1
|
Reches G, Blondheim Shraga NR, Carrette F, Malka A, Saleev N, Gubbay Y, Ertracht O, Haviv I, Bradley LM, Levine F, Piran R. Resolving the conflicts around Par2 opposing roles in regeneration by comparing immune-mediated and toxic-induced injuries. Inflamm Regen 2022; 42:52. [PMID: 36447218 PMCID: PMC9706915 DOI: 10.1186/s41232-022-00238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 11/09/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Different factors may lead to hepatitis. Among which are liver inflammation and poisoning. We chose two hepatitis models, typical for these two underlying causes. Thus, we aimed to characterize the role of protease-activated receptor 2 (Par2) in liver regeneration and inflammation to reconcile Par2 conflicting role in many damage models, which sometimes aggravates the induced damage and sometimes alleviates it. METHODS WT and knockout (Par2KO) mice were injected with concanavalin A (ConA) to induce immune-mediated hepatitis or with carbon tetrachloride (CCl4) to elicit direct hepatic damage. To distinguish the immune component from the liver regenerative response, we conducted bone marrow (BM) replacements of WT and Par2KO mice and repeated the damage models. RESULTS ConA injection caused limited damage in Par2KO mice livers, while in the WT mice severe damage followed by leukocyte infiltration was evident. Reciprocal BM replacement of WT and Par2KO showed that WT BM-reconstituted Par2KO mice displayed marked liver damage, while in Par2KO BM-reconstituted WT mice, the tissue was generally protected. In the CCl4 direct damage model, hepatocytes regenerated in WT mice, whereas Par2KO mice failed to recover. Reciprocal BM replacement did not show significant differences in hepatic regeneration. In Par2KO mice, hepatitis was more apparent, while WT recovered regardless of the BM origin. CONCLUSIONS We conclude that Par2 activation in the immune system aggravates hepatitis and that Par2 activation in the damaged tissue promotes liver regeneration. When we incorporate this finding and revisit the literature reports, we reconciled the conflicts surrounding Par2's role in injury, recovery, and inflammation.
Collapse
Affiliation(s)
- Gal Reches
- grid.22098.310000 0004 1937 0503The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel
| | - Netta R. Blondheim Shraga
- grid.22098.310000 0004 1937 0503The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel
| | - Florent Carrette
- grid.479509.60000 0001 0163 8573Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Assaf Malka
- grid.22098.310000 0004 1937 0503The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel
| | - Natalia Saleev
- grid.22098.310000 0004 1937 0503The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel
| | - Yehuda Gubbay
- grid.22098.310000 0004 1937 0503The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel
| | - Offir Ertracht
- grid.415839.2Eliachar Research Laboratory, Galilee Medical Center, Nahariya, Israel
| | - Izhak Haviv
- grid.22098.310000 0004 1937 0503The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel
| | - Linda M. Bradley
- grid.479509.60000 0001 0163 8573Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Fred Levine
- grid.479509.60000 0001 0163 8573Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037 USA
| | - Ron Piran
- grid.22098.310000 0004 1937 0503The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel
| |
Collapse
|
2
|
Bhandari S, Larsen AK, McCourt P, Smedsrød B, Sørensen KK. The Scavenger Function of Liver Sinusoidal Endothelial Cells in Health and Disease. Front Physiol 2021; 12:757469. [PMID: 34707514 PMCID: PMC8542980 DOI: 10.3389/fphys.2021.757469] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to give an outline of the blood clearance function of the liver sinusoidal endothelial cells (LSECs) in health and disease. Lining the hundreds of millions of hepatic sinusoids in the human liver the LSECs are perfectly located to survey the constituents of the blood. These cells are equipped with high-affinity receptors and an intracellular vesicle transport apparatus, enabling a remarkably efficient machinery for removal of large molecules and nanoparticles from the blood, thus contributing importantly to maintain blood and tissue homeostasis. We describe here central aspects of LSEC signature receptors that enable the cells to recognize and internalize blood-borne waste macromolecules at great speed and high capacity. Notably, this blood clearance system is a silent process, in the sense that it usually neither requires or elicits cell activation or immune responses. Most of our knowledge about LSECs arises from studies in animals, of which mouse and rat make up the great majority, and some species differences relevant for extrapolating from animal models to human are discussed. In the last part of the review, we discuss comparative aspects of the LSEC scavenger functions and specialized scavenger endothelial cells (SECs) in other vascular beds and in different vertebrate classes. In conclusion, the activity of LSECs and other SECs prevent exposure of a great number of waste products to the immune system, and molecules with noxious biological activities are effectively “silenced” by the rapid clearance in LSECs. An undesired consequence of this avid scavenging system is unwanted uptake of nanomedicines and biologics in the cells. As the development of this new generation of therapeutics evolves, there will be a sharp increase in the need to understand the clearance function of LSECs in health and disease. There is still a significant knowledge gap in how the LSEC clearance function is affected in liver disease.
Collapse
Affiliation(s)
- Sabin Bhandari
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø (UiT) - The Arctic University of Norway, Tromsø, Norway
| | - Anett Kristin Larsen
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø (UiT) - The Arctic University of Norway, Tromsø, Norway
| | - Peter McCourt
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø (UiT) - The Arctic University of Norway, Tromsø, Norway
| | - Bård Smedsrød
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø (UiT) - The Arctic University of Norway, Tromsø, Norway
| | - Karen Kristine Sørensen
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø (UiT) - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Sheth V, Wang L, Bhattacharya R, Mukherjee P, Wilhelm S. Strategies for Delivering Nanoparticles across Tumor Blood Vessels. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007363. [PMID: 37197212 PMCID: PMC10187772 DOI: 10.1002/adfm.202007363] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 05/19/2023]
Abstract
Nanoparticle transport across tumor blood vessels is a key step in nanoparticle delivery to solid tumors. However, the specific pathways and mechanisms of this nanoparticle delivery process are not fully understood. Here, the biological and physical characteristics of the tumor vasculature and the tumor microenvironment are explored and how these features affect nanoparticle transport across tumor blood vessels is discussed. The biological and physical methods to deliver nanoparticles into tumors are reviewed and paracellular and transcellular nanoparticle transport pathways are explored. Understanding the underlying pathways and mechanisms of nanoparticle tumor delivery will inform the engineering of safer and more effective nanomedicines for clinical translation.
Collapse
Affiliation(s)
- Vinit Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, 800 NE 10th St, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, 800 NE 10th St, Oklahoma City, OK 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| |
Collapse
|
4
|
Dehshahri A, Sadeghpour H, Mohazzabieh E, Saatchi Avval S, Mohammadinejad R. Targeted double domain nanoplex based on galactosylated polyethylenimine enhanced the delivery ofIL‐12 plasmid. Biotechnol Prog 2020; 36:e3002. [DOI: 10.1002/btpr.3002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/08/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Ali Dehshahri
- Department of Pharmaceutical Biotechnology, Shiraz School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
- Pharmaceutical Sciences Research Center, Shiraz School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
| | - Hossein Sadeghpour
- Pharmaceutical Sciences Research Center, Shiraz School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
- Department of Medicinal Chemistry, Shiraz School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
| | - Erfaneh Mohazzabieh
- Department of Pharmaceutical Biotechnology, Shiraz School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
- Pharmaceutical Sciences Research Center, Shiraz School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
| | - Sara Saatchi Avval
- Department of Pharmaceutical Biotechnology, Shiraz School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
- Pharmaceutical Sciences Research Center, Shiraz School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology Kerman University of Medical Sciences Kerman Iran
| |
Collapse
|
5
|
|
6
|
Abdollah MRA, Kalber T, Tolner B, Southern P, Bear JC, Robson M, Pedley RB, Parkin IP, Pankhurst QA, Mulholland P, Chester K. Prolonging the circulatory retention of SPIONs using dextran sulfate: in vivo tracking achieved by functionalisation with near-infrared dyes. Faraday Discuss 2015; 175:41-58. [PMID: 25298115 DOI: 10.1039/c4fd00114a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The rapid reticuloendothelial system (RES) mediated clearance of superparamagnetic iron oxide nanoparticles (SPIONs) from circulation is considered a major limitation of their clinical utility. We aimed to address this by using dextran sulfate 500 (DSO4 500), a Kupffer cell blocking agent, to prolong SPIONs circulatory time. Blood concentrations of SPIONs are difficult to quantify due to the presence of haemoglobin. We therefore developed methods to functionalise SPIONs with near-infrared (NIR) dyes in order to trace their biodistribution. Two SPIONs were investigated: Nanomag®-D-spio-NH(2) and Ferucarbotran. Nanomag®-D-spio-NH(2) was functionalised using NHS (N-hydroxysuccinimide) ester NIR dye and Ferucarbotran was labelled using periodate oxidation followed by reductive amination or a combination of EDC (ethyl(dimethylaminopropyl) carbodiimide )/NHS and click chemistries. Stability after conjugation was confirmed by dynamic light scattering (DLS), superconducting quantum interference device (SQUID) and transmission electron microscopy (TEM). In vivo experiments with the functionalised SPIONs showed a significant improvement in SPIONs blood concentrations in mice pre-treated with dextran sulfate sodium salt 500 (DSO4 500).
Collapse
Affiliation(s)
- Maha R A Abdollah
- UCL Cancer Institute, University College London (UCL), Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Biedroń R, Konopiński MK, Marcinkiewicz J, Józefowski S. Oxidation by neutrophils-derived HOCl increases immunogenicity of proteins by converting them into ligands of several endocytic receptors involved in antigen uptake by dendritic cells and macrophages. PLoS One 2015; 10:e0123293. [PMID: 25849867 PMCID: PMC4388828 DOI: 10.1371/journal.pone.0123293] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/26/2015] [Indexed: 11/21/2022] Open
Abstract
The initiation of adaptive immune responses to protein antigens has to be preceded by their uptake by antigen presenting cells and intracellular proteolytic processing. Paradoxically, endocytic receptors involved in antigen uptake do not bind the majority of proteins, which may be the main reason why purified proteins stimulate at most weak immune responses. A shared feature of different types of adjuvants, capable of boosting immunogenicity of protein vaccines, is their ability to induce acute inflammation, characterized by early influx of activated neutrophils. Neutrophils are also rapidly recruited to sites of tissue injury or infection. These cells are the source of potent oxidants, including hypochlorous acid (HOCl), causing oxidation of proteins present in inflammatory foci. We demonstrate that oxidation of proteins by endogenous, neutrophils-derived HOCl increases their immunogenicity. Upon oxidation, different, randomly chosen simple proteins (yeast alcohol dehydrogenase, human and bovine serum albumin) and glycoproteins (human apo-transferrin, ovalbumin) gain the ability to bind with high affinity to several endocytic receptors on antigen presenting cells, which seems to be the major mechanism of their increased immunogenicity. The mannose receptor (CD206), scavenger receptors A (CD204) and CD36 were responsible for the uptake and presentation of HOCl-modified proteins by murine dendritic cells and macrophages. Other scavenger receptors, SREC-I and LOX-1, as well as RAGE were also able to bind HOCl-modified proteins, but they did not contribute significantly to these ligands uptake by dendritic cells because they were either not expressed or exhibited preference for more heavily oxidised proteins. Our results indicate that oxidation by neutrophils-derived HOCl may be a physiological mechanism of conferring immunogenicity on proteins which in their native forms do not bind to endocytic receptors. This mechanism might enable the immune system to detect infections caused by pathogens not recognized by pattern recognition receptors.
Collapse
Affiliation(s)
- Rafał Biedroń
- Department of Immunology, Jagiellonian University Medical College, Cracow, Poland
| | | | - Janusz Marcinkiewicz
- Department of Immunology, Jagiellonian University Medical College, Cracow, Poland
| | - Szczepan Józefowski
- Department of Immunology, Jagiellonian University Medical College, Cracow, Poland
- * E-mail:
| |
Collapse
|
8
|
Kiruthika V, Maya S, Suresh MK, Anil Kumar V, Jayakumar R, Biswas R. Comparative efficacy of chloramphenicol loaded chondroitin sulfate and dextran sulfate nanoparticles to treat intracellular Salmonella infections. Colloids Surf B Biointerfaces 2015; 127:33-40. [DOI: 10.1016/j.colsurfb.2015.01.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/24/2014] [Accepted: 01/07/2015] [Indexed: 01/12/2023]
|
9
|
Yu Q, Dong C, Zhang J, Shi J, Jia B, Wang F, Gan Z. Synthesis of poly(ethylene glycol)-b-poly(N-(2-hydroxypropyl) methacrylamide) block copolymers with well-defined structures and their influence on in vivo circulation and biodistribution. Polym Chem 2014. [DOI: 10.1039/c4py00681j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PEG-b-PHPMA block copolymers with a precisely controlled composition were synthesized and showed a good biodistribution pattern and long circulation time.
Collapse
Affiliation(s)
- Qingsong Yu
- The CAS Key Laboratory of Engineering Plastics
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190, China
- State Key Laboratory of Organic-inorganic Composites
| | - Chengyan Dong
- Medical Isotopes Research Center
- Peking University
- Beijing 100191, China
| | - Jiajing Zhang
- The CAS Key Laboratory of Engineering Plastics
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190, China
| | - Jiyun Shi
- Medical Isotopes Research Center
- Peking University
- Beijing 100191, China
| | - Bing Jia
- Medical Isotopes Research Center
- Peking University
- Beijing 100191, China
| | - Fan Wang
- Medical Isotopes Research Center
- Peking University
- Beijing 100191, China
| | - Zhihua Gan
- The CAS Key Laboratory of Engineering Plastics
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190, China
- State Key Laboratory of Organic-inorganic Composites
| |
Collapse
|
10
|
Pharmacokinetic considerations for targeted drug delivery. Adv Drug Deliv Rev 2013; 65:139-47. [PMID: 23280371 DOI: 10.1016/j.addr.2012.11.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 11/25/2012] [Accepted: 11/27/2012] [Indexed: 02/07/2023]
Abstract
Drug delivery systems involve technology designed to maximize therapeutic efficacy of drugs by controlling their biodistribution profile. In order to optimize a function of the delivery systems, their biodistribution characteristics should be systematically understood. Pharmacokinetic analysis based on the clearance concepts provides quantitative information of the biodistribution, which can be related to physicochemical properties of the delivery system. Various delivery systems including macromolecular drug conjugates, chemically or genetically modified proteins, and particulate drug carriers have been designed and developed so far. In this article, we review physiological and pharmacokinetic implications of the delivery systems.
Collapse
|
11
|
Olinga P, Meijer DK, Slooff MJ, Groothuis GM. Liver slices in in vitro pharmacotoxicology with special reference to the use of human liver tissue. Toxicol In Vitro 2012; 12:77-100. [PMID: 20654390 DOI: 10.1016/s0887-2333(97)00097-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/1997] [Indexed: 11/18/2022]
Abstract
In the early years of research in in vitro pharmacotoxicology liver slices have been used. After a decline in the application of slices in favour of the use of isolated hepatocytes and the isolated perfused liver preparation, the development of the Krumdieck slicer in the 1980s led to a ;comeback' of the technique. This review will focus on the use of human liver, with special reference to the comparison of slices with isolated hepatocytes in in vitro pharmacotoxicology. In addition, an overview on the predictive value of these in vitro systems for drug disposition and toxicity in vivo will be given. Preservation techniques for liver slices and hepatocytes will also be discussed. These techniques ensure an efficient utilization of the scarce human material. For long-term storage of liver slices and hepatocytes, cryopreservation seems most promising. However, cryopreservation is still in its infancy, and reports mainly deal with drug metabolism studies after cryopreservation. Drug toxicity, metabolism and transport data determined in slices and isolated hepatocytes, from both human and animal liver showed good correlation with the corresponding parameters measured in vivo. Therefore, the results obtained in such studies may give rise to more in-depth research on the mechanisms of pharmactoxicology in the human liver.
Collapse
Affiliation(s)
- P Olinga
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University Hospital, Hanzeplein 1, 9713 EZ Groningen, The Netherlands
| | | | | | | |
Collapse
|
12
|
Peça IN, Petrova KT, Cardoso MM, Barros MT. Preparation and characterization of polymeric nanoparticles composed of poly(dl-lactide-co-glycolide) and poly(dl-lactide-co-glycolide)-co-poly(ethylene glycol)-10%-Triblock end-capped with a galactose moiety. REACT FUNCT POLYM 2012. [DOI: 10.1016/j.reactfunctpolym.2012.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
McCann TE, Kosaka N, Mitsunaga M, Choyke PL, Gildersleeve JC, Kobayashi H. Biodistribution and excretion of monosaccharide-albumin conjugates measured with in vivo near-infrared fluorescence imaging. Bioconjug Chem 2011; 21:1925-32. [PMID: 20853850 DOI: 10.1021/bc100313p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Target specific small molecules as modulators of drug delivery may play a significant role in the future development of therapeutics. Small molecules can alter the in vivo pharmacokinetics of therapeutic macromolecules leading to more efficient drug delivery with less systemic toxicity. The potential of creating a more effective drug delivery system through glycosylation has led, for instance, to the addition of galactose to increase drug delivery to the liver. However, there are many other monosaccharides with potentially useful targeting properties that require further characterization. Here, we investigate the potential of glycosylation to guide molecular therapies using five different monosaccharides conjugated to human serum albumin (HSA). Additionally, we investigate how the amount of glycosylation may alter the pharmacokinetic profile of HSA. We introduce the use of in vivo near-infrared optical imaging to characterize the effect of differential glycosylation on the pharmacokinetics of macromolecules.
Collapse
Affiliation(s)
- Thomas E McCann
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1088, USA
| | | | | | | | | | | |
Collapse
|
14
|
Garg M, Asthana A, Agashe HB, Agrawal GP, Jain NK. Stavudine-loaded mannosylated liposomes: in-vitro anti-HIV-I activity, tissue distribution and pharmacokinetics. J Pharm Pharmacol 2010; 58:605-16. [PMID: 16640829 DOI: 10.1211/jpp.58.5.0005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Cells of the mononuclear phagocyte system (MPS) are important hosts for human immunodeficiency virus (HIV). Lectin receptors, which act as molecular targets for sugar molecules, are found on the surface of these cells of the MPS. Stavudine-loaded mannosylated liposomal formulations were developed for targeting to HIV-infected cells. The mannose-binding protein concanavalin A was employed as model system for the determination of in-vitro ligand-binding capacity. Antiretroviral activity was determined using MT-2 cell line. Haematological changes, tissue distribution and pharmacokinetic studies of free, liposomal and mannosylated liposomal drug were performed following a bolus intravenous injection in Sprague-Dawley rats. The entrapment efficiency of mannosylated liposomes was found to be 47.H ± 1.57%. Protein-carbohydrate interaction has been utilized for the effective delivery of mannosylated formulations. Cellular drug uptake was maximal when mannosylated liposomes were used. MT2 cells treated continuously with uncoated liposomal formulation had p24 levels 8–12 times lower than the level of free drug solution. Further, the mannosylated liposomes have shown p24 levels that were 14–20 and 1.42.3 times lower than the level of free drug and uncoated liposomal formulation treatment, respectively. Similar results were observed when infected MT2 cells were treated overnight. Stavudine, either given plain or incorporated in liposomes, led to development of anaemia and leucocytopenia while mannosylated liposomes overcame these drawbacks. These systems maintained a significant level of stavudine in the liver, spleen and lungs up to 12 h and had greater systemic clearance as compared with free drug or the uncoated liposomal formulation. Mannosylated liposomes have shown potential for the site-specific and ligand-directed delivery systems with desired therapeutics and better pharmacological activity.
Collapse
Affiliation(s)
- Minakshi Garg
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr Hari Singh Gour University, Sagar 470003, India
| | | | | | | | | |
Collapse
|
15
|
Abstract
Liver fibrosis and its end stage disease cirrhosis are a major cause of mortality and morbidity around the world. There is no effective pharmaceutical intervention for liver fibrosis at present. Many drugs that show potent antifibrotic activities in vitro often show only minor effects in vivo because of insufficient concentrations of drugs accumulating around the target cell and their adverse effects as a result of affecting other non-target cells. Hepatic stellate cells (HSC) play a critical role in the fibrogenesis of liver, so they are the target cells of antifibrotic therapy. Several kinds of targeted delivery system that could target the receptors expressed on HSC have been designed, and have shown an attractive targeted potential in vivo. After being carried by these delivery systems, many agents showed a powerful antifibrotic effect in animal models of liver fibrosis. These targeted delivery systems provide a new pathway for the therapy of liver fibrosis. The characteristics of theses targeted carriers are reviewed in this paper.
Collapse
Affiliation(s)
- Feng Li
- Zhongshan Hospital Affiliated to Fudan University, Department of Gastroenterology, 180 Fenglin Road, Shanghai, China.
| | | |
Collapse
|
16
|
Nishikawa M, Hashida M, Takakura Y. Catalase delivery for inhibiting ROS-mediated tissue injury and tumor metastasis. Adv Drug Deliv Rev 2009; 61:319-26. [PMID: 19385054 DOI: 10.1016/j.addr.2009.01.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reactive oxygen species (ROS) have been suggested to be involved in a variety of human diseases. Catalase, an enzyme degrading hydrogen peroxide, can be used as a therapeutic agent for such diseases, but its successful application will depend on the distribution of the enzyme to the sites where ROS are generated. Chemical modification techniques have been used to control the tissue distribution of catalase, and delivery to hepatocytes (galactosylation), liver nonparenchymal cells (mannosylation or succinylation), kidney (cationization) and the blood pool (PEGylation) has been achieved. The effectiveness of catalase delivery has been demonstrated in animal models for hepatic ischemia/reperfusion injury, chemical-induced tissue injuries and tumor metastasis to the liver, lung and peritoneal organs. Significant inhibition was observed in the ROS-mediated oxidative tissue damages and ROS-mediated upregulation of expression of genes responsible for recruitment of inflammatory cells and for metastatic growth of tumor cells. Because oxygen plays a fundamental key role in our life and oxidative stress is implicated in a wide variety of human diseases, catalase delivery could have wide application in the near future.
Collapse
|
17
|
|
18
|
Jayaraman N. Multivalent ligand presentation as a central concept to study intricate carbohydrate–protein interactions. Chem Soc Rev 2009; 38:3463-83. [DOI: 10.1039/b815961k] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Cavallaro G, Maniscalco L, Caliceti P, Salmaso S, Semenzato A, Giammona G. Glycosilated Macromolecular Conjugates of Antiviral Drugs with a Polyaspartamide. J Drug Target 2008; 12:593-605. [PMID: 15621685 DOI: 10.1080/10611860400013477] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Two new polymeric conjugates for specific liver targeting were prepared by conjugation of sugar moieties and antiviral drugs to alpha, beta-poly[N-2-(hydroxyethyl)-DL-aspartamide] (PHEA). PHEA-galactopyranosylphenylthiocarbamide-mono-O-succinylganciclovir (conjugate 7) and PHEA-mannopyranosylphenylthiocarbamide-O-succinylacyclovir (conjugate 8) were synthesized according to a multi-step procedure which allowed for obtaining high product yield and process standardization. Conjugate 7 contained 7.5 and 8.5% of galactose and ganciclovir (substituent/repeating unit, mol/mol), respectively, and conjugate 8 contained 14.2 and 10.8% of mannose and acyclovir, respectively. In vitro studies demonstrated that both acyclovir and ganciclovir are released from the polymeric adducts at a release rate, which depended on the incubation medium. Though a detailed study evidenced that the two bioconjugates undergo different hydrolysis pathways, in both cases high drug release rate was found in plasma, while the glycosidic moiety was not released. Pharmacokinetic studies carried out by intravenous administration of the bioconjugates to Balb/c mice demonstrated that the conjugation of glycosidic moieties promotes the disappearance of the polymer from the bloodstream. The two derivatives displayed a different pharmacokinetic profile. In particular, the mannosyl conjugation promoted the rapid disposition of the macromolecule in the kidneys and in the liver, while prevented the accumulation in the spleen. On the contrary, the galactosyl derivative was found to dispose in the liver at the same extent of the naked polymer. Few considerations on the different behavior of the conjugates were reported.
Collapse
Affiliation(s)
- Gennara Cavallaro
- Dipartimento di Chimica e Tecnologie Farmceutiche, Università degli Studi di Palermo Via Archirafi 32, 90123, Palermo, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Mohs AM, Nguyen T, Jeong EK, Feng Y, Emerson L, Zong Y, Parker DL, Lu ZR. Modification of Gd-DTPA cystine copolymers with PEG-1000 optimizes pharmacokinetics and tissue retention for magnetic resonance angiography. Magn Reson Med 2007; 58:110-118. [PMID: 17659618 DOI: 10.1002/mrm.21270] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The purpose of this study was to investigate the effect of PEGylation of novel biodegradable macromolecular polydisulfide Gd(III) complexes, gadolinium diethylenetriaminepentaacetate (GdDTPA) cystine copolymers (GDCP), on their pharmacokinetics and long-term Gd(III) tissue retention, and to demonstrate the potential application of PEGylated GDCP (PEG-GDCP) for MR angiography (MRA). The pharmacokinetics, biodistribution, and metabolic excretion of PEG(1000)-GDCP (42.1-52.1 kDa; PEG: MW = 1000 Da) with three different PEG grafting degrees and GDCP (43.3 kDa) were investigated in Sprague-Dawley rats. Pharmacokinetic data were analyzed by means of an open two-compartment model. Initially all three PEG(1000)-GDCP contrast agents (CAs) had a higher plasma concentration than GDCP, but after 30 min the Gd(III) concentration from the PEGylated agents rapidly decreased, resulting in significantly lower elimination half-life values. All of the biodegradable macromolecular CAs demonstrated low long-term Gd(III) tissue accumulation, while PEG(1000)-GDCP had significantly lower accumulation in the liver than GDCP. In the rats, all CAs showed excellent vascular contrast enhancement in an MRA protocol with a long image acquisition time. Because PEG(1000)-GDCP remained intravascular for an acceptable period for effective contrast-enhanced (CE)-MRA, and then excreted rapidly from the vasculature with minimal tissue retention, PEG(1000)-GDCP shows a great promise as a blood-pool CA for MRA.
Collapse
Affiliation(s)
- Aaron M Mohs
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Thanh Nguyen
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Eun-Kee Jeong
- Department of Radiology, University of Utah, Salt Lake City, Utah, USA
| | - Yi Feng
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Lyska Emerson
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Yuda Zong
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Dennis L Parker
- Department of Radiology, University of Utah, Salt Lake City, Utah, USA
| | - Zheng-Rong Lu
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
21
|
Rozema DB, Lewis DL, Wakefield DH, Wong SC, Klein JJ, Roesch PL, Bertin SL, Reppen TW, Chu Q, Blokhin AV, Hagstrom JE, Wolff JA. Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci U S A 2007; 104:12982-7. [PMID: 17652171 PMCID: PMC1941806 DOI: 10.1073/pnas.0703778104] [Citation(s) in RCA: 512] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Achieving efficient in vivo delivery of siRNA to the appropriate target cell would be a major advance in the use of RNAi in gene function studies and as a therapeutic modality. Hepatocytes, the key parenchymal cells of the liver, are a particularly attractive target cell type for siRNA delivery given their central role in several infectious and metabolic disorders. We have developed a vehicle for the delivery of siRNA to hepatocytes both in vitro and in vivo, which we have named siRNA Dynamic PolyConjugates. Key features of the Dynamic PolyConjugate technology include a membrane-active polymer, the ability to reversibly mask the activity of this polymer until it reaches the acidic environment of endosomes, and the ability to target this modified polymer and its siRNA cargo specifically to hepatocytes in vivo after simple, low-pressure i.v. injection. Using this delivery technology, we demonstrate effective knockdown of two endogenous genes in mouse liver: apolipoprotein B (apoB) and peroxisome proliferator-activated receptor alpha (ppara). Knockdown of apoB resulted in clear phenotypic changes that included a significant reduction in serum cholesterol and increased fat accumulation in the liver, consistent with the known functions of apoB. Knockdown of ppara also resulted in a phenotype consistent with its known function, although with less penetrance than observed in apoB knockdown mice. Analyses of serum liver enzyme and cytokine levels in treated mice indicated that the siRNA Dynamic PolyConjugate was nontoxic and well tolerated.
Collapse
Affiliation(s)
- David B. Rozema
- *Mirus Bio Corporation, 505 South Rosa Road, Madison, WI 53719; and
- To whom correspondence may be addressed. E-mail: or
| | - David L. Lewis
- *Mirus Bio Corporation, 505 South Rosa Road, Madison, WI 53719; and
- To whom correspondence may be addressed. E-mail: or
| | | | - So C. Wong
- *Mirus Bio Corporation, 505 South Rosa Road, Madison, WI 53719; and
| | - Jason J. Klein
- *Mirus Bio Corporation, 505 South Rosa Road, Madison, WI 53719; and
| | - Paula L. Roesch
- *Mirus Bio Corporation, 505 South Rosa Road, Madison, WI 53719; and
| | | | - Tom W. Reppen
- *Mirus Bio Corporation, 505 South Rosa Road, Madison, WI 53719; and
| | - Qili Chu
- *Mirus Bio Corporation, 505 South Rosa Road, Madison, WI 53719; and
| | | | | | - Jon A. Wolff
- Departments of Pediatrics and Medical Genetics, Waisman Center, University of Wisconsin, 1500 Highland Avenue, Madison, WI 53719
| |
Collapse
|
22
|
Sutton D, Nasongkla N, Blanco E, Gao J. Functionalized micellar systems for cancer targeted drug delivery. Pharm Res 2007; 24:1029-46. [PMID: 17385025 DOI: 10.1007/s11095-006-9223-y] [Citation(s) in RCA: 374] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 12/21/2006] [Indexed: 11/24/2022]
Abstract
Polymer micelles are rapidly becoming a powerful nanomedicine platform for cancer therapeutic applications due to their small size (10-100 nm), in vivo stability, ability to solubilize water insoluble anticancer drugs, and prolonged blood circulation times. Recent data from clinical trials with three micelle formulations have highlighted these and other pharmacokinetic advantages with reduced systemic toxicity and patient morbidity compared to conventional drug formulation. While the initial anti-tumor efficacy of these systems seems promising, a strong research impetus has been placed on micelle functionalization in order to achieve tumor targeting and site-specific drug release, with the hope of reaching a more pronounced tumor response. Hence, the purpose of this review is to draw attention to the new developments of multi-functional polymer micelles for cancer therapy with special focus on tumor targeting and controlled drug release strategies.
Collapse
Affiliation(s)
- Damon Sutton
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA.
| | | | | | | |
Collapse
|
23
|
Boutry S, Laurent S, Elst LV, Muller RN. Specific E-selectin targeting with a superparamagnetic MRI contrast agent. CONTRAST MEDIA & MOLECULAR IMAGING 2007; 1:15-22. [PMID: 17193596 DOI: 10.1002/cmmi.87] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Targeting of the endothelial inflammatory adhesion molecule E-selectin by magnetic resonance imaging (MRI) was performed with a superparamagnetic contrast agent in the context of in vitro and in vivo models of inflammation. The specific contrast agent was obtained by grafting a synthetic mimetic of sialyl Lewis(x) (sLe(x)), a natural ligand of E-selectin expressed on leukocytes, on the dextran coating of ultrasmall particles of iron oxide (USPIO). This new contrast agent, called USPIO-g-sLe(x), was tested, in vitro, on cultured human umbilical vein endothelial cells (HUVECs) stimulated to express inflammatory adhesion molecules, and in vivo, on a mouse model of hepatitis. In vitro, HUVECs were stimulated with the pro-inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) and were then incubated with USPIO-g-sLe(x) or ungrafted USPIO. In vivo, hepatitis was induced on NMRI mice by injection of concanavalin A (Con A). USPIO-g-sLe(x) and ungrafted USPIO were injected intravenously. In vitro results showed an extensive retention of USPIO-g-sLe(x) on TNF-alpha stimulated HUVECs. Image intensity and R(2) measurements performed on T(2)-weighted MR images demonstrated a significantly higher binding of USPIO-g-sLe(x) on stimulated HUVECs. In vivo, USPIO are known to pass through the fenestrae of the liver and to be captured by Kupffer cells, inducing a loss of signal intensity on T(2)-weighted MR images. Unexpectedly, when injected to Con A-treated mice, USPIO-g-sLe(x) induced a significantly lower attenuation of liver signal intensity than USPIO or USPIO-g-sLe(x) injected to healthy mice, or USPIO injected to Con A-treated mice, suggesting that the specific contrast media is retained extracellularly by an interaction with E-selectin overexpressed on the vascular endothelium. Both in vitro and in vivo results therefore indicate that USPIO-g-sLe(x) is recognizing endothelial E-selectin. USPIO-g-sLe(x) is thus well suited for the MRI diagnosis of inflammation and for the in vitro evaluation of endothelial cells activation.
Collapse
Affiliation(s)
- Sébastien Boutry
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons-Hainaut, B-7000 Mons, Belgium
| | | | | | | |
Collapse
|
24
|
Raju TS, Scallon B. Fc Glycans Terminated withN-Acetylglucosamine Residues Increase Antibody Resistance to Papain. Biotechnol Prog 2007. [DOI: 10.1002/bp070118k] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Kogelberg H, Tolner B, Sharma SK, Lowdell MW, Qureshi U, Robson M, Hillyer T, Pedley RB, Vervecken W, Contreras R, Begent RHJ, Chester KA. Clearance mechanism of a mannosylated antibody-enzyme fusion protein used in experimental cancer therapy. Glycobiology 2006; 17:36-45. [PMID: 17000699 DOI: 10.1093/glycob/cwl053] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MFECP1 is a mannosylated antibody-enzyme fusion protein used in antibody-directed enzyme prodrug therapy (ADEPT). The antibody selectively targets tumor cells and the targeted enzyme converts a prodrug into a toxic drug. MFECP1 is obtained from expression in the yeast Pichia pastoris and produced to clinical grade. The P. pastoris-derived mannosylation of the fusion protein aids rapid normal tissue clearance required for successful ADEPT. The work presented provides evidence that MFECP1 is cleared by the endocytic and phagocytic mannose receptor (MR), which is known to bind to mannose-terminating glycans. MR-transfected fibroblast cells internalize MFECP1 as revealed by flow cytometry and confocal microscopy. Immunofluorescence microscopy shows that in vivo clearance in mice occurs predominantly by MR on liver sinusoidal endothelial cells, although MR is also expressed on adjacent Kupffer cells. In the spleen, MFECP1 is taken up by MR-expressing macrophages residing in the red pulp and not by dendritic cells which are found in the marginal zone and white pulp. Clearance can be inhibited in vivo by the MR inhibitor mannan as shown by increased enzyme activities in blood. The work improves understanding of interactions of MFECP1 with normal tissue, shows that glycosylation can be exploited in the design of recombinant anticancer therapeutics and opens the ways for optimizing pharmacokinetics of mannosylated recombinant therapeutics.
Collapse
Affiliation(s)
- Heide Kogelberg
- Cancer Research UK Targeting and Imaging Group, Department of Oncology, Royal Free & University College Medical School, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nishikawa M, Hashida M. Inhibition of tumour metastasis by targeted delivery of antioxidant enzymes. Expert Opin Drug Deliv 2006; 3:355-69. [PMID: 16640496 DOI: 10.1517/17425247.3.3.355] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Metastasis is one of the most harmful aspects of malignant neoplasm. Interaction of tumour cells with normal cells such as tissue macrophages may generate reactive oxygen species, which would affect various aspects of tumour metastasis. Reactive oxygen species cause damage to both tumour and normal cells and some of them, especially hydrogen peroxide, can also act as intracellular second messengers at sublethal concentrations to increase the transcription of various genes, which can then accelerate the proliferation of tumour cells in metastatic colonies. Therefore, eliminating hydrogen peroxide is one approach to inhibiting tumour metastasis. In this article, the roles of reactive oxygen species in tumour metastasis are reviewed, and the strategies to inhibit tumour metastasis by the targeted delivery of catalase, an enzyme that detoxifies hydrogen peroxide, are discussed.
Collapse
Affiliation(s)
- Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| | | |
Collapse
|
27
|
Higuchi Y, Nishikawa M, Kawakami S, Yamashita F, Hashida M. Uptake characteristics of mannosylated and fucosylated bovine serum albumin in primary cultured rat sinusoidal endothelial cells and Kupffer cells. Int J Pharm 2005; 287:147-54. [PMID: 15541921 DOI: 10.1016/j.ijpharm.2004.08.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 08/14/2004] [Accepted: 08/29/2004] [Indexed: 10/26/2022]
Abstract
The purpose of this study is to delineate uptake characteristics of mannosylated and fucosylated proteins in primary cultured sinusoidal endothelial cells and Kupffer cells. In cultured sinusoidal endothelial cells, uptake of mannosylated and fucosylated bovine serum albumin (BSA) was significantly inhibited by excess mannosylated and fucosylated BSAs but not by galactosylated BSA, suggesting that both glycosylated proteins might be primarily taken up via mannose receptors. In cultured Kupffer cells, uptake of fucosylated BSA was significantly inhibited by excess galactosylated BSA as well as mannosylated and fucosylated BSAs, although that of mannosylated BSA was inhibited only by mannosylated and fucosylated BSAs. This suggests that uptake of fucosylated BSA by Kupffer cells might be mediated by both Kupffer cell lectin (fucose receptor) and mannose receptor. On the other hand, in vivo hepatic uptake of fucosylated BSA was inhibited to a greater extent by GdCl3 pretreatment than that of mannosylated BSA. Based on in vitro and in vivo experiments, it was concluded that fucosylated BSA is more Kupffer cell-selective because it exhibited a lower sinusoidal endothelial cell uptake than mannosylated BSA.
Collapse
Affiliation(s)
- Yuriko Higuchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606 8501, Japan
| | | | | | | | | |
Collapse
|
28
|
Abstract
Cell-specific targeting systems for drugs and genes have been developed by using glycosylated macromolecule as a vehicle that can be selectively recognized by carbohydrate receptors. Pharmacokinetic analyses of the tissue distribution of glycosylated proteins came to the conclusion that the surface density of the sugar moiety on the protein derivative largely determines the binding affinity for the receptors and plasma lectin. Many glycosylated delivery systems have been developed and their usefulness investigated in various settings. Galactosylated polymers, when properly designed, were found to be effective in delivering prostaglandin E1 and other low-molecular-weight drugs selectively to hepatocytes. In addition, glycosylated superoxide dismutase and catalase were successfully developed with minimal loss of enzymatic activity. A simultaneous targeting of these two enzymes to liver nonparenchymal cells significantly prevented hepatic ischemia/reperfusion injury. On the other hand, galactosylated catalase, a derivative selectively delivered to hepatocytes, effectively inhibited hepatic metastasis of colon carcinoma cells in mice. Finally, hepatocyte-targeted in vivo gene transfer was achieved by synthesizing a multi-functional carrier molecule, which condenses plasmid DNA, delivering DNA to hepatocytes through recognition by asialoglycoprotein receptors, and releasing DNA from endosomes/lysosomes into cytoplasm.
Collapse
Affiliation(s)
- Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501. Japan.
| |
Collapse
|
29
|
Engel A, Chatterjee SK, Al-Arifi A, Nuhn P. Influence of Spacer Length on the Agglutination of Glycolipid‐Incorporated Liposomes by ConA as Model Membrane. J Pharm Sci 2003; 92:2229-35. [PMID: 14603508 DOI: 10.1002/jps.10481] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Through a systematic investigation of the agglutination of long chain mannolipid and glucolipid incorporated liposomes by concanavalin A (ConA) it was found that the agglutination was dependent on different factors. The studied factors reported here are (1) spacer length and (2) ground lipid matrix. The threshold and the relative saturating ConA binding concentration (saturation point to attain the binding saturation condition) of glycosides with varying spacer length for agglutination are dependent on the spacer length of the glycolipid. These concentrations decrease with the increasing number of in-built ethyleneoxy spacer length in the glycolipid and find its minimum with 6 spacer units; it increases then more and more with increasing number of spacer units (>6 units). This is supposed to be due to the requirement of a proper distance of the hydrophilic determinant from the liposome surface for the response by ConA (response invoking distance), which may be most favorable in case of 6 spacer units. Further increase in number of spacer units (>6) results to an increasing probability of the bending of the spacer chain along with the terminal polar head group more and more towards the liposome surface; this leads to a reduction of the factual distance of the terminal hydrophilic head group from the liposome surface, weakening the response for ConA binding. The threshold concentration or saturation point decreases also with the rigidity of the ground lipid matrix. Increased rigidity of the ground matrix leads to a phase separation and localized 'Domain' formation with the glycolipid inside the ground matrix layer due to their immiscibility, invoking better response resulting to a reduction of required incorporated glycolipid concentration.
Collapse
Affiliation(s)
- Andreas Engel
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | | | | | | |
Collapse
|
30
|
Hosseinkhani H, Aoyama T, Ogawa O, Tabata Y. Liver targeting of plasmid DNA by pullulan conjugation based on metal coordination. J Control Release 2002; 83:287-302. [PMID: 12363454 DOI: 10.1016/s0168-3659(02)00201-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Liver targeting of plasmid DNA was achieved through conjugation of pullulan derivatives with chelate residues based on metal coordination. Triethylenetetramine (Ti), diethylenetriamine pentaacetic acid (DTPA), and spermine (Sm) were chemically introduced to pullulan, a polysaccharide with an inherent affinity for the liver, to obtain various pullulan-Ti, pullulan-DTPA, and pullulan-Sm derivatives. Irrespective of the type of pullulan derivatives, intravenous injection of the pullulan derivatives-plasmid DNA conjugates with Zn2+ coordination significantly enhanced the level of gene expression only in the liver to a significant greater extent than that of free plasmid DNA. The enhanced gene expression by the pullulan-DTPA-plasmid DNA conjugate was specific to the liver and the level was significantly higher than that of the pullulan-DTPA-plasmid DNA mixture. The level of gene expression depended on the percentage of chelate residue introduced, the mixing ratio of the plasmid DNA-DTPA residue in conjugate preparation, and the plasmid DNA dose. The gene expression induced by the conjugate lasted over 12 days after injection. A fluorescent-microscopic study revealed that the plasmid DNA was localized at the liver after injection of the pullulan-DTPA-plasmid DNA conjugate with Zn2+ coordination. Pre-injection of both arabinogalactan and galactosylated albumin suppressed significantly the liver level of gene expression, in contrast to that of mannosylated albumin, indicating that the plasmid DNA in the conjugate was transfected at hepatocytes. We conclude that the Zn2+-coordinated pullulan conjugation is a promising way to enable the plasmid DNA to target to the liver for gene expression as well as to prolong the time duration of gene expression
Collapse
Affiliation(s)
- Hossein Hosseinkhani
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, Japan
| | | | | | | |
Collapse
|
31
|
Kaneo Y, Tanaka T, Nakano T, Yamaguchi Y. Evidence for receptor-mediated hepatic uptake of pullulan in rats. J Control Release 2001; 70:365-73. [PMID: 11182206 DOI: 10.1016/s0168-3659(00)00368-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fluorescein-labeled pullulan (FP-60; MW 58,200) was prepared by reaction with FITC according to the method of de Belder and Granath. The hepatic distribution of FP-60 was examined using a specific high-performance size-exclusion chromatography. Intravenously administered FP-60 was rapidly eliminated from the blood circulation followed by an appreciable distribution to the liver. A marked dose-dependency was seen in the hepatic uptake of FP-60 which was markedly reduced by the coadministration of both asialofetuin and arabinogalactan. Measurement of the hepatocellular localization demonstrated the overwhelming distribution of FP-60 in the parenchymal liver cell fraction. Furthermore, microscopic examination revealed that FP-60 was effectively endocytosed by the parenchymal liver cells. Radiolabeled pullulan ([(125)I]P-60) was prepared by (125)I-labeling the tyramine derivative of pullulan which was synthesized by the cyano-transfer method. [(125)I]P-60 was predominantly accumulated in sliced rat liver tissue at 37 degrees C, which was drastically inhibited by the addition of both asialofetuin and arabinogalactan. The kinetic parameters of the specific binding of [(125)I]P-60 to monolayered hepatocytes at 0 degrees C were almost identical to those for asialofetuin. The binding of [(125)I]P-60 to isolated parenchymal cells was significantly inhibited by arabinogalactan and asialofetuin, however dextran, the same glucan as pullulan, did not affect the binding of [(125)I]P-60. It was found that pullulan, which is bound to the asialoglycoprotein receptor with high affinity, is subsequently internalized to the hepatocyte via receptor-mediated endocytosis.
Collapse
Affiliation(s)
- Y Kaneo
- Laboratory of Biopharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan.
| | | | | | | |
Collapse
|
32
|
Gabius HJ. Glycohistochemistry: the why and how of detection and localization of endogenous lectins. Anat Histol Embryol 2001; 30:3-31. [PMID: 11284160 DOI: 10.1046/j.1439-0264.2001.00305.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The central dogma of molecular biology limits the downstream flow of genetic information to proteins. Progress from the last two decades of research on cellular glycoconjugates justifies adding the enzymatic production of glycan antennae with information-bearing determinants to this famous and basic pathway. An impressive variety of regulatory processes including cell growth and apoptosis, folding and routing of glycoproteins and cell adhesion/migration have been unravelled and found to be mediated or modulated by specific protein (lectin)-carbohydrate interactions. The conclusion has emerged that it would have meant missing manifold opportunities not to recruit the sugar code to cellular information transfer. Currently, the potential for medical applications in anti-adhesion therapy or drug targeting is one of the major driving forces fuelling progress in glycosciences. In histochemistry, this concept has prompted the introduction of carrier-immobilized carbohydrate ligands (neoglycoconjugates) to visualize the cells' capacity to be engaged in oligosaccharide recognition. After their isolation these tissue lectins will be tested for ligand analysis. Since fine specificities of different lectins can differ despite identical monosaccharide binding, the tissue lectins will eventually replace plant agglutinins to move from glycan profiling and localization to functional considerations. Namely, these two marker types, i.e. neoglycoconjugates and tissue lectins, track down accessible binding sites with relevance for involvement in interactions in situ. The documented interplay of synthetic organic chemistry and biochemistry with cyto- and histochemistry nourishes the optimism that the application of this set of innovative custom-prepared tools will provide important insights into the ways in which glycans can act as hardware in transmitting information during normal tissue development and pathological situations.
Collapse
Affiliation(s)
- H J Gabius
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, Veterinärstr. 13, D-80539 München, Germany.
| |
Collapse
|
33
|
Ioannou YA, Zeidner KM, Gordon RE, Desnick RJ. Fabry disease: preclinical studies demonstrate the effectiveness of alpha-galactosidase A replacement in enzyme-deficient mice. Am J Hum Genet 2001; 68:14-25. [PMID: 11115376 PMCID: PMC1234907 DOI: 10.1086/316953] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2000] [Accepted: 11/14/2000] [Indexed: 01/26/2023] Open
Abstract
Preclinical studies of enzyme-replacement therapy for Fabry disease (deficient alpha-galactosidase A [alpha-Gal A] activity) were performed in alpha-Gal A-deficient mice. The pharmacokinetics and biodistributions were determined for four recombinant human alpha-Gal A glycoforms, which differed in sialic acid and mannose-6-phosphate content. The plasma half-lives of the glycoforms were approximately 2-5 min, with the more sialylated glycoforms circulating longer. After intravenous doses of 1 or 10 mg/kg body weight were administered, each glycoform was primarily recovered in the liver, with detectable activity in other tissues but not in the brain. Normal or greater activity levels were reconstituted in various tissues after repeated doses (10 mg/kg every other day for eight doses) of the highly sialylated AGA-1 glycoform; 4 d later, enzyme activity was retained in the liver and spleen at levels that were, respectively, 30% and 10% of that recovered 1 h postinjection. Importantly, the globotriaosylceramide (GL-3) substrate was depleted in various tissues and plasma in a dose-dependent manner. A single or repeated doses (every 48 h for eight doses) of AGA-1 at 0.3-10.0 mg/kg cleared hepatic GL-3, whereas higher doses were required for depletion of GL-3 in other tissues. After a single dose of 3 mg/kg, hepatic GL-3 was cleared for > or =4 wk, whereas cardiac and splenic GL-3 reaccumulated at 3 wk to approximately 30% and approximately 10% of pretreatment levels, respectively. Ultrastructural studies demonstrated reduced GL-3 storage posttreatment. These preclinical animal studies demonstrate the dose-dependent clearance of tissue and plasma GL-3 by administered alpha-Gal A, thereby providing the in vivo rationale-and the critical pharmacokinetic and pharmacodynamic data-for the design of enzyme-replacement trials in patients with Fabry disease.
Collapse
Affiliation(s)
- Y A Ioannou
- Department of Human Genetics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
34
|
Lerchen HG, Baumgarten J, Piel N, Kolb-Bachofen V. Lectin-vermitteltes Drug-Targeting: Diskriminierung zwischen der Kohlenhydrat-vermittelten Aufnahme von Neoglycokonjugaten, die in 3-Position modifizierte Fucose-Epitope tragen, in Tumor- oder Leberzellen. Angew Chem Int Ed Engl 1999. [DOI: 10.1002/(sici)1521-3757(19991216)111:24<3884::aid-ange3884>3.0.co;2-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Swart PJ, Harmsen MC, Kuipers ME, Van Dijk AA, Van Der Strate BW, Van Berkel PH, Nuijens JH, Smit C, Witvrouw M, De Clercq E, de Béthune MP, Pauwels R, Meijer DK. Charge modification of plasma and milk proteins results in antiviral active compounds. J Pept Sci 1999; 5:563-76. [PMID: 10628656 DOI: 10.1002/(sici)1099-1387(199912)5:12<563::aid-psc226>3.0.co;2-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previous studies have shown that acylated plasma and milk proteins with increased negative charge, derived from various animal and human sources, are potent anti-HIV compounds. The antiviral effects seemed to correlate positively with the number of negative charges introduced into the various polypeptides: proteins with a high content of basic amino acids in which all of the available epsilonNH2 groups were anionized yielded the most potent anti-HIV compounds. It remained unclear however whether the total net negative charge of the various derivatized proteins, or rather the charge density on the protein backbone, is essential for the observed anti-HIV activity. Earlier studies have shown that acylated albumins preferentially block the process of HIV/cell fusion through binding to the HIV envelope proteins gp120 and gp41 as well as to the cell surface of the HIV target cells. Some of these polyanionic proteins have been shown to interfere also with the gp120-CD4 mediated virus/cell binding. The relative contribution of these effects to the anti-HIV activity may depend both on the total negative charge introduced as well as the hydrophobicity of the acylating reagent added to the particular proteins. In this study we show that the higher the charge density of the derivatized proteins, the more potent their HIV replication inhibiting effects are. In contrast, the addition of positive charge to the studied plasma and milk proteins through amination resulted in a reduced anti-HIV activity but a clearly increased anti-HCMV activity, with IC50 values in the low micromolar concentration range. Interestingly, native lactoferrin (Lf) was antivirally active against both HIV and HCMV. Acylation or amination of Lf increased the anti-HIV and anti-HCMV activity, respectively. The N-terminal portion of Lf appeared essential for its anti-HCMV effect: N-terminal deletion variants of human Lf were less active against HCMV. Circular dichroism of the modified proteins showed that the secondary structure of the tested proteins was only moderately influenced by acylation and/or covalent attachment of drugs, making these (derivatized) proteins useful candidates as antiviral agents and/or intrinsically active drug carriers. The relatively simple chemical derivatization as well as the abundant sources of blood plasma and milk proteins provides attractive opportunities for the preparation of potent and relatively cheap antiviral agents for systemic or local applications.
Collapse
Affiliation(s)
- P J Swart
- Groningen University Institute for Drug Exploration, Department of Pharmacokinetics and Drug Delivery, University Centre for Pharmacy, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Albrecht C, Melgert BN, Reichen J, Poelstra K, Meijer DK. Effect of chronic bile duct obstruction and LPS upon targeting of naproxen to the liver using naproxen-albumin conjugate. J Drug Target 1999; 6:105-17. [PMID: 9886235 DOI: 10.3109/10611869808997886] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Naproxen covalently linked to human serum albumin (NAP-HSA) is efficiently targeted to endothelial and Kupffer cells of the liver and may offer a new therapeutic approach in the treatment of liver disease associated with inflammatory processes. In the present investigation we explored the pharmacokinetic behaviour of targeted and non-targeted naproxen as well as the pharmacokinetic properties of the active metabolite, Naproxen lysine (Nap lysine), in rats rendered fibrotic by bile duct ligation (BDL) for 4 weeks. Furthermore, we studied the effect of endotoxemia, experimentally induced by intravenous injection of 800 microg/kg lipopolysaccaride (LPS) upon the pharmacokinetics of these agents in order to investigate the feasibility of targeting naproxen to non-parenchymal cells in the inflamed and fibrotic liver. Our studies demonstrate that liver disease altered the pharmacokinetic behaviour of the different naproxen compounds. Thus, initial plasma concentrations of NAP HSA and naproxen were markedly lower in BDL rats accompanied by an increase of the volume of distribution during the terminal elimination phase (Vd(beta) BDL vs control 114 +/- 63 vs 50 +/- 7 and 202 +/- 24 vs 115 +/- 11 ml/kg for naproxen and NAP-HSA, respectively). After injection of LPS, no significant change in the pharmacokinetics of NAP-HSA was found whereas the naproxen treated control animals showed an increase in the terminal volume of distribution (176 +/- 34 vs 115 +/- 11 ml/kg) as well as an elevation of the plasma half-life (171 +/- 27 vs 116 +/- 14 min). The feasibility of targeting naproxen to the chronically diseased liver could be clearly demonstrated: 15 min after administration of the conjugate 46% and 55% of the administered dose was found in the liver of CTR and BDL rats, whereas after injection of free naproxen only 5% and 12% of the dose was detected in liver tissue, respectively. We conclude that targeting albumin-linked naproxen to non-parenchymal cells in the liver is still feasible under the pathological conditions induced in the present study. Liver fibrosis induced significant alterations in the pharmacokinetic behaviour of the studied compounds.
Collapse
Affiliation(s)
- C Albrecht
- Department of Clinical Pharmacology, University of Berne, Switzerland
| | | | | | | | | |
Collapse
|
37
|
Knolle PA, Uhrig A, Hegenbarth S, Löser E, Schmitt E, Gerken G, Lohse AW. IL-10 down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells through decreased antigen uptake via the mannose receptor and lowered surface expression of accessory molecules. Clin Exp Immunol 1998; 114:427-33. [PMID: 9844054 PMCID: PMC1905120 DOI: 10.1046/j.1365-2249.1998.00713.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Our study demonstrates that antigen-presenting liver sinusoidal endothelial cells (LSEC) induce production of interferon-gamma (IFN-gamma) from cloned Th1 CD4+ T cells. We show that LSEC used the mannose receptor for antigen uptake, which further strengthened the role of LSEC as antigen-presenting cell (APC) population in the liver. The ability of LSEC to activate cloned CD4+ T cells antigen-specifically was down-regulated by exogenous prostaglandin E2 (PGE2) and by IL-10. We identify two separate mechanisms by which IL-10 down-regulated T cell activation through LSEC. IL-10 decreased the constitutive surface expression of MHC class II as well as of the accessory molecules CD80 and CD86 on LSEC. Furthermore, IL-10 diminished mannose receptor activity in LSEC. Decreased antigen uptake via the mannose receptor and decreased expression of accessory molecules may explain the down-regulation of T cell activation through IL-10. Importantly, the expression of low numbers of antigen on MHC II in the absence of accessory signals on LSEC may lead to induction of anergy in T cells. Because PGE2 and IL-10 are released from LSEC or Kupffer cells (KC) in response to those concentrations of endotoxin found physiologically in portal venous blood, it is possible that the continuous presence of these mediators and their negative effect on the local APC may explain the inability of the liver to induce T cell activation and to clear chronic infections. Our results support the notion that antigen presentation by LSEC in the hepatic microenvironment contributes to the observed inability to mount an effective cell-mediated immune response in the liver.
Collapse
Affiliation(s)
- P A Knolle
- I. Medizinische Klinik und Poliklinik, Johannes-Gutenberg-Universität Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Macromolecules can extravasate across the normal endothelium by transcapillary pinocytosis as well as by passage through interendothelial cell junctions, gaps or fenestrae. The main biological factors that control extravasation of a solute include regional differences in the capillary structures, the disease state of the organ or tissue, and the rate of blood and lymph supply. Physicochemical properties that are of profound significance in the extravasation of macromolecules are molecular size, shape, charge and hydrophilic/lipophilic balance (HLB) characteristics. Extravasation of small drugs, proteins, oligonucleotides and genes can be controlled by conjugating or forming complexes with macromolecular carriers. This requires a thorough understanding of the relationship between the chemical structures, physicochemical properties and the pharmacokinetics of both carrier and active molecules. This review article discusses the extravasation of macromolecules from the view points of pharmacokinetics and drug delivery systems, with the main emphasis on the extravasation across the liver, kidney and tumor capillaries.
Collapse
|
39
|
Mahato RI, Anwer K, Tagliaferri F, Meaney C, Leonard P, Wadhwa MS, Logan M, French M, Rolland A. Biodistribution and gene expression of lipid/plasmid complexes after systemic administration. Hum Gene Ther 1998; 9:2083-99. [PMID: 9759935 DOI: 10.1089/hum.1998.9.14-2083] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The objectives of this study were to investigate the influence of physicochemical properties of lipid/plasmid complexes on in vivo gene transfer and biodistribution characteristics. Formulations based on 1,2-di-O-octadecenyl-3-trimethylammonium propane (DOTMA) and novel biodegradable cationic lipids, such as ethyl dioleoyl phosphatidylcholine (EDOPC), ethyl palmitoyl myristyl phosphatidylcholine (EPMPC), myristyl myristoyl carnitine ester (MMCE), and oleyl oleoyl L-carnitine ester (DOLCE), were assessed for gene expression after tail vein injection of lipid/plasmid complexes in mice. Gene expression was influenced by cationic lipid structure, cationic lipid-to-colipid molar ratios, plasmid-to-lipid charge ratios, and precondensation liposome size. Detectable levels of human growth hormone (hGH) in serum, human factor IX (hFIX) in plasma, and chloramphenicol acetyltransferase (CAT) in the lung and liver were observed with positively charged lipid/plasmid complexes prepared from 400-nm extruded liposomes with a cationic lipid-to-colipid ratio of 4:1 (mol/mol). Intravenous administration of lipid/CAT plasmid complexes resulted in distribution of plasmid DNA mainly to the lung at 15 min after injection. Plasmid DNA accumulation in the liver increased with time up to 24 hr postinjection. There was a 10-fold decrease in the amount of plasmid DNA in the lung at 15 min after injection, when the lipid/plasmid complex charge ratio was decreased from 3:1 to 0.5:1 (+/-). Bright fluorescent aggregates were evident in in vivo-transfected lung with the positively charged pCMV-CAT/DOLCE:dioleyl phosphatidylethanolamine (DOPE) (1:1, mol/mol) complexes, while more discrete punctate fluorescence was observed with a 4:1 molar ratio of cationic lipid:colipid formulations. Preinjection of polyanions such as plasmid, dextran sulfate, polycytidic acid, and polyinosinic acid decreased hGH expression, whereas the preinjection of both positively charged and neutral liposomes had no effect on hGH serum levels. Of the cationic lipids tested, DOLCE was found to be the most effective potentially biodegradable cationic lipid. A correlation between gene expression and cationic lipid:colipid ratios and lipid-to-plasmid charge ratio was also observed for DOTMA- and DOLCE-based formulations.
Collapse
Affiliation(s)
- R I Mahato
- GeneMedicine, Inc., The Woodlands, TX 77381-4248, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Peters C, Kawakami M, Kaul M, Ilg T, Overath P, Aebischer T. Secreted proteophosphoglycan of Leishmania mexicana amastigotes activates complement by triggering the mannan binding lectin pathway. Eur J Immunol 1997; 27:2666-72. [PMID: 9368624 DOI: 10.1002/eji.1830271028] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cutaneous lesions induced by infection of mice with the protozoan parasite, Leishmania mexicana, contain abundant amounts of a high molecular mass proteophosphoglycan (PPG), which is secreted by the amastigote stage residing in phagolysosomes of macrophages and can then be released into the tissue upon rupture of the infected cells. Amastigote PPG forms sausage-shaped but soluble particles and belongs to a novel class of serine-rich proteins that are extensively O-glycosylated by phosphooligosaccharides capped by mannooligosaccharides. The purified molecule is shown here to efficiently activate complement (C) and deplete hemolytic activity of normal serum and may prevent the opsonization of L. mexicana amastigotes. Complement activation is Ca2+ dependent but does not depend on antibodies or the complement component C1. PPG binds to serum mannan binding protein (MBP), thus activating the MBP-associated serine protease, P100. Subsequently, the C cascade is triggered through C4 leading to covalent modification probably of carbohydrate hydroxyls of PPG by C3 fragments. Thus, PPG is able to activate C via the mannan binding lectin pathway which is unusual for secreted, soluble products of microbial origin. The proteophosphoglycan-induced complement activation is postulated to contribute to the lesion development and pathology caused by the parasite.
Collapse
Affiliation(s)
- C Peters
- Max-Planck-Institut für Biologie, Abteilung Membranbiochemie, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Prado MJ, Nicastri AL, Costa PL, Rockman T, Tersariol IL, Nader HB, Barros RT, Prado EB. The renal and hepatic distribution of Bence Jones proteins depends on glycosylation: a scintigraphic study in rats. Braz J Med Biol Res 1997; 30:865-72. [PMID: 9361711 DOI: 10.1590/s0100-879x1997000700008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study was to evaluate renal and liver distribution of two monoclonal immunoglobulin light chains. The chains were purified individually from the urine of patients with multiple myeloma and characterized as lambda light chains with a molecular mass of 28 kDa. They were named BJg (high amount of galactose residues exposed) and BJs (sialic acid residues exposed) on the basis of carbohydrate content. A scintigraphic study was performed on male Wistar rats weighing 250 g for 60 min after i.v. administration of 1 mg of each protein (7.4 MBq), as the intact proteins and also after carbohydrate oxidation. Images were obtained with a Siemens gamma camera with a high-resolution collimator and processed with a MicroDelta system. Hepatic and renal distribution were established and are reported as percent of injected dose. Liver uptake of BJg was significantly higher than liver uptake of BJs (94.3 vs 81.4%) (P < 0.05). This contributed to its greater removal from the intravascular compartment, and consequently lower kidney accumulation of BJg in comparison to BJs (5.7 vs 18.6%) (P < 0.05). After carbohydrate oxidation, there was a decrease in hepatic accumulation of both proteins and consequently a higher renal overload. The tissue distribution of periodate-treated BJg was similar to that of native BJs: 82.7 vs 81.4% in the liver and 17.3 vs 18.6% in the kidneys. These observations indicate the important role of sugar residues of Bence Jones proteins for their recognition by specific membrane receptors, which leads to differential tissue accumulation and possible toxicity.
Collapse
Affiliation(s)
- M J Prado
- Laboratório de Fisiopatologia Renal, Faculdade de Medicina, Universidade de São Paulo, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Meijer D, Swart P. Isolated perfused liver as a tool to study the disposition of peptides, liver first-pass effects, and cell-specific drug delivery. J Control Release 1997. [DOI: 10.1016/s0168-3659(96)01587-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Schoen P, Corver J, Meijer DK, Wilschut J, Swart PJ. Inhibition of influenza virus fusion by polyanionic proteins. Biochem Pharmacol 1997; 53:995-1003. [PMID: 9174113 DOI: 10.1016/s0006-2952(96)00876-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Anionic charge-modified human serum albumin (HSA) has previously been shown to exert potent in vitro activity against human immunodeficiency virus type 1 (HIV-1). In these studies, introduction of the additional negative charges was performed by derivatizing the epsilon-amino groups of lysine residues with succinic (Suc-HSA) or cis-aconitic anhydride (Aco-HSA), by which primary amino groups are replaced with carboxylic acids. The anti-HIV-1 activity was related to inhibition of gp41-mediated membrane fusion. Here, we investigated the activity of aconitylated and succinylated proteins on influenza virus membrane fusion, which is mediated by the viral membrane glycoprotein hemagglutinin (HA). Aco-HSA and Suc-HSA markedly inhibited the rates and extents of fusion of fluorescently labeled virosomes bearing influenza HA, with target membranes derived from erythrocytes. The inhibitory activity was dependent on the overall negative-charge density; HSA modified with 36 or less extra negative charges failed to inhibit fusion. The inhibition of fusion showed a certain degree of specificity for the protein carrying the negative charges: polyanionic HSA and beta-lactoglobulin A derivatives had fusion-inhibitory activity, whereas succinylated BSA, lactalbumin, lactoferrin, lysozyme, and transferrin were inactive. Aco60-HSA and Aco-beta-lactoglobulin A inhibited influenza virus membrane fusion in a concentration-dependent manner, IC50 values being about 4 and 10 microg/mL, respectively. HA-mediated membrane fusion is pH dependent. Aco60-HSA did not induce a shift in the pH threshold or in the pH optimum. Fusion with liposomes of another low pH-dependent virus, Semliki Forest virus, was not specifically affected by any of the compounds reported here. In view of some structural and functional similarities between influenza HA and the HIV-1 gp120/gp41 complex, it is tempting to postulate that the current results might have some implications for the anti-HIV-1 mechanism of polyanionic proteins.
Collapse
Affiliation(s)
- P Schoen
- Groningen Utrecht Institute for Drug Exploration (GUIDE), University of Groningen, Department of Physiological Chemistry, Faculty of Medical Sciences, The Netherlands.
| | | | | | | | | |
Collapse
|
44
|
Biessen EA, Noorman F, van Teijlingen ME, Kuiper J, Barrett-Bergshoeff M, Bijsterbosch MK, Rijken DC, van Berkel TJ. Lysine-based cluster mannosides that inhibit ligand binding to the human mannose receptor at nanomolar concentration. J Biol Chem 1996; 271:28024-30. [PMID: 8910412 DOI: 10.1074/jbc.271.45.28024] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In search of synthetic high affinity ligands for the mannose receptor, we synthesized a series of lysine-based oligomannosides containing two (M2L) to six (M6L5) terminal alpha-D-mannose groups that are connected with the backbone by flexible elongated spacers (16 A). The synthesized cluster mannosides were all able to displace binding of biotinylated ribonuclease B and tissue-type plasminogen activator to isolated human mannose receptor. The affinity of these cluster mannosides for the mannose receptor was continuously enhanced from 18-23 microM to 0.5-2.6 nM, with mannose valencies increasing from two to six. On average, expansion of the cluster mannoside with an additional alpha-D-mannose group resulted in a 10-fold increase in its affinity for the mannose receptor. M3L2 to M6L5 displayed negative cooperative inhibition of ligand binding to the mannose receptor, suggesting that binding of these mannosides involves multiple binding sites. The nanomolar affinity of the most potent ligand, the hexamannoside M6L5 makes it the most potent synthetic cluster mannoside for the mannose receptor yet developed. As a result of its high affinity and accessible synthesis, M6L5 not only is a powerful tool to study the mechanism of ligand binding by the mannose receptor, but it is also a promising targeting device to accomplish cell-specific delivery of genes and drugs to liver endothelial cells or macrophages in bone marrow, lungs, spleen, and atherosclerotic plaques.
Collapse
Affiliation(s)
- E A Biessen
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, University of Leiden, P.O. Box 9503, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Knolle PA, Gerken G, Loser E, Dienes HP, Gantner F, Tiegs G, Meyer zum Buschenfelde KH, Lohse AW. Role of sinusoidal endothelial cells of the liver in concanavalin A-induced hepatic injury in mice. Hepatology 1996; 24:824-9. [PMID: 8855184 DOI: 10.1002/hep.510240413] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
CD4+ T lymphocytes have been identified as being responsible for organ damage in the murine model of experimental liver injury induced by intravenous injection of concanavalin A (Con A). Liver sinusoidal endothelial cells (SEC) and Kupffer's cells (KC) are among the first cells that come into contact with lymphocytes in the liver sinusoid. We aimed to investigate the respective role of these cell populations in the initial steps of T-cell-mediated liver injury in Con A-induced hepatitis. By electron microscopy, we could show that intravenously applied Con A bound predominantly to SEC but not to KC. KC depletion by gadolinium chloride treatment of mice did not result in protection from liver injury, indicating that KCs are not primarily involved in the generation of liver injury. We could show that a CD4+ T-cell line (LNC.2) displayed selective cytotoxicity toward SEC (>50%) but not KC (12%) or fibroblasts (5%) in the presence of Con A in vitro. Microscopic observation revealed that the SEC monolayer was rapidly destroyed by LnC2 in the presence of Con A. Specificity of the Con A-induced cytotoxicity was shown by the ability of a competitive ligand, methyl-alpha-D-mannopyranoside, to reduce T-cell-mediated cytotoxicity to SEC by more than 50%. Tumor necrosis factor alpha (TNF-alpha) was produced by LnC2 in high amounts after Con A stimulation (>6 ng/mL), but antiserum to TNF-alpha did not reduce LnC2-mediated cytotoxicity toward SEC. In conclusion, we could show for the first time that liver SECs have accessory function and are selectively destroyed by CD4+ T lymphocytes in the presence of Con A. We speculate that SEC damage is an early event in T-cell-mediated liver injury recruiting T lymphocytes from the sinusoidal circulation. Loss of the SEC barrier function then exposes underlying hepatocytes to further attack by activated T lymphocytes. These results offer a model of initiating events in T-cell-mediated liver diseases, such as viral or autoimmune hepatitis, and suggest an important role for sinusoidal endothelial cells.
Collapse
Affiliation(s)
- P A Knolle
- Department of Medicine, Johannes-Gutenberg-University Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Takakura Y, Mahato RI, Nishikawa M, Hashida M. Control of pharmacokinetic profiles of drug—macromolecule conjugates. Adv Drug Deliv Rev 1996. [DOI: 10.1016/0169-409x(96)00010-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Kuipers ME, Huisman JG, Swart PJ, de Béthune MP, Pauwels R, Schuitemaker H, De Clercq E, Meijer DK. Mechanism of anti-HIV activity of negatively charged albumins: biomolecular interaction with the HIV-1 envelope protein gp120. JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES AND HUMAN RETROVIROLOGY : OFFICIAL PUBLICATION OF THE INTERNATIONAL RETROVIROLOGY ASSOCIATION 1996; 11:419-29. [PMID: 8605586 DOI: 10.1097/00042560-199604150-00001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A novel class of polyanionic proteins with potent anti-human immunodeficiency virus type 1 activity, the negatively charged albumins (NCAs), have been reported previously. In vitro antiviral assays established that these compounds preferentially inhibit virus-cell fusion and syncytium formation and that virus-cell binding is less affected. Here the interaction of the NCAs with synthetic peptides composed of 15-36 amino acids and corresponding to different parts of the gp120 envelope protein is described. Among the gp120 peptides tested, binding of the NCAs was observed only with the s0-called V3 loop (amino acids 296-330) and the C-terminal part of gp120. A higher number of negatively charged residues in the albumins resulted in higher binding affinities. NCAs in which, in addition to negative charges, up to 7 or 14 lactose or mannose groups were introduced, respectively did not exhibit increasing binding affinity. In contrast, mannosylated albumin containing about 14 mannose groups showed an increased binding compared with native albumin. Binding of the NCAs to the V3 and C-terminal oligopeptide was competitively inhibited by sulfated polysaccharide heparin and dextran sulfate. This finding indicates that the binding between the gp120 peptides and the NCAs is likely caused by electrostatic interactions. However, the fact that the dissociation constants of dextran sulfate and heparin are orders of magnitude larger compared with the NCAs indicates that the spatial structure of the proteins and/or hydrophobic interactions between the NCAs and the envelope protein may also be involved.
Collapse
Affiliation(s)
- M E Kuipers
- Section of Pharmacokinetics and Drug Delivery, University Center for Pharmacy, Groningen Institute for Drug Studies (GIDS), The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Yoshioka T, Yamamoto K, Kobashi H, Tomita M, Tsuji T. Receptor-mediated endocytosis of chemically modified albumins by sinusoidal endothelial cells and Kupffer cells in rat and human liver. LIVER 1994; 14:129-37. [PMID: 8078392 DOI: 10.1111/j.1600-0676.1994.tb00061.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Human serum albumin (HSA), formaldehyde-treated HSA (FHSA), and HSA polymerized with glutaraldehyde (pHSA) were conjugated with colloidal gold (15 (15G) or 50 (50G) nm in diameter). The labeled proteins were injected into the portal veins of rats and followed by electron microscopy. Both 15G-FHSA and 15G-pHSA were taken up by sinusoidal endothelial cells (Ec) and Kupffer cells (Kc). Five minutes after injection, gold particles were observed on the surface of Ec and Kc. At 10 min, most gold particles were gathered in the coated pits and vesicles of Ec. In Kc, gold particles were observed in both coated vesicles and macropinocytotic vesicles. At 15 min, the gold particles were localized mainly in the endosomes and some lysosomes of Ec and in the large vacuoles of Kc. At 30 min, the gold particles had been gathered into the secondary lysosomes and condensed. At 60 min, some gold particles were observed in the cytoplasm of Ec. The fate of 15G-pHSA was the same as that of 15G-FHSA. Simultaneous injection of 15G-pHSA and 50G-FHSA revealed that particles of both sizes were taken up together into the coated pits and vesicles of Ec. Preperfusion of livers with unlabeled FHSA, pHSA, or formaldehyde-treated bovine serum albumin (FBSA) inhibited the uptake of 15G-FHSA or 15G-pHSA by Ec. In a human liver biopsy specimen, both 15G-FHSA and 15G-pHSA were taken up by Ec and Kc through coated vesicles, as in the rat liver.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T Yoshioka
- First Department of Internal Medicine, Okayama University Medical School, Japan
| | | | | | | | | |
Collapse
|
49
|
New Oligosaccharidic Crown Ethers as Potential Drug-Targetting Vectors: Synthesis & Biological Evaluation. Bioorg Med Chem Lett 1994. [DOI: 10.1016/s0960-894x(01)80240-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Jansen RW, Kruijt JK, van Berkel TJ, Meijer DK. Coupling of the antiviral drug ara-AMP to lactosaminated albumin leads to specific uptake in rat and human hepatocytes. Hepatology 1993. [PMID: 7686877 DOI: 10.1002/hep.1840180122] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We covalently coupled 9-beta-D-arabinofuranosyladenine 5'-monophosphate (ara-AMP) to the carrier molecule lactosaminated human serum albumin using a water-soluble carbodiimide with a two-step conjugation method (pH 4.5 and pH 7.5) instead of the commonly used single-step conjugation at pH 7.5. This resulted in a predominantly monomeric conjugate (lac27-HSA-ara-AMP9). The conjugate was stable in buffer (pH 7.4) and blood plasma. After in vivo injection, the carrier and the monomeric conjugate were subjected to selective endocytosis in rat hepatocytes, as shown on immunohistochemical study and cell-separation techniques using 125I-labeled material. In competition experiments with other ligands for the asialoglycoprotein receptor N-acetylgalactosamine and asialofetuin, we showed that both lactosaminated human serum albumin and lac27-HSA-ara-AMP9 are subject to endocytosis by this receptor system. Although the coupling of ara-AMP significantly increased the net negative charge of the conjugate compared with the native carrier, liver uptake was not affected by coadministration of an excess of succinylated human serum albumin (suc-HSA), a negatively charged ligand for the scavenger receptor. Incubation studies with purified rat liver lysosomes showed that in this acidic and proteolytic environment, mainly ara-AMP and, to a much lesser extent, ara-A itself were released from the carrier. After injection into the rat in vivo and in isolated perfused rat liver, no free ara-AMP or 9-B-D-arabinofuranosyladenine (ara-A) could be detected in plasma and perfusate, respectively, indicating proper retention of the virally active components in hepatocytes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R W Jansen
- Department of Pharmacology and Therapeutics, University Centre for Pharmacy, Groningen, The Netherlands
| | | | | | | |
Collapse
|