1
|
Yokomizo T, Shimizu T. The leukotriene B 4 receptors BLT1 and BLT2 as potential therapeutic targets. Immunol Rev 2023; 317:30-41. [PMID: 36908237 DOI: 10.1111/imr.13196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Leukotriene B4 (LTB4 ) was recognized as an arachidonate-derived chemotactic factor for inflammatory cells and an important drug target even before the molecular identification of its receptors. We cloned the high- and low-affinity LTB4 receptors, BLT1 and BLT2, respectively, and examined their functions by generating and studying gene-targeted mice. BLT1 is involved in the pathogenesis of various inflammatory and immune diseases, including asthma, psoriasis, contact dermatitis, allergic conjunctivitis, age-related macular degeneration, and immune complex-mediated glomerulonephritis. Meanwhile, BLT2 is a high-affinity receptor for 12-hydroxyheptadecatrienoic acid, which is involved in the maintenance of dermal and intestinal barrier function, and the acceleration of skin and corneal wound healing. Thus, BLT1 antagonists and BLT2 agonists are promising candidates in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Takehiko Yokomizo
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Takao Shimizu
- Institute of Microbial Chemistry, Tokyo, Japan
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Uzawa H, Kohno D, Koga T, Sasaki T, Fukunaka A, Okuno T, Jo-Watanabe A, Kazuno S, Miyatsuka T, Kitamura T, Fujitani Y, Watada H, Saeki K, Yokomizo T. Leukotriene A 4 hydrolase deficiency protects mice from diet-induced obesity by increasing energy expenditure through neuroendocrine axis. FASEB J 2020; 34:13949-13958. [PMID: 32844470 DOI: 10.1096/fj.202001148r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
Obesity is a health problem worldwide, and brown adipose tissue (BAT) is important for energy expenditure. Here, we explored the role of leukotriene A4 hydrolase (LTA4 H), a key enzyme in the synthesis of the lipid mediator leukotriene B4 (LTB4 ), in diet-induced obesity. LTA4 H-deficient (LTA4 H-KO) mice fed a high-fat diet (HFD) showed a lean phenotype, and bone-marrow transplantation studies revealed that LTA4 H-deficiency in non-hematopoietic cells was responsible for this lean phenotype. LTA4 H-KO mice exhibited greater energy expenditure, but similar food intake and fecal energy loss. LTA4 H-KO BAT showed higher expression of thermogenesis-related genes. In addition, the plasma thyroid-stimulating hormone and thyroid hormone concentrations, as well as HFD-induced catecholamine secretion, were higher in LTA4 H-KO mice. In contrast, LTB4 receptor (BLT1)-deficient mice did not show a lean phenotype, implying that the phenotype of LTA4 H-KO mice is independent of the LTB4 /BLT1 axis. These results indicate that LTA4 H mediates the diet-induced obesity by reducing catecholamine and thyroid hormone secretion.
Collapse
Affiliation(s)
- Hirotsugu Uzawa
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan.,Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daisuke Kohno
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Tomoaki Koga
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan.,Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Tsutomu Sasaki
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan.,Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ayako Fukunaka
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Airi Jo-Watanabe
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Takeshi Miyatsuka
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Yoshio Fujitani
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuko Saeki
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Vo TTL, Jang WJ, Jeong CH. Leukotriene A4 hydrolase: an emerging target of natural products for cancer chemoprevention and chemotherapy. Ann N Y Acad Sci 2018; 1431:3-13. [PMID: 30058075 DOI: 10.1111/nyas.13929] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/10/2018] [Accepted: 06/20/2018] [Indexed: 12/27/2022]
Abstract
Cancer is the second leading cause of death worldwide and has become a global burden. It has long been known that inflammation is related to cancer, as inflammatory components have been identified in the tumor microenvironment and support tumor progression. Among the key inflammatory mediators, leukotrienes were found to be involved in cancer development. In particular, leukotriene B4, which is converted from leukotriene A4 by leukotriene A4 hydrolase (LTA4H), has been implicated in several types of cancer. In addition, LTA4H has attracted attention because of purported roles in inflammation and cancer development. Herein, we review the history of LTA4H, its emerging roles in cancer development, and the development of LTA4H inhibitors in cancer prevention and therapy.
Collapse
Affiliation(s)
- Tam Thuy Lu Vo
- College of Pharmacy, Keimyung University, Daegu, the Republic of Korea
| | - Won-Jun Jang
- College of Pharmacy, Keimyung University, Daegu, the Republic of Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu, the Republic of Korea
| |
Collapse
|
4
|
Saeki K, Yokomizo T. Identification, signaling, and functions of LTB 4 receptors. Semin Immunol 2018; 33:30-36. [PMID: 29042026 DOI: 10.1016/j.smim.2017.07.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 05/02/2017] [Accepted: 07/26/2017] [Indexed: 10/18/2022]
Abstract
Leukotriene B4 (LTB4), a lipid mediator produced from arachidonic acid, is a chemoattractant for inflammatory leukocytes. We identified two receptors for LTB4, the high-affinity receptor BLT1 and the low-affinity receptor BLT2. BLT1 is expressed in various subsets of leukocytes, and analyses of BLT1-deficient mice revealed that the LTB4/BLT1 axis enhances leukocyte recruitment to infected sites, and is involved in the elimination of pathogens. Hyperactivation of the LTB4/BLT1 axis induces acute and chronic inflammation, resulting in various inflammatory diseases. BLT2 was originally identified as a low-affinity receptor for LTB4, and we later identified 12(S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid (12-HHT) as a high-affinity ligand for BLT2. BLT2 is highly expressed in epithelial cells in various tissues including intestine and skin. Large quantities of 12-HHT are produced by activated platelets during skin injury, and activation of BLT2 on epidermal keratinocytes accelerates skin wound healing by enhancing cell migration. BLT2 signaling also enhances cell-cell junctions, protectes against transepidermal water loss, and preventes entry of environmental substances into the body.
Collapse
Affiliation(s)
- Kazuko Saeki
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
5
|
Wan M, Tang X, Stsiapanava A, Haeggström JZ. Biosynthesis of leukotriene B 4. Semin Immunol 2017; 33:3-15. [DOI: 10.1016/j.smim.2017.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 05/29/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
|
6
|
Abstract
Lipids are potent signaling molecules that regulate a multitude of cellular responses, including cell growth and death and inflammation/infection, via receptor-mediated pathways. Derived from polyunsaturated fatty acids (PUFAs), such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), each lipid displays unique properties, thus making their role in inflammation distinct from that of other lipids derived from the same PUFA. This diversity arises from their synthesis, which occurs via discrete enzymatic pathways and because they elicit responses via different receptors. This review will collate the bioactive lipid research to date and summarize the major pathways involved in their biosynthesis and role in inflammation. Specifically, lipids derived from AA (prostanoids, leukotrienes, 5-oxo-6,8,11,14-eicosatetraenoic acid, lipoxins, and epoxyeicosatrienoic acids), EPA (E-series resolvins), and DHA (D-series resolvins, protectins, and maresins) will be discussed herein.
Collapse
|
7
|
Pineau E, Xu L, Renault H, Trolet A, Navrot N, Ullmann P, Légeret B, Verdier G, Beisson F, Pinot F. Arabidopsis thaliana EPOXIDE HYDROLASE1 (AtEH1) is a cytosolic epoxide hydrolase involved in the synthesis of poly-hydroxylated cutin monomers. THE NEW PHYTOLOGIST 2017; 215:173-186. [PMID: 28497532 DOI: 10.1111/nph.14590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
Epoxide hydrolases (EHs) are present in all living organisms. They have been extensively characterized in mammals; however, their biological functions in plants have not been demonstrated. Based on in silico analysis, we identified AtEH1 (At3g05600), a putative Arabidopsis thaliana epoxide hydrolase possibly involved in cutin monomer synthesis. We expressed AtEH1 in yeast and studied its localization in vivo. We also analyzed the composition of cutin from A. thaliana lines in which this gene was knocked out. Incubation of recombinant AtEH1 with epoxy fatty acids confirmed its capacity to hydrolyze epoxides of C18 fatty acids into vicinal diols. Transfection of Nicotiana benthamiana leaves with constructs expressing AtEH1 fused to enhanced green fluorescent protein (EGFP) indicated that AtEH1 is localized in the cytosol. Analysis of cutin monomers in loss-of-function Ateh1-1 and Ateh1-2 mutants showed an accumulation of 18-hydroxy-9,10-epoxyoctadecenoic acid and a concomitant decrease in corresponding vicinal diols in leaf and seed cutin. Compared with wild-type seeds, Ateh1 seeds showed delayed germination under osmotic stress conditions and increased seed coat permeability to tetrazolium red. This work reports a physiological role for a plant EH and identifies AtEH1 as a new member of the complex machinery involved in cutin synthesis.
Collapse
Affiliation(s)
- Emmanuelle Pineau
- Université de Strasbourg, CNRS, IBMP UPR 2357, F-67000, Strasbourg, France
| | - Lin Xu
- Institute of Biosciences and Biotechnologies, CEA-CNRS-Aix Marseille Université, UMR 7265, LB3M, F-13108, Cadarache, France
| | - Hugues Renault
- Université de Strasbourg, CNRS, IBMP UPR 2357, F-67000, Strasbourg, France
| | - Adrien Trolet
- Université de Strasbourg, CNRS, IBMP UPR 2357, F-67000, Strasbourg, France
| | - Nicolas Navrot
- Université de Strasbourg, CNRS, IBMP UPR 2357, F-67000, Strasbourg, France
| | - Pascaline Ullmann
- Université de Strasbourg, CNRS, IBMP UPR 2357, F-67000, Strasbourg, France
| | - Bertrand Légeret
- Institute of Biosciences and Biotechnologies, CEA-CNRS-Aix Marseille Université, UMR 7265, LB3M, F-13108, Cadarache, France
| | - Gaëtan Verdier
- Université de Strasbourg, CNRS, IBMP UPR 2357, F-67000, Strasbourg, France
| | - Fred Beisson
- Institute of Biosciences and Biotechnologies, CEA-CNRS-Aix Marseille Université, UMR 7265, LB3M, F-13108, Cadarache, France
| | - Franck Pinot
- Université de Strasbourg, CNRS, IBMP UPR 2357, F-67000, Strasbourg, France
| |
Collapse
|
8
|
Abstract
Leukotrienes (LTs) are lipid mediators derived from the 5-lipoxygenase (5-LO) pathway of arachidonic acid metabolism and are markers and mediators of pulmonary inflammation. Research over the past two decades has established that LTs modulate inflammation in pulmonary arterial hypertension (PAH). The purpose of this review was to summarize the current knowledge of LTs in the pathophysiology of PAH and to highlight a recent study that advances our understanding of how leukotriene B4 (LTB4) specifically contributes to pulmonary vascular remodeling. The results of these studies suggest that pharmacological inhibition of LT pathways, especially LTB4, has high potential for the treatment of PAH.
Collapse
|
9
|
Liu M, Yokomizo T. The role of leukotrienes in allergic diseases. Allergol Int 2015; 64:17-26. [PMID: 25572555 DOI: 10.1016/j.alit.2014.09.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/17/2014] [Accepted: 09/19/2014] [Indexed: 11/18/2022] Open
Abstract
Leukotrienes (LTs), both LTB4 and the cysteinyl LTs (CysLTs) LTC4, LTD4 and LTE4, are implicated in a wide variety of inflammatory disorders. These lipid mediators are generated from arachidonic acid via multistep enzymatic reactions through which arachidonic acid is liberated from membrane phospholipids through the action of phospholipase A2. LTB4 and CysLTs exert their biological effects by binding to cognate receptors, which belong to the G protein-coupled receptor superfamily. LTB4 is widely considered to be a potent chemoattractant for most subsets of leukocytes, whereas CysLTs are potent bronchoconstrictors that have effects on airway remodeling. LTs play a central role in the pathogenesis of asthma and many other inflammatory diseases. This review will provide an update on the synthesis, biological function, and relevance of LTs to the pathobiology of allergic diseases, and examine the current and future therapeutic prospects of LT modifiers.
Collapse
Affiliation(s)
- Min Liu
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan; Department of Respiratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
10
|
Horn T, Adel S, Schumann R, Sur S, Kakularam KR, Polamarasetty A, Redanna P, Kuhn H, Heydeck D. Evolutionary aspects of lipoxygenases and genetic diversity of human leukotriene signaling. Prog Lipid Res 2014; 57:13-39. [PMID: 25435097 PMCID: PMC7112624 DOI: 10.1016/j.plipres.2014.11.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 12/14/2022]
Abstract
Leukotrienes are pro-inflammatory lipid mediators, which are biosynthesized via the lipoxygenase pathway of the arachidonic acid cascade. Lipoxygenases form a family of lipid peroxidizing enzymes and human lipoxygenase isoforms have been implicated in the pathogenesis of inflammatory, hyperproliferative (cancer) and neurodegenerative diseases. Lipoxygenases are not restricted to humans but also occur in a large number of pro- and eucaryotic organisms. Lipoxygenase-like sequences have been identified in the three domains of life (bacteria, archaea, eucarya) but because of lacking functional data the occurrence of catalytically active lipoxygenases in archaea still remains an open question. Although the physiological and/or pathophysiological functions of various lipoxygenase isoforms have been studied throughout the last three decades there is no unifying concept for the biological importance of these enzymes. In this review we are summarizing the current knowledge on the distribution of lipoxygenases in living single and multicellular organisms with particular emphasis to higher vertebrates and will also focus on the genetic diversity of enzymes and receptors involved in human leukotriene signaling.
Collapse
Affiliation(s)
- Thomas Horn
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany; Department of Chemistry and Biochemistry, University of California - Santa Cruz, 1156 High Street, 95064 Santa Cruz, USA
| | - Susan Adel
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Ralf Schumann
- Institute of Microbiology, Charité - University Medicine Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Saubashya Sur
- Institute of Microbiology, Charité - University Medicine Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Kumar Reddy Kakularam
- Department of Animal Sciences, School of Life Science, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Aparoy Polamarasetty
- School of Life Sciences, University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176215, India
| | - Pallu Redanna
- Department of Animal Sciences, School of Life Science, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India; National Institute of Animal Biotechnology, Miyapur, Hyderabad 500049, Telangana, India
| | - Hartmut Kuhn
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Dagmar Heydeck
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| |
Collapse
|
11
|
Gerstmeier J, Weinigel C, Barz D, Werz O, Garscha U. An experimental cell-based model for studying the cell biology and molecular pharmacology of 5-lipoxygenase-activating protein in leukotriene biosynthesis. Biochim Biophys Acta Gen Subj 2014; 1840:2961-9. [PMID: 24905297 DOI: 10.1016/j.bbagen.2014.05.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/09/2014] [Accepted: 05/25/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Subcellular distribution of 5-lipoxygenase (5-LO) to the perinuclear region and interaction with the 5-LO-activating protein (FLAP) are assumed as key steps in leukotriene biosynthesis and are prone to FLAP antagonists. METHODS FLAP and/or 5-LO were stably expressed in HEK293 cells, 5-LO products were analyzed by HPLC, and 5-LO and FLAP subcellular localization was visualized by immunofluorescence microscopy. RESULTS 5-LO and FLAP were stably expressed in HEK293 cells, and upon Ca(2+)-ionophore A23187 stimulation exogenous AA was efficiently transformed into the 5-LO products 5-hydro(pero)xyeicosatetraenoic acid (5-H(p)ETE) and the trans-isomers of LTB4. A23187 stimulation caused 5-LO accumulation at the nuclear membrane only when FLAP was co-expressed. Unexpectedly, A23187 stimulation of HEK cells expressing 5-LO and FLAP without exogenous AA failed in 5-LO product synthesis. HEK cells liberated AA in response to A23187, and transfected HEK cells expressing 12-LO generated 12-HETE after A23187 challenge from endogenous AA. FLAP co-expression increased 5-LO product formation in A23187-stimulated cells at low AA concentrations. Only in cells expressing FLAP and 5-LO, the FLAP antagonist MK886 blocked FLAP-mediated increase in 5-LO product formation, and prevented 5-LO nuclear membrane translocation and co-localization with FLAP. CONCLUSION The cellular biosynthesis of 5-LO products from endogenously derived substrate requires not only functional 5-LO/FLAP co-localization but also additional prerequisites which are dispensable when exogenous AA is supplied; identification of these determinants is challenging. GENERAL SIGNIFICANCE We present a cell model to study the role of FLAP as 5-LO interacting protein in LT biosynthesis in intact cells and for characterization of putative FLAP antagonists.
Collapse
Affiliation(s)
- Jana Gerstmeier
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Germany
| | - Christina Weinigel
- Institute of Transfusion Medicine, Jena University Hospital, 07743 Jena, Germany
| | - Dagmar Barz
- Institute of Transfusion Medicine, Jena University Hospital, 07743 Jena, Germany
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Germany
| | - Ulrike Garscha
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Germany
| |
Collapse
|
12
|
Hu W, Yen YT, Singh S, Kao CL, Wu-Hsieh BA. SARS-CoV regulates immune function-related gene expression in human monocytic cells. Viral Immunol 2012; 25:277-88. [PMID: 22876772 DOI: 10.1089/vim.2011.0099] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Severe acute respiratory syndrome (SARS) is characterized by acute respiratory distress syndrome (ARDS) and pulmonary fibrosis, and monocytes/macrophages are the key players in the pathogenesis of SARS. In this study, we compared the transcriptional profiles of SARS coronavirus (SARS-CoV)-infected monocytic cells against that infected by coronavirus 229E (CoV-229E). Total RNA was extracted from infected DC-SIGN-transfected monocytes (THP-1-DC-SIGN) at 6 and 24 h after infection, and the gene expression was profiled in oligonucleotide-based microarrays. Analysis of immune-related gene expression profiles showed that at 24 h after SARS-CoV infection: (1) IFN-α/β-inducible and cathepsin/proteasome genes were downregulated; (2) hypoxia/hyperoxia-related genes were upregulated; and (3) TLR/TLR-signaling, cytokine/cytokine receptor-related, chemokine/chemokine receptor-related, lysosome-related, MHC/chaperon-related, and fibrosis-related genes were differentially regulated. These results elucidate that SARS-CoV infection regulates immune-related genes in monocytes/macrophages, which may be important to the pathogenesis of SARS.
Collapse
Affiliation(s)
- Wanchung Hu
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
13
|
Yoshikawa K, Palumbo S, Toscano CD, Bosetti F. Inhibition of 5-lipoxygenase activity in mice during cuprizone-induced demyelination attenuates neuroinflammation, motor dysfunction and axonal damage. Prostaglandins Leukot Essent Fatty Acids 2011; 85:43-52. [PMID: 21555210 PMCID: PMC3109232 DOI: 10.1016/j.plefa.2011.04.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/06/2011] [Accepted: 04/12/2011] [Indexed: 11/20/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). Increased expression of 5-lipoxygenase (5-LO), a key enzyme in the biosynthesis of leukotrienes (LTs), has been reported in MS lesions and LT levels are elevated in the cerebrospinal fluid of MS patients. To determine whether pharmacological inhibition of 5-LO attenuates demyelination, MK886, a 5-LO inhibitor, was given to mice fed with cuprizone. Gene and protein expression of 5-LO were increased at the peak of cuprizone-induced demyelination. Although MK886 did not attenuate cuprizone-induced demyelination in the corpus callosum or in the cortex, it attenuated cuprizone-induced axonal damage and motor deficits and reduced microglial activation and IL-6 production. These data suggest that during cuprizone-induced demyelination, the 5-LO pathway contributes to microglial activation and neuroinflammation and to axonal damage resulting in motor dysfunction. Thus, 5-LO inhibition may be a useful therapeutic treatment in demyelinating diseases of the CNS.
Collapse
Affiliation(s)
| | | | | | - F. Bosetti
- Corresponding author: Francesca Bosetti, Pharm.D., Ph.D., 9 Memorial Drive, Rm. 1S126 MSC 0947, Bethesda MD 20892-0947, Phone: (301) 594-5077, Fax: (301) 402-0074,
| |
Collapse
|
14
|
Affiliation(s)
- Motonao Nakamura
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Hongo, Tokyo, Japan.
| | | |
Collapse
|
15
|
Impact of Selenium on the Leukotriene B4 Synthesis Pathway during Isoproterenol-Induced Myocardial Infarction in Experimental Rats. Inflammation 2011; 35:74-80. [DOI: 10.1007/s10753-010-9291-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Stables MJ, Gilroy DW. Old and new generation lipid mediators in acute inflammation and resolution. Prog Lipid Res 2010; 50:35-51. [PMID: 20655950 DOI: 10.1016/j.plipres.2010.07.005] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 07/08/2010] [Accepted: 07/08/2010] [Indexed: 01/02/2023]
Abstract
Originally regarded as just membrane constituents and energy storing molecules, lipids are now recognised as potent signalling molecules that regulate a multitude of cellular responses via receptor-mediated pathways, including cell growth and death, and inflammation/infection. Derived from polyunsaturated fatty acids (PUFAs), such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), each lipid displays unique properties, thus making their role in inflammation distinct from that of other lipids derived from the same PUFA. The diversity of their actions arises because such metabolites are synthesised via discrete enzymatic pathways and because they elicit their response via different receptors. This review will collate the bioactive lipid research to date and summarise the findings in terms of the major pathways involved in their biosynthesis and their role in inflammation and its resolution. It will include lipids derived from AA (prostanoids, leukotrienes, 5-oxo-6,8,11,14-eicosatetraenoic acid, lipoxins and epoxyeicosatrienoic acids), EPA (E-series resolvins), and DHA (D-series resolvins, protectins and maresins).
Collapse
Affiliation(s)
- Melanie J Stables
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, 5 University Street, University College London, London WC1E 6JJ, United Kingdom
| | | |
Collapse
|
17
|
Maruyama M, Arisaka N, Goto Y, Ohsawa Y, Inoue H, Fujiwara H, Hattori A, Tsujimoto M. Histidine 379 of human laeverin/aminopeptidase Q, a nonconserved residue within the exopeptidase motif, defines its distinctive enzymatic properties. J Biol Chem 2009; 284:34692-702. [PMID: 19819873 DOI: 10.1074/jbc.m109.066712] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human laeverin/aminopeptidase Q (LVRN/APQ) is a novel member of the M1 family of zinc aminopeptidases and is specifically expressed on the cell surface of human extravillous trophoblasts. Multiple sequence alignment of human M1 aminopeptidase revealed that the first Gly residue within the conserved exopeptidase motif of the M1 family, GXMEN motif, is uniquely substituted for His in human LVRN/APQ. In this study, we evaluated the roles of nonconserved His(379), comprising the exopeptidase motif in the enzymatic properties of human LVRN/APQ. We revealed that the substitution of His(379) with Gly caused significant changes in substrate specificity both toward fluorogenic substrates and natural peptide hormones. In addition, the susceptibilities of bestatin, a sensitive inhibitor for human LVRN/APQ, and natural inhibitory peptides were decreased in the H379G mutant. A molecular model suggested a conformational difference between wild-type and H379G human LVRN/APQs. These results indicate that His(379) of the enzyme plays essential roles in its distinctive enzymatic properties and contributes to maintaining the appropriate structure of the catalytic cavity of the enzyme. Our data may bring new insight into the biological significance of the unique exopeptidase motif of LVRN/APQ obtained during the evolution of primates.
Collapse
Affiliation(s)
- Masato Maruyama
- Laboratory of Cellular Biochemistry, RIKEN, Wako, Saitama 351-0198
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Shimizu T. Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu Rev Pharmacol Toxicol 2009; 49:123-50. [PMID: 18834304 DOI: 10.1146/annurev.pharmtox.011008.145616] [Citation(s) in RCA: 430] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Prostaglandins, leukotrienes, platelet-activating factor, lysophosphatidic acid, sphingosine 1-phosphate, and endocannabinoids, collectively referred to as lipid mediators, play pivotal roles in immune regulation and self-defense, and in the maintenance of homeostasis in living systems. They are produced by multistep enzymatic pathways, which are initiated by the de-esterification of membrane phospholipids by phospholipase A2s or sphingo-myelinase. Lipid mediators exert their biological effects by binding to cognate receptors, which are members of the G protein-coupled receptor superfamily. The synthesis of the lipid mediators and subsequent induction of receptor activity is tightly regulated under normal physiological conditions, and enzyme and/or receptor dysfunction can lead to a variety of disease conditions. Thus, the manipulation of lipid mediator signaling, through either enzyme inhibitors or receptor antagonists and agonists, has great potential as a therapeutic approach to disease. In this review, I summarize our current state of knowledge of the synthesis of lipid mediators and the function of their cognate receptors, and discuss the effects of genetic or pharmacological ablation of enzyme or receptor function on various pathophysiological processes.
Collapse
Affiliation(s)
- Takao Shimizu
- Department of Biochemistry and Molecular Biology, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
19
|
Hikiji H, Takato T, Shimizu T, Ishii S. The roles of prostanoids, leukotrienes, and platelet-activating factor in bone metabolism and disease. Prog Lipid Res 2008; 47:107-26. [DOI: 10.1016/j.plipres.2007.12.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 11/29/2007] [Accepted: 12/04/2007] [Indexed: 12/11/2022]
|
20
|
Kalsotra A, Strobel HW. Cytochrome P450 4F subfamily: at the crossroads of eicosanoid and drug metabolism. Pharmacol Ther 2006; 112:589-611. [PMID: 16926051 DOI: 10.1016/j.pharmthera.2006.03.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 03/22/2006] [Indexed: 12/13/2022]
Abstract
The cytochrome P450 4F (CYP4F) subfamily has over the last few years come to be recognized for its dual role in modulating the concentrations of eicosanoids during inflammation as well as in the metabolism of clinically significant drugs. The first CYP4F was identified because it catalyzed the hydroxylation of leukotriene B(4) (LTB(4)) and since then many additional members of this subfamily have been documented for their distinct catalytic roles and functional significance. Recent evidence emerging in relation to the temporal change of CYP4F expression in response to injury and infection supports an important function for these isozymes in curtailing inflammation. Their tissue-dependent expression, isoform-based catalytic competence and unique response to the external stimuli imply a critical role for them to regulate organ-specific functions. From this standpoint variations in relative CYP4F levels in humans may have direct influence on the metabolic outcome through their ability to generate and/or degrade bioactive eicosanoids or therapeutic agents. This review covers the enzymatic characteristics and regulatory properties of human and rodent CYP4F isoforms and their physiological relevance to major pathways in eicosanoid and drug metabolism.
Collapse
Affiliation(s)
- Auinash Kalsotra
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, P.O. Box 20708, 6431 Fannin Street Houston, TX 77225, USA
| | | |
Collapse
|
21
|
Iizuka Y, Yokomizo T, Terawaki K, Komine M, Tamaki K, Shimizu T. Characterization of a Mouse Second Leukotriene B4 Receptor, mBLT2. J Biol Chem 2005; 280:24816-23. [PMID: 15866883 DOI: 10.1074/jbc.m413257200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Leukotriene B4 (LTB4) is a potent chemoattractant and activator for granulocytes and macrophages and is considered to be an inflammatory mediator. Two G-protein-coupled receptors for LTB4, BLT1 and BLT2, have been cloned from human and shown to be high and low affinity LTB4 receptors, respectively. To reveal the biological roles of BLT2 using mouse disease models, we cloned and characterized mouse BLT2. Chinese hamster ovary cells stably expressing mouse BLT2 exhibited specific binding to LTB4, LTB4-induced calcium mobilization, inhibition of adenylyl cyclase, and phosphorylation of extracellular signal-regulated kinase. We found that Compound A (4'-{[pentanoyl (phenyl) amino] methyl}-1, 1'-biphenyl-2-carboxylic acid) was a BLT2-selective agonist and induced Ca(2+) mobilization and phosphorylation of extracellular signal-regulated kinase through BLT2, whereas it had no effect on BLT1. 12-epi LTB4 exhibited a partial agonistic activity against mBLT1 and mBLT2, whereas 6-trans-12-epi LTB4 did not. Northern blot analysis showed that mouse BLT2 is expressed highly in small intestine and skin in contrast to the ubiquitous expression of human BLT2. By in situ hybridization and the reverse transcriptase polymerase chain reaction, we demonstrated that mouse BLT2 is expressed in follicular and interfollicular keratinocytes. Compound A, LTB4, and 12-epi LTB4 all induced phosphorylation of extracellular signal-regulated kinase in primary mouse keratinocytes. Furthermore, Compound A and LTB4 induced chemotaxis in primary mouse keratinocytes. These data suggest the presence of functional BLT2 in primary keratinocytes.
Collapse
Affiliation(s)
- Yoshiko Iizuka
- Departments of Biochemistry and Molecular Biology and Dermatology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Díaz-Perales A, Quesada V, Sánchez LM, Ugalde AP, Suárez MF, Fueyo A, López-Otín C. Identification of Human Aminopeptidase O, a Novel Metalloprotease with Structural Similarity to Aminopeptidase B and Leukotriene A4 Hydrolase. J Biol Chem 2005; 280:14310-7. [PMID: 15687497 DOI: 10.1074/jbc.m413222200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned and characterized a human brain cDNA encoding a new metalloprotease that has been called aminopeptidase O (AP-O). AP-O exhibits a series of structural features characteristic of aminopeptidases, including a conserved catalytic domain with a zinc-binding site (HEXXHX18E) that allows its classification in the M1 family of metallopeptidases or gluzincins. The structural complexity of AP-O is further increased by the presence of an additional C-terminal domain 170 residues long, which is predicted to have an ARM repeat fold originally identified in the Drosophila segment polarity gene product Armadillo. This ARM repeat domain is also present in aminopeptidase B, aminopeptidase B-like, and leukotriene A4 hydrolase and defines a novel subfamily of aminopeptidases that we have called ARM aminopeptidases. Northern blot analysis revealed that AP-O is mainly expressed in the pancreas, placenta, liver, testis, and heart. Human AP-O was produced in Escherichia coli, and the purified recombinant protein hydrolyzed synthetic substrates used for assaying aminopeptidase activity. This activity was abolished by general inhibitors of metalloproteases and specific inhibitors of aminopeptidases. Recombinant AP-O also cleaved angiotensin III to generate angiotensin IV, a bioactive peptide of the renin-angiotensin pathway with multiple actions on diverse tissues, including brain, testis, and heart. On the basis of these results we suggest that AP-O could play a role in the proteolytic processing of bioactive peptides in those tissues where it is expressed.
Collapse
Affiliation(s)
- Araceli Díaz-Perales
- Departamento de Bioquímica y Biología Molecular and Biología Funcional, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Leukotriene B4 (LTB4) is known as one of the most potent chemoattractants and activators of leukocytes and is involved in inflammatory diseases. Enzymes involved in the biosynthesis and metabolism of LTB4 have been cloned, and their properties are well understood. Two G-protein-coupled receptors (BLT1 and BLT2) have been cloned and characterized. BLT1 and BLT2 are high- and low-affinity LTB4 receptors, respectively, and form a gene cluster in human and mouse. In this article recent findings on the metabolism of and the receptors for LTB4 are reviewed. We also discuss briefly a coreceptor role of BLT in HIV infection, and ion channel modification by LTB4.
Collapse
Affiliation(s)
- T Yokomizo
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, CREST of Japan, Science and Technology Corporation.
| | | | | |
Collapse
|
24
|
Heinzmann A, Grotherr P, Jerkic SP, Lichtenberg A, Braun S, Kruse S, Forster J, Kuehr J, Deichmann KA. Studies on linkage and association of atopy with the chromosomal region 12q13-24. Clin Exp Allergy 2000; 30:1555-61. [PMID: 11069563 DOI: 10.1046/j.1365-2222.2000.00954.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Several studies have shown linkage of bronchial asthma, allergic rhinitis and total serum IgE concentration to the chromosomal region 12q13-24 in ethnical diverse populations. This region harbours a number of candidate genes for asthma and atopy, including stem cell factor (SCF), leukotriene A4 hydrolase (LTA4H), thyroid receptor 2 (TR2), and signal transducer and activator of transcription 6 (STAT6). However, the same region was shown as well to be linked to other diseases with inflammatory character. So far no variants in any of these genes have been published which would allow association studies and confirm the pathogenicity of any of these genes. OBJECTIVE We wanted to test for linkage of the chromosomal region 12q13-24 with the atopic phenotype without regard to clinical manifestations. Furthermore we screened for common nucleotide polymorphisms in candidate genes to enable association studies. METHODS We employed sib-pair linkage analysis and transmission disequilibrium testing with regard to four highly polymorphic microsatellite markers in 12q13-24 in atopic nuclear families. In addition, we looked for polymorphisms in the genes coding for SCF, LTA4H, TR2 and STAT6 performing SSCP-analysis and direct genomic sequencing. RESULTS We found no evidence for linkage of the genomic region 12q13-24 to elevated total serum IgE levels, specific sensitization to common inhalant allergens or atopy. Furthermore we identified three nucleotide polymorphisms including one common variant in the gene coding for SCF. No association of this polymorphism and any of the atopic phenotypes was seen. CONCLUSION We conclude from our data that genes in the chromosomal region 12q13-24 and in particular SCF are unlikely to exert a major effect on the induction of the atopic phenotype in our Caucasian population. However, we did not focus on the asthmatic and thereby inflammatory aspect of atopy which might explain these results in contradiction to previous studies.
Collapse
Affiliation(s)
- A Heinzmann
- University Children's Hospital, University of Freiburg, Mathildenstrasse 1, Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Shimizu T, Yokomizo T, Izumi T. Leukotriene-B4 receptor and signal transduction. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2000:125-41. [PMID: 10943331 DOI: 10.1007/978-3-662-04047-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- T Shimizu
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Tokyo, Japan
| | | | | |
Collapse
|
26
|
Yokomizo T, Kato K, Terawaki K, Izumi T, Shimizu T. A second leukotriene B(4) receptor, BLT2. A new therapeutic target in inflammation and immunological disorders. J Exp Med 2000; 192:421-32. [PMID: 10934230 PMCID: PMC2193217 DOI: 10.1084/jem.192.3.421] [Citation(s) in RCA: 391] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Leukotriene B(4) (LTB(4)) is a potent chemoattractant and activator of both granulocytes and macrophages. The actions of LTB(4) appear to be mediated by a specific G protein-coupled receptor (GPCR) BLT1, originally termed BLT (Yokomizo, T., T. Izumi, K. Chang, Y. Takuwa, and T. Shimizu. 1997. Nature. 387:620-624). Here, we report the molecular cloning of a novel GPCR for LTB(4), designated BLT2, which binds LTB(4) with a Kd value of 23 nM compared with 1.1 nM for BLT1, but still efficiently transduces intracellular signaling. BLT2 is highly homologous to BLT1, with an amino acid identity of 45.2%, and its open reading frame is located in the promoter region of the BLT1 gene. BLT2 is expressed ubiquitously, in contrast to BLT1, which is expressed predominantly in leukocytes. Chinese hamster ovary cells expressing BLT2 exhibit LTB(4)-induced chemotaxis, calcium mobilization, and pertussis toxin-insensitive inhibition of adenylyl cyclase. Several BLT1 antagonists, including U 75302, failed to inhibit LTB(4) binding to BLT2. Thus, BLT2 is a pharmacologically distinct receptor for LTB(4), and may mediate cellular functions in tissues other than leukocytes. BLT2 provides a novel target for antiinflammatory therapy and promises to expand our knowledge of LTB(4) function. The location of the gene suggests shared transcriptional regulation of these two receptors.
Collapse
Affiliation(s)
- Takehiko Yokomizo
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Tokyo 113-0033, Japan
| | - Kazuhiko Kato
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Pharmaceutical Research Center, Meiji Seika Kaisha, Limited, Yokohama 222-8567, Japan
| | - Kan Terawaki
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Tokyo 113-0033, Japan
| | - Takashi Izumi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Tokyo 113-0033, Japan
| | - Takao Shimizu
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Tokyo 113-0033, Japan
| |
Collapse
|
27
|
Affiliation(s)
- J Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
28
|
Sala A, Zarini S, Folco G, Murphy RC, Henson PM. Differential metabolism of exogenous and endogenous arachidonic acid in human neutrophils. J Biol Chem 1999; 274:28264-9. [PMID: 10497182 DOI: 10.1074/jbc.274.40.28264] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leukotrienes can be produced by cooperative interactions between cells in which, for example, arachidonate derived from one cell is oxidized to leukotriene A(4) (LTA(4)) by another and this can then be exported for conversion to LTB(4) or cysteinyl leukotrienes (cys-LTs) by yet another. Neutrophils do not contain LTC(4) synthase but are known to cooperate with endothelial cells or platelets (which do have this enzyme) to generate cys-LTs. Stimulation of human neutrophils perfusing isolated rabbit hearts resulted in production of cys-LTs, whereas these were not seen with perfused hearts alone or isolated neutrophils. In addition, the stimulated, neutrophil-perfused hearts generated much greater amounts of total LTA(4) products, suggesting that the hearts were supplying arachidonate to the neutrophils and, in addition, that this externally derived arachidonate was preferentially used for exported LTA(4) that could be metabolized to cys-LTs by the coronary endothelium. Stable isotope-labeled arachidonate and electrospray tandem mass spectrometry were used to differentially follow metabolism of exogenous and endogenous arachidonate. Isolated, adherent neutrophils at low concentrations (to minimize transcellular metabolism between them) were shown to generate higher proportions of nonenzymatic LTA(4) products from exogenous arachidonate (deuterium-labeled) than from endogenous (unlabeled) sources. The endogenous arachidonate, on the other hand, was preferentially used for conversion to LTB(4) by the LTA(4) hydrolase. This result was not because of saturation of the LTA(4) hydrolase, because it occurred at widely differing concentrations of exogenous arachidonate. Finally, in the presence of platelets (which contain LTC(4) synthase), the LTA(4) synthesized from exogenous deuterium-labeled arachidonate was converted to cys-LTs to a greater degree than that from endogenous sources. These experiments suggest that exogenous arachidonate is preferentially converted to LTA(4) for export (not intracellular conversion) and raises the likelihood that there are different intracellular pathways for arachidonate metabolism.
Collapse
Affiliation(s)
- A Sala
- Center for Cardiopulmonary Pharmacology, University of Milan, Via Balzaretti 9, Milan 20133, Italy
| | | | | | | | | |
Collapse
|
29
|
Haeggström JZ. Leukotriene A4 hydrolase and the committed step in leukotriene B4 biosynthesis. Clin Rev Allergy Immunol 1999; 17:111-31. [PMID: 10436862 DOI: 10.1007/bf02737600] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- J Z Haeggström
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Affiliation(s)
- J M Drazen
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
31
|
Florent I, Derhy Z, Allary M, Monsigny M, Mayer R, Schrével J. A Plasmodium falciparum aminopeptidase gene belonging to the M1 family of zinc-metallopeptidases is expressed in erythrocytic stages. Mol Biochem Parasitol 1998; 97:149-60. [PMID: 9879894 DOI: 10.1016/s0166-6851(98)00143-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A new single copy gene has been isolated from Plasmodium falciparum, by immunoscreening a genomic DNA expression library. The gene appears devoid of introns, displays the classical A + T richness and codon usage of P. falciparum genes, and is transcribed into a 4 kb mRNA in erythrocytic stages. The deduced amino acid sequence corresponds to a 1056 residue protein (122 kDa) containing the canonical HExxHx18E signature of zinc-metallopeptidase active sites of the M1 family at position 467-490, a downstream conserved tyrosine residue involved in catalysis in position 551, and the GAMEN conserved motif characteristic of aminopeptidases in the M1 family, at position 431-435. The greatest similarities were found with aminopeptidases N of Escherichia coli and Haemophilius influenza (more than 80% identical residues in the canonical signature of the active site) but significant similarities centred on the active site region exist with all other members of the M1 family such as other prokaryotic aminopeptidases, eukaryotic aminopeptidases A and N and leukotriene A4 hydrolases (40-50% identical residues in the canonical signature of the active site). A polyclonal serum raised to a synthetic peptide deduced from the gene labelled schizont proteins of 96 and 68 kDa purified to homogeneity and both displaying aminopeptidase activity, as well as cytoplasmic structures in schizont stages.
Collapse
Affiliation(s)
- I Florent
- Laboratoire de Biologie Parasitaire, EP 1790 Biologie et Evolution des Parasites CNRS, Muséum National d'Histoire Naturelle, Paris, France.
| | | | | | | | | | | |
Collapse
|
32
|
Clamagirand C, Cadel S, Barre N, Cohen P. Evidence for a leukotriene A4 hydrolase in Xenopus laevis skin exudate. FEBS Lett 1998; 433:68-72. [PMID: 9738935 DOI: 10.1016/s0014-5793(98)00885-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leukotriene A4 hydrolase is a cytosolic metalloenzyme of the arachidonic acid biosynthetic pathway responsible for leukotriene A4 conversion into leukotriene B4. In addition to its epoxide hydrolase properties, this enzyme exhibits an aminopeptidase activity which was used as an assay to monitor the purification of a novel form of leukotriene A4 hydrolase from Xenopus laevis skin exudate. This 70 kDa, secreted, form of leukotriene A4 hydrolase was identified by immunochemical cross-reactivity with anti-human leukotriene A4 hydrolase antibodies and by its capacity to convert leukotriene A4 into leukotriene B4. Moreover this enzyme produced a second metabolite which could be the leukotriene B4 isomer 5S,12R-dihydroxy-6,10-trans-8,14-4-cis-eicosatetraenoic acid, previously shown by Strömberg et al. (Eur.J. Biochem. 238 (1996) 599-605) to be formed by incubation of the leukotriene A4 with amphibian tissue extracts. Partial amino acid sequencing of peptides generated by endolysin C fragmentation of the purified enzyme confirmed the presence, in X. laevis skin secretions, of a related but distinct form of leukotriene A4 hydrolase which is likely to be responsible for the production of these eicosanoid metabolites of leukotriene A4.
Collapse
Affiliation(s)
- C Clamagirand
- Unité Mixte de Recherche 7631 du CNRS, Université Pierre et Marie Curie, Paris, France
| | | | | | | |
Collapse
|
33
|
Mancini JA, Waugh RJ, Thompson JA, Evans JF, Belley M, Zamboni R, Murphy RC. Structural characterization of the covalent attachment of leukotriene A3 to leukotriene A4 hydrolase. Arch Biochem Biophys 1998; 354:117-24. [PMID: 9633605 DOI: 10.1006/abbi.1998.0670] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leukotriene A4 (LTA4) hydrolase catalyzes the conversion of the unstable epoxide LTA4 [5(S)-trans-5,6-oxido-11,14-cis-eicosatetraenoic acid] into proinflammatory LTB4. During the process of catalyzing this reaction, the enzyme is suicide inactivated by its substrate. In addition, LTA3, and analogue of LTA4 that lacks the C14-C15 double bond, is a potent suicide inhibitor of LTA4 hydrolase. We have synthesized [3H]LTA3 and used this ligand to demonstrate that LTA3 can covalently label LTA4 hydrolase and that this labeling is specifically competed for by bestatin and LTA4. Incubation of recombinant human LTA4 hydrolase with LTA3 followed by proteolysis (endoproteinase Lys-C) resulted in a peptide map with a single modified peptide defining the location of the LTA3 covalent attachment region. This modified 21-amino-acid peptide had a UV absorption spectrum corresponding to a conjugated triene chromophore which established conservation of this structural unit after covalent interaction of LTA3 with LTA4 hydrolase. MALDI-TOF mass spectrometric analysis of the 21-amino-acid peptide adduct revealed an abundant MH+ at m/z 2658, consistent with the predicted nominal mass of the sequenced peptide with the addition of a single LTA3 moiety. Proteolysis of LTA4 hydrolase modified with LTA3 was performed sequentially with endo-Asp-N and endo-Lys-C. The resulting peptide isolated by reverse-phase high-performance liquid chromatography was analyzed by mass spectroscopy revealing two related peptides, D371-K385 (m/z 2018.0) and D375-K385 (m/z 1577.8), both of which retained the elements of LTA3. Postsource decay of m/z 1577.8 resulted in an abundant ion at m/z 536 and an ion of lesser abundance at m/z 856 consistent with cleavage between V381 and P382 that supported assignment of the modified tyrosine residue at Y383. These results suggest nucleophilic attack of a tyrosine residue (Y383) at the conjugated triene epoxide of LTA3 resulting in a triene ether carbinol covalent adduct.
Collapse
Affiliation(s)
- J A Mancini
- Department of Biochemistry, McGill University, Montreal, PQ, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Rybina IV, Liu H, Gor Y, Feinmark SJ. Regulation of leukotriene A4 hydrolase activity in endothelial cells by phosphorylation. J Biol Chem 1997; 272:31865-71. [PMID: 9395533 DOI: 10.1074/jbc.272.50.31865] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Endothelial cells contain leukotriene (LT) A4 hydrolase (LTA-H) as detected by Northern and Western blotting, but several studies have been unable to detect the activity of this enzyme. Since LTA-H could play a key role in determining what biologically active lipids are generated by activated endothelium during the inflammatory process, we studied possible mechanisms by which this enzyme may be regulated. We find that LTA-H is phosphorylated under basal conditions in human endothelial cells and in this state does not exhibit epoxide hydrolase activity (i.e. conversion of LTA4 to LTB4). LTA-H purified from endothelial cells is efficiently dephosphorylated by incubation with protein phosphatase-1 in the presence of an LTA-H peptide substrate and not at all in the absence of substrate. Under conditions that lead to dephosphorylation, protein phosphatase-1 activates the epoxide hydrolase activity of LTA-H. Using peptide mapping and site-directed mutagenesis, we have identified serine 415 as the site of phosphorylation of LTA-H by a kinase found in endothelial cell cytosol. In parallel, we have studied a human lung carcinoma cell line that expresses active LTA-H. Although these cells have cytosolic kinases that phosphorylate recombinant LTA-H, they do not target serine 415 and thus do not inhibit LTA-H activity. We believe that LTA-H is regulated in intact cells by a kinase/phosphatase cycle and further that the kinase in endothelial cells specifically recognizes and phosphorylates a regulatory site in the LTA-H.
Collapse
Affiliation(s)
- I V Rybina
- Department of Pharmacology, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
35
|
Laustsen PG, Rasmussen TE, Petersen K, Pedraza-Diaz S, Moestrup SK, Gliemann J, Sottrup-Jensen L, Kristensen T. The complete amino acid sequence of human placental oxytocinase. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1352:1-7. [PMID: 9177475 DOI: 10.1016/s0167-4781(97)00036-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The complete amino acid sequence of human placental oxytocinase (placental leucine aminopeptidase) has been determined by cDNA cloning and sequencing. Oxytocinase is a type II integral membrane protein of 1025 amino acid residues, consisting of an acidic intracellular region of 110 amino acids followed by a hydrophobic transmembrane segment of 22 residues and 893 extracellular residues containing the characteristic Zn2+ coordination sequence element His-Glu-Xaa-Xaa-His-(18 residues)-Glu found in gluzincins. Two sets of cDNA clones with different 5'-ends were isolated and suggested to represent different spliced products of 3.6 kb (mature mRNA) and 12 kb, respectively. Oxytocinase mRNA is present in large amounts in placenta, heart and skeletal muscle and in small amounts in brain, kidney, liver and pancreas. A conserved sequence element, the GAMEN motif, which distinguishes the aminopeptidase family among gluzincins from other gluzincins, has been identified.
Collapse
Affiliation(s)
- P G Laustsen
- Department of Molecular and Structural Biology, Aarhus University, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Asthma is a chronic inflammatory disease that is associated with widespread but variable airflow obstruction. The mechanisms that lead to airflow obstruction in asthma are bronchoconstriction, mucosal edema, increased secretion of mucus, and an inflammatory-cell infiltrate that is rich in eosinophils. Leukotrienes (LTs) B4, C4, D4, and E4 have been shown experimentally to play a role in each of these inflammatory mechanisms and to mimic the pathologic changes seen in asthma. Inhaled LTC4 and LTD4 are the most potent bronchoconstrictors yet studied in human subjects. LTC4 and LTD4 also may cause migration of inflammatory cells into the asthmatic airway. LTs are derived from the 5-lipoxygenase (5-LO) pathway of arachidonic acid metabolism, and increased production of LTs has been demonstrated in patients who have asthma. Leukotriene receptor antagonists and specific inhibitors of the 5-LO pathway hold great promise as new therapies to treat asthma. Because LTC4, LTD4, and LTE4 appear to interact with a common LTD4 receptor, selective LTD4 receptor antagonists (eg, pranlukast [SB205312/ONO-1078], zafirlukast [ICI 204,219], MK-571, and MK-679), as well as zileuton (A-64077, a direct inhibitor of 5-LO) have been developed as antiasthma agents. Clinical and experimental studies have demonstrated the efficacy of these compounds in reducing not only the symptoms of asthma, but use of beta 2-agonists and bronchoconstriction induced by exposure to allergens, exercise, aspirin, and cold air.
Collapse
Affiliation(s)
- P M O'Byrne
- Asthma Research Group, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
37
|
Platelet Arachidonic Acid Metabolism and Eicosanoid Receptors. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1569-2558(08)60414-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
38
|
Fukasawa KM, Fukasawa K, Kanai M, Fujii S, Harada M. Molecular cloning and expression of rat liver aminopeptidase B. J Biol Chem 1996; 271:30731-5. [PMID: 8940051 DOI: 10.1074/jbc.271.48.30731] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We isolated, by immunological screening of a Uni-ZAP XR cDNA library constructed from rat liver mRNAs, a cDNA clone with 2212 base pairs encoding aminopeptidase B (EC 3.4.11.6). The open reading frame encodes a 649-amino acid protein with a theoretical molecular mass of 72,545 Da and bears the consensus sequence of the zinc metalloexopeptidases, indicating that the enzyme belongs to this family, which includes aminopeptidase A, aminopeptidase N, and leukotriene-A4 hydrolase. Escherichia coli SOLR cells infected with the pBluescript phagemid excised from the Uni-ZAP XR vector containing the aminopeptidase B cDNA had a high L-arginyl-beta-naphthylamidase activity. The recombinant protein was purified to homogeneity from the recombinant E. coli extracts. The enzyme had Cl--dependent aminopeptidase activity specifically restricted to the Arg and Lys derivatives and contained 1 mol of zinc per mol of the enzyme.
Collapse
Affiliation(s)
- K M Fukasawa
- Department of Oral Biochemistry, Matsumoto Dental College, Shiojiri, Nagano 399-07, Japan
| | | | | | | | | |
Collapse
|
39
|
Yokomizo T, Ogawa Y, Uozumi N, Kume K, Izumi T, Shimizu T. cDNA cloning, expression, and mutagenesis study of leukotriene B4 12-hydroxydehydrogenase. J Biol Chem 1996; 271:2844-50. [PMID: 8576264 DOI: 10.1074/jbc.271.5.2844] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Leukotriene B4 12-hydroxydehydrogenase catalyzes the conversion of leukotriene B4 into its biologically less active metabolite, 12-oxo-leukotriene B4. This is an initial and key step of metabolic inactivation of leukotriene B4 in various tissues other than leukocytes. Here we report the cDNA cloning for porcine and human enzymes from kidney cDNA libraries. A full-length cDNA of the porcine enzyme contains an open reading frame consisting of 987 base pairs, corresponding to 329 amino acids. The human enzyme showed a 97.1% homology with the porcine enzyme. Northern blotting of human tissues revealed its high expression in the kidney, liver, and intestine but not in leukocytes. The porcine enzyme was expressed as a glutathione S-transferase fusion protein in Escherichia coli, which exhibited similar characteristics with the native enzyme. Because the enzymes have a homology, in part, with NAD(P)(+)-dependent alcohol dehydrogenases, a site-directed mutagenesis study was carried out. We found that three glycines at 152, 155, and 166 have crucial roles in the enzyme activity, possibly by producing an NADP+ binding pocket.
Collapse
Affiliation(s)
- T Yokomizo
- Department of Biochemistry, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Nissen JB, Iversen L, Kragballe K. Characterization of the aminopeptidase activity of epidermal leukotriene A4 hydrolase against the opioid dynorphin fragment 1-7. Br J Dermatol 1995; 133:742-9. [PMID: 8555027 DOI: 10.1111/j.1365-2133.1995.tb02749.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Leukotriene A4 hydrolase is a bifunctional cytosolic enzyme, which both hydrolyses leukotriene A4 (LTA4) into leukotriene B4 (LTB4) and exerts aminopeptidase activity against opioid peptides. In the present study we have investigated whether the peptides angiotensin I and II, bradykinin, kallidine, histamine, dynorphin fragment 1-7 and substance P can act as substrates for epidermal and neutrophil LTA4 hydrolase. Among the tested substrates, dynorphin fragment 1-7 was found to be the best substrate for the enzyme. The aminopeptidase activity of epidermal and neutrophil LTA4 hydrolase against dynorphin fragment 1-7 was further characterized. The enzyme was purified from human epidermis and human neutrophils by anion exchange chromatography (Q-Sepharose) and affinity chromatography on a column with the LTA4 hydrolase inhibitor bestatin coupled to AH-Sepharose. The incubation of the dynorphin fragment 1-7 with LTA4 hydrolase resulted in the formation of tyrosine. The presence of the N-terminal amino acid tyrosine is essential for the interaction of opioids with their receptors, and this finding indicates that the LTA4 hydrolase can inactivate dynorphin fragment 1-7. After the two purification steps no other aminopeptidases acting at the N-terminal tyrosine of dynorphin fragment 1-7 was present in the preparation. This was demonstrated by the abolishment of the degradation at the N-terminal end of dynorphin fragment 1-7 when preincubating the enzyme preparation with LTA4 before the incubation with the dynorphin fragment 1-7. The abolishment of the aminopeptidase activity shows that activation of the hydrolase part of the enzyme, with conversion of LTA4 into the potent proinflammatory compound LTB4, results in an inhibition of the aminopeptidase activity of the enzyme. As a result, the catabolism of dynorphin fragment 1-7 and probably of other opioid peptides is inhibited, resulting in sustained biological effects of these opioids. This phenomenon may be important for the maintenance of inflammation in skin conditions, such as psoriasis and atopic dermatitis, in which LTB4 is formed.
Collapse
Affiliation(s)
- J B Nissen
- Department of Dermatology, Marselisborg Hospital, University of Aarhus, Denmark
| | | | | |
Collapse
|
41
|
Yokomizo T, Uozumi N, Takahashi T, Kume K, Izumi T, Shimizu T. Leukotriene A4 hydrolase and leukotriene B4 metabolism. JOURNAL OF LIPID MEDIATORS AND CELL SIGNALLING 1995; 12:321-32. [PMID: 8777576 DOI: 10.1016/0929-7855(95)00041-n] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- T Yokomizo
- Department of Biochemistry, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Minami M, Mutoh H, Ohishi N, Honda Z, Bito H, Shimizu T. Amino-acid sequence and tissue distribution of guinea-pig leukotriene A4 hydrolase. Gene 1995; 161:249-51. [PMID: 7665088 DOI: 10.1016/0378-1119(95)00179-a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The guinea-pig leukotriene A4 hydrolase (LTA4H)-encoding cDNA was isolated from a guinea-pig lung cDNA library by cross-hybridization using a human probe. The deduced amino acid (aa) sequence consists of 611 aa (68 756 Da) and contains all twelve internal peptide and N-terminal sequences determined from the purified enzyme from guinea-pig intestine. The aa identity of the guinea-pig enzyme with its human, mouse and rat counterparts was 92.9, 90.5 and 90.4%, respectively. The previously characterized zinc-binding motif and a putative active site were highly conserved, supporting the aminopeptidase activity described for this enzyme. RNA blot analysis demonstrated ubiquitous expression of the LTA4H mRNA.
Collapse
Affiliation(s)
- M Minami
- Department of Biochemistry, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Mancini JA, Evans JF. Cloning and characterization of the human leukotriene A4 hydrolase gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 231:65-71. [PMID: 7628486 DOI: 10.1111/j.1432-1033.1995.tb20671.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The human gene encoding the bifunctional aminopeptidase and epoxide hydrolase enzyme, leukotriene A4 hydrolase (LTA4 hydrolase) has been cloned from a placental lambda phage genomic library. The gene is greater than 35 kbp and contains 19 exons ranging in size over 24-312 bp. The introns range in size over 0.26-5.7 kbp. The essential zinc-binding histidine residues and glutamate residue, which delineate the zinc-binding domain required for both enzyme activities of LTA4 hydrolase, are divided between exons 10 and 11. The LTA4 hydrolase gene was localized to chromosome 12q22 utilizing fluorescence in situ hybridization. Based on the chromosome localization and genomic DNA analysis, LTA4 hydrolase was determined to be a single-copy gene. Primer-extension analysis demonstrated that the transcription initiation site of LTA4 hydrolase mRNA is 151 nucleotides upstream of the initiator ATG. Approximately 4 kbp of 5'-flanking region of the LTA4 hydrolase gene has been obtained and sequencing of 1.4 kb of this 5'-flanking region demonstrated several transcription-factor consensus sequences, including a phorbol-ester-response element (AP2) and two xenobiotic-response elements. The cloning and characterization of the human gene for LTA4 hydrolase provides a basis for further insight into transcriptional regulation of this bifunctional enzyme and its role in various inflammatory processes.
Collapse
Affiliation(s)
- J A Mancini
- Department of Biochemistry and Molecular Biology, Merck Frosst Canada Inc., Pointe Claire-Dorval, Quebec, Canada
| | | |
Collapse
|
45
|
Iversen L, Kristensen P, Nissen JB, Merrick WC, Kragballe K. Purification and characterization of leukotriene A4 hydrolase from human epidermis. FEBS Lett 1995; 358:316-22. [PMID: 7843421 DOI: 10.1016/0014-5793(94)01459-e] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The leukotriene A4 hydrolase is a central enzyme in leukotriene B4 formation. Unlike 5-lipoxygenase, leukotriene A4 hydrolase activity is present in normal human epidermis, where it is likely to be involved in transcellular leukotriene formation. In this study the leukotriene A4 hydrolase was purified from human epidermis and human cultured keratinocytes and compared with leukotriene A4 hydrolase from human neutrophils. To purify leukotriene A4 hydrolase from human epidermis a new non-specific affinity chromatography column, with the leukotriene A4 hydrolase inhibitor bestatin coupled to AH-Sepharose, was introduced. The epidermal leukotriene A4 hydrolase was purified to apparent homogeneity and the molecular weight was determined to be approximately 70,000 Da by SDS-PAGE. The pI was 5.1-5.4 for the epidermal as well as the keratinocyte and neutrophil leukotriene A4 hydrolase, as determined by chromatofocusing. Only minor differences in the amino acid composition were seen between the three enzyme sources. The optimal pH for the hydrolase activity was 7.5-8.5 for the epidermal and neutrophil leukotriene A4 hydrolases. Finally, it was also shown that the epidermal leukotriene A4 hydrolase undergoes suicide inactivation when transforming leukotriene A4 into leukotriene B4. It was concluded that there is a close resemblance between the epidermal leukotriene A4 hydrolase and the hydrolase found in other cell types. Therefore, the human epidermis may be a good model for the in vivo study of transcellular leukotriene formation.
Collapse
Affiliation(s)
- L Iversen
- Department of Dermatology, Marselisborg Hospital, University of Aarhus, Denmark
| | | | | | | | | |
Collapse
|
46
|
Abstract
Leukotrienes are products of arachidonic acid metabolism derived through the action of the 5-lipoxygenase enzyme pathway. Leukotriene B4 has been implicated as a mediator of inflammation through induction of leukocyte and lymphocyte activation. The cysteinyl leukotrienes are important mediators of immediate hypersensitivity reactions and initiate smooth muscle contraction. Regulation of the production of leukotrienes can be achieved either through the action of direct 5-lipoxygenase inhibitors or indirect leukotriene biosynthesis inhibitors which bind to 5-lipoxygenase activating protein. Leukotriene C4 synthase and leukotriene A4 hydrolase represent alternative enzymic targets within the biosynthetic cascade. Leukotriene receptor antagonists also have important therapeutic possibilities and in particular, leukotriene D4 receptor antagonists have shown utility in the treatment of human bronchial asthma.
Collapse
|
47
|
Steinhilber D. 5-Lipoxygenase: enzyme expression and regulation of activity. PHARMACEUTICA ACTA HELVETIAE 1994; 69:3-14. [PMID: 7938075 DOI: 10.1016/0031-6865(94)90024-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
5-Lipoxygenase catalyzes the transformation of arachidonic acid to leukotriene A4. This unstable intermediate can be converted to leukotriene B4 by LTA4-hydrolase or to leukotriene C4 by LTC4-synthase. Leukotrienes are involved in host defense reactions and play an important role in inflammatory diseases like asthma, inflammatory bowel disease and arthritis. The capability to release leukotrienes is restricted to a few cell types. Under pathophysiological conditions, leukotrienes are released from granulocytes, mast cells or macrophages. During hematopoiesis the competence of these cells for leukotriene biosynthesis is supposed to be upregulated. In mature cells, 5-lipoxygenase activity is tightly regulated and seems to be under the control of additional cellular components. One cellular component, a membrane-bound peptide termed FLAP, which is necessary for 5-LO activity in intact cells has been recently identified. Inhibitors of FLAP function prevent translocation of 5-lipoxygenase from cytosol to the membrane and inhibit 5-LO activation. Thus, the understanding of the regulatory mechanisms of cellular leukotriene biosynthesis provides new concepts for the development of antiinflammatory drugs. This review focuses on the regulation of gene expression and activity of 5-lipoxygenase.
Collapse
Affiliation(s)
- D Steinhilber
- Dept. of Pharmaceutical Chemistry, University of Tübingen, Germany
| |
Collapse
|
48
|
Iversen L, Ziboh VA, Shimizu T, Ohishi N, Rådmark O, Wetterholm A, Kragballe K. Identification and subcellular localization of leukotriene A4-hydrolase activity in human epidermis. J Dermatol Sci 1994; 7:191-201. [PMID: 7918238 DOI: 10.1016/0923-1811(94)90095-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The purpose of this study was to determine whether normal human epidermis could produce leukotriene B4 (LTB4) from leukotriene A4 (LTA4) ex vivo, and to localize this LTA4-hydrolase activity. Epidermis obtained by suction blister technique incubated with human polymorphonuclear cells, resulted in a 54% increase in LTB4 formation when compared to polymorphonuclear cells incubated alone. Furthermore, human epidermis transformed exogenous LTA4 into LTB4, and this reaction obeyed Michaelis-Menten kinetics with an apparent Km of 6 microM. Subcellular fractionation of homogenized epidermis localized the LTA4-hydrolase activity mainly in the 105,000 x g supernatant fraction (cytoplasmic fraction). This activity was inhibited by two inhibitors of LTA4-hydrolase (bestatin and captopril). Western blot analysis of the 105,000 x g fraction of homogenized epidermis and cultured keratinocytes supported the presence of a LTA4-hydrolase. Thus, normal human epidermis possesses LTA4-hydrolase activity which can transform exogenous LTA4 and polymorphonuclear cell-derived LTA4 into LTB4. The identification of LTA4-hydrolase in the cytoplasmic fraction of human epidermis indicates that epidermal cells may play a more active role in the enzymatic process leading to formation of the proinflammatory compound LTB4 than previously expected.
Collapse
Affiliation(s)
- L Iversen
- Department of Dermatology, Marselisborg Hospital, University of Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
49
|
Mancini JA, Evans JF. Coupling of recombinant 5-lipoxygenase and leukotriene A4 hydrolase activities and transcellular metabolism of leukotriene A4 in Sf9 insect cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 218:477-84. [PMID: 8269937 DOI: 10.1111/j.1432-1033.1993.tb18399.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
High-level expression of human leukotriene (LT) A4 hydrolase has been established in Sf9 insect cells using the recombinant baculovirus system. LTA4 hydrolase activity in this system is at least 50-fold higher than previously achieved in a bacterial cell system. Recombinant viral human LTA4 hydrolase (rvHLTA4h) was used for coinfection studies with recombinant viral 5-lipoxygenase (rvH5LO). When Sf9 cells expressing 5-lipoxygenase are incubated in the presence of A23187 and arachidonic acid, (5S)-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid 5-H(P)ETE and LTA4 are synthesized in a ratio of 5:1 for 5-H(P)ETE/LT. Coexpression of 5-lipoxygenase and LTA4 hydrolase in these insect cells results in the synthesis of 5-H(P)ETE, LTA4 and in addition LTB4, and the ratio shifts to 2:1 for 5-H(P)ETE/LT. The production of enzymically formed LTB4 after addition of arachidonic acid to the Sf9 cells coinfected with LTA4 hydrolase and 5-lipoxygenase is the first demonstration of channeling of arachidonic acid to LTB4 in an engineered intact cell system. This delineates a novel biological system to synthesize significant amounts of the potent chemotactic agent, LTB4. Studies in which Sf9 cells infected with rvH5LO were incubated with Sf9 cells infected with rvHLTA4h resulted in export of LTA4 from the rvH5LO cells and transcellular metabolism of LTA4 to LTB4 in the rvHLTA4h Sf9cells.
Collapse
Affiliation(s)
- J A Mancini
- Department of Biochemistry, McGill University, Montreal, Canada
| | | |
Collapse
|
50
|
Yokomizo T, Izumi T, Takahashi T, Kasama T, Kobayashi Y, Sato F, Taketani Y, Shimizu T. Enzymatic inactivation of leukotriene B4 by a novel enzyme found in the porcine kidney. Purification and properties of leukotriene B4 12-hydroxydehydrogenase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46820-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|