE92566 and GSE95065 datasets, and five hub genes (COL11A1, COL5A2, ASPN, COL10A1, and COMP) were identified and validated. Functional studies revealed that hub genes were predominantly enriched in bone/cartilage-related and collagen-related processes. FOXC1 and miR-335-5p were predicted to be master regulators at both transcriptional and post‐transcriptional levels.Conclusion: COL11A1, COL5A2, ASPN, COL10A1, and COMP may help understand the pathological mechanism of the major fibrotic skin diseases; moreover, FOXC1 and miR-355-5p could build a regulatory network in keloid and SSc.
Collapse
Affiliation(s)
- Ting Wu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Jin
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangqi Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuyun Xuan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juanmei Cao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Wang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinshan Zhan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengjie Zhao
- Department of Dermatology, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Mengjie Zhao, ; Changzheng Huang,
| | - Changzheng Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Mengjie Zhao, ; Changzheng Huang,
| |
Collapse
|
10
|
Britton D, Punia K, Mahmoudinobar F, Tada T, Jiang X, Renfrew PD, Bonneau R, Landau NR, Kong XP, Montclare JK. Engineered multivalent self-assembled binder protein against SARS-CoV-2 RBD. Biochem Eng J 2022; 187:108596. [PMID: 36034180 PMCID: PMC9396458 DOI: 10.1016/j.bej.2022.108596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 02/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic since December 2019, and with it, a push for innovations in rapid testing and neutralizing antibody treatments in an effort to solve the spread and fatality of the disease. One such solution to both of these prevailing issues is targeting the interaction of SARS-CoV-2 spike receptor binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2) receptor protein. Structural studies have shown that the N-terminal alpha-helix comprised of the first 23 residues of ACE2 plays an important role in this interaction. Where it is typical to design a binding domain to fit a target, we have engineered a protein that relies on multivalency rather than the sensitivity of a monomeric ligand to provide avidity to its target by fusing the N-terminal helix of ACE2 to the coiled-coil domain of the cartilage oligomeric matrix protein. The resulting ACE-MAP is able to bind to the SARS-CoV-2 RBD with improved binding affinity, is expressible in E. coli, and is thermally stable and relatively small (62 kDa). These properties suggest ACE-MAP and the MAP scaffold to be a promising route towards developing future diagnostics and therapeutics to SARS-CoV-2.
Collapse
Affiliation(s)
- Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, USA
| | - Kamia Punia
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, USA
| | - Farbod Mahmoudinobar
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, USA
- Center for Computational Biology, Flatiron Institute, New York, New York 10010, USA
| | - Takuya Tada
- Department of Microbiology, NYU, Grossman School of Medicine, New York, New York 10016, USA
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - P Douglas Renfrew
- Center for Computational Biology, Flatiron Institute, New York, New York 10010, USA
| | - Richard Bonneau
- Center for Computational Biology, Flatiron Institute, New York, New York 10010, USA
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
- Courant Institute of Mathematical Sciences, Computer Science Department, New York University, New York, New York 10009, USA
- Center for Data Science, New York University, New York, New York 10011, USA
| | - Nathaniel R Landau
- Department of Microbiology, NYU, Grossman School of Medicine, New York, New York 10016, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, USA
- Department of Chemistry, New York University, New York, New York 10012, USA
- Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, USA
| |
Collapse
|
11
|
Davis-Wilson HC, Thoma LM, Johnston CD, Young E, Evans-Pickett A, Spang JT, Blackburn JT, Hackney AC, Pietrosimone B. Fewer daily steps are associated with greater cartilage oligomeric matrix protein response to loading post-ACL reconstruction. J Orthop Res 2022; 40:2248-2257. [PMID: 35060165 DOI: 10.1002/jor.25268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/19/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023]
Abstract
Aberrant joint loading contributes to the development of posttraumatic knee osteoarthritis (PTOA) following anterior cruciate ligament reconstruction (ACLR); yet little is known about the association between joint loading due to daily walking and cartilage health post-ACLR. Accelerometer-based measures of daily steps and cadence (i.e., rate of steps/min) provide information regarding daily walking in a real-world setting. The purpose of this study was to determine the association between changes in serum cartilage oligomeric matrix protein (COMP; %∆COMP), a mechanosensitive biomarker that is associated with osteoarthritis progression, following a standardized walking protocol and daily walking in individuals with ACLR and uninjured controls. Daily walking was assessed over 7 days using an accelerometer worn on the right hip in 31 individuals with ACLR and 21 controls and quantified as mean steps/day and time spent in ≥100 steps/min. Serum COMP was measured before and following a 3000-step walking protocol at a preferred speed. %∆COMP was calculated as a change in COMP relative to the prewalking value. Linear regressions were used to examine associations between daily walking and %∆COMP after adjusting for preferred speed. Fewer daily steps (ΔR2 = 0.18, p = 0.02) and fewer minutes spent in ≥100 steps/min (ΔR2 = 0.16, p = 0.03) were associated with greater %∆COMP following walking in individuals with ACLR; no statistically significant associations existed in controls (daily steps: ΔR2 = 0.03, p = 0.47; time ≥100 steps/min: ΔR2 < 0.01, p = 0.81). Clinical significance: Individuals with ACLR who engage in less daily walking undergo greater %ΔCOMP, which may represent greater cartilage degradation or turnover in response to walking.
Collapse
Affiliation(s)
- Hope C Davis-Wilson
- Department of Exercise and Sport Science, MOTION Science Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Allied Health Sciences, Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Louise M Thoma
- Department of Allied Health Sciences, Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Division of Physical Therapy, Department of Allied Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christopher D Johnston
- Department of Exercise and Sport Science, MOTION Science Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Allied Health Sciences, Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Emma Young
- Department of Exercise and Sport Science, MOTION Science Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Athletic Training Program, The Steadman Clinic, Vail, Colorado, USA
| | - Alyssa Evans-Pickett
- Department of Exercise and Sport Science, MOTION Science Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Allied Health Sciences, Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeffrey T Spang
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - J Troy Blackburn
- Department of Exercise and Sport Science, MOTION Science Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Allied Health Sciences, Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anthony C Hackney
- Department of Exercise and Sport Science, MOTION Science Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Allied Health Sciences, Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian Pietrosimone
- Department of Exercise and Sport Science, MOTION Science Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Allied Health Sciences, Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
12
|
Papaneophytou C, Alabajos-Cea A, Viosca-Herrero E, Calvis C, Costa M, Christodoulides AE, Kroushovski A, Lapithis A, Lapithi VM, Papayiannis I, Christou A, Messeguer R, Giannaki C, Felekkis K. Associations between serum biomarkers of cartilage metabolism and serum hyaluronic acid, with risk factors, pain categories, and disease severity in knee osteoarthritis: a pilot study. BMC Musculoskelet Disord 2022; 23:195. [PMID: 35236298 PMCID: PMC8889762 DOI: 10.1186/s12891-022-05133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Specific serum biomarkers of cartilage metabolism such as cartilage oligomeric matrix protein (sCOMP) and procollagen type II C-terminal propeptide (sPIICP) as well as hyaluronan (sHA), a biomarker of synovitis, have been implicated in the pathophysiology of knee osteoarthritis (OA). However, the associations of these biomarkers with the severity of the disease and OA risk factors, including age and obesity remain inconclusive. This analysis examines the associations between these serum biomarkers and the radiographic severity of OA and knee pain, as wells as obesity, the age and gender of the participants, and other OA risk factors. METHODS From 44 patients with early knee OA and 130 patients with late knee OA we analyzed the radiographic severity of the disease using the Kellgren and Lawrence (KL) grading system. Moreover, 38 overweight healthy individuals were used as a control group. Specific information was collected from all participants during their recruitment. The levels of the three serum biomarkers were quantified using commercially available ELISA kits. Serum biomarkers were analyzed for associations with the average KL scores and pain in both knees, as well as with specific OA risk factors. RESULTS The levels of sCOMP were elevated in patients with severe late OA and knee pain and correlated weakly with OA severity. A weakly correlation of sHA levels and OA severity OA was observed. We demonstrated that only sPIICP levels were markedly decreased in patients with late knee OA suggesting the alterations of cartilage metabolism in this arthritic disease. Moreover, we found that sPIICP has the strongest correlation with obesity and the severity of OA, as well as with the knee pain at rest and during walking regardless of the severity of the disease. ROC analysis showed that the area under the ROC curve (AUC) was 0.980 (95% CI: 0.945-0.995; p < 0.0001), suggesting high diagnostic accuracy of sPIICP. Interestingly, gender and age had also an effect on the levels of sPIICP. CONCLUSION This study revealed the potential of serum PIICP to be used as a biomarker to monitor the progression of knee OA, however, further studies are warranted to elucidate its clinical implication.
Collapse
Affiliation(s)
- Christos Papaneophytou
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, 2417, Nicosia, Cyprus
| | - Ana Alabajos-Cea
- Physical Medicine & Rehabilitation Department, Hospital La Fe, 46026, Valencia, Spain
- Health Research Institute La Fe, 46026, Valencia, Spain
| | | | - Carme Calvis
- Drug Development Area, Health & Biomedicine Department, LEITAT Technological Centre, Parc Científic de Barcelona, 08028, Barcelona, Spain
| | - Marta Costa
- Drug Development Area, Health & Biomedicine Department, LEITAT Technological Centre, Parc Científic de Barcelona, 08028, Barcelona, Spain
| | | | - Alexander Kroushovski
- Apollonion Hospital, 2054, Nicosia, Cyprus
- Medical School, University of Nicosia, 2408, Nicosia, Cyprus
| | | | | | | | | | - Ramon Messeguer
- Drug Development Area, Health & Biomedicine Department, LEITAT Technological Centre, Parc Científic de Barcelona, 08028, Barcelona, Spain
| | - Christoforos Giannaki
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, 2417, Nicosia, Cyprus.
| | - Kyriacos Felekkis
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, 2417, Nicosia, Cyprus.
| |
Collapse
|
13
|
Forte-Gomez HF, Gioia R, Tonelli F, Kobbe B, Koch P, Bloch W, Paulsson M, Zaucke F, Forlino A, Wagener R. Structure, evolution and expression of zebrafish cartilage oligomeric matrix protein (COMP, TSP5). CRISPR-Cas mutants show a dominant phenotype in myosepta. Front Endocrinol (Lausanne) 2022; 13:1000662. [PMID: 36452329 PMCID: PMC9702538 DOI: 10.3389/fendo.2022.1000662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
COMP (Cartilage Oligomeric Matrix Protein), also named thrombospondin-5, is a member of the thrombospondin family of extracellular matrix proteins. It is of clinical relevance, as in humans mutations in COMP lead to chondrodysplasias. The gene encoding zebrafish Comp is located on chromosome 11 in synteny with its mammalian orthologs. Zebrafish Comp has a domain structure identical to that of tetrapod COMP and shares 74% sequence similarity with murine COMP. Zebrafish comp is expressed from 5 hours post fertilization (hpf) on, while the protein is first detectable in somites of 11 hpf embryos. During development and in adults comp is strongly expressed in myosepta, craniofacial tendon and ligaments, around ribs and vertebra, but not in its name-giving tissue cartilage. As in mammals, zebrafish Comp forms pentamers. It is easily extracted from 5 days post fertilization (dpf) whole zebrafish. The lack of Comp expression in zebrafish cartilage implies that its cartilage function evolved recently in tetrapods. The expression in tendon and myosepta may indicate a more fundamental function, as in evolutionary distant Drosophila muscle-specific adhesion to tendon cells requires thrombospondin. A sequence encoding a calcium binding motif within the first TSP type-3 repeat of zebrafish Comp was targeted by CRISPR-Cas. The heterozygous and homozygous mutant Comp zebrafish displayed a patchy irregular Comp staining in 3 dpf myosepta, indicating a dominant phenotype. Electron microscopy revealed that the endoplasmic reticulum of myosepta fibroblasts is not affected in homozygous fish. The disorganized extracellular matrix may indicate that this mutation rather interferes with extracellular matrix assembly, similar to what is seen in a subgroup of chondrodysplasia patients. The early expression and easy detection of mutant Comp in zebrafish points to the potential of using the zebrafish model for large scale screening of small molecules that can improve secretion or function of disease-associated COMP mutants.
Collapse
Affiliation(s)
| | - Roberta Gioia
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Birgit Kobbe
- Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Peter Koch
- Department of Pharmacology, University Clinic Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sport Medicine, German Sport University, Cologne, Germany
| | - Mats Paulsson
- Center for Biochemistry, Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Raimund Wagener
- Center for Biochemistry, Center for Molecular Medicine, University of Cologne, Cologne, Germany
- *Correspondence: Raimund Wagener,
| |
Collapse
|
14
|
Schminke B, Kauffmann P, Schubert A, Altherr M, Gelis T, Miosge N. SMURF1 and SMURF2 in Progenitor Cells from Articular Cartilage and Meniscus during Late-Stage Osteoarthritis. Cartilage 2021; 13:117S-128S. [PMID: 33090007 PMCID: PMC8721605 DOI: 10.1177/1947603520967069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the roles of SMURF1 and SMURF2 in progenitor cells from the human knee in late-stage osteoarthritis (OA). DESIGN We applied immunohistochemistry, immunocytochemistry, RNAi, lentiviral transfection, and Western blot analysis. We obtained chondrogenic progenitor cells (CPCs) from the articular cartilage and meniscus progenitor cells (MPCs) from the nonvascularized part of the meniscus. RESULTS SMURF1 and SMURF2 appeared in both osteoarthritic tissues. CPCs and MPCs exhibited comparable amounts of these proteins, which influence the balance between RUNX2 and SOX9. The overexpression of SMURF1 reduced the levels of RUNX2, SOX9, and TGFBR1. The overexpression of SMURF2 also reduced the levels of RUNX2 and TGFBR1, while SOX9 levels were not affected. The knockdown of SMURF1 had no effect on RUNX2, SOX9, or TGFBR1. The knockdown of SMURF2 enhanced RUNX2 and SOX9 levels in CPCs. The respective protein levels in MPCs were not affected. CONCLUSIONS This study shows that SMURF1 and SMURF2 are regulatory players for the expression of the major regulator transcription factors RUNX2 and SOX9 in CPCs and MPCs. Our novel findings may help elucidate new treatment strategies for cartilage regeneration.
Collapse
Affiliation(s)
- Boris Schminke
- Department of Oral and Maxillofacial
Surgery, University Medical Center Goettingen, Göttingen, Germany,Oral Biology and Tissue Regeneration
Work Group, University Medical Center Goettingen, Göttingen, Germany
| | - Philipp Kauffmann
- Department of Oral and Maxillofacial
Surgery, University Medical Center Goettingen, Göttingen, Germany
| | - Andrea Schubert
- Oral Biology and Tissue Regeneration
Work Group, University Medical Center Goettingen, Göttingen, Germany
| | - Manuel Altherr
- Oral Biology and Tissue Regeneration
Work Group, University Medical Center Goettingen, Göttingen, Germany
| | - Thomas Gelis
- Oral Biology and Tissue Regeneration
Work Group, University Medical Center Goettingen, Göttingen, Germany
| | - Nicolai Miosge
- Oral Biology and Tissue Regeneration
Work Group, University Medical Center Goettingen, Göttingen, Germany,Nicolai Miosge, Oral Biology and Tissue
Regeneration Work Group, University Medical Center Göttingen,
Robert-Koch-Strasse 40, Göttingen, 37075, Germany.
| |
Collapse
|
15
|
Hernández-Hermoso JA, Nescolarde L, Roca E, Revuelta-López E, Ara J, Bayes-Genis A. Marathon Running Increases Synthesis and Decreases Catabolism of Joint Cartilage Type II Collagen Accompanied by High-Energy Demands and an Inflamatory Reaction. Front Physiol 2021; 12:722718. [PMID: 34707508 PMCID: PMC8542987 DOI: 10.3389/fphys.2021.722718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To determine the effect of marathon running on serum levels of inflammatory, high energy, and cartilage matrix biomarkers and to ascertain whether these biomarkers levels correlate. Design: Blood samples from 17 Caucasian male recreational athletes at the Barcelona Marathon 2017 were collected at the baseline, immediately and 48 h post-race. Serum C reactive protein (CRP), creatin kinase (CK), and lactate dehydrogenase (LDH) were determined using an AU-5800 chemistry analyser. Serum levels of hyaluronan (HA), cartilage oligomeric matrix protein (COMP), aggrecan chondroitin sulphate 846 (CS846), glycoprotein YKL-40, human procollagen II N-terminal propeptide (PIINP), human type IIA collagen N-propeptide (PIIANP), and collagen type II cleavage (C2C) were measured by sandwich enzyme-linked immune-sorbent assay (ELISA). Results: Medians CK and sLDH levels increased (three-fold, two-fold) post-race [429 (332) U/L, 323 (69) U/L] (p < 0.0001; p < 0.0001) and (six-fold, 1.2-fold) 48 h post-race [658 (1,073) U/L, 218 (45) U/L] (p < 0.0001; p < 0.0001). Medians CRP increased (ten-fold) after 48 h post-race [6.8 (4.1) mg/L] (p < 0.0001). Mean sHA levels increased (four-fold) post-race (89.54 ± 53.14 ng/ml) (p < 0.0001). Means PIINP (9.05 ± 2.15 ng/ml) levels increased post-race (10.82 ± 3.44 ng/ml) (p = 0.053) and 48 h post-race (11.00 ± 2.96 ng/ml) (p = 0.001). Mean sC2C levels (220.83 ± 39.50 ng/ml) decreased post-race (188.67 ± 38.52 ng/ml) (p = 0.002). In contrast, means COMP, sCS846, sPIIANP, and median sYKL-40 were relatively stable. We found a positive association between sCK levels with sLDH pre-race (r = 0.758, p < 0.0001), post-race (r = 0.623, p = 0.008) and 48-h post-race (r = 0.842, p < 0.0001); sHA with sCRP post-race vs. 48 h post-race (r = 0.563, p = 0.019) and sPIINP with sCK pre-race vs. 48-h post-race (r = 0.499, p = 0.044) and with sLDH 48-h pre-race vs. post-race (r = 0.610, p = 0.009) and a negative correlation of sPIIANP with sCRP 48-h post-race (r = −0.570, p = 0.017). Conclusion: Marathon running is an exercise with high-energy demands (sCK and sLDH increase) that provokes a high and durable general inflammatory reaction (sCRP increase) and an immediately post-marathon mechanism to protect inflammation and cartilage (sHA increase). Accompanied by an increase in type II collagen cartilage fibrils synthesis (sPIINP increase) and a decrease in its catabolism (sC2C decrease), without changes in non-collagenous cartilage metabolism (sCOMP, sC846, and sYKL-40). Metabolic changes on sPIINP and sHA synthesis may be related to energy consumption (sCK, sLDH) and the inflammatory reaction (sCRP) produced.
Collapse
Affiliation(s)
- José A Hernández-Hermoso
- Department of Orthopedic Surgery and Traumatology, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain.,Department of Surgery, Faculty of Medicine, Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Lexa Nescolarde
- Department of Electronic Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | | | - Elena Revuelta-López
- Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Jordi Ara
- Departament of Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Nephrology, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Antoni Bayes-Genis
- Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain.,Departament of Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Cardiology, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| |
Collapse
|
16
|
Janša V, Klančič T, Pušić M, Klein M, Vrtačnik Bokal E, Ban Frangež H, Rižner TL. Proteomic analysis of peritoneal fluid identified COMP and TGFBI as new candidate biomarkers for endometriosis. Sci Rep 2021; 11:20870. [PMID: 34686725 PMCID: PMC8536751 DOI: 10.1038/s41598-021-00299-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/30/2021] [Indexed: 11/09/2022] Open
Abstract
Endometriosis is a common non-malignant gynecological disease that significantly compromises fertility and quality of life of the majority of patients. The gold standard for diagnosis is visual inspection of the pelvic organs by surgical laparoscopy and there are no biomarkers that would allow non-invasive diagnosis. The pathogenesis of endometriosis is not completely understood, thus analysis of peritoneal fluid might contribute in this respect. Our prospective case-control study included 58 patients undergoing laparoscopy due to infertility, 32 patients with peritoneal endometriosis (cases) and 26 patients with unexplained primary infertility (controls). Discovery proteomics using antibody microarrays that covered 1360 proteins identified 16 proteins with different levels in cases versus the control patients. The validation using an ELISA approach confirmed significant differences in the levels of cartilage oligomeric matrix protein (COMP) and transforming growth factor-β-induced protein ig-h3 (TGFBI) and nonsignificant differences in angiotensinogen (AGT). A classification model based on a linear support vector machine revealed AUC of > 0.83, sensitivity of 0.81 and specificity of 1.00. Differentially expressed proteins represent candidates for diagnostic and prognostic biomarkers or drug targets. Our findings have brought new knowledge that will be helpful in the understanding of the pathophysiology of endometriosis and warrant further studies in blood samples.
Collapse
Affiliation(s)
- V Janša
- Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Šlajmerjeva 3, 1000, Ljubljana, Slovenia
| | - T Klančič
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - M Pušić
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - M Klein
- Sciomics GmbH, Karl-Landsteiner-Straße 6, 69151, Neckargemünd, Germany
| | - E Vrtačnik Bokal
- Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Šlajmerjeva 3, 1000, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - H Ban Frangež
- Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Šlajmerjeva 3, 1000, Ljubljana, Slovenia.
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
| | - T Lanišnik Rižner
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
17
|
Andrés Sastre E, Maly K, Zhu M, Witte-Bouma J, Trompet D, Böhm AM, Brachvogel B, van Nieuwenhoven CA, Maes C, van Osch GJVM, Zaucke F, Farrell E. Spatiotemporal distribution of thrombospondin-4 and -5 in cartilage during endochondral bone formation and repair. Bone 2021; 150:115999. [PMID: 33971315 DOI: 10.1016/j.bone.2021.115999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
During skeletal development most bones are first formed as cartilage templates, which are gradually replaced by bone. If later in life those bones break, temporary cartilage structures emerge to bridge the fractured ends, guiding the regenerative process. This bone formation process, known as endochondral ossification (EO), has been widely studied for its potential to reveal factors that might be used to treat patients with large bone defects. The extracellular matrix of cartilage consists of different types of collagens, proteoglycans and a variety of non-collagenous proteins that organise the collagen fibers in complex networks. Thrombospondin-5, also known as cartilage oligomeric matrix protein (TSP-5/COMP) is abundant in cartilage, where it has been described to enhance collagen fibrillogenesis and to interact with a variety of growth factors, matrix proteins and cellular receptors. However, very little is known about the skeletal distribution of its homologue thrombospondin-4 (TSP-4). In our study, we compared the spatiotemporal expression of TSP-5 and TSP-4 during postnatal bone formation and fracture healing. Our results indicate that in both these settings, TSP-5 distributes across all layers of the transient cartilage, while the localisation of TSP-4 is restricted to the population of hypertrophic chondrocytes. Furthermore, in fractured bones we observed TSP-4 sparsely distributed in the periosteum, while TSP-5 was absent. Last, we analysed the chemoattractant effects of the two proteins on endothelial cells and bone marrow stem cells and hypothesised that, of the two thrombospondins, only TSP-4 might promote blood vessel invasion during ossification. We conclude that TSP-4 is a novel factor involved in bone formation. These findings reveal TSP-4 as an attractive candidate to be evaluated for bone tissue engineering purposes.
Collapse
Affiliation(s)
- E Andrés Sastre
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - K Maly
- Dr. Rolf Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim, Frankfurt, Germany
| | - M Zhu
- Center for Biochemistry, Faculty of Medicine, University of Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Germany
| | - J Witte-Bouma
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - D Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Belgium
| | - A M Böhm
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Belgium
| | - B Brachvogel
- Center for Biochemistry, Faculty of Medicine, University of Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Germany
| | - C A van Nieuwenhoven
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC-Sophia, University Medical Center, Rotterdam, the Netherlands
| | - C Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Belgium
| | - G J V M van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Otorhinolaryngology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - F Zaucke
- Dr. Rolf Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim, Frankfurt, Germany
| | - E Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, the Netherlands.
| |
Collapse
|
18
|
Joint Degeneration in a Mouse Model of Pseudoachondroplasia: ER Stress, Inflammation, and Block of Autophagy. Int J Mol Sci 2021; 22:ijms22179239. [PMID: 34502142 PMCID: PMC8431545 DOI: 10.3390/ijms22179239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 01/05/2023] Open
Abstract
Pseudoachondroplasia (PSACH), a short limb skeletal dysplasia associated with premature joint degeneration, is caused by misfolding mutations in cartilage oligomeric matrix protein (COMP). Here, we define mutant-COMP-induced stress mechanisms that occur in articular chondrocytes of MT-COMP mice, a murine model of PSACH. The accumulation of mutant-COMP in the ER occurred early in MT-COMP articular chondrocytes and stimulated inflammation (TNFα) at 4 weeks, and articular chondrocyte death increased at 8 weeks while ER stress through CHOP was elevated by 12 weeks. Importantly, blockage of autophagy (pS6), the major mechanism that clears the ER, sustained cellular stress in MT-COMP articular chondrocytes. Degeneration of MT-COMP articular cartilage was similar to that observed in PSACH and was associated with increased MMPs, a family of degradative enzymes. Moreover, chronic cellular stresses stimulated senescence. Senescence-associated secretory phenotype (SASP) may play a role in generating and propagating a pro-degradative environment in the MT-COMP murine joint. The loss of CHOP or resveratrol treatment from birth preserved joint health in MT-COMP mice. Taken together, these results indicate that ER stress/CHOP signaling and autophagy blockage are central to mutant-COMP joint degeneration, and MT-COMP mice joint health can be preserved by decreasing articular chondrocyte stress. Future joint sparing therapeutics for PSACH may include resveratrol.
Collapse
|
19
|
Cartilage oligomeric matrix protein as a marker of progressive liver fibrosis in biliary atresia. Sci Rep 2021; 11:16695. [PMID: 34404836 PMCID: PMC8371124 DOI: 10.1038/s41598-021-95805-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
This study aimed to determine whether mRNA and protein levels of cartilage oligomeric matrix protein (COMP), a glycoprotein responsible for modulating homeostasis of extracellular matrix, in the systemic and local liver environments were associated with clinical parameters of biliary atresia (BA) patients and might serve as a biomarker for BA severity. COMP protein levels in the circulation of 96 BA patients and 56 healthy controls and its mRNA and protein expressions in the liver of 20 BA patients and 5 non-BA patients were evaluated using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and immunohistochemistry, respectively. In the circulation of BA patients, COMP levels were significantly higher than those in healthy controls. Compared with early-stage BA patients, those with advanced-stage including jaundice, fibrosis, and hepatic dysfunction had significantly increased circulating COMP levels. Raised circulating COMP levels were found to be independently correlated with degree of liver fibrosis. Survival analysis showed that elevated circulating COMP levels were significantly associated with decreased survival of BA patients. Receiver-operating characteristic curve analysis unveiled a diagnostic value of circulating COMP as a non-invasive biomarker of BA (AUC = 0.99), with a sensitivity of 100.0% and a specificity of 98.2%. In the liver, both COMP mRNA and protein expressions of BA patients with fibrosis were significantly greater than those of BA patients without fibrosis and non-BA patients. Collectively, increased circulating COMP might reflect unfavorable outcome of BA patients and have potential as a novel biomarker for the disease severity following Kasai-operation.
Collapse
|
20
|
Serum Cartilage Oligomeric Matrix Protein and Golgi Protein-73: New Diagnostic and Predictive Tools for Liver Fibrosis and Hepatocellular Cancer? Cancers (Basel) 2021; 13:cancers13143510. [PMID: 34298722 PMCID: PMC8304371 DOI: 10.3390/cancers13143510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) ranks as the sixth most common malignancy and represents the fourth leading cause of cancer-related deaths. However, most HCC cases are insidious in the early stages leading to a delay in diagnosis with limited treatment options. In patients with chronic liver diseases, advanced liver fibrosis and cirrhosis are the leading risk factors for the development of HCC. Cartilage oligomeric matrix protein (COMP) and Golgi protein-73 (GP73) are two biomarkers that have been associated with the progression of chronic liver disease, including inflammation, fibrosis, and HCC. The aim of our study was to assess the performance of the combination of these biomarkers. We confirmed, in a large cohort of 288 patients with chronic liver diseases, that the combination of GP73 and COMP had a high discriminative ability to detect severe fibrosis/cirrhosis and is efficient in predicting the development of HCC. Abstract The cartilage oligomeric matrix protein (COMP) and Golgi-protein-73 (GP73) have been proposed as markers of liver fibrosis and hepatocellular carcinoma (HCC). Our aim was to assess the performance of the combination of these markers in diagnosing cirrhosis and predicting HCC development. Sera from 288 consecutive patients with chronic liver diseases were investigated by using COMP and GP73-ELISAs. Dual positivity for COMP (>15 U/L) and GP73 (>20 units) was observed in 24 (8.3%) patients, while 30 (10.4%) were GP73(+)/COMP(−), 37/288 (12.8%) GP73(−)/COMP(+), and 197 (68.5%) GP73(−)/COMP(−). Positivity for both markers was associated with cirrhosis [23/24 (95.8%) for GP73(+)/COMP(+) vs. 22/30 (73.3%) for GP73(+)/COMP(−) vs. 25/37 (67.6%) for GP73(−)/COMP(+) vs. 46/197 (23.4%) for GP73(−)/COMP(−); P < 0.001]. The combination of GP73, COMP, the aspartate aminotransferase/platelets ratio index, and the Fibrosis-4 score had even higher diagnostic accuracy to detect the presence of cirrhosis [AUC (95% CI): 0.916 (0.878–0.946)] or significant liver fibrosis (METAVIR ≥ F2) [AUC (95% CI): 0.832 (0.768–0.883)] than each marker alone. Kaplan-Meier analysis showed that positivity for both GP73 and COMP was associated with higher rates of HCC development (P < 0.001) and liver-related deaths (P < 0.001) during follow-up. In conclusion, the combination of GP73 and COMP seems efficient to detect cirrhosis and predict worse outcomes and the development of HCC in patients with chronic liver diseases.
Collapse
|
21
|
Herger S, Vach W, Liphardt AM, Nüesch C, Egloff C, Mündermann A. Experimental-analytical approach to assessing mechanosensitive cartilage blood marker kinetics in healthy adults: dose-response relationship and interrelationship of nine candidate markers. F1000Res 2021; 10:490. [PMID: 35284064 PMCID: PMC8907551 DOI: 10.12688/f1000research.52159.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose: To determine the suitability of selected blood biomarkers of articular cartilage as mechanosensitive markers and to investigate the dose-response relationship between ambulatory load magnitude and marker kinetics in response to load. Methods: Serum samples were collected from 24 healthy volunteers before and at three time points after a 30-minute walking stress test performed on three test days. In each experimental session, one of three ambulatory loads was applied: 100% body weight (BW); 80%BW; 120%BW. Serum concentrations of COMP, MMP-3, MMP-9, ADAMTS-4, PRG-4, CPII, C2C and IL-6 were assessed using commercial enzyme-linked immunosorbent assays. A two-stage analytical approach was used to determine the suitability of a biomarker by testing the response to the stress test (criterion I) and the dose-response relationship between ambulatory load magnitude and biomarker kinetics (criterion II). Results. COMP, MMP-3 and IL-6 at all three time points after, MMP-9 at 30 and 60 minutes after, and ADAMTS-4 and CPII at immediately after the stress test showed an average response to load or an inter-individual variation in response to load of up to 25% of pre-test levels. The relation to load magnitude on average or an inter-individual variation in this relationship was up to 8% from load level to load level. There was a positive correlation for the slopes of the change-load relationship between COMP and MMP-3, and a negative correlation for the slopes between COMP, MMP-3 and IL-6 with MMP-9, and COMP with IL6. Conclusions: COMP, MMP-3, IL-6, MMP-9, and ADAMTS-4 warrant further investigation in the context of articular cartilage mechanosensitivity and its role in joint degeneration and OA. While COMP seems to be able to reflect a rapid response, MMP-3 seems to reflect a slightly longer lasting, but probably also more distinct response. MMP-3 showed also the strongest association with the magnitude of load.
Collapse
Affiliation(s)
- Simon Herger
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Spine Surgery, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, BL, 4123, Switzerland
| | - Werner Vach
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Clinical Research, University of Basel, Basel, BS, 4031, Switzerland
- Basel Academy for Quality and Research in Medicine, Basel, Switzerland
| | - Anna-Maria Liphardt
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Corina Nüesch
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Spine Surgery, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, BL, 4123, Switzerland
- Department of Clinical Research, University of Basel, Basel, BS, 4031, Switzerland
| | - Christian Egloff
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
| | - Annegret Mündermann
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Spine Surgery, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, BL, 4123, Switzerland
- Department of Clinical Research, University of Basel, Basel, BS, 4031, Switzerland
| |
Collapse
|
22
|
Herger S, Vach W, Liphardt AM, Nüesch C, Egloff C, Mündermann A. Experimental-analytical approach to assessing mechanosensitive cartilage blood marker kinetics in healthy adults: dose-response relationship and interrelationship of nine candidate markers. F1000Res 2021; 10:490. [PMID: 35284064 PMCID: PMC8907551 DOI: 10.12688/f1000research.52159.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 11/23/2023] Open
Abstract
Purpose: To determine the suitability of selected blood biomarkers of articular cartilage as mechanosensitive markers and to investigate the dose-response relationship between ambulatory load magnitude and marker kinetics in response to load. Methods: Serum samples were collected from 24 healthy volunteers before and at three time points after a 30-minute walking stress test performed on three test days. In each experimental session, one of three ambulatory loads was applied: 100% body weight (BW); 80%BW; 120%BW. Serum concentrations of COMP, MMP-3, MMP-9, ADAMTS-4, PRG-4, CPII, C2C and IL-6 were assessed using commercial enzyme-linked immunosorbent assays. A two-stage analytical approach was used to determine the suitability of a biomarker by testing the response to the stress test (criterion I) and the dose-response relationship between ambulatory load magnitude and biomarker kinetics (criterion II). Results. COMP, MMP-3 and IL-6 at all three time points after, MMP-9 at 30 and 60 minutes after, and ADAMTS-4 and CPII at immediately after the stress test showed an average response to load or an inter-individual variation in response to load of up to 25% of pre-test levels. The relation to load magnitude on average or an inter-individual variation in this relationship was up to 8% from load level to load level. There was a positive correlation for the slopes of the change-load relationship between COMP and MMP-3, and a negative correlation for the slopes between COMP, MMP-3 and IL-6 with MMP-9, and COMP with IL6. Conclusions: COMP, MMP-3, IL-6, MMP-9, and ADAMTS-4 warrant further investigation in the context of articular cartilage mechanosensitivity and its role in joint degeneration and OA. While COMP seems to be able to reflect a rapid response, MMP-3 seems to reflect a slightly longer lasting, but probably also more distinct response. MMP-3 showed also the strongest association with the magnitude of load.
Collapse
Affiliation(s)
- Simon Herger
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Spine Surgery, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, BL, 4123, Switzerland
| | - Werner Vach
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Clinical Research, University of Basel, Basel, BS, 4031, Switzerland
- Basel Academy for Quality and Research in Medicine, Basel, Switzerland
| | - Anna-Maria Liphardt
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Corina Nüesch
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Spine Surgery, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, BL, 4123, Switzerland
- Department of Clinical Research, University of Basel, Basel, BS, 4031, Switzerland
| | - Christian Egloff
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
| | - Annegret Mündermann
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Spine Surgery, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, BL, 4123, Switzerland
- Department of Clinical Research, University of Basel, Basel, BS, 4031, Switzerland
| |
Collapse
|
23
|
Dalle Carbonare L, Bertacco J, Marchetto G, Cheri S, Deiana M, Minoia A, Tiso N, Mottes M, Valenti MT. Methylsulfonylmethane enhances MSC chondrogenic commitment and promotes pre-osteoblasts formation. Stem Cell Res Ther 2021; 12:326. [PMID: 34090529 PMCID: PMC8180127 DOI: 10.1186/s13287-021-02396-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Methylsulfonylmethane (MSM) is a nutraceutical compound which has been indicated to counteract osteoarthritis, a cartilage degenerative disorder. In addition, MSM has also been shown to increase osteoblast differentiation. So far, few studies have investigated MSM role in the differentiation of mesenchymal stem cells (MSCs), and no study has been performed to evaluate its overall effects on both osteogenic and chondrogenic differentiation. These two mutually regulated processes share the same progenitor cells. METHODS Therefore, with the aim to evaluate the effects of MSM on chondrogenesis and osteogenesis, we analyzed the expression of SOX9, RUNX2, and SP7 transcription factors in vitro (mesenchymal stem cells and chondrocytes cell lines) and in vivo (zebrafish model). Real-time PCR as well Western blotting, immunofluorescence, and specific in vitro and in vivo staining have been performed. Student's paired t test was used to compare the variation between the groups. RESULTS Our data demonstrated that MSM modulates the expression of differentiation-related genes both in vitro and in vivo. The increased SOX9 expression suggests that MSM promotes chondrogenesis in treated samples. In addition, RUNX2 expression was not particularly affected by MSM while SP7 expression increased in all MSM samples/model analyzed. As SP7 is required for the final commitment of progenitors to preosteoblasts, our data suggest a role of MSM in promoting preosteoblast formation. In addition, we observed a reduced expression of the osteoclast-surface receptor RANK in larvae and in scales as well as a reduced pERK/ERK ratio in fin and scale of MSM treated zebrafish. CONCLUSIONS In conclusion, our study provides new insights into MSM mode of action and suggests that MSM is a useful tool to counteract skeletal degenerative diseases by targeting MSC commitment and differentiation.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Jessica Bertacco
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 10, 37100, Verona, Italy
| | - Giulia Marchetto
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Samuele Cheri
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Michela Deiana
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Arianna Minoia
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, I-35131, Padova, Italy
| | - Monica Mottes
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 10, 37100, Verona, Italy
| | - Maria Teresa Valenti
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy.
| |
Collapse
|
24
|
Erhart-Hledik JC, Mahtani GB, Asay JL, Migliore E, Nguyen MM, Andriacchi TP, Chu CR. Changes in knee adduction moment wearing a variable-stiffness shoe correlate with changes in pain and mechanically stimulated cartilage oligomeric matrix levels. J Orthop Res 2021; 39:619-627. [PMID: 32497304 DOI: 10.1002/jor.24770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/27/2020] [Accepted: 06/01/2020] [Indexed: 02/04/2023]
Abstract
This study aimed to determine if changes in knee adduction moment (KAM) after 6 months of variable-stiffness shoe wear are associated with changes in symptoms or serum levels of cartilage oligomeric matrix protein (COMP) following a mechanical stimulus in subjects with medial knee osteoarthritis (OA). Twenty-five subjects were enrolled in the study and assigned a variable-stiffness shoe, and 19 subjects completed the 6-month follow-up. At baseline and follow-up subjects underwent gait analysis in control and variable-stiffness shoes, completed Western Ontario and McMaster Universities (WOMAC) questionnaires, and serum COMP concentrations were measured immediately before, 3.5 and 5.5 hours after a 30-minute walking activity. Relationships between changes in KAM (first peak and impulse) and changes in (a) COMP levels in response to the 30-minute walking activity and (b) WOMAC scores from baseline to 6-month follow-up were assessed by Pearson correlation coefficients. Changes in first peak KAM were associated with changes in COMP levels 5.5 hours postactivity from baseline to follow-up (R = .564, P = .045). Subjects with greater reductions in KAM had larger decreases in COMP (expressed as a percent of preactivity levels) at follow-up. Subjects with greater reductions in KAM impulse had significantly greater improvements in WOMAC Pain (R = -.56, P = .015) and Function (R = -.52, P = .028) scores at follow-up. The study results demonstrated the magnitude of reduction in the KAM wearing a variable-stiffness shoe is associated with decreases in mechanically stimulated COMP levels and pain/function. This work suggests that interactions between COMP and joint loading during walking should be further investigated in future studies of treatment outcomes in OA.
Collapse
Affiliation(s)
- Jennifer C Erhart-Hledik
- Department of Orthopaedic Surgery, Stanford University, Stanford, California.,VA Palo Alto Health Care System, Palo Alto, California
| | - Gordhan B Mahtani
- Department of Orthopaedic Surgery, Stanford University, Stanford, California.,VA Palo Alto Health Care System, Palo Alto, California
| | - Jessica L Asay
- VA Palo Alto Health Care System, Palo Alto, California.,Department of Mechanical Engineering, Stanford University, Stanford, CA
| | - Eleonora Migliore
- Department of Orthopaedic Surgery, Stanford University, Stanford, California.,VA Palo Alto Health Care System, Palo Alto, California
| | - Michelle M Nguyen
- VA Palo Alto Health Care System, Palo Alto, California.,Department of Radiology, Stanford University, Stanford, CA
| | - Thomas P Andriacchi
- VA Palo Alto Health Care System, Palo Alto, California.,Department of Mechanical Engineering, Stanford University, Stanford, CA
| | - Constance R Chu
- Department of Orthopaedic Surgery, Stanford University, Stanford, California.,VA Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
25
|
Zhao Y, Urbonaviciute V, Xu B, Cai W, Sener Z, Ge C, Holmdahl R. Cartilage Oligomeric Matrix Protein Induced Arthritis-A New Model for Rheumatoid Arthritis in the C57BL/6 Mouse. Front Immunol 2021; 12:631249. [PMID: 33708221 PMCID: PMC7940517 DOI: 10.3389/fimmu.2021.631249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/07/2021] [Indexed: 12/29/2022] Open
Abstract
The most commonly used strains in experimental research, including genetically modified strains, are C57BL/6 mice. However, so far, no reliable model for rheumatoid arthritis is available, mainly due to the restriction by the MHC class II haplotype H-2b. Collagen-induced arthritis (CIA) is the most widely used animal model of rheumatoid arthritis, but C57BL/6 strain is resistant to CIA because there is no collagen II peptide associated with H-2b. To establish a rheumatoid arthritis model in C57BL/6 mice, we immunized C57BL/6NJ (B6N) mice with human cartilage oligomeric matrix protein (COMP), which induced severe arthritis with high incidence, accompanied by a strong auto-antibody response. Native COMP was required, as denatured COMP lost its ability to induce arthritis in B6N mice. An immunodominant COMP peptide was identified as the key T cell epitope, with a perfect fit into the Ab class II peptide binding pocket. A critical amino acid in this peptide was found to be phenylalanine at position 95. Recombinant COMP mutated at position 95 (COMP_F95S) lost its ability to induce arthritis or a strong immune response in the B6N mice. In conclusion, A new model for RA has been established using C57BL/6 mice through immunization with COMP, which is dependent on a COMP specific peptide binding Ab, thus in similarity with CIA in Aq expressing strains.
Collapse
Affiliation(s)
- Yunjuan Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Vilma Urbonaviciute
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Bingze Xu
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Weiwei Cai
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Zeynep Sener
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Changrong Ge
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
26
|
Effect of growth selection of broilers on breast muscle satellite cell function: Response of satellite cells to NOV, COMP, MYBP-C1, and CSRP3. Comp Biochem Physiol A Mol Integr Physiol 2021; 255:110917. [PMID: 33548540 DOI: 10.1016/j.cbpa.2021.110917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/23/2022]
Abstract
The wooden breast (WB) myopathy is characterized by the palpation of a hard pectoralis major muscle that results in the necrosis and fibrosis of muscle fibers in fast-growing heavy weight meat-type broiler chickens. Necrosis of existing muscle fibers requires the repair and replacement of these myofibers. Satellite cells are responsible for the repair and regeneration of myofibers. To address how WB affects satellite cell function, top differentially expressed genes in unaffected and WB-affected pectoralis major muscle determined by RNA-Sequencing were studied by knocking down their expression by small interfering RNA in proliferating and differentiating commercial Ross 708 and Randombred (RBch) satellite cells. RBch satellite cells are from commercial 1995 broilers before WB appeared in broilers. Genes studied were: Nephroblastoma Overexpressed (NOV); Myosin Binding Protein-C (MYBP-C1); Cysteine-Rich Protein 3 (CSRP3); and Cartilage Oligomeric Matrix Protein (COMP). Ross 708 satellite cells had greatly reduced proliferation and differentiation compared to RBch satellite cells. MYBP-C1, CSRP3, and COMP reduced late proliferation and NOV did not affect proliferation in both lines. The timing of the knockdown differentially affected differentiation. If the expression was reduced at the beginning of proliferation, the effect on differentiation was greater than if the knockdown was at the beginning of differentiation. These data suggest, appropriate gene expression levels during proliferation greatly impact multinucleated myotube formation during differentiation. The effect of slow myofiber genes MYBP-C1 and CSRP3 on proliferation and differentiation suggests the presence of aerobic Type I satellite cells in the pectoralis major muscle which contains anaerobic Type IIb cells.
Collapse
|
27
|
Sandstedt J, Vargmar K, Björkman K, Ruetschi U, Bergström G, Hultén LM, Skiöldebrand E. COMP (Cartilage Oligomeric Matrix Protein) Neoepitope: A Novel Biomarker to Identify Symptomatic Carotid Stenosis. Arterioscler Thromb Vasc Biol 2021; 41:1218-1228. [PMID: 33472398 PMCID: PMC7901532 DOI: 10.1161/atvbaha.120.314720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE COMP (cartilage oligomeric matrix protein) is abundantly expressed in the cardiovascular system, cartilage, and atherosclerotic plaques. We investigated if the total COMP (COMPtotal) and COMP neoepitope (COMPneo) with other cardiovascular markers and clinical parameters could identify symptomatic carotid stenosis. Approach and Results: Blood samples were collected from patients with symptomatic carotid stenosis (stenosis, n=50), patients with stroke without carotid stenosis but small plaques (plaque, n=50), and control subjects (n=50). COMPtotal and COMPneo were measured using an ELISA. Ninety-two cardiovascular disease markers were measured by the Olink CVD kit. The presence of native COMP and COMPneo was determined by immunohistochemistry. The concentration of COMPneo was higher and COMPtotal was lower in the stenosis group. When the concentration was compared between the stenosis and control groups, IL-1ra (interleukin-1 receptor antagonist protein), IL6 (interleukin-6), REN (Renin), MMP1 (matrix metalloproteinase-1), TRAIL-R2 (tumor necrosis factor-related apoptosis-inducing ligand receptor 2), ITGB1BP2 (integrin beta 1 binding protein 2), and COMPneo were predictive of stenosis. Conversely, KLK6 (kallikrein-6), COMPtotal, NEMO (nuclear factor-kappa-B essential modulator), SRC (Proto-oncogene tyrosine-protein kinase Src), SIRT2 (SIR2-like protein), CD40 (cluster of differentiation 40), TF (tissue factor), MP (myoglobin), and RAGE (receptor for advanced glycation end-products) were predictive of the control group. Model reproducibility was good with the receiver operating characteristic plot area under the curve being 0.86. When comparing the plaque group and stenosis group, COMPneo, GAL (galanin), and PTX3 (pentraxin-related protein PTX3) were predictive of stenosis. Model reproducibility was excellent (receiver operating characteristic plot area under the curve 0.92). COMPneo was detected in smooth muscle-, endothelial-, and foam-cells in carotid stenosis. CONCLUSIONS Degradation of COMP may be associated with atherosclerosis progression and generation of a specific COMP fragment-COMPneo. This may represent a novel biomarker that together with COMPtotal and other risk-markers could be used to identify symptomatic carotid stenosis. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Joakim Sandstedt
- Department of Laboratory Medicine, Institute of Biomedicine (J.S., U.R.), Sahlgrenska Academy, University of Gothenburg, Sweden
- Region Västra Götaland, Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden (J.S., U.R., L.M.H.)
| | - Karin Vargmar
- Department of Molecular and Clinical Medicine, Institute of Medicine (K.B., G.B., L.M.H.), Sahlgrenska Academy, University of Gothenburg, Sweden
- Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden (K.V., E.S.)
| | | | - Ulla Ruetschi
- Department of Laboratory Medicine, Institute of Biomedicine (J.S., U.R.), Sahlgrenska Academy, University of Gothenburg, Sweden
- Region Västra Götaland, Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden (J.S., U.R., L.M.H.)
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Institute of Medicine (K.B., G.B., L.M.H.), Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Lillemor Mattsson Hultén
- Department of Molecular and Clinical Medicine, Institute of Medicine (K.B., G.B., L.M.H.), Sahlgrenska Academy, University of Gothenburg, Sweden
- Region Västra Götaland, Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden (J.S., U.R., L.M.H.)
| | - Eva Skiöldebrand
- Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden (K.V., E.S.)
| |
Collapse
|
28
|
Serum cartilage oligomeric matrix protein as a biomarker for predicting development and progression of knee osteoarthritis. INTERNATIONAL ORTHOPAEDICS 2021; 45:551-557. [PMID: 33438071 DOI: 10.1007/s00264-021-04943-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE Current modes of diagnosing and monitoring knee osteoarthritis (OA) are based on weight bearing radiographs usually made by the time joint destruction is already established. Cartilage oligomeric matrix protein (COMP) is a breakdown product of cartilage and its serum levels may be a potential indicator of early destruction in OA. This study aimed to ascertain the usefulness of serum COMP (sCOMP) in diagnosis and monitoring of knee joint OA within the study environment. METHODS Ninety consenting adults were recruited. In the control group, 45 subjects having a diagnosis of knee OA had clinical and radiological grading done and blood samples taken for assay of sCOMP using the sandwich ELISA method. Forty-five volunteers with no features of osteoarthritis also had serum collected for sCOMP assay. Values obtained were then cross referenced with demographic indices, clinical and radiological severity grade to assess for relationships. RESULTS Serum COMP was found to be significantly elevated (p = 0.0001) in the study group. The mean values and standard deviation of sCOMP were 3400 ± 1042.9 ng/ml and 2222 ± 605.6 ng/ml for the study and control groups, respectively. Higher values of sCOMP were found to be associated with higher clinical and radiological grades of OA. CONCLUSION The study demonstrates that sCOMP is significantly higher in patients with knee OA than in those without the disease. Values of sCOMP were also found to increase with severity of knee OA, indicating the possibility of its use as a marker of diagnosis and severity.
Collapse
|
29
|
韩 玮, 罗 海, 郭 传, 宁 琦, 孟 娟. [Expression of cartilage oligomeric matrix protein in the synovial chondromatosis of the temporomandibular joint]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2020; 53:34-39. [PMID: 33550333 PMCID: PMC7867961 DOI: 10.19723/j.issn.1671-167x.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To detect the expression of cartilage oligomeric matrix protein (COMP) in the synovial chondromatosis of the temporomandibular joint (TMJSC), and to discuss the possible interactions between COMP, transforming growth factor (TGF)-β3, TGF-β1 and bone morphogenetic protein-2 (BMP-2) in the development of this neoplastic disease. METHODS Patients in Peking University School and Hospital of Stomatology from January 2011 to February 2020 were selected, who had complete medical records, TMJSC was verified histologically after operation. The expressions of COMP, TGF-β3, TGF-β1 and BMP-2 in the TMJSC of the temporomandibular joint were detected by immunohistochemistry and quantitative real-time PCR (RT-PCR) at the protein level and mRNA level respectively, compared with the normal synovial tissue of temporomandibular joint. The histological morphology, protein expression and distribution of TMJSC tissues were observed microscopically, and the positive staining proteins were counted and scored. SPSS 22.0 statistical software was used to analyze the expression differences between the related proteins in TMJSC tissue and the normal synovial tissue of temporomandibular joint and to compare their differences. P < 0.05 indicated that the difference was statistically significant. RESULTS Immunohistochemical results showed that the positive expression of COMP in TMJSC tissues was mostly found in synovial tissues and chondrocytes adjacent to synovial tissues, and the difference was statistically significant, compared with the normal temporomandibular joint synovial tissues. The positive expression of COMP was significantly different between recurrent TMJSC and non-recurrent ones. The positive expressions of TGF-β3, TGF-β1 and BMP-2 were higher than the normal synovial tissue, and were also mostly found in the synovial cells and adjacent chondrocytes, which was further confirmed by Western blot. According to the RT-PCR results, the expressions of COMP, TGF-β3, TGF-β1 and BMP-2 in TMJSC were higher than those in the normal synovial tissue. CONCLUSION The expression of COMP in TMJSC of temporomandibular joint increased significantly, compared with the normal synovial tissue. There may be interactions between COMP and cytokines related to the proliferation and differentiation, like TGF-β3, TGF-β1 and BMP-2, which may play a potential role in the pathogenesis of TMJSC.
Collapse
Affiliation(s)
- 玮华 韩
- 北京大学口腔医学院·口腔医院,颌面外科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 海燕 罗
- 北京大学口腔医学院·口腔医院,病理科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 传瑸 郭
- 北京大学口腔医学院·口腔医院,颌面外科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 琦 宁
- 北京大学口腔医学院·口腔医院,颌面外科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 娟红 孟
- 北京大学口腔医学院·口腔医院,颌面外科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
30
|
Liphardt AM, Mündermann A, Heer M, Achtzehn S, Niehoff A, Mester J. Locomotion replacement exercise cannot counteract cartilage biomarker response to 5 days of immobilization in healthy adults. J Orthop Res 2020; 38:2373-2382. [PMID: 32458495 DOI: 10.1002/jor.24753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 02/04/2023]
Abstract
Biomarkers of cartilage metabolism are sensitive to changes in the biological and mechanical environment and can indicate early changes in cartilage homeostasis. The purpose of this study was to determine if a daily locomotion replacement program can serve as a countermeasure for changes in cartilage biomarker serum concentration caused by immobilization. Ten healthy male subjects (mean ± 1 standard deviation; age: 29.4 ± 5.9 years; body mass: 77.7 ± 4.1 kg) participated in the crossover 5-day bed rest study with three interventions: control (CON), standing (STA), and locomotion replacement training (LRT). Serum samples were taken before, during, and after bed rest. Biomarker concentrations were measured using commercial enzyme-linked immunosorbent assays. Cartilage oligomeric matrix protein (COMP) levels after 24 hours of bed rest decreased independently of the intervention (-16.8% to -9.8%) and continued to decrease until 72 hours of bed rest (minimum, -23.2% to -20.6%). LRT and STA did not affect COMP during bed rests (P = .056) but there was a strong tendency for a slower decrease with LRT (-9.4%) and STA (-11.7%) compared with CON (-16.8%). MMP-3 levels decreased within the first 24 hours of bed rest (CON: -22.3%; STA: -14.7%; LRT: -17%) without intervention effect. Both COMP and MMP-3 levels recovered to baseline levels during the 6-day recovery period. MMP-1, MMP-9, and TNF-α levels were not affected by immobilization or intervention. COMP and MMP-3 are mechano-sensitive cartilage biomarkers affected by immobilization, and simple interventions such as standing upright or LRT during bed rest cannot prevent these changes. Clinical significance: simple locomotion interventions cannot prevent cartilage biomarker change during bed rest.
Collapse
Affiliation(s)
- Anna-Maria Liphardt
- Department of Internal Medicine 3-Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany.,Institute of Biomechanics and Orthopaedics, German Sport University Cologne (DSHS Köln), Köln, Germany
| | - Annegret Mündermann
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Martina Heer
- Department of Nutrition and Food Science-Nutrition Physiology, University of Bonn, Bonn, Germany.,Department of Nutrition, International University of Applied Sciences Bad Honnef (IUBH), Bad Honnef, Germany
| | - Silvia Achtzehn
- Institute of Cardiology and Sports Medicine, German Sport University Cologne (DSHS Köln), Köln, Germany.,The German Research Centre of Elite Sport Cologne (Momentum), German Sport University Cologne (DSHS Köln), Köln, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne (DSHS Köln), Köln, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), Faculty of Medicine, University of Cologne, Köln, Germany
| | - Joachim Mester
- The German Research Centre of Elite Sport Cologne (Momentum), German Sport University Cologne (DSHS Köln), Köln, Germany
| |
Collapse
|
31
|
Tran V, Karsai A, Fong MC, Cai W, Fraley JG, Yik JHN, Klineberg E, Haudenschild DR, Liu GY. Direct Visualization of the Binding of Transforming Growth Factor Beta 1 with Cartilage Oligomeric Matrix Protein via High-Resolution Atomic Force Microscopy. J Phys Chem B 2020; 124:9497-9504. [PMID: 33052673 DOI: 10.1021/acs.jpcb.0c07286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work reports the first direct observations of binding and complex formation between transforming growth factor beta 1 (TGF-β1) and cartilage oligomeric matrix protein (COMP) using high-resolution atomic force microscopy (AFM). Each COMP molecule consists of pentamers whose five identical monomeric units bundle at N-termini. From this central point, the five monomers' flexible arms extend outward with C-terminal domains at the distal ends, forming a bouquet-like structure. In commonly used buffer solutions, TGF-β1 molecules typically form homodimers (majority), double dimers (minority), and aggregates (trace amount). Mixing TGF-β1 and COMP leads to rapid binding and complex formation. The TGF-β1/COMP complexes contain one to three COMP and multiple TGF-β1 molecules. For complexes with one COMP, the structure is more compact and less flexible than that of COMP alone. For complexes with two or more COMP molecules, the conformation varies to a large degree from one complex to another. This is attributed to the presence of double dimers or aggregates of TGF-β1 molecules, whose size and multiple binding sites enable binding to more than one COMP. The number and location of individual TGF-β1 dimers are also clearly visible in all complexes. This molecular-level information provides a new insight into the mechanism of chondrogenesis enhancement by TGF-β1/COMP complexes, i.e., simultaneous and multivalent presentation of growth factors. These presentations help explain the high efficacy in sustained activation of the signaling pathway to augment chondrogenesis.
Collapse
Affiliation(s)
- Victoria Tran
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Arpad Karsai
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Michael C Fong
- Department of Biomedical Engineering, University of California, Davis, California 95616, United States
| | - Weiliang Cai
- Department of Orthopaedic Surgery, University of California-Davis Medical Center, Sacramento, California 95817, United States
| | - J Gabriel Fraley
- Department of Orthopaedic Surgery, University of California-Davis Medical Center, Sacramento, California 95817, United States
| | - Jasper H N Yik
- Department of Orthopaedic Surgery, University of California-Davis Medical Center, Sacramento, California 95817, United States
| | - Eric Klineberg
- Department of Orthopaedic Surgery, University of California-Davis Medical Center, Sacramento, California 95817, United States
| | - Dominik R Haudenschild
- Department of Orthopaedic Surgery, University of California-Davis Medical Center, Sacramento, California 95817, United States
| | - Gang-Yu Liu
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
32
|
Black RM, Wang Y, Struglics A, Lorenzo P, Tillgren V, Rydén M, Grodzinsky AJ, Önnerfjord P. Proteomic analysis reveals dexamethasone rescues matrix breakdown but not anabolic dysregulation in a cartilage injury model. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2. [PMID: 34322675 DOI: 10.1016/j.ocarto.2020.100099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objectives In this exploratory study, we used discovery proteomics to follow the release of proteins from bovine knee articular cartilage in response to mechanical injury and cytokine treatment. We also studied the effect of the glucocorticoid Dexamethasone (Dex) on these responses. Design Bovine cartilage explants were treated with either cytokines alone (10 ng/ml TNFα, 20 ng/ml IL-6, 100 ng/ml sIL-6R), a single compressive mechanical injury, cytokines and injury, or no treatment, and cultured in serum-free DMEM supplemented with 1% ITS for 22 days. All samples were incubated with or without addition of 100 nM Dex. Mass spectrometry and western blot analyses were performed on medium samples for the identification and quantification of released proteins. Results We identified 500 unique proteins present in all three biological replicates. Many proteins involved in the catabolic response of cartilage degradation had increased release after inflammatory stress. Dex rescued many of these catabolic effects. The release of some proteins involved in anabolic and chondroprotective processes was inconsistent, indicating differential effects on processes that may protect cartilage from injury. Dex restored only a small fraction of these to the control state, while others had their effects exacerbated by Dex exposure. Conclusions We identified proteins that were released upon cytokine treatment which could be potential biomarkers of the inflammatory contribution to cartilage degradation. We also demonstrated the imperfect rescue of Dex on the effects of cartilage degradation, with many catabolic factors being reduced, while other anabolic or chondroprotective processes were not.
Collapse
Affiliation(s)
- Rebecca Mae Black
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yang Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - André Struglics
- Department of Orthopaedics, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Pilar Lorenzo
- Department of Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Viveka Tillgren
- Department of Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Martin Rydén
- Department of Orthopaedics, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Alan J Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Patrik Önnerfjord
- Department of Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
33
|
Firner S, Zaucke F, Heilig J, de Marées M, Willwacher S, Brüggemann GP, Niehoff A. Impact of knee joint loading on fragmentation of serum cartilage oligomeric matrix protein. J Orthop Res 2020; 38:1710-1718. [PMID: 31944379 DOI: 10.1002/jor.24586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/31/2019] [Accepted: 12/21/2019] [Indexed: 02/04/2023]
Abstract
The aim of the study was to examine the effect of mechanical knee joint loading on the fragmentation pattern of serum cartilage oligomeric matrix protein (COMP). Ten healthy men ran with knee orthoses that were passive or active (+30.9 N·m external flexion moments) on a treadmill (30 minute; v = 2.2 m/s). Lower-limb mechanics, serum COMP levels, and fragmentation patterns (baseline; 0, 0.5, 1, 2 hours postrunning) were analyzed. Running with active orthoses enhanced knee flexion moments, ankle dorsiflexion, and knee flexion angles (P < .05). There was an increase in serum COMP (+25%; pre: 8.9 ± 2.4 U/l; post: 10.7 ± 1.9 U/l, P = .001), COMP pentamer/tetramer (+88%; 1.88 ± 0.81, P = .007), trimer (+209%; 3.09 ± 2.65, P = .005), and monomer (+78%; 1.78 ± 0.85, P = .007) after running with passive orthoses and in serum COMP (+41%; pre: 8.5 ± 2.7 U/l; post: 11.3 ± 2.1 U/l, P < .001), COMP pentamer/tetramer (+57%; 1.57 ± 0.39, P = .007), trimer (+86%; 1.86 ± 0.47, P = .005), and monomer (+19%; 1.19 ± 0.34, P = .114) after running with active orthoses. Increased fragmentation might indicate COMP release from cartilage while running. Interestingly, 0.5 h up to 2 hours after running with passive orthoses, trimer (0.5 hour: 2.73 ± 3.40, P = .029; 2 hours: 2.33 ± 2.88, P = .037), and monomer (0.5 hour: 2.23 ± 2.33, P = .007; 1 hour: 2.55 ± 1.96, P = .012; 2 hours: 2.65 ± 2.50, P = .009) increased while after running with active orthoses, pentamer/tetramer (1 hour: 0.79 ± 0.28, P = .029), and trimer (1 hour: 0.63 ± 0.14, P = .005; 2 hours: 0.68 ± 0.34, P = .047) decreased. It seems that COMP degradation and clearance vary depending on joint loading characteristics.
Collapse
Affiliation(s)
- Sara Firner
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt, Germany
| | - Juliane Heilig
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Markus de Marées
- Department of Sports Medicine and Sports Nutrition, Faculty of Sport Science, Ruhr-University Bochum, Bochum, Germany
| | - Steffen Willwacher
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| | - Gert-Peter Brüggemann
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
34
|
Mündermann A, Vach W, Pagenster G, Egloff C, Nüesch C. Assessing in vivo articular cartilage mechanosensitivity as outcome of high tibial osteotomy in patients with medial compartment osteoarthritis: Experimental protocol. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100043. [DOI: 10.1016/j.ocarto.2020.100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/11/2020] [Indexed: 10/24/2022] Open
|
35
|
Park S, Ranjbarvaziri S, Zhao P, Ardehali R. Cardiac Fibrosis Is Associated With Decreased Circulating Levels of Full-Length CILP in Heart Failure. ACTA ACUST UNITED AC 2020; 5:432-443. [PMID: 32478206 PMCID: PMC7251193 DOI: 10.1016/j.jacbts.2020.01.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 01/09/2023]
Abstract
After in vitro stimulation or in vivo pressure overload injury, activated cardiac fibroblasts express Ltbp2, Comp, and Cilp. In ischemic heart disease, LTBP2, COMP, and CILP localize to the fibrotic regions of the injured heart. Circulating levels of full-length CILP are decreased in patients with heart failure, suggestive of the potential to use this protein as a biomarker for the presence of cardiac fibrosis.
Cardiac fibrosis is a pathological process associated with various forms of heart failure. This study identified latent transforming growth factor-β binding protein 2, cartilage oligomeric matrix protein, and cartilage intermediate layer protein 1 as potential biomarkers for cardiac fibrosis. All 3 encoded proteins showed increased expression in fibroblasts after transforming growth factor-β stimulation in vitro and localized specifically to fibrotic regions in vivo. Of the 3, only the full-length cartilage intermediate layer protein 1 showed a significant decrease in circulating levels in patients with heart failure compared with healthy volunteers. Further studies on these 3 proteins will lead to a better understanding of their biomarker potential for cardiac fibrosis.
Collapse
Key Words
- CFB, cardiac fibroblast
- CILP, cartilage intermediate layer protein 1
- COMP, cartilage oligomeric matrix protein
- ECM, extracellular matrix
- ELISA, enzyme-linked immunosorbent assay
- Ltbp2, latent transforming growth factor-β binding protein 2
- PCR, polymerase chain reaction
- RNA, ribonucleic acid
- TAC, transverse aortic constriction
- TGF, transforming growth factor
- biomarker
- cardiac fibrosis
- extracellular matrix protein
- heart failure
Collapse
Affiliation(s)
- Shuin Park
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, California.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles (UCLA), Los Angeles, California.,Molecular, Cellular, and Integrative Physiology Graduate Program, University of California, Los Angeles (UCLA), Los Angeles, California
| | - Sara Ranjbarvaziri
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, California.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles (UCLA), Los Angeles, California.,Molecular, Cellular, and Integrative Physiology Graduate Program, University of California, Los Angeles (UCLA), Los Angeles, California
| | - Peng Zhao
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, California
| | - Reza Ardehali
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, California.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles (UCLA), Los Angeles, California.,Molecular, Cellular, and Integrative Physiology Graduate Program, University of California, Los Angeles (UCLA), Los Angeles, California.,Molecular Biology Institute, UCLA, Los Angeles, California
| |
Collapse
|
36
|
Effect of total joint replacement in hip osteoarthritis on serum COMP and its correlation with mechanical-functional parameters of gait analysis. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100034. [DOI: 10.1016/j.ocarto.2020.100034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
|
37
|
Meng YH, Zhang JB, Sun YL, Liu XL. ADATMS-7 regulates the focal adhesion kinase signaling and promotes invasiveness of trophoblasts in early pregnancy. Placenta 2020; 92:54-61. [PMID: 32148246 DOI: 10.1016/j.placenta.2020.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/19/2020] [Accepted: 02/10/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION ADAMTS-7, a member of the disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family, was recently identified to be associated with cell migration and invasion. However, its function on trophoblasts remains unknown. In this study, we are aimed to investigate the role of ADAMTS-7 on trophoblasts in human first trimester gestation. METHODS The expression of ADAMTS-7 in trophoblasts and HTR8/SVneo cells is examined by immunohistochemistry and quantitative real-time PCR. BrdU incorporation and Annexin V/PI staining are utilized to measure the effect of ADAMTS-7 on the proliferation and apoptosis of HTR8/SVneo cells, respectively. In addition, we detect the role of ADAMTS-7 on the invasion ability of HTR8/SVneo cells using matrigel invasion assays. The activation of focal adhesion kinase (FAK) and integrinβ1 induced by ADAMTS-7 were determined by Western blot. RESULTS ADAMTS-7 and its substrate cartilage oligomeric matrix protein (COMP) were expressed in both primary human trophoblasts and human trophoblast cell lines. TGF-β1 induced a continuous and significant decrease of ADAMTS-7. Inversely, IL-1β up-regulated the ADAMTS-7 level in a dosage dependent manner. In addition, knockdown of ADAMTS-7 inhibited the growth and invasion of HTR8/SVneo cells. To the contrary, ADAMTS-7 overexpression promoted the growth and invasion of HTR8/SVneo cells. ADAMTS-7 knockdown led to a decreased level of FAK Tyr-397 phosphorylation. DISCUSSION Our results suggest that ADAMTS-7 may regulate trophoblasts invasion through focal adhesion kinase (FAK) signaling.
Collapse
Affiliation(s)
- Yu-Han Meng
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jin-Bao Zhang
- Clinical College of Weifang Medical University, Weifang, China
| | - Ye-Ling Sun
- Affiliated Hosiptal of Weifang Medical University, Weifang, China
| | - Xing-Long Liu
- The Orthopedics Department, Affiliated Hosiptal of Weifang Medical University, Weifang, China.
| |
Collapse
|
38
|
Posey KL, Coustry F, Veerisetty AC, Hossain MG, Gambello MJ, Hecht JT. Novel mTORC1 Mechanism Suggests Therapeutic Targets for COMPopathies. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:132-146. [PMID: 30553437 DOI: 10.1016/j.ajpath.2018.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/20/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023]
Abstract
Cartilage oligomeric matrix protein (COMP) is a large, multifunctional extracellular protein that, when mutated, is retained in the rough endoplasmic reticulum (ER). This retention elicits ER stress, inflammation, and oxidative stress, resulting in dysfunction and death of growth plate chondrocytes. While identifying the cellular pathologic mechanisms underlying the murine mutant (MT)-COMP model of pseudoachondroplasia, increased midline-1 (MID1) expression and mammalian target of rapamycin complex 1 (mTORC1) signaling was found. This novel role for MID1/mTORC1 signaling was investigated since treatments shown to repress the pathology also reduced Mid1/mTORC1. Although ER stress-inducing drugs or tumor necrosis factor α (TNFα) in rat chondrosarcoma cells increased Mid1, oxidative stress did not, establishing that ER stress- or TNFα-driven inflammation alone is sufficient to elevate MID1 expression. Since MID1 ubiquitinates protein phosphatase 2A (PP2A), a negative regulator of mTORC1, PP2A was evaluated in MT-COMP growth plate chondrocytes. PP2A was decreased, indicating de-repression of mTORC1 signaling. Rapamycin treatment in MT-COMP mice reduced mTORC1 signaling and intracellular retention of COMP, and increased proliferation, but did not change inflammatory markers IL-16 and eosinophil peroxidase. Lastly, mRNA from tuberous sclerosis-1/2-null mice brain tissue exhibiting ER stress had increased Mid1 expression, confirming the relationship between ER stress and MID1/mTORC1 signaling. These findings suggest a mechanistic link between ER stress and MID1/mTORC1 signaling that has implications extending to other conditions involving ER stress.
Collapse
Affiliation(s)
- Karen L Posey
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas.
| | - Francoise Coustry
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| | - Alka C Veerisetty
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| | - Mohammad G Hossain
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| | - Michael J Gambello
- Human Genetics and Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas; School of Dentistry, University of Texas Health Science Center, Houston, Texas
| |
Collapse
|
39
|
Concentration of Chondrogenic Soluble Factors in Freshly Harvested Lipoaspirate. Ann Plast Surg 2019; 83:344-351. [PMID: 30994491 DOI: 10.1097/sap.0000000000001936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cartilage tissue has a limited capacity for healing with the consequence that patients are often treated symptomatically until they become candidates for osteotomy or total joint replacement. Alternative biological therapies, for example, application of platelet-rich plasma and implantation of chondrocytes and mesenchymal stem cells, have emerged as a new treatment modality to repair articular cartilage. In addition, autologous fat transfer is performed for treatment of cartilage defects, example given, in osteoarthrosis, but several questions regarding basic biochemical properties of the transplant remain unanswered. Bone morphogenetic protein 4 (BMP4), matrix metalloproteinase (MMP)-8, cartilage oligomeric matrix protein (COMP), and chitinase-3-like protein 1 (CHI3L1) have been shown to be involved in chondrogenic regeneration and represent potential therapeutic agents for cartilage repair. However, no study regarding naturally occurring levels of these soluble factors in transplanted adipose tissue has yet been performed. METHODS To investigate the influence of age, body mass index, donor site, and sex on the concentration of BMP4, MMP-8, COMP, and CHI3L1 in freshly aspirated adipose tissue, their content was measured by means of enzyme-linked immunosorbent assay readings. RESULTS There were significant quantities of BMP4, MMP-8, COMP, and CHI3L1 (23.6, 249.9, 298.0, and 540.6 pg/mg, respectively) in the lipoaspirate harvested for transplantation. There was no correlation between the content of soluble factors and the patients' age or body mass index. Furthermore, the sex did not affect the amount of the investigated factors. However, there were significantly lower contents of BMP4, COMP, and CHI3L1 found in lipoaspirates harvested from the abdomen compared with nonabdominal donor sites. CONCLUSIONS Naturally occurring differences in the concentrations of the investigated soluble factors will favor certain donor sites for autologous fat transfer in the field of cartilage repair. Thus, increasing knowledge will enable researchers and clinicians to make autologous fat transfer procedures more reliable and efficient for treatment of articular cartilage defects.
Collapse
|
40
|
Tran V, Karsai A, Fong MC, Cai W, Yik JHN, Klineberg E, Haudenschild DR, Liu GY. Label-Free and Direct Visualization of Multivalent Binding of Bone Morphogenetic Protein-2 with Cartilage Oligomeric Matrix Protein. J Phys Chem B 2019; 123:39-46. [PMID: 30554512 DOI: 10.1021/acs.jpcb.8b08564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work presents the first direct evidence of multivalent binding between bone morphogenetic protein-2 (BMP-2) and cartilage oligomeric matrix protein (COMP) using high-resolution atomic force microscopy (AFM) imaging. AFM topographic images reveal the molecular morphology of COMP, a pentameric protein whose five identical monomer units bundle together at N-termini, extending out with flexible chains to C-termini. Upon addition of BMP-2, COMP molecules undergo conformational changes at the C-termini to enable binding with BMP-2 molecules. AFM enables local structural changes of COMP to be revealed upon binding various numbers, 1-5, of BMP-2 molecules. These BMP-2/COMP complexes exhibit very different morphologies from those of COMP: much more compact and thus less flexible. These molecular-level insights deepen current understanding of the mechanism of how the BMP-2/COMP complex enhances osteogenesis among osteoprogenitor cells, i.e., multivalent presentation of BMP-2 via the stable and relatively rigid BMP-2/COMP complex could form a lattice of interaction between multiple BMP-2 and BMP-2 receptors. These ligand-receptor clusters lead to fast initiation and sustained activation of the Smad signaling pathway, resulting in enhanced osteogenesis. This work is also of translational importance as the outcome may enable use of lower BMP-2 dosage for bone repair and regeneration.
Collapse
Affiliation(s)
- Victoria Tran
- Department of Chemistry , University of California , Davis , California 95616 , United States
| | - Arpad Karsai
- Department of Chemistry , University of California , Davis , California 95616 , United States
| | - Michael C Fong
- Department of Biomedical Engineering , University of California , Davis , California 95616 , United States
| | - Weiliang Cai
- Department of Orthopaedic Surgery , University of California-Davis Medical Center , Sacramento , California 95817 , United States
| | - Jasper H N Yik
- Department of Orthopaedic Surgery , University of California-Davis Medical Center , Sacramento , California 95817 , United States
| | - Eric Klineberg
- Department of Orthopaedic Surgery , University of California-Davis Medical Center , Sacramento , California 95817 , United States
| | - Dominik R Haudenschild
- Department of Orthopaedic Surgery , University of California-Davis Medical Center , Sacramento , California 95817 , United States
| | - Gang-Yu Liu
- Department of Chemistry , University of California , Davis , California 95616 , United States
| |
Collapse
|
41
|
Herger S, Vach W, Liphardt AM, Egloff C, Nüesch C, Mündermann A. Dose-response relationship between ambulatory load magnitude and load-induced changes in COMP in young healthy adults. Osteoarthritis Cartilage 2019; 27:106-113. [PMID: 30240936 DOI: 10.1016/j.joca.2018.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/30/2018] [Accepted: 09/11/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the dose-response relationship between ambulatory load magnitude during a walking stress test and load-induced changes in serum concentration of cartilage oligomeric matrix protein (sCOMP) in healthy subjects. DESIGN sCOMP was assessed before and after a 30-min walking stress test performed on three test days by 24 healthy volunteers. In each walking stress test, one of three ambulatory loads was applied in a block randomized crossover design: normal body weight (BW) (100%BW = normal load); reduced BW (80%BW = reduced load); increased BW (120%BW = increased load). Knee kinematics and ground reaction force (GRF) were measured using an inertial sensor gait analysis system and a pressure plate embedded in the treadmill. RESULTS Load-induced increases in sCOMP rose with increasing ambulatory load magnitude. Mean sCOMP levels increased immediately after the walking stress test by 26.8 ± 12.8%, 28.0 ± 13.3% and 37.3 ± 18.3% for the reduced, normal or increased load condition, respectively. Lower extremity kinematics did not differ between conditions. CONCLUSIONS The results of this study provide important evidence of a dose-response relationship between ambulatory load magnitude and load-induced changes in sCOMP. Our data suggests that in normal weight persons sCOMP levels are more sensitive to increased than to reduced load. The experimental framework presented here may form the basis for studying the relevance of the dose-response relationship between ambulatory load magnitude and load-induced changes in biomarkers involved in metabolism of healthy articular cartilage and after injury.
Collapse
Affiliation(s)
- S Herger
- Department of Orthopedics and Traumatology, University Hospital Basel, Basel, Switzerland; Department of Exercise and Health Sciences, University of Basel, Basel, Switzerland.
| | - W Vach
- Department of Orthopedics and Traumatology, University Hospital Basel, Basel, Switzerland.
| | - A-M Liphardt
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
| | - C Egloff
- Department of Orthopedics and Traumatology, University Hospital Basel, Basel, Switzerland.
| | - C Nüesch
- Department of Orthopedics and Traumatology, University Hospital Basel, Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Basel, Switzerland.
| | - A Mündermann
- Department of Orthopedics and Traumatology, University Hospital Basel, Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Basel, Switzerland.
| |
Collapse
|
42
|
Gebauer JM, Köhler A, Dietmar H, Gompert M, Neundorf I, Zaucke F, Koch M, Baumann U. COMP and TSP-4 interact specifically with the novel GXKGHR motif only found in fibrillar collagens. Sci Rep 2018; 8:17187. [PMID: 30464261 PMCID: PMC6249252 DOI: 10.1038/s41598-018-35447-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/05/2018] [Indexed: 12/19/2022] Open
Abstract
COMP (cartilage oligomeric matrix protein) is a member of the thrombospondin family and forms homopentamers as well as mixed heterooligomers with its closely related family member TSP-4. COMP is long known to bind to collagens and to influence collagen fibril formation. Recent work indicates that already intracellular interaction with collagen is important for collagen secretion. However, the exact binding site of COMP on the collagen triple helix has not been described up to now. In this study we have identified a GXKGHR motif on the collagen II helix to bind to COMP, using a recombinantly expressed collagen II peptide library. This binding sequence is conserved throughout evolution and we demonstrate that TSP-4 binds to the same sequence. The identified binding motif overlaps with the recognition sites of many other collagen-binding partners (e.g. PEDF, Heparin) and also spans the lysine residues, which form collagen cross-links. COMP might thereby protect collagen helices from premature modification and cross-linking. Interestingly, this motif is only found in classical fibrillar collagens, although COMP is known to also bind other types. This might indicate that COMP has a unique interface for fibrillar collagens, thus making it an interesting target for the development of antifibrotic drugs.
Collapse
Affiliation(s)
- Jan M Gebauer
- Institute of Biochemistry, University of Cologne, Cologne, Germany.
| | - Anna Köhler
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Helen Dietmar
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Monika Gompert
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Ines Neundorf
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Frank Zaucke
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Dr. Rolf Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt, Germany
| | - Manuel Koch
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| |
Collapse
|
43
|
Posey KL, Coustry F, Hecht JT. Cartilage oligomeric matrix protein: COMPopathies and beyond. Matrix Biol 2018; 71-72:161-173. [PMID: 29530484 PMCID: PMC6129439 DOI: 10.1016/j.matbio.2018.02.023] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 02/06/2023]
Abstract
Cartilage oligomeric matrix protein (COMP) is a large pentameric glycoprotein that interacts with multiple extracellular matrix proteins in cartilage and other tissues. While, COMP is known to play a role in collagen secretion and fibrillogenesis, chondrocyte proliferation and mechanical strength of tendons, the complete range of COMP functions remains to be defined. COMPopathies describe pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED), two skeletal dysplasias caused by autosomal dominant COMP mutations. The majority of the mutations are in the calcium binding domains and compromise protein folding. COMPopathies are ER storage disorders in which the retention of COMP in the chondrocyte ER stimulates overwhelming cellular stress. The retention causes oxidative and inflammation processes leading to chondrocyte death and loss of long bone growth. In contrast, dysregulation of wild-type COMP expression is found in numerous diseases including: fibrosis, cardiomyopathy and breast and prostate cancers. The most exciting clinical application is the use of COMP as a biomarker for idiopathic pulmonary fibrosis and cartilage degeneration associated osteoarthritis and rheumatoid and, as a prognostic marker for joint injury. The ever expanding roles of COMP in single gene disorders and multifactorial diseases will lead to a better understanding of its functions in ECM and tissue homeostasis towards the goal of developing new therapeutic avenues.
Collapse
Affiliation(s)
- Karen L Posey
- McGovern Medical School, UTHealth, Department of Pediatrics, United States.
| | - Francoise Coustry
- McGovern Medical School, UTHealth, Department of Pediatrics, United States
| | - Jacqueline T Hecht
- McGovern Medical School, UTHealth, Department of Pediatrics, United States; UTHealth, School of Dentistry, United States
| |
Collapse
|
44
|
Role of cartilage oligomeric matrix protein (COMP) as a prognostic biomarker in follow-up of early rheumatoid arthritis patients: Correlation to musculoskeletal ultrasonographic findings. EGYPTIAN RHEUMATOLOGIST 2018. [DOI: 10.1016/j.ejr.2018.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Krishnan Y, Grodzinsky AJ. Cartilage diseases. Matrix Biol 2018; 71-72:51-69. [PMID: 29803938 PMCID: PMC6146013 DOI: 10.1016/j.matbio.2018.05.005] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 01/13/2023]
Abstract
Hyaline cartilages, fibrocartilages and elastic cartilages play multiple roles in the human body including bearing loads in articular joints and intervertebral discs, providing joint lubrication, forming the external ears and nose, supporting the trachea, and forming the long bones during development and growth. The structure and organization of cartilage's extracellular matrix (ECM) are the primary determinants of normal function. Most diseases involving cartilage lead to dramatic changes in the ECM which can govern disease progression (e.g., in osteoarthritis), cause the main symptoms of the disease (e.g., dwarfism caused by genetically inherited mutations) or occur as collateral damage in pathological processes occurring in other nearby tissues (e.g., osteochondritis dissecans and inflammatory arthropathies). Challenges associated with cartilage diseases include poor understanding of the etiology and pathogenesis, delayed diagnoses due to the aneural nature of the tissue and drug delivery challenges due to the avascular nature of adult cartilages. This narrative review provides an overview of the clinical and pathological features as well as current treatment options available for various cartilage diseases. Late breaking advances are also described in the quest for development and delivery of effective disease modifying drugs for cartilage diseases including osteoarthritis, the most common form of arthritis that affects hundreds of millions of people worldwide.
Collapse
Affiliation(s)
- Yamini Krishnan
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Alan J Grodzinsky
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
46
|
Struglics A, Larsson S, Pramhed A, Frobell R, Swärd P. Changes in synovial fluid and serum concentrations of cartilage oligomeric matrix protein over 5 years after anterior cruciate ligament rupture: an exploratory analysis in the KANON trial. Osteoarthritis Cartilage 2018; 26:1351-1358. [PMID: 29958916 DOI: 10.1016/j.joca.2018.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/31/2018] [Accepted: 06/12/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To monitor longitudinal changes of cartilage oligomeric matrix protein (COMP) in synovial fluid (sf) and serum (s) over 5 years after acute anterior cruciate ligament (ACL) rupture, and to compare results from two commercial COMP immunoassays. DESIGN Bio-fluids were collected from 121 patients on six occasions over 5 years after acute ACL injury, and from 25 knee healthy reference subjects. Concentrations of sf- and sCOMP were measured by AnaMar (sCOMP-Ana) and by BioVendor (sf- and sCOMP-Bio) immunoassays; other biomarkers were previously assessed. We used ANCOVA for group comparisons and linear mixed models for associations between biomarkers over 5-years with P < 0.05 considered a statistically significant difference or association. RESULTS Compared to the reference group, sfCOMP-Bio concentrations were 2-fold elevated within 6 weeks after ACL injury and remained elevated 5 years thereafter, whereas sCOMP-Bio and sCOMP-Ana concentrations were no different from reference levels at any time point. Over the 5-year period, there was an association between sCOMP-Bio and sCOMP-Ana concentrations, although neither sCOMP-Bio nor sCOMP-Ana associated with sfCOMP-Bio. sfCOMP-Bio associated with SF ARGS-aggrecan, urine type I and II collagens (uNTX-I and uCTX-II) and SF cytokines, while sCOMP-Bio associated inversely with uCTX-II, uNTX-I and SF cytokines. CONCLUSION The local process after an acute ACL injury generates increased SF COMP concentrations in the injured knee up to 5 years after injury. This response is not detected in serum. Discrepancies in associations between sCOMP measured by BioVendor and AnaMar immunoassays with other biomarkers indicate differences in detected COMP fragments.
Collapse
Affiliation(s)
- A Struglics
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Lund, Sweden.
| | - S Larsson
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Lund, Sweden.
| | | | - R Frobell
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Lund, Sweden.
| | - P Swärd
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Lund, Sweden.
| |
Collapse
|
47
|
Firner S, Willwacher S, de Marées M, Bleuel J, Zaucke F, Brüggemann GP, Niehoff A. Effect of increased mechanical knee joint loading during running on the serum concentration of cartilage oligomeric matrix protein (COMP). J Orthop Res 2018; 36:1937-1946. [PMID: 29369406 DOI: 10.1002/jor.23859] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/15/2018] [Indexed: 02/04/2023]
Abstract
The purpose of the study was to investigate the effect of an increase in mechanical knee joint loading during running on the serum COMP level. On two different test days, 20 healthy men ran with knee orthoses for 30 min on a treadmill (v = 2.2 m/s). On day 1, the orthoses were passive, whereas on day 2 they were pneumatically driven (active) and thus increased the external knee flexion moments (+30.9 Nm) during stance phase. Lower-limb mechanics and serum COMP levels (baseline; 0, 0.5, 1, 2 h post running) were analyzed. COMP levels increased immediately after running with passive (+35%; pre: 7.5 U/l, 95%CI: 6.4, 8.7, post: 9.8 U/l, 95%CI: 8.8, 10.8, p < 0.001) and active orthoses (+45%; pre: 7.6 U/l; 95%CI: 6.4, 8.8, post: 10.3 U/l, 95%CI: 9.2, 11.5, p < 0.001), but they did not differ between interventions. While running with active orthoses, greater ankle dorsiflexion angles, knee flexion angles, and moments occurred (p < 0.05). Comparing both interventions, the Δ COMP pre-post, meaning the difference (Δ) between running with active and passive orthoses in pre to post COMP level change (=level after (post) running minus level before (pre) running), correlated negatively with Δ COMP baseline (difference between the baseline COMP level before running with active and passive orthoses, r = -0.616; p = 0.004), and with a positive tendence with the Δ maximum knee flexion (r = 0.388; p = 0.091). Therefore, changes in COMP concentration after physical activity seem to be highly influenced by the COMP baseline level. In addition, correlation analysis indicates that modifications in knee joint kinematics have a greater effect on cartilage metabolism than an increase in joint moments. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1937-1946, 2018.
Collapse
Affiliation(s)
- Sara Firner
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| | - Steffen Willwacher
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| | - Markus de Marées
- Faculty of Sport Science, Department of Sports Medicine and Sports Nutrition, Ruhr-University Bochum, Bochum, Germany
| | - Judith Bleuel
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), Medical Faculty, University of Cologne, Cologne, Germany
| | - Gert-Peter Brüggemann
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), Medical Faculty, University of Cologne, Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
48
|
Yin L, Agustinus AS, Yuvienco C, Minashima T, Schnabel NL, Kirsch T, Montclare JK. Engineered Coiled-Coil Protein for Delivery of Inverse Agonist for Osteoarthritis. Biomacromolecules 2018; 19:1614-1624. [PMID: 29601728 DOI: 10.1021/acs.biomac.8b00158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) results from degenerative and abnormal function of joints, with localized biochemistry playing a critical role in its onset and progression. As high levels of all- trans retinoic acid (ATRA) in synovial fluid have been identified as a contributive factor to OA, the synthesis of de novo antagonists for retinoic acid receptors (RARs) has been exploited to interrupt the mechanism of ATRA action. BMS493, a pan-RAR inverse agonist, has been reported as an effective inhibitor of ATRA signaling pathway; however, it is unstable and rapidly degrades under physiological conditions. We employed an engineered cartilage oligomeric matrix protein coiled-coil (CccS) protein for the encapsulation, protection, and delivery of BMS493. In this study, we determine the binding affinity of CccS to BMS493 and the stimulator, ATRA, via competitive binding assay, in which ATRA exhibits approximately 5-fold superior association with CccS than BMS493. Interrogation of the structure of CccS indicates that ATRA causes about 10% loss in helicity, while BMS493 did not impact the structure. Furthermore, CccS self-assembles into nanofibers when bound to BMS493 or ATRA as expected, displaying 11-15 nm in diameter. Treatment of human articular chondrocytes in vitro reveals that CccS·BMS493 demonstrates a marked improvement in efficacy in reducing the mRNA levels of matrix metalloproteinase-13 (MMP-13), one of the main proteases responsible for the degradation of the extracellular cartilage matrix compared to BMS493 alone in the presence of ATRA, interleukin-1 beta (IL-1β), or IL-1 β together with ATRA. These results support the feasibility of utilizing coiled-coil proteins as drug delivery vehicles for compounds of relatively limited bioavailability for the potential treatment of OA.
Collapse
Affiliation(s)
- Liming Yin
- Department of Chemical and Biomolecular Engineering , NYU Tandon School of Engineering , Brooklyn , New York 11201 , United States
| | - Albert S Agustinus
- Department of Chemical and Biomolecular Engineering , NYU Tandon School of Engineering , Brooklyn , New York 11201 , United States
| | - Carlo Yuvienco
- Department of Chemical and Biomolecular Engineering , NYU Tandon School of Engineering , Brooklyn , New York 11201 , United States
| | | | - Nicole L Schnabel
- Department of Chemical and Biomolecular Engineering , NYU Tandon School of Engineering , Brooklyn , New York 11201 , United States
| | | | - Jin K Montclare
- Department of Chemical and Biomolecular Engineering , NYU Tandon School of Engineering , Brooklyn , New York 11201 , United States.,Department of Chemistry , New York University , New York , New York 10003 , United States.,Department of Biomaterials , NYU College of Dentistry , New York , New York 10010 , United States.,Department of Biochemistry , SUNY Downstate Medical Center , Brooklyn , New York 11203 , United States
| |
Collapse
|
49
|
Antibodies and methods for immunohistochemistry of extracellular matrix proteins. Matrix Biol 2018; 71-72:10-27. [PMID: 29730502 DOI: 10.1016/j.matbio.2018.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 01/12/2023]
Abstract
The diversity of extracellular matrix (ECM) proteins encoded in mammalian genomes and detected by proteomic analyses generates a need for well validated antibodies against these proteins. We present characterization of a large number of antibodies against ECM proteins, from both commercial and academic sources, together with discussion of methods and strategies for their effective use in immunohistochemistry and illustrations of their efficacy. These data should be of value to investigators seeking well validated antibodies to ECM proteins of interest and save significant time and money tracking down effective reagents.
Collapse
|
50
|
Wiggenhauser PS, Schwarz S, Rotter N. The distribution patterns of COMP and matrilin-3 in septal, alar and triangular cartilages of the human nose. Histochem Cell Biol 2018; 150:291-300. [PMID: 29721643 DOI: 10.1007/s00418-018-1672-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2018] [Indexed: 01/07/2023]
Abstract
The biomechanical characteristics of septal cartilage depend strongly on the distinct extracellular matrix of cartilage tissue; therefore, it is essential that the components of this matrix are identified and understood. Cartilage oligomeric matrix protein (COMP) and matrilin-3 are localised in articular cartilage. This study was the first to examine all subtypes of mature human nasal cartilages (alar, triangular and septal) with specific attention to the distribution of COMP and matrilin-3. Three whole fresh-frozen noses from human donors were dissected, and exemplary biopsies were examined using histochemical staining (haematoxylin and eosin and Alcian blue) and immunohistochemistry (collagen II, COMP and matrilin-3). The following three zones within the nasal cartilage were identified: superficial, intermediate and central. COMP was detected as highest in the intermediate zones in all three subtypes of nasal cartilage, whereas matrilin-3 was detected with pericellular deposition mainly within septal cartilage predominantly in the superficial zones. The distinct staining patterns of COMP and matrilin-3 underscore the different functional roles of both proteins in nasal cartilage. According to the literature, COMP might be involved with collagen II in the formation of networks, whereas matrilin-3 is reported to prevent ossification or regulate mechanosensitivity. The predominant staining observed in septal cartilage suggests matrilin-3's modulatory role because of its presence in the osteochondral junctional zone and given that the biomechanical load in septal cartilage is different from that in alar or triangular cartilage. In conclusion, COMP and matrilin-3 were detected in mature human nasal cartilage but displayed different staining patterns that might be explained by the functional roles of the respective matrix protein; however, further research is necessary to identify and define the functional aspects of this morphological difference.
Collapse
Affiliation(s)
- Paul Severin Wiggenhauser
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany.
- Department of Hand, Plastic and Aesthetic Surgery, University Hospital, Ludwig-Maximilians University, Pettenkoferstr. 8a, 80336, Munich, Germany.
| | - Silke Schwarz
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany
- Department of Anatomy, Paracelsus Medical University, Prof. Ernst Nathan Str. 1, Salzburg, 90419, Nuremberg, Germany
| | - Nicole Rotter
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany
- Department of Oto-Rhino-Laryngology, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|