1
|
Oyola MG, Zuloaga DG, Carbone D, Malysz AM, Acevedo-Rodriguez A, Handa RJ, Mani SK. CYP7B1 Enzyme Deletion Impairs Reproductive Behaviors in Male Mice. Endocrinology 2015; 156:2150-61. [PMID: 25849728 PMCID: PMC4430609 DOI: 10.1210/en.2014-1786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In addition to androgenic properties mediated via androgen receptors, dihydrotestosterone (DHT) also regulates estrogenic functions via an alternate pathway. These estrogenic functions of DHT are mediated by its metabolite 5α-androstane-3β, 17β-diol (3β-diol) binding to estrogen receptor β (ERβ). CYP7B1 enzyme converts 3β-diol to inactive 6α- or 7α-triols and plays an important role as a regulator of estrogenic functions mediated by 3β-diol. Using a mutant mouse carrying a null mutation for the CYP7B1 gene (CYP7B1KO), we examined the contribution of CYP7B1 on physiology and behavior. Male, gonadectomized (GDX) CYP7B1KO and their wild type (WT) littermates were assessed for their behavioral phenotype, anxiety-related behavioral measures, and hypothalamic pituitary adrenal axis reactivity. No significant effects of genotype were evident in anxiety-like behaviors in open field (OFA), light-dark (L/D) exploration, and elevated plus maze (EPM). T significantly reduced open arm time on the EPM while not affecting L/D exploratory and OFA behaviors in CYP7B1KO and WT littermates. T also attenuated the corticosterone response to EPM in both genotypes. In GDX animals, T was able to reinstate male-specific reproductive behaviors (latencies and number of mounts, intromission, and ejaculations) in the WT but not in the CYP7B1KO mice. The male reproductive behavior defect in CYP7B1KO seems to be due to their inability to distinguish olfactory cues from a behavioral estrus female. CYP7B1KO mice also showed a reduction in androgen receptor mRNA expression in the olfactory bulb. Our findings suggest a novel role for the CYP7B1 enzyme in the regulation of male reproductive behaviors.
Collapse
Affiliation(s)
- Mario G Oyola
- Department of Neuroscience (M.G.O., A.A.-R., S.K.M.), Molecular & Cellular Biology (A.M.M., S.K.M.), Memory and Brain Research Center (M.G.O., A.M.M., A.A.-R., S.K.M.), Baylor College of Medicine, Houston, Texas 77030; and Department Of Basic Medical Sciences (D.G.Z., D.C., R.J.H.), University of Arizona College of Medicine, Phoenix, Arizona 85004
| | | | | | | | | | | | | |
Collapse
|
2
|
Reyes-Hernández OD, Vega L, Jiménez-Ríos MA, Martínez-Cervera PF, Lugo-García JA, Hernández-Cadena L, Ostrosky-Wegman P, Orozco L, Elizondo G. The PXR rs7643645 polymorphism is associated with the risk of higher prostate-specific antigen levels in prostate cancer patients. PLoS One 2014; 9:e99974. [PMID: 24924803 PMCID: PMC4055777 DOI: 10.1371/journal.pone.0099974] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/20/2014] [Indexed: 01/23/2023] Open
Abstract
Levels of enzymes that determine testosterone catabolism such as CYP3A4 have been associated with prostate cancer (PCa) risk. Although some studies have related CYP3A4*1B allele, a gene polymorphism that modifies CYP3A4 expression level, with PCa risk, others have failed, suggesting that additional genetic variants may be involved. Expression of CYP3A4 is largely due to the activation of Pregnane X Receptor (PXR). Particularly, rs2472677 and rs7643645 PXR polymorphisms modify CYP3A4 expression levels. To evaluate whether PXR-HNF3β/T (rs2472677), PXR-HNF4/G (rs7643645), and CYP3A4*1B (rs2740574) polymorphisms are associated with PCa a case control-study was performed. The multiple testing analysis showed that the PXR-HNF4/G polymorphism was associated with higher levels of prostate-specific antigen (PSA) in patients with PCa (OR = 3.99, p = 0.03). This association was stronger in patients diagnosed at the age of 65 years or older (OR = 10.8, p = 0.006). Although the CYP3A4*1B/*1B genotype was overrepresented in PCa patients, no differences were observed in the frequency of this and PXR-HNF3β/T alleles between controls and cases. Moreover, no significant association was found between these polymorphisms and PSA, Gleason grade, or tumor lymph node metastasis.
Collapse
Affiliation(s)
| | - Libia Vega
- Departamento de Toxicología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, México, D.F., México
| | | | | | - Juan A. Lugo-García
- Laboratorio de Genética y Diagnóstico Molecular, Hospital Juárez de México, México, D.F., México
| | | | - Patricia Ostrosky-Wegman
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F., México
| | - Lorena Orozco
- Laboratorio de Inmunogenómica y Enfermedades Metabólicas, Instituto Nacional de Medicina Genómica, México, D.F., México
| | - Guillermo Elizondo
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, México, D.F., México
- * E-mail:
| |
Collapse
|
3
|
Yantsevich AV, Dichenko YV, Mackenzie F, Mukha DV, Baranovsky AV, Gilep AA, Usanov SA, Strushkevich NV. Human steroid and oxysterol 7α-hydroxylase CYP7B1: substrate specificity, azole binding and misfolding of clinically relevant mutants. FEBS J 2014; 281:1700-13. [PMID: 24491228 DOI: 10.1111/febs.12733] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/23/2013] [Accepted: 01/28/2014] [Indexed: 11/28/2022]
Abstract
Oxysterols and neurosteroids are important signaling molecules produced by monooxygenases of the cytochrome P450 family that realize their effect through nuclear receptors. CYP7B1 catalyzes the 6- or 7-hydroxylation of both steroids and oxysterols and thus is involved in the metabolism of neurosteroids and bile acid synthesis, respectively. The dual physiological role of CYP7B1 is evidenced from different diseases, liver failure and progressive neuropathy, caused by enzyme malfunction. Here we present biochemical characterization of CYP7B1 at the molecular level to understand substrate specificity and susceptibility to azole drugs. Based on our experiments with purified enzyme, the requirements for CYP7B1 hydroxylation of steroid molecules are as follows: C5 hydrogen in the α-configuration (or double bond at C5), a polar group at C17, a hydroxyl group at C3, and the absence of the hydroxyl group at C20-C24 in the C27-sterol side chain. 21-hydroxy-pregnenolone was identified as a new substrate, and overall low activity toward pregnanes could be related to the increased potency of 7-hydroxy derivatives produced by CYP7B1. Metabolic conversion (deactivation) of oxysterols by CYP7B1 in a reconstituted system proceeds via two sequential hydroxylations. Two mutations that are found in patients with diseases, Gly57Arg and Phe216Ser, result in apo-P450 (devoid of heme) protein formation. Our CYP7B1 homology model provides a rationale for understanding clinical mutations and relatively broad substrate specificity for steroid hydroxylase.
Collapse
|
4
|
Gonzales RJ. Androgens and the cerebrovasculature: modulation of vascular function during normal and pathophysiological conditions. Pflugers Arch 2013; 465:627-42. [DOI: 10.1007/s00424-013-1267-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/08/2013] [Indexed: 12/26/2022]
|
5
|
Zuloaga KL, Swift SN, Gonzales RJ, Wu TJ, Handa RJ. The androgen metabolite, 5α-androstane-3β,17β-diol, decreases cytokine-induced cyclooxygenase-2, vascular cell adhesion molecule-1 expression, and P-glycoprotein expression in male human brain microvascular endothelial cells. Endocrinology 2012; 153:5949-60. [PMID: 23117931 PMCID: PMC3512076 DOI: 10.1210/en.2012-1316] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
P-glycoprotein (Pgp), a multiple drug resistance transporter expressed by vascular endothelial cells, is a key component of the blood-brain barrier and has been shown to increase after inflammation. The nonaromatizable androgen, dihydrotestosterone (DHT), decreases inflammatory markers in vascular smooth muscle cells, independent of androgen receptor (AR) stimulation. The principal metabolite of DHT, 5α-androstane-3β,17β-diol (3β-diol), activates estrogen receptor (ER)β and similarly decreases inflammatory markers in vascular cells. Therefore, we tested the hypothesis that either DHT or 3β-diol decrease cytokine-induced proinflammatory mediators, vascular cell adhesion molecule-1 (VCAM-1) and cyclooxygenase-2 (COX-2), to regulate Pgp expression in male primary human brain microvascular endothelial cells (HBMECs). Using RT-qPCR, the mRNAs for AR, ERα, and ERβ and steroid metabolizing enzymes necessary for DHT conversion to 3β-diol were detected in male HBMECs demonstrating that the enzymes and receptors for production of and responsiveness to 3β-diol are present. Western analysis showed that 3β-diol reduced COX-2 and Pgp expression; the effect on Pgp was inhibited by the ER antagonist, ICI-182,780. IL-1β-caused an increase in COX-2 and VCAM-1 that was reduced by either DHT or 3β-diol. 3β-diol also decreased cytokine-induced Pgp expression. ICI-182,780 blocked the effect of 3β-diol on COX-2 and VCAM-1, but not Pgp expression. Therefore, in cytokine-stimulated male HBMECs, the effect of 3β-diol on proinflammatory mediator expression is ER dependent, whereas its effect on Pgp expression is ER independent. These studies suggest a novel role of 3β-diol in regulating blood-brain barrier function and support the concept that 3β-diol can be protective against proinflammatory mediator stimulation.
Collapse
Affiliation(s)
- Kristen L Zuloaga
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Phoenix, AZ 85004-2157, USA
| | | | | | | | | |
Collapse
|
6
|
Zuloaga KL, O’Connor DT, Handa RJ, Gonzales RJ. Estrogen receptor beta dependent attenuation of cytokine-induced cyclooxygenase-2 by androgens in human brain vascular smooth muscle cells and rat mesenteric arteries. Steroids 2012; 77:835-44. [PMID: 22542504 PMCID: PMC3809122 DOI: 10.1016/j.steroids.2012.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/06/2012] [Accepted: 04/10/2012] [Indexed: 12/31/2022]
Abstract
Androgens may provide protective effects in the vasculature under pathophysiological conditions. Our past studies have shown that dihydrotestosterone (DHT) decreases expression of cyclooxygenase-2 (COX-2) during cytokine, endotoxin, or hypoxic stimulation in human vascular smooth muscle cells, in an androgen receptor (AR)-independent fashion. Classically DHT is regarded as a pure AR agonist; however, it can be endogenously metabolized to 5α-androstane-3β, 17β-diol (3β-diol), which has recently been shown to be a selective estrogen receptor (ERβ) agonist. Therefore, we hypothesized that DHT's anti-inflammatory properties following cytokine stimulation are mediated through ERβ. Using primary human brain vascular smooth muscle cells (HBVSMC), we tested whether DHT's effect on IL-1β induced COX-2 expression was mediated via AR or ERβ. The metabolism of DHT to 3β-diol is a viable pathway in HBVSMC since mRNA for enzymes necessary for the synthesis and metabolism of 3β-diol [3alpha-hydroxysteroid dehydrogenase (HSD), 3β-HSD, 17β-HSD, CYP7B1] was detected. In addition, the expression of AR, ERα, and ERβ mRNA was detected. When applied to HBVSMC, DHT (10nM; 18 h) attenuated IL-1β-induced increases in COX-2 protein expression. The AR antagonist bicalutamide did not block DHT's ability to reduce COX-2. Both the non-selective estrogen receptor antagonist ICI 182,780 (1 μM) and the selective ERβ antagonist PHTPP (1 μM) inhibited the effect of DHT, suggesting that DHT actions are ERβ-mediated. In HBVSMC and in rat mesenteric arteries, 3β-diol, similar to DHT, reduced cytokine-induced COX-2 levels. In conclusion, DHT appears to be protective against the progression of vascular inflammation through metabolism to 3β-diol and activation of ERβ.
Collapse
MESH Headings
- Androgens/pharmacology
- Animals
- Blotting, Western
- Brain/cytology
- Cells, Cultured
- Cyclooxygenase 2/metabolism
- Cytokines/pharmacology
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Humans
- In Vitro Techniques
- Male
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Rats
- Rats, Sprague-Dawley
- Real-Time Polymerase Chain Reaction
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
Collapse
Affiliation(s)
| | | | | | - Rayna J. Gonzales
- Corresponding author. Address: Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N. 5th Street, Building ABC1, Phoenix, AZ 85004-2157, United States. Tel.: +1 602 827 2143; fax: +1 602 827 2127. (R.J. Gonzales)
| |
Collapse
|
7
|
Abstract
Oestradiol exerts a profound influence upon multiple brain circuits. For the most part, these effects are mediated by oestrogen receptor (ER)α. We review here the roles of ERβ, the other ER isoform, in mediating rodent oestradiol-regulated anxiety, aggressive and sexual behaviours, the control of gonadotrophin secretion, and adult neurogenesis. Evidence exists for: (i) ERβ located in the paraventricular nucleus underpinning the suppressive influence of oestradiol on the stress axis and anxiety-like behaviour; (ii) ERβ expressed in gonadotrophin-releasing hormone neurones contributing to oestrogen negative-feedback control of gonadotrophin secretion; (iii) ERβ controlling the offset of lordosis behaviour; (iv) ERβ suppressing aggressive behaviour in males; (v) ERβ modulating responses to social stimuli; and (vi) ERβ in controlling adult neurogenesis. This review highlights two major themes; first, ERβ and ERα are usually tightly inter-related in the oestradiol-dependent control of a particular brain function. For example, even though oestradiol feedback to control reproduction occurs principally through ERα-dependent mechanisms, modulatory roles for ERβ also exist. Second, the roles of ERα and ERβ within a particular neural network may be synergistic or antagonistic. Examples of the latter include the role of ERα to enhance, and ERβ to suppress, anxiety-like and aggressive behaviours. Splice variants such as ERβ2, acting as dominant negative receptors, are of further particular interest because their expression levels may reflect preceeding oestradiol exposure of relevance to oestradiol replacement therapy. Together, this review highlights the predominant modulatory, but nonetheless important, roles of ERβ in mediating the many effects of oestradiol upon adult brain function.
Collapse
Affiliation(s)
- R. J. Handa
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - S. Ogawa
- Laboratory of Behavioral Neuroendocrinology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - J. M. Wang
- Department of Pathology, Pharmacology and Toxicology, Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - A. E. Herbison
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Fujimura T, Takahashi S, Urano T, Tanaka T, Zhang W, Azuma K, Takayama K, Obinata D, Murata T, Horie-Inoue K, Kodama T, Ouchi Y, Homma Y, Inoue S. Clinical significance of steroid and xenobiotic receptor and its targeted gene CYP3A4 in human prostate cancer. Cancer Sci 2011; 103:176-80. [PMID: 22050110 DOI: 10.1111/j.1349-7006.2011.02143.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The steroid and xenobiotic receptor (SXR) regulates cytochrome P450 (CYP) enzymes, which are key inactivators of testosterone in the liver and prostate. In the present study, we investigated SXR expression in human prostate tissues. We determined SXR immunoreactivity using an anti-SXR antibody in benign (n = 78) and cancerous (n = 106) tissues obtained by radical prostatectomy. Stained slides were evaluated for the proportion and staining intensity of immunoreactive cells. Total immunoreactivity (IR) scores (range: 0-8) were calculated as the sum of the proportion and intensity scores. Associations between the clinicopathological features of the patients, SXR status, and CYP3A4 immunoreactivity were analyzed. Western blot analyses validated the specificity of the anti-SXR antibody in 293T cells transfected with pcDNA-FLAG-SXR. Positive (IR score: ≥ 2) nuclear SXR staining was observed in 91% (71/78) of benign foci and 47% (50/106) of cancerous lesions. Immunoreactivity scores were significantly lower in the cancerous lesions than in the benign foci (P < 0.0001). Clinicopathological analyses showed that cancer-specific survival in patients with high SXR IR scores (≥ 4) was significantly increased (P = 0.046). Combined data of present and previous studies showed that high IR scores for both the SXR and CYP3A4 correlated with significantly better cancer-specific survival rates in multivariate regression analyses (hazard ratio: 2.15, 95% confidence interval: 1.25-3.55, P = 0.007). We showed differential SXR expression in human prostate tissues. The high expression of the SXR and CYP3A4 is a strong prognostic indicator of favorable outcomes in prostate cancer, and could be a therapeutic target.
Collapse
Affiliation(s)
- Tetsuya Fujimura
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Stiles AR, McDonald JG, Bauman DR, Russell DW. CYP7B1: one cytochrome P450, two human genetic diseases, and multiple physiological functions. J Biol Chem 2009; 284:28485-9. [PMID: 19687010 PMCID: PMC2781391 DOI: 10.1074/jbc.r109.042168] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CYP7B1 cytochrome P450 enzyme hydroxylates carbons 6 and 7 of the B ring of oxysterols and steroids. Hydroxylation reduces the biological activity of these substrates and facilitates their conversion to end products that are readily excreted from the body. CYP7B1 is expressed in the liver, reproductive tract, and brain and performs different physiological functions in each tissue. Hepatic CYP7B1 activity is crucial for the inactivation of oxysterols and their subsequent conversion into bile salts. Loss of CYP7B1 activity is associated with liver failure in children. In the reproductive tract, the enzyme metabolizes androgens that antagonize estrogen action; mice without CYP7B1 have abnormal prostates and ovaries. The role of CYP7B1 in brain is under investigation; recent studies show that spastic paraplegia type 5, a progressive neuropathy, is caused by loss-of-function mutations in the human gene.
Collapse
Affiliation(s)
- Ashlee R. Stiles
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046
| | - Jeffrey G. McDonald
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046
| | - David R. Bauman
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046
| | - David W. Russell
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046
| |
Collapse
|
10
|
Kurosaki T, Suzuki M, Enomoto Y, Arai T, Sawabe M, Hosoi T, Homma Y, Kitamura T. Polymorphism of cytochrome P450 2B6 and prostate cancer risk: a significant association in a Japanese population. Int J Urol 2009; 16:364-8. [PMID: 19425200 DOI: 10.1111/j.1442-2042.2009.02263.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To explore whether Lys262Arg polymorphism of the Cytochrome P450 2B6 (CYP2B6) gene could act as a genetic marker for prostate cancer risk among Japanese men. METHODS A total of 350 patients with sporadic prostate cancer and 328 controls were examined. A single nucleotide polymorphism with non-synonymous amino acid change located at Lys262Arg of the CYP2B6 gene was genotyped using a TaqMan assay. RESULTS The frequency of the Arg/Arg genotype among prostate cancer patients was significantly higher than that among the controls (P = 0.027). The frequency of the G allele of the Lys262Arg polymorphism was also significantly higher in prostate cancer patients than in the controls (30.4% vs 24.8%, P = 0.025). Patients with the Lys/Arg plus Arg/Arg genotypes carried a low Gleason score more frequently than those with the Lys/Lys genotype (P = 0.042). The frequency of the G allele of the Lys262Arg polymorphism was significantly higher in the low Gleason score group than that in the high Gleason score group (34.3% vs 26.8%, P = 0.038). CONCLUSIONS Lys262Arg polymorphism of the CYP2B6 gene may be a genetic marker for evaluating the risk of sporadic prostate cancer in native Japanese men.
Collapse
Affiliation(s)
- Takayuki Kurosaki
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Fujimura T, Takahashi S, Urano T, Kumagai J, Murata T, Takayama K, Ogushi T, Horie-Inoue K, Ouchi Y, Kitamura T, Muramatsu M, Homma Y, Inoue S. Expression of cytochrome P450 3A4 and its clinical significance in human prostate cancer. Urology 2009; 74:391-7. [PMID: 19501880 DOI: 10.1016/j.urology.2009.02.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 01/17/2009] [Accepted: 02/07/2009] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To evaluate CYP3A4 expression in human prostrate cancer (PCa) tissues. Enzymes of the cytochrome P450 (CYP) family are key inactivators of testosterone in the liver and prostate. We previously reported that CYP2B6 is a growth-inhibitory and prognostic factor in human PCa; however, the status of CYP3A4 in PCa remains unclear. METHODS We used immunohistochemistry to analyze CYP3A4 expression in 107 human PCa specimens obtained by radical prostatectomy. Stained slides were evaluated for the proportion and staining intensity of positively stained cells. Total immunoreactivity scores (0-8) were obtained as the sum of the proportion and intensity scores. In addition, we estimated the relationship between CYP3A4 status and clinicopathologic features. RESULTS CYP3A4 immunoreactivity was identified in the cytoplasm of prostate cells. The CYP3A4 immunoreactive PCa score (3.6+/-2.6) was significantly lower than that of benign epithelium (4.5+/-2.1; P < .0001). In addition, CYP3A4 immunoreactivity correlated inversely with the Gleason score (P < .0001). Decreased CYP3A4 immunoreactivity was significantly related to a poor prognosis in human PCa (P = .0175). CONCLUSIONS We demonstrated differential CYP3A4 expression in prostatic tissues, indicating that decreased CYP3A4 expression may contribute to the development of PCa.
Collapse
|
12
|
Handa RJ, Weiser MJ, Zuloaga DG. A role for the androgen metabolite, 5alpha-androstane-3beta,17beta-diol, in modulating oestrogen receptor beta-mediated regulation of hormonal stress reactivity. J Neuroendocrinol 2009; 21:351-8. [PMID: 19207807 PMCID: PMC2727750 DOI: 10.1111/j.1365-2826.2009.01840.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Activation of the hypothalamic-pituitary-adrenal (HPA) axis is a basic response of animals to environmental perturbations that threaten homeostasis. These responses are regulated by neurones in the paraventricular nucleus of the hypothalamus (PVN) that synthesise and secrete corticotrophin-releasing hormone (CRH). Other PVN neuropeptides, such as arginine vasopressin and oxytocin, can also modulate activity of CRH neurones in the PVN and enhance CRH secretagogue activity of the anterior pituitary gland. In rodents, sex differences in HPA reactivity are well established; females exhibit a more robust activation of the HPA axis after stress than do males. These sex differences primarily result from opposing actions of sex steroids, testosterone and oestrogen, on HPA function. Ostreogen enhances stress activated adrenocorticotrophic hormone (ACTH) and corticosterone (CORT) secretion, whereas testosterone decreases the gain of the HPA axis and inhibits ACTH and CORT responses to stress. Data show that androgens can act directly on PVN neurones in the male rat through a novel pathway involving oestrogen receptor (ER)beta, whereas oestrogen acts predominantly through ERalpha. Thus, we examined the hypothesis that, in males, testosterone suppresses HPA function via an androgen metabolite that binds ERbeta. Clues to the neurobiological mechanisms underlying such a novel action can be gleaned from studies showing extensive colocalisation of ERbeta in oxytocin-containing cells of the PVN. Hence, in this review, we address the possibility that testosterone inhibits HPA reactivity by metabolising to 5alpha-androstane-3beta,17beta-diol, a compound that binds ERbeta and regulates oxytocin containing neurones of the PVN. These findings suggest a re-evaluation of studies examining pathways for androgen receptor signalling.
Collapse
Affiliation(s)
- R J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | | | | |
Collapse
|
13
|
Sikora MJ, Cordero KE, Larios JM, Johnson MD, Lippman ME, Rae JM. The androgen metabolite 5alpha-androstane-3beta,17beta-diol (3betaAdiol) induces breast cancer growth via estrogen receptor: implications for aromatase inhibitor resistance. Breast Cancer Res Treat 2008; 115:289-96. [PMID: 18521740 DOI: 10.1007/s10549-008-0080-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 05/22/2008] [Indexed: 11/30/2022]
Abstract
The aromatase inhibitors (AIs) are used to treat estrogen receptor-positive (ER+) breast tumors in post-menopausal women, and function by blocking the conversion of adrenal androgens to estrogens by the enzyme CYP19 aromatase. Breast cancer patients receiving AI therapy have circulating estrogen levels below the level of detection; however, androgen concentrations remain unchanged. We were interested in studying the effects of androgens on breast cancer cell proliferation under profound estrogen-deprived conditions. Using in vitro models of estrogen-dependent breast cancer cell growth we show that the androgens testosterone and 5alpha-dihydrotestosterone induce the growth of MCF-7, T47D and BT-474 cells in the absence of estrogen. Furthermore, we demonstrate that under profound estrogen-deprived conditions these breast cancer cells up-regulate steroidogenic enzymes that can metabolize androgens to estrogens. Lastly, we found that the downstream metabolite of 5alpha-dihydrotestosterone, 5alpha-androstane-3beta,17beta-diol (3betaAdiol), is estrogenic in breast cancer cells, and induces growth and ER-signaling via activation of ERalpha. In conclusion, our results show that breast cancer cells deprived of estrogen up-regulate steroidogenic enzymes and metabolize androgens to estrogen-like steroids. The generation of estrogen-like steroids represents a potential mechanism of resistance to aromatase inhibitors.
Collapse
Affiliation(s)
- Matthew J Sikora
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
14
|
Handa RJ, Pak TR, Kudwa AE, Lund TD, Hinds L. An alternate pathway for androgen regulation of brain function: activation of estrogen receptor beta by the metabolite of dihydrotestosterone, 5alpha-androstane-3beta,17beta-diol. Horm Behav 2008; 53:741-52. [PMID: 18067894 PMCID: PMC2430080 DOI: 10.1016/j.yhbeh.2007.09.012] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 09/05/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
The complexity of gonadal steroid hormone actions is reflected in their broad and diverse effects on a host of integrated systems including reproductive physiology, sexual behavior, stress responses, immune function, cognition, and neural protection. Understanding the specific contributions of androgens and estrogens in neurons that mediate these important biological processes is central to the study of neuroendocrinology. Of particular interest in recent years has been the biological role of androgen metabolites. The goal of this review is to highlight recent data delineating the specific brain targets for the dihydrotestosterone metabolite, 5alpha-androstane, 3beta,17beta-diol (3beta-Diol). Studies using both in vitro and in vivo approaches provide compelling evidence that 3beta-Diol is an important modulator of the stress response mediated by the hypothalmo-pituitary-adrenal axis. Furthermore, the actions of 3beta-Diol are mediated by estrogen receptors, and not androgen receptors, often through a canonical estrogen response element in the promoter of a given target gene. These novel findings compel us to re-evaluate the interpretation of past studies and the design of future experiments aimed at elucidating the specific effects of androgen receptor signaling pathways.
Collapse
Affiliation(s)
- Robert J Handa
- Department of Biomedical Sciences/Neurosciences Division, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | |
Collapse
|
15
|
Pettersson H, Holmberg L, Axelson M, Norlin M. CYP7B1-mediated metabolism of dehydroepiandrosterone and 5α-androstane-3β,17β-diol - potential role(s) for estrogen signaling. FEBS J 2008; 275:1778-89. [DOI: 10.1111/j.1742-4658.2008.06336.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Oliveira AG, Coelho PH, Guedes FD, Mahecha GAB, Hess RA, Oliveira CA. 5alpha-Androstane-3beta,17beta-diol (3beta-diol), an estrogenic metabolite of 5alpha-dihydrotestosterone, is a potent modulator of estrogen receptor ERbeta expression in the ventral prostrate of adult rats. Steroids 2007; 72:914-22. [PMID: 17854852 DOI: 10.1016/j.steroids.2007.08.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 07/04/2007] [Accepted: 08/01/2007] [Indexed: 11/16/2022]
Abstract
Prostate is one of the major targets for dihydrotestosterone (DHT), however this gland is also recognized as a nonclassical target for estrogen as it expresses both types of estrogen receptors (ER), especially ERbeta. Nevertheless, the concentrations of aromatase and estradiol in the prostate are low, indicating that estradiol may not be the only estrogenic molecule to play a role in the prostate. It is known that DHT can be metabolized to 5alpha-androstane-3beta,17beta-diol (3beta-diol), a hormone that binds to ERbeta but not to AR. The concentration of 3beta-diol in prostate is much higher than that of estradiol. Based on the high concentration of 3beta-diol and since this metabolite is a physiological ERbeta ligand, we hypothesized that 3beta-diol would be involved in the regulation of ERbeta expression. To test this hypothesis, adult male rats were submitted to castration followed by estradiol, DHT or 3beta-diol replacement. ERbeta and AR protein levels in the prostate were investigated by immunohistochemistry and Western blotting assays. The results showed that after castration, the structure of the prostate was dramatically changed and ERbeta and AR protein levels were decreased. Estradiol had just minor effects on the parameters analyzed. DHT-induced partial recovery of ERbeta while it was the most effective inductor of AR expression. Replacement with 3beta-diol-induced the highest levels of ERbeta, but was comparatively less effective in recovering the AR expression and the gland structure. These results offer evidence that one functional role of 3beta-diol in the prostate may be autoregulation of its natural receptor, ERbeta.
Collapse
Affiliation(s)
- André G Oliveira
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Kumagai J, Fujimura T, Takahashi S, Urano T, Ogushi T, Horie-Inoue K, Ouchi Y, Kitamura T, Muramatsu M, Blumberg B, Inoue S. Cytochrome P450 2B6 is a growth-inhibitory and prognostic factor for prostate cancer. Prostate 2007; 67:1029-37. [PMID: 17455229 DOI: 10.1002/pros.20597] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Cytochrome P450s (CYPs) influence the biological effects of carcinogens, drugs and hormones including testosterones. Among them, Cytochrome P450 2B6 (CYP2B6) plays a critical role in the deactivation of testosterone. In the present study, we examined CYP2B6 expression in human prostate tissues and prostate cancer. METHODS Immunohistochemical analysis was performed in 98 benign and 106 malignant prostate tissues and patients' charts were reviewed for clinical, pathologic and survival data. We also investigated whether stable expression of CYP2B6 in LNCaP (human prostate cancer cell line) influences cellular proliferation. RESULTS CYP2B6 was abundantly expressed in the normal epithelial cells compared to the prostate cancer cells. Significant immunostaining of CYP2B6 was found in 75 of 106 samples (71%), in the cytoplasm of cancerous tissue samples. CYP2B6 immunoreactivity was inversely correlated with high Gleason score (P < 0.001). Decreased immunoreactivity of CYP2B6 significantly correlated with poor prognosis (P < 0.0001). Univariate and multivariate hazard analyses revealed a significant correlation of decreased CYP2B6 expression with poor cancer-specific survival (P = 0.0028 and 0.0142, respectively). Furthermore, overexpression of CYP2B6 in LNCaP cells significantly decreased testosterone-induced proliferation. CONCLUSIONS These results demonstrated that decreased expression of CYP2B6 might play a role in the development of prostate cancer, and be useful as the prognostic predictor for human prostate cancer.
Collapse
Affiliation(s)
- Jinpei Kumagai
- Department of Urology, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ekins S, Mankowski DC, Hoover DJ, Lawton MP, Treadway JL, Harwood HJ. Three-dimensional quantitative structure-activity relationship analysis of human CYP51 inhibitors. Drug Metab Dispos 2006; 35:493-500. [PMID: 17194716 DOI: 10.1124/dmd.106.013888] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CYP51 fulfills an essential requirement for all cells, by catalyzing three sequential mono-oxidations within the cholesterol biosynthesis cascade. Inhibition of fungal CYP51 is used as a therapy for treating fungal infections, whereas inhibition of human CYP51 has been considered as a pharmacological approach to treat dyslipidemia and some forms of cancer. To predict the interaction of inhibitors with the active site of human CYP51, a three-dimensional quantitative structure-activity relationship model was constructed. This pharmacophore model of the common structural features of CYP51 inhibitors was built using the program Catalyst from multiple inhibitors (n = 26) of recombinant human CYP51-mediated lanosterol 14alpha-demethylation. The pharmacophore, which consisted of one hydrophobe, one hydrogen bond acceptor, and two ring aromatic features, demonstrated a high correlation between observed and predicted IC(50) values (r = 0.92). Validation of this pharmacophore was performed by predicting the IC(50) of a test set of commercially available (n = 19) and CP-320626-related (n = 48) CYP51 inhibitors. Using predictions below 10 microM as a cutoff indicative of active inhibitors, 16 of 19 commercially available inhibitors (84%) and 38 of 48 CP-320626-related inhibitors (79.2%) were predicted correctly. To better understand how inhibitors fit into the enzyme, potent CYP51 inhibitors were used to build a Cerius(2) receptor surface model representing the volume of the active site. This study has demonstrated the potential for ligand-based computational pharmacophore modeling of human CYP51 and enables a high-throughput screening system for drug discovery and data base mining.
Collapse
Affiliation(s)
- Sean Ekins
- Computational Biology, ACT LLC, 601 Runnymede Ave., Jenkintown, PA 19046, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Guerini V, Sau D, Scaccianoce E, Rusmini P, Ciana P, Maggi A, Martini PGV, Katzenellenbogen BS, Martini L, Motta M, Poletti A. The androgen derivative 5alpha-androstane-3beta,17beta-diol inhibits prostate cancer cell migration through activation of the estrogen receptor beta subtype. Cancer Res 2005; 65:5445-53. [PMID: 15958594 DOI: 10.1158/0008-5472.can-04-1941] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostate cancer growth depends, in its earlier stages, on androgens and is usually pharmacologically modulated with androgen blockade. However, androgen-ablation therapy may generate androgen-independent prostate cancer, often characterized by an increased invasiveness. We have found that the 5alpha-reduced testosterone derivative, dihydrotestosterone (the most potent natural androgen) inhibits cell migration with an androgen receptor-independent mechanism. We have shown that the dihydrotestosterone metabolite 5alpha-androstane-3beta,17beta-diol (3beta-Adiol), a steroid which does not bind androgen receptors, but efficiently binds the estrogen receptor beta (ERbeta), exerts a potent inhibition of prostate cancer cell migration through the activation of the ERbeta signaling. Very surprisingly, estradiol is not active, suggesting the existence of different pathways for ERbeta activation in prostate cancer cells. Moreover, 3beta-Adiol, through ERbeta, induces the expression of E-cadherin, a protein known to be capable of blocking metastasis formation in breast and prostate cancer cells. The inhibitory effects of 3beta-Adiol on prostate cancer cell migration is counteracted by short interfering RNA against E-cadherin. Altogether, the data showed that (a) circulating testosterone may act with estrogenic effects downstream in the catabolic process present in the prostate, and (b) that the estrogenic effect of testosterone derivatives (ERbeta-dependent) results in the inhibition of cell migration, although it is apparently different from that linked to estradiol on the same receptor and may be protective against prostate cancer invasion and metastasis. These results also shed some light on clinical observations suggesting that alterations in genes coding for 3beta-hydroxysteroid dehydrogenases (the enzymes responsible for 3beta-Adiol formation) are strongly correlated with hereditary prostate cancer.
Collapse
|
20
|
Abstract
AbstractOur interest in nuclear receptors (NRs) originated from early studies on hepatic steroid metabolism. We discovered a new hypothalamo-pituitary-liver axis, imprinted neonatally by androgens and operating through sexually differentiated GH secretory patterns. Male and female patterns have opposite effects on sexually differentiated hepatic genes, explaining sexually dimorphic liver patterns. To further understand steroid action, we purified the glucocorticoid receptor (GR) leading to our discovery of the NR three-domain structure, with separable DNA binding domain and ligand binding domains and a third domain now known to have transcriptional regulatory properties. Knowledge of this domain structure has been immensely important for deciphering NR actions. Using this first purified NR, we collaborated with Keith Yamamoto and first demonstrated specific NR binding to DNA. This also was the first demonstration of a mammalian transcription factor, a breakthrough that led to discovery of NR response elements. In further collaboration with Yamamoto, we cloned the first NR cDNA sequences, leading to cloning of the superfamily of NR genes. With Yamamoto and Kaptein, we determined the first three-dimensional NR structure, that of DNA binding domain. Later work on orphan receptors resulted in the first discovery of: 1) endogenous ligands for an orphan receptor (fatty acids as activators of peroxisomal proliferator-activated receptor α); 2) liver X receptor β (OR-1) and its role in central nervous system cholesterol homeostasis; and 3) estrogen receptor β, leading to a paradigm shift in understanding of estrogen signaling, of importance in endocrinology, immunology, and oncology and to development of estrogen receptor β agonists for treatment of autoimmune diseases, prostate disease, depression, and ovulatory dysfunction.
Collapse
Affiliation(s)
- Jan-Ake Gustafsson
- Department of Medical Nutrition, Karolinska Institutet, Novum, SE-141 86 Huddinge, Sweden
| |
Collapse
|
21
|
Koehler KF, Helguero LA, Haldosén LA, Warner M, Gustafsson JA. Reflections on the discovery and significance of estrogen receptor beta. Endocr Rev 2005; 26:465-78. [PMID: 15857973 DOI: 10.1210/er.2004-0027] [Citation(s) in RCA: 271] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have known for many years that estrogen is more than the female hormone. It is essential in the male gonads, and in both sexes, estrogen has functions in the skeleton and central nervous system, on behavior, and in the cardiovascular and immune systems. An important aspect of the discovery of estrogen receptor (ER) beta is that the diverse functions of estrogen can now be divided into those mediated by ERalpha and those mediated by ERbeta. Pharmacological exploitation of this division of the labors of estrogen is facilitated by the ligand-binding specificity and selective tissue distribution of the two ERs. Because the ligand binding domains of ERalpha and ERbeta are significantly different from each other, selective ligands can be (and have been) developed to target the estrogenic pathway that is malfunctioning, without interfering with the other estrogen-regulated pathways. Because of the absence of ERbeta from the adult pituitary and endometrium, ERbeta agonists can be used to target ERbeta with no risk of adverse effects from chemical castration and uterine cancer. Some of the diseases in which there is hope that ERbeta agonists will be of benefit are prostate cancer, autoimmune diseases, colon cancer, malignancies of the immune system, and neurodegeneration.
Collapse
Affiliation(s)
- Konrad F Koehler
- Department of BioSciences and Medical Nutrition, Karolinska Institutet, Novum, SE-141 57 Huddinge, Sweden
| | | | | | | | | |
Collapse
|
22
|
Omoto Y, Lathe R, Warner M, Gustafsson JA. Early onset of puberty and early ovarian failure in CYP7B1 knockout mice. Proc Natl Acad Sci U S A 2005; 102:2814-9. [PMID: 15710898 PMCID: PMC549492 DOI: 10.1073/pnas.0500198102] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CYP7B1 is the enzyme responsible for hydroxylation and termination of the estrogenic actions of the androgen metabolite, 5alpha-androstane-3beta, 17beta-diol (3betaAdiol). 3betaAdiol is estrogenic in ERalpha or ERbeta positive cells only if they do not express CYP7B1. In this study we show that female CYP7B1(-/-) mice experience early onset of growth of the uterus and mammary glands and commence estrus cycles 2 days earlier than their wild-type littermates. Adult mammary glands and uteri appear to be under continuous estrogenic stimulation. We conclude that, by cell-specific regulation of the estrogenicity of 3betaAdiol, CYP7B1 performs two major tasks: (i) it allows 3betaAdiol to have growth inhibitory effects through ERbeta and (ii) it permits estradiol-specific activation of estrogen receptors by protection of certain cells from the estrogenic effects of 3betaAdiol. When CYP7B1 is inactivated, 3betaAdiol activates estrogen receptors indiscriminately, and the overall effect is prolonged and inappropriate exposure to estrogen.
Collapse
Affiliation(s)
- Yoko Omoto
- Department of Medical Nutrition, Karolinska Institute, 141 86 Huddinge, Sweden
| | | | | | | |
Collapse
|
23
|
Herzog A, Siler U, Spitzer V, Seifert N, Denelavas A, Hunziker PB, Hunziker W, Goralczyk R, Wertz K. Lycopene reduced gene expression of steroid targets and inflammatory markers in normal rat prostate. FASEB J 2004; 19:272-4. [PMID: 15545302 DOI: 10.1096/fj.04-1905fje] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Epidemiological evidence links consumption of lycopene, the red carotenoid of tomato, to reduced prostate cancer risk. We investigated the effect of lycopene in normal prostate tissue to gain insight into the mechanisms, by which lycopene can contribute to primary prostate cancer prevention. We supplemented young rats with 200 ppm lycopene for up to 8 wk, measured the uptake into individual prostate lobes, and analyzed lycopene-induced gene regulations in dorsal and lateral lobes after 8 wk of supplementation. Lycopene accumulated in all four prostate lobes over time, with all-trans lycopene being the predominant isoform. The lateral lobe showed a significantly higher total lycopene content than the other prostate lobes. Transcriptomics analysis revealed that lycopene treatment mildly but significantly reduced gene expression of androgen-metabolizing enzymes and androgen targets. Moreover, local expression of IGF-I was decreased in the lateral lobe. Lycopene also consistently reduced transcript levels of proinflammatory cytokines, immunoglobulins, and immunoglobulin receptors in the lateral lobe. This indicates that lycopene reduced inflammatory signals in the lateral prostate lobe. In summary, we show for the first time that lycopene reduced local prostatic androgen signaling, IGF-I expression, and basal inflammatory signals in normal prostate tissue. All of these mechanisms can contribute to the epidemiologically observed prostate cancer risk reduction by lycopene.
Collapse
Affiliation(s)
- Angelika Herzog
- DSM Nutritional Products, Human Nutrition and Health, Carotenoid Section, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Our understanding of estrogen signaling has undergone a true paradigm shift over recent years, following the discovery in 1995 of a second estrogen receptor, estrogen receptor beta (ERbeta). In many contexts ERbeta appears to antagonize the actions of ERalpha (yin/yang relationship) although there also exist genes that are specifically regulated by one of the two receptors. Studies of ERbeta knockout mice have shown that ERbeta exerts important functions in the ovary, central nervous system, mammary gland, prostate gland, hematopoiesis, immune system, vessels and bone. The use of ERbeta-specific ligands against certain forms of cancer represents one of the many pharmaceutical possibilities that have been created thanks to the discovery of ERbeta.
Collapse
Affiliation(s)
- Zhang Weihua
- Department of Medical Nutrition, Department of Biosciences, Karolinska Institute, NOVUM, S-141 86 Huddinge, Sweden
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
B-ring hydroxylation is a major metabolic pathway for cholesterols and some steroids. In liver, 7 alpha-hydroxylation of cholesterols, mediated by CYP7A and CYP39A1, is the rate-limiting step of bile acid synthesis and metabolic elimination. In brain and other tissues, both sterols and some steroids including dehydroepiandrosterone (DHEA) are prominently 7 alpha-hydroxylated by CYP7B. The function of extra-hepatic steroid and sterol 7-hydroxylation is unknown. Nevertheless, 7-oxygenated cholesterols are potent regulators of cell proliferation and apoptosis; 7-oxygenated derivatives of DHEA, pregnenolone, and androstenediol can have major effects in the brain and in the immune system. The receptor targets involved remain obscure. It is argued that B-ring modification predated steroid evolution: non-enzymatic oxidation of membrane sterols primarily results in 7-oxygenation. Such molecules may have provided early growth and stress signals; a relic may be found in hydroxylation at the symmetrical 11-position of glucocorticoids. Early receptor targets probably included intracellular sterol sites, some modern steroids may continue to act at these targets. 7-Hydroxylation of DHEA may reflect conservation of an early signaling pathway.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Biomedical Sciences, University of Edinburgh, George Square, EH9 9XD, Edinburgh, UK.
| |
Collapse
|
26
|
Weihua Z, Lathe R, Warner M, Gustafsson JA. An endocrine pathway in the prostate, ERbeta, AR, 5alpha-androstane-3beta,17beta-diol, and CYP7B1, regulates prostate growth. Proc Natl Acad Sci U S A 2002; 99:13589-94. [PMID: 12370428 PMCID: PMC129718 DOI: 10.1073/pnas.162477299] [Citation(s) in RCA: 264] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epithelial proliferation of the ventral prostate in rodents peaks between 2 and 4 weeks of age, and by week 8, proliferating cells are rare. We have used ERbeta(-/-) and CYP7B1(-/-) mice to investigate the role of ERbeta and one of its ligands, 5alpha-androstane-3beta,17beta-diol (3betaAdiol), in growth of the ventral prostate. Before puberty, ERbeta was found in quiescent but not in proliferating cells, and proliferating cells occurred more frequently in ventral prostates of ERbeta(-/-) mice than in wild-type littermates. Treatment with 3betaAdiol decreased proliferation in wild-type but not in ERbeta(-/-) mice. In rats, treatment with 3betaAdiol from postnatal day 2 to 28 resulted in reduction in growth of ventral prostates. The prostates of CYP7B1(-/-) mice were hypoproliferative before puberty and smaller than those of their wild-type littermates after puberty. Because CYP7B1 represents the major pathway for inactivating 3betaAdiol in the prostate, we suggest that ERbeta, 3betaAdiol, and CYP7B1 are the components of a pathway that regulates growth of the rodent ventral prostate. In this pathway, ERbeta is an antiproliferative receptor, 3betaAdiol is an ERbeta ligand, and CYP7B1 is the enzyme that regulates ERbeta function by regulating the level of 3betaAdiol.
Collapse
Affiliation(s)
- Zhang Weihua
- Department of Medical Nutrition, Karolinska Institute, Novum, S-141 86 Huddinge, Sweden
| | | | | | | |
Collapse
|
27
|
Abstract
In vertebrates the wide variety of cytochromes P(450) (P(450)) is a key for elimination of low molecular weight xenobiotics and for the production and metabolism of steroid hormones. In contrast, xenobiotics of large molecular weight are processed and eliminated after the immune response. The suppression of immune response by native P(450)-produced glucocorticoid (GC) hormones constitutes a first link between P(450) and immunity. In the last decade, mechanisms and molecules responsible for the triggering of immune response were investigated and results showed that many tissues and organs transform native 3beta-hydroxysteroids into 7-hydroxylated metabolites that trigger immunity. Present data suggest that 7-hydroxysteroids are native anti-GCs that block the GC-induced immunosuppression. Because specific P(450) are responsible for the production of 7-hydroxylated steroids resulting into increased immunity, a second link exists between P(450) and immunity. Taken together, these findings support the proposal that P(450) are keys to all of the known defense mechanisms of vertebrates against all xenobiotic forms.
Collapse
Affiliation(s)
- Robert Morfin
- Laboratoire de Biotechnologie, Conservatoire National des Arts et Métiers, 2 rue Conté, 75003 Paris Cedex 03, France.
| |
Collapse
|
28
|
Rose K, Allan A, Gauldie S, Stapleton G, Dobbie L, Dott K, Martin C, Wang L, Hedlund E, Seckl JR, Gustafsson JA, Lathe R. Neurosteroid hydroxylase CYP7B: vivid reporter activity in dentate gyrus of gene-targeted mice and abolition of a widespread pathway of steroid and oxysterol hydroxylation. J Biol Chem 2001; 276:23937-44. [PMID: 11290741 DOI: 10.1074/jbc.m011564200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The major adrenal steroid dehydroepiandrosterone (DHEA) enhances memory and immune function but has no known dedicated receptor; local metabolism may govern its activity. We described a cytochrome P450 expressed in brain and other tissues, CYP7B, that catalyzes the 7alpha-hydroxylation of oxysterols and 3beta-hydroxysteroids including DHEA. We report here that CYP7B mRNA and 7alpha-hydroxylation activity are widespread in rat tissues. However, steroids related to DHEA are reported to be modified at positions other than 7alpha, exemplified by prominent 6alpha-hydroxylation of 5alpha-androstane-3beta,17beta-diol (A/anediol) in some rodent tissues including brain. To determine whether CYP7B is responsible for these and other activities we disrupted the mouse Cyp7b gene by targeted insertion of an IRES-lacZ reporter cassette, placing reporter enzyme activity (beta-galactosidase) under Cyp7b promoter control. In heterozygous mouse brain, chromogenic detection of reporter activity was strikingly restricted to the dentate gyrus. Staining did not exactly reproduce the in situ hybridization expression pattern; post-transcriptional control is inferred. Lower level staining was detected in cerebellum, liver, and kidney, and which largely paralleled mRNA distribution. Liver and kidney expression was sexually dimorphic. Mice homozygous for the insertion are viable and superficially normal, but ex vivo metabolism of DHEA to 7alpha-hydroxy-DHEA was abolished in brain, spleen, thymus, heart, lung, prostate, uterus, and mammary gland; lower abundance metabolites were also eliminated. 7alpha-Hydroxylation of 25-hydroxycholesterol and related substrates was also abolished, as was presumed 6alpha-hydroxylation of A/anediol. These different enzyme activities therefore derive from the Cyp7b gene. CYP7B is thus a major extrahepatic steroid and oxysterol hydroxylase and provides the predominant route for local metabolism of DHEA and related molecules in brain and other tissues.
Collapse
Affiliation(s)
- K Rose
- Centre for Genome Research and Centre for Neuroscience, University of Edinburgh, King's Buildings, Edinburgh EH9 3JQ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yamakoshi Y, Kishimoto T, Sugimura K, Kawashima H. Human prostate CYP3A5: identification of a unique 5'-untranslated sequence and characterization of purified recombinant protein. Biochem Biophys Res Commun 1999; 260:676-81. [PMID: 10403825 DOI: 10.1006/bbrc.1999.0960] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have isolated a cDNA clone coding for CYP3A5 from a human prostate cDNA library. The human prostate CYP3A5 cDNA had a unique 5'-untranslated sequence, suggesting that the prostate specific regulation of CYP3A5 is different from liver. Hybridization screening using a human genomic BAC library yielded four positive clones, two of which were shown to contain the unique 5'-untranslated sequence by Southern blot analysis. The CYP3A5 recombinant protein expressed in Escherichia coli using the pCWOri expression vector was purified to an almost electrophoretically homogeneous state with a specific content of 4.4 nmol of P450/mg of protein. This P450 exhibited 6beta-hydroxylation activity toward both testosterone and progesterone. No polar metabolite of 5alpha-dihydrotestosterone (DHT) was detected. The apparent K(m) values for testosterone and progesterone 6beta-hydroxylation were 143 and 114 microM, respectively, with V(max) values of 0.48 and 0. 21 nmol/min/nmol of P450, respectively. This is the first report that a particular form of P450, CYP3A5, has been isolated from human prostate and that the purified recombinant protein of CYP3A5 has been shown to be active in the metabolism of sex hormones.
Collapse
Affiliation(s)
- Y Yamakoshi
- Department of Urology, Osaka City University Medical School, Osaka, 545-8585, Japan
| | | | | | | |
Collapse
|
30
|
Abstract
The hormone estradiol has effects on many tissues in both males and females. Some of these effects, such as inhibition of cancer growth and modulation of the devastating effects of aging on bone, brain, skin and bladder, are good. Others, such as the effect on the breast and endometrium, are undesirable. The task of designing drugs that would have only the good effects of estradiol has, until recently, seemed almost impossible because it was thought that there was only one estrogen receptor and that an estrogenic agent was definitively categorized as an estrogen agonist or an antagonist. More recently we have learnt that there are two estrogen receptors which, under certain conditions, have opposite effects on gene transcription. In addition, it is now understood that agents cannot be described as agonists or antagonists because a single agent can be an agonist in one tissue and an antagonist in another. The term 'selective' estrogen receptor modulator' was designed to incorporate this. The idea of estrogen receptor modulators has raised new hope that tissue specific estrogens or anti-estrogens can be designed.
Collapse
Affiliation(s)
- J A Gustafsson
- Department of Medical Nutrition, Karolinska Institute, Novum, Huddinge, Sweden
| |
Collapse
|
31
|
Roos PH. Chromatographic separation and behavior of microsomal cytochrome P450 and cytochrome b5. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1996; 684:107-31. [PMID: 8906469 DOI: 10.1016/0378-4347(96)00018-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The methods used for separation of the multiple mammalian cytochrome P450 enzymes by liquid chromatography are reviewed. In addition to the chromatographic techniques, preparation and handling of samples and prefractionation procedures are considered. Conditions that affect stability and chromatographic resolution of cytochromes P450 are also discussed. Special emphasis is put on useful methods which are not routinely used for P450 separation, such as immobilized metal affinity or hydrophobic-interaction chromatography. Applications of low- and high-pressure methods with regard to preparative and analytical separations are compared. It is shown that high- and medium-pressure ion-exchange chromatography are suitable tools for separation of closely related P450 enzymes, especially when specific detection methods are available. In addition to fractionation of cytochromes P450, the isolation and chromatographic behavior of cytochrome b5 is discussed.
Collapse
Affiliation(s)
- P H Roos
- Department of Bioenergetics, MA21136, Ruhr-University, Bochum, Germany
| |
Collapse
|
32
|
Cytochrome P450 Enzymes in Brain. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/b978-0-12-185292-4.50010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
33
|
Gemzik B, Green J, Parkinson A. Hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by rat prostate microsomes: effects of antibodies and chemical inhibitors of cytochrome P450 enzymes. Arch Biochem Biophys 1992; 296:355-65. [PMID: 1632629 DOI: 10.1016/0003-9861(92)90585-k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The purpose of the present study was to test the hypothesis that rat prostate microsomes contain a single cytochrome P450 enzyme responsible for the conversion of 5 alpha-androstane-3 beta,17 beta-diol to a series of trihydroxylated products. The three major metabolites formed by in vitro incubation of 5 alpha-[3H]androstane-3 beta,17 beta-diol with rat prostate microsomes were apparently 5 alpha-androstane-3 beta,6 alpha,17 beta-triol, 5 alpha-androstane-3 beta,7 alpha,17 beta-triol, and 5 alpha-androstane-3 beta,7 beta,17 beta-triol, which were resolved and quantified by reverse-phase HPLC with a flow through radioactivity detector. The ratio of the three metabolites remained constant as a function of incubation time, microsomal protein concentration, ionic strength, and substrate concentration. The ratio of the three metabolites was dependent on pH, apparently because the hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol shifted from the 6 alpha- to the 7 alpha-position with increasing pH (6.8-8.0). The V(max) values were 380, 160, and 60 pmol/mg microsomal protein/min for the rate of 6 alpha-, 7 alpha-, and 7 beta-hydroxylation, respectively. Similar Km values (0.5-0.7 microM) were measured for enzymatic formation of all three metabolites, which suggests that formation of all three metabolites was catalyzed by a single, high-affinity enzyme. Testosterone, 5 alpha-dihydrotestosterone, and 5 alpha-androstane-3 alpha,17 beta-diol did not appreciably inhibit the hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol, suggesting that this enzyme exhibits a high degree of substrate specificity. Formation of all three metabolites was inhibited by antibody against rat liver NADPH-cytochrome P450 reductase (85%) and by a 9:1 mixture of carbon monoxide and oxygen (60%). Several chemical inhibitors of cytochrome P450 enzymes, especially the antimycotic drug clotrimazole, also inhibited the formation of all three metabolites. Polyclonal antibodies that recognize liver cytochrome P450 1A, 2A, 2B, 2C, and 3A enzymes did not inhibit 5 alpha-androstane-3 beta,17 beta-diol hydroxylase activity. Overall, these results are consistent with the hypothesis that the 6 alpha-, 7 alpha-, and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by rat prostate microsomes is catalyzed by a single, high-affinity P450 enzyme. This cytochrome P450 enzyme appears to be structurally distinct from those in the 1A, 2A, 2B, 2C, and 3A gene families.
Collapse
Affiliation(s)
- B Gemzik
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City 66160-7417
| | | | | |
Collapse
|
34
|
Gemzik B, Jacob S, Jennings S, Veltman J, Parkinson A. Species differences in 5 alpha-androstane-3 beta,17 beta-diol hydroxylation by rat, monkey, and human prostate microsomes. Arch Biochem Biophys 1992; 296:374-83. [PMID: 1378714 DOI: 10.1016/0003-9861(92)90587-m] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The 6 alpha-, 7 alpha-, and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by rat prostate microsomes appears to be catalyzed by a single, high-affinity cytochrome P450 enzyme. In the present study we have examined the hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by prostate microsomes from cynomolgus monkeys and from normal subjects and patients with benign prostatic hyperplasia. Our results suggest that although rat, monkey, and human prostate microsomes catalyze the 6 alpha-, 7 alpha-, and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol, these pathways of oxidation in monkeys and humans are not catalyzed by a single cytochrome P450 enzyme. The ratio of the three metabolites was not uniform among prostate microsomal samples from individual humans or monkeys. The 6 alpha-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol varied independently of both the 7 alpha- and 7 beta-hydroxylation, which varied in unison. The 6 alpha-, 7 alpha-, and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by monkey prostate microsomes appeared to be differentially affected by in vivo treatment of monkeys with beta-naphthoflavone or dexamethasone. Treatment of a monkey with dexamethasone appeared to cause a 2.5-fold increase in both the 7 alpha- and the 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol without increasing the 6 alpha-hydroxylation. The 7 alpha- and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by human and monkey prostate microsomes, but not the 6 alpha-hydroxylation, was inhibited by antibody against rat liver NADPH-cytochrome P450 reductase. Similarly, the 7 alpha- and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by human prostate microsomes, but not the 6 alpha-hydroxylation, was markedly inhibited (greater than 85%) by equimolar concentrations of the imidazole-containing antimycotic drugs ketoconazole, clotrimazole, and miconazole. These results suggest that the 7 alpha- and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by monkey and human prostate microsomes is catalyzed by a cytochrome P450 enzyme, whereas the 6 alpha-hydroxylation is catalyzed by a different enzyme which may or may not be a cytochrome P450 monooxygenase. The hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by prostate microsomes from normal human subjects was quantitatively and qualitatively similar to its hydroxylation by prostate microsomes from patients with benign prostatic hyperplasia.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- B Gemzik
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City 66160-7417
| | | | | | | | | |
Collapse
|
35
|
Gemzik B, Parkinson A. Hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by rat prostate microsomes: potent inhibition by imidazole-type antimycotic drugs and lack of inhibition by steroid 5 alpha-reductase inhibitors. Arch Biochem Biophys 1992; 296:366-73. [PMID: 1632630 DOI: 10.1016/0003-9861(92)90586-l] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
5 alpha-Dihydrotestosterone, the principal androgen mediating prostate growth and function in the rat, is formed from testosterone by steroid 5 alpha-reductase. The inactivation of 5 alpha-dihydrotestosterone involves reversible reduction to 5 alpha-androstane-3 beta,17 beta-diol by 3 beta-hydroxysteroid oxidoreductase followed by 6 alpha-, 7 alpha-, or 7 beta-hydroxylation. 5 alpha-Androstane-3 beta,17 beta-diol hydroxylation represents the ultimate inactivation step of dihydrotestosterone in rat prostate and is apparently catalyzed by a single, high-affinity (Km approximately 0.5 microM) microsomal cytochrome P450 enzyme. The present studies were designed to determine if 5 alpha-androstane-3 beta,17 beta-diol hydroxylation by rat prostate microsomes is inhibited by agents that are known inhibitors of androgen-metabolizing enzymes. Inhibitors of steroid 5 alpha-reductase (4-azasteroid analogs; 10 microM) or inhibitors of 3 beta-hydroxysteroid oxidoreductase (trilostane, azastene, and cyanoketone; 10 microM) had no appreciable effect on the 6 alpha-, 7 alpha-, or 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol (10 microM) by rat prostate microsomes. Imidazole-type antimycotic drugs (ketoconazole, clotrimazole, and miconazole; 0.1-10 microM) all markedly inhibited 5 alpha-androstane-3 beta,17 beta-diol hydroxylation in a concentration-dependent manner, whereas triazole-type antimycotic drugs (fluconazole and itraconazole; 0.1-10 microM) had no inhibitory effect. The rank order of inhibitory potency of the imidazole-type antimycotic drugs was miconazole greater than clotrimazole greater than ketoconazole. In the case of clotrimazole, the inhibition was shown to be competitive in nature, with a Ki of 0.03 microM. The imidazole-type antimycotic drugs inhibited all three pathways of 5 alpha-androstane-3 beta,17 beta-diol hydroxylation to the same extent, which provides further evidence that, in rat prostate microsomes, a single cytochrome P450 enzyme catalyzes the 6 alpha-, 7 alpha-, and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol. These studies demonstrate that certain imidazole-type compounds are potent, competitive inhibitors of 5 alpha-androstane-3 beta,17 beta-diol hydroxylation by rat prostate microsomes, which is consistent with the effect of these antimycotic drugs on cytochrome P450 enzymes involved in the metabolism of other androgens and steroids.
Collapse
Affiliation(s)
- B Gemzik
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City 66160-7417
| | | |
Collapse
|
36
|
Zaphiropoulos PG. cDNA cloning and regulation of a novel rat cytochrome P450 of the 2C gene subfamily (P450IIC24). Biochem Biophys Res Commun 1991; 180:645-51. [PMID: 1953735 DOI: 10.1016/s0006-291x(05)81114-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel member of the cytochrome P450 2C gene subfamily was identified by screening rat prostate cDNA libraries. Two independent clones were isolated. Clone pros1 was 1031 bp long and contained a bizarre replacement in place of putative exon 1. Clone pros2 was 1755 bp long, contained a complete 3' end, and also had bizarre sequences in place of exon 1, which in this case were compatible with an unspliced intron. Northern analysis revealed mRNA expression in the liver and the kidney. Interestingly, although livers of mature rats of both sexes have comparable amounts of P4502C24 mRNA, a dramatic sex difference is seen in the kidney where only males express detectable levels of this mRNA.
Collapse
Affiliation(s)
- P G Zaphiropoulos
- Department of Medical Nutrition, Huddinge University Hospital, Sweden
| |
Collapse
|
37
|
Warner M, Ahlgren R, Zaphiropoulos PG, Hayashi S, Gustafsson JA. Identification and localization of cytochromes P450 expressed in brain. Methods Enzymol 1991; 206:631-40. [PMID: 1784246 DOI: 10.1016/0076-6879(91)06133-n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Lund J, Zaphiropoulos PG, Mode A, Warner M, Gustafsson JA. Hormonal regulation of cytochrome P-450 gene expression. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1991; 22:325-54. [PMID: 1659866 DOI: 10.1016/s1054-3589(08)60040-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- J Lund
- Department of Medical Nutrition, Karolinska Institutet, Huddinge University Hospital, Sweden
| | | | | | | | | |
Collapse
|
39
|
Strömstedt M, Zaphiropoulos PG, Gustafsson JA. Identification of cytochrome P450 in extrahepatic tissues by cross-hybridization of oligonucleotides and cDNAs. Methods Enzymol 1991; 206:640-8. [PMID: 1784248 DOI: 10.1016/0076-6879(91)06134-o] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
Strömstedt M, Hayashi S, Zaphiropoulos PG, Gustafsson JA. Cloning and characterization of a novel member of the cytochrome P450 subfamily IVA in rat prostate. DNA Cell Biol 1990; 9:569-77. [PMID: 1980193 DOI: 10.1089/dna.1990.9.569] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To isolate cDNAs for forms of cytochrome P450 from rat prostate, a lambda gt11 cDNA library from this tissue was screened with a mixture of oligonucleotide probes directed against the conserved heme binding region of different P450 isozymes. A cDNA clone (PP1) encoding a part of a novel form of cytochrome P450 was isolated and the deduced amino acid sequence showed 76% identity with cytochrome P450 IVA1, indicating that PP1 is a member of the same subfamily. Northern blot analysis of total RNA from prostates of untreated rats revealed that two mRNAs of approximately 2.8 and 2.2 kb hybridize to PP1. The level of mRNA was induced fivefold above the level in intact animals by androgen treatment of castrated rats. Analysis of poly(A)+RNA levels in different tissues on Northern blots showed high constitutive expression of PP1 in the kidney, but no signal was detectable with RNA from liver; a weak signal was detected in the retina. Subsequent screening of a rat kidney cDNA library led to the isolation of the full-length clone KP1, which differs from Pp1 only in three nucleotide positions. KP1 is 1,957 bp long and contains a 1,527-bp-long open reading frame encoding a protein of 508 amino acids. In situ hybridization of rat kidney sections with PP1 showed that this P450 form is expressed in the outer stripe of the outer medulla, indicating its localization in the proximal tubules.
Collapse
Affiliation(s)
- M Strömstedt
- Department of Medical Nutrition, Karolinska Institute, Huddinge University Hospital, Sweden
| | | | | | | |
Collapse
|
41
|
Zaphiropoulos PG, Westin S, Ström A, Mode A, Gustafsson JA. Structural and regulatory analysis of a cytochrome P450 gene (CYP2C12) expressed predominantly in female rat liver. DNA Cell Biol 1990; 9:49-56. [PMID: 2317270 DOI: 10.1089/dna.1990.9.49] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytochrome P450 15 beta is a female-specific gene product that catalyzes the hydroxylation of steroid sulfates at the 15 beta position. Isolation and analysis of the gene for rat P450 15 beta reveals nine coding exons and encompasses more than 35 kb of chromosomal DNA. The intron-exon junctions are at similar positions with the P450 genes of the II family, whose gene structure has been determined. Sequencing of about 2 kb of the 5'-flanking region indicates the presence of the Alu-like R.dre.1 repetitive sequence, a GA-rich stretch that is also found in the 5'-flanking DNA of the male-specific cytochrome P450 16 alpha gene, the enhancer octamer sequence ATGCAAAT, and three CAAAGTT repeats just upstream from the TATA box. Primer extension reveals a major and a minor transcription start site located 22 and 26 bases 5' to the translation initiation codon, respectively. This gene is developmentally regulated and transcriptional activation accounts, at least partly, for the sexually differentiated expression of cytochrome P450 15 beta.
Collapse
Affiliation(s)
- P G Zaphiropoulos
- Department of Medical Nutrition, Karolinska Institute, Huddinge University Hospital, Sweden
| | | | | | | | | |
Collapse
|
42
|
Lee KH, Ofner P. Reductive metabolism of 5 alpha-dihydrotestosterone by rat ventral and dorsolateral prostate: kinetic parameters of the enzymes. JOURNAL OF STEROID BIOCHEMISTRY 1988; 29:553-7. [PMID: 2837610 DOI: 10.1016/0022-4731(88)90192-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In male sex accessory organs the active androgen 5 alpha-dihydrotestosterone (DHT) is metabolized to 5 alpha-androstane-3 alpha, 17 beta-diol (3 alpha-diol) and 5 alpha-androstane-3 beta, 17 beta-diol (3 beta-diol) by the reductase activities of 3 alpha-hydroxysteroid oxidoreductase (3 alpha-HSOR; EC 1.1.1.50) and 3 beta-hydroxysteroid oxidoreductase (3 beta-HSOR; EC 1.1.1.51). After separation of radiosubstrate and products by HPLC, these enzymes activities in subcellular preparations of rat ventral and dorsolateral prostate were determined from the conversion of [3H]DHT to the radiometabolites 3 alpha-diol and 3 beta-diol and 3 beta-triols (5 alpha-androstane-3 beta, 6 alpha, 17 beta-triol plus 5 alpha-androstane-3 beta, 7 alpha, 17 beta-triol). Whereas both enzymes were found in the dorsolateral prostate, 3 beta-HSOR reductase activity was near the limit of detection in ventral prostate. Unlike the equal distribution of 3 alpha-HSOR reductase between the microsomal and cytosol fractions of the ventral prostate, both 3 alpha- and 3 beta-HSOR reductase activities of the dorsolateral prostate are mainly confined to its cytosol fraction. Km and Vmax of the 3 alpha- and 3 beta-HSOR reductases in dorsolateral prostate cytosol were 1.8 microM, 24.6 pmol.mg-1 min-1 and 25.4 microM, 45.7 pmol.mg-1 min-1, respectively. We surmise from these and earlier studies that 3 beta-HSOR reductase is the rate-limiting prostatic enzyme in the catabolic disposition of intracellular DHT.
Collapse
Affiliation(s)
- K H Lee
- Steroid Biochemistry Laboratory, Lemuel Shattuck Hospital, Jamaica Plain, MA 02130
| | | |
Collapse
|
43
|
Warner M, Köhler C, Hansson T, Gustafsson JA. Regional distribution of cytochrome P-450 in the rat brain: spectral quantitation and contribution of P-450b,e, and P-450c,d. J Neurochem 1988; 50:1057-65. [PMID: 3258014 DOI: 10.1111/j.1471-4159.1988.tb10573.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The cytochrome P-450 (P-450) content of different regions of the rat brain was measured after partial purification of the enzyme from homogenates, and the quantitative contribution of P-450b,e and P-450c,d to brain P-450 was assessed by Western immunoblotting and immunohistochemistry using rabbit antibodies raised against purified hepatic P-450b and P-450c, respectively). P-450 could be quantitated by its reduced CO difference spectrum after chromatography of homogenates on p-chloroamphetamine-coupled Sepharose. The yield of P-450 from whole brain was 90 +/- 19 pmol/g of tissue, which is approximately 1% of the level in liver microsomes from control rats. The amount of P-450 recovered from homogenates of olfactory lobes, hypothalamus, thalamus, striatum, cerebral cortex, and brainstem varied between 40 and 100 pmol/g of tissue. The cerebellum was a region of exceptionally high P-450 content, with yields of up to 400 pmol/g whereas the substantia nigra yielded only 16-20 pmol/g. Immunohistochemical studies with anti-P-450b and anti-P-450c revealed intense staining of a limited number of cells in the cerebellum with both antibodies and in the thalamus only with anti-P-450c. In the cerebellum, both anti-P-450b and anti-P-450c stained the Bergmann glial cells together with their radial processes. Individual glial cells in the granular cell layer were also stained. There was no staining of Purkinje cells. In the thalamus, anti-P-450b gave weak staining of certain astroglia, but with anti-P-450c, there was intense staining of neuronal somata.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Warner
- Department of Medical Nutrition, Karolinska Institute, Huddinge University Hospital, Sweden
| | | | | | | |
Collapse
|