1
|
Yan H, Zhou Z, Zhang H, Shim WB. Vacuole Proteins with Optimized Microtubule Assembly Is Required for Fum1 Protein Localization and Fumonisin Biosynthesis in Mycotoxigenic Fungus Fusarium verticillioides. J Fungi (Basel) 2023; 9:jof9020268. [PMID: 36836382 PMCID: PMC9961181 DOI: 10.3390/jof9020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Fumonisin contamination of corn caused by Fusarium verticillioides is a major concern worldwide. While key genes involved in fumonisin biosynthesis are known, the location within the fungal cell where this process occurs has yet to be fully characterized. In this study, three key enzymes, i.e., Fum1, Fum8, and Fum6, associated with early steps of fumonisin biosynthesis pathway, were tagged with GFP, and we examined their cellular localization. Results showed that these three proteins co-localized with the vacuole. To further understand the role of the vacuole in fumonisin B1 (FB1) biosynthesis, we disrupted two predicted vacuole associated proteins, FvRab7 and FvVam7, resulting in a significant reduction of FB1 biosynthesis and a lack of Fum1-GFP fluorescence signal. Furthermore, we used the microtubule-targeting drug carbendazim to show that proper microtubule assembly is critical for proper Fum1 protein localization and FB1 biosynthesis. Additionally, we found that α1 tubulin is a negative regulator in FB1 biosynthesis. We concluded that vacuole proteins with optimized microtubule assembly play a crucial role in proper Fum1 protein localization and fumonisin production in F. verticillioides.
Collapse
Affiliation(s)
- Huijuan Yan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Zehua Zhou
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
- College of Plant Protection & Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Plant Pests, Hunan Agricultural University, Changsha 410128, China
| | - Huan Zhang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
- Correspondence: (H.Z.); (W.B.S.)
| | - Won Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
- Correspondence: (H.Z.); (W.B.S.)
| |
Collapse
|
2
|
Vacuolal and Peroxisomal Calcium Ion Transporters in Yeasts and Fungi: Key Role in the Translocation of Intermediates in the Biosynthesis of Fungal Metabolites. Genes (Basel) 2022; 13:genes13081450. [PMID: 36011361 PMCID: PMC9407949 DOI: 10.3390/genes13081450] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
Highlights The intracellular calcium content plays a key role in the expression of genes involved in the biosynthesis and secretion of fungal metabolites. The cytosolic calcium concentration in fungi is maintained by influx through the cell membrane and by release from store organelles. Some MSF transporters, e.g., PenV of Penicillium chrysogenum and CefP of Acremonium chrysogenum belong to the TRP calcium ion channels. A few of the numerous calcium ion transporters existing in organelles of different filamentous fungi have been characterized at the functional and subcellular localization levels. The cytosolic calcium signal seems to be transduced by the calcitonin/calcineurin cascade controlling the expression of many fungal genes.
Abstract The intracellular calcium content in fungal cells is influenced by a large number of environmental and nutritional factors. Sharp changes in the cytosolic calcium level act as signals that are decoded by the cell gene expression machinery, resulting in several physiological responses, including differentiation and secondary metabolites biosynthesis. Expression of the three penicillin biosynthetic genes is regulated by calcium ions, but there is still little information on the role of this ion in the translocation of penicillin intermediates between different subcellular compartments. Using advanced information on the transport of calcium in organelles in yeast as a model, this article reviews the recent progress on the transport of calcium in vacuoles and peroxisomes and its relation to the translocation of biosynthetic intermediates in filamentous fungi. The Penicillium chrysogenum PenV vacuole transporter and the Acremonium chrysogenum CefP peroxisomal transporter belong to the transient receptor potential (TRP) class CSC of calcium ion channels. The PenV transporter plays an important role in providing precursors for the biosynthesis of the tripeptide δ-(-α-aminoadipyl-L-cysteinyl-D-valine), the first intermediate of penicillin biosynthesis in P. chrysogenum. Similarly, CefP exerts a key function in the conversion of isopenicillin N to penicillin N in peroxisomes of A. chrysogenum. These TRP transporters are different from other TRP ion channels of Giberella zeae that belong to the Yvc1 class of yeast TRPs. Recent advances in filamentous fungi indicate that the cytosolic calcium concentration signal is connected to the calcitonin/calcineurin signal transduction cascade that controls the expression of genes involved in the subcellular translocation of intermediates during fungal metabolite biosynthesis. These advances open new possibilities to enhance the expression of important biosynthetic genes in fungi.
Collapse
|
3
|
Skellam E. Subcellular localization of fungal specialized metabolites. Fungal Biol Biotechnol 2022; 9:11. [PMID: 35614515 PMCID: PMC9134587 DOI: 10.1186/s40694-022-00140-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/10/2022] [Indexed: 01/07/2023] Open
Abstract
Fungal specialized metabolites play an important role in the environment and have impacted human health and survival significantly. These specialized metabolites are often the end product of a series of sequential and collaborating biosynthetic enzymes that reside within different subcellular compartments. A wide variety of methods have been developed to understand fungal specialized metabolite biosynthesis in terms of the chemical conversions and the biosynthetic enzymes required, however there are far fewer studies elucidating the compartmentalization of the same enzymes. This review illustrates the biosynthesis of specialized metabolites where the localization of all, or some, of the biosynthetic enzymes have been determined and describes the methods used to identify the sub-cellular localization.
Collapse
Affiliation(s)
- Elizabeth Skellam
- Department of Chemistry and BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX, 76201, USA.
| |
Collapse
|
4
|
Fierro F, Vaca I, Castillo NI, García-Rico RO, Chávez R. Penicillium chrysogenum, a Vintage Model with a Cutting-Edge Profile in Biotechnology. Microorganisms 2022; 10:573. [PMID: 35336148 PMCID: PMC8954384 DOI: 10.3390/microorganisms10030573] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022] Open
Abstract
The discovery of penicillin entailed a decisive breakthrough in medicine. No other medical advance has ever had the same impact in the clinical practise. The fungus Penicillium chrysogenum (reclassified as P. rubens) has been used for industrial production of penicillin ever since the forties of the past century; industrial biotechnology developed hand in hand with it, and currently P. chrysogenum is a thoroughly studied model for secondary metabolite production and regulation. In addition to its role as penicillin producer, recent synthetic biology advances have put P. chrysogenum on the path to become a cell factory for the production of metabolites with biotechnological interest. In this review, we tell the history of P. chrysogenum, from the discovery of penicillin and the first isolation of strains with high production capacity to the most recent research advances with the fungus. We will describe how classical strain improvement programs achieved the goal of increasing production and how the development of different molecular tools allowed further improvements. The discovery of the penicillin gene cluster, the origin of the penicillin genes, the regulation of penicillin production, and a compilation of other P. chrysogenum secondary metabolites will also be covered and updated in this work.
Collapse
Affiliation(s)
- Francisco Fierro
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Ciudad de México 09340, Mexico
| | - Inmaculada Vaca
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| | - Nancy I. Castillo
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá 110231, Colombia;
| | - Ramón Ovidio García-Rico
- Grupo de Investigación GIMBIO, Departamento De Microbiología, Facultad de Ciencias Básicas, Universidad de Pamplona, Pamplona 543050, Colombia;
| | - Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile;
| |
Collapse
|
5
|
The PenV vacuolar membrane protein that controls penicillin biosynthesis is a putative member of a subfamily of stress-gated transient receptor calcium channels. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
6
|
Martín JF. Transport systems, intracellular traffic of intermediates and secretion of β-lactam antibiotics in fungi. Fungal Biol Biotechnol 2020; 7:6. [PMID: 32351700 PMCID: PMC7183595 DOI: 10.1186/s40694-020-00096-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Fungal secondary metabolites are synthesized by complex biosynthetic pathways catalized by enzymes located in different subcellular compartments, thus requiring traffic of precursors and intermediates between them. The β-lactam antibiotics penicillin and cephalosporin C serve as an excellent model to understand the molecular mechanisms that control the subcellular localization of secondary metabolites biosynthetic enzymes. Optimal functioning of the β-lactam biosynthetic enzymes relies on a sophisticated temporal and spatial organization of the enzymes, the intermediates and the final products. The first and second enzymes of the penicillin pathway, ACV synthetase and IPN synthase, in Penicillium chrysogenum and Aspergillus nidulans are cytosolic. In contrast, the last two enzymes of the penicillin pathway, phenylacetyl-CoA ligase and isopenicillin N acyltransferase, are located in peroxisomes working as a tandem at their optimal pH that coincides with the peroxisomes pH. Two MFS transporters, PenM and PaaT have been found to be involved in the import of the intermediates isopenicillin N and phenylacetic acid, respectively, into peroxisomes. Similar compartmentalization of intermediates occurs in Acremonium chrysogenum; two enzymes isopenicillin N-CoA ligase and isopenicillin N-CoA epimerase, that catalyse the conversion of isopenicillin N in penicillin N, are located in peroxisomes. Two genes encoding MFS transporters, cefP and cefM, are located in the early cephalosporin gene cluster. These transporters have been localized in peroxisomes by confocal fluorescence microscopy. A third gene of A. chrysogenum, cefT, encodes an MFS protein, located in the cell membrane involved in the secretion of cephalosporin C, although cefT-disrupted mutants are still able to export cephalosporin by redundant transporters. The secretion of penicillin from peroxisomes to the extracellular medium is still unclear. Attempts have been made to identify a gene encoding the penicillin secretion protein among the 48 ABC-transporters of P. chrysogenum. The highly efficient secretion system that exports penicillin against a concentration gradient may involve active penicillin extrusion systems mediated by vesicles that fuse to the cell membrane. However, there is no correlation of pexophagy with penicillin or cephalosporin formation since inactivation of pexophagy leads to increased penicillin or cephalosporin biosynthesis due to preservation of peroxisomes. The penicillin biosynthesis finding shows that in order to increase biosynthesis of novel secondary metabolites it is essential to adequately target enzymes to organelles.
Collapse
Affiliation(s)
- Juan F Martín
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| |
Collapse
|
7
|
Vesicular transport and secretion of penicillin G in Penicillium rubens P2-32-T. Arch Microbiol 2020; 202:1257-1262. [DOI: 10.1007/s00203-019-01806-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/11/2019] [Accepted: 12/31/2019] [Indexed: 01/29/2023]
|
8
|
Casein phosphopeptides and CaCl2 increase penicillin production and cause an increment in microbody/peroxisome proteins in Penicillium chrysogenum. J Proteomics 2017; 156:52-62. [DOI: 10.1016/j.jprot.2016.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/15/2016] [Accepted: 12/31/2016] [Indexed: 12/11/2022]
|
9
|
Zhang H, Li B, Fang Q, Li Y, Zheng X, Zhang Z. SNARE protein FgVam7 controls growth, asexual and sexual development, and plant infection in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2016; 17:108-19. [PMID: 25880818 PMCID: PMC6638462 DOI: 10.1111/mpp.12267] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play critical and conserved roles in membrane fusion and vesicle transport of eukaryotic cells. Previous studies have shown that various homologues of SNARE proteins are also important in the infection of host plants by pathogenic fungi. Here, we report the characterization of a SNARE homologue, FgVam7, from Fusarium graminearum that causes head blight in wheat and barley worldwide. Phylogenetic analysis and domain comparison reveal that FgVam7 is homologous to Vam7 proteins of Saccharomyces cerevisiae (ScVam7), Magnaporthe oryzae (MoVam7) and several additional fungi by containing a PhoX homology (PX) domain and a SNARE domain. We show that FgVam7 plays a regulatory role in cellular differentiation and virulence in F. graminearum. Deletion of FgVAM7 significantly reduces vegetative growth, conidiation and conidial germination, sexual reproduction and virulence. The ΔFgvam7 mutant also exhibits a defect in vacuolar maintenance and delayed endocytosis. Moreover, the ΔFgvam7 mutant is insensitive to salt and osmotic stresses, and hypersensitive to cell wall stressors. Further characterization of FgVam7 domains indicate that the PX and SNARE domains are conserved in controlling Vam7 protein localization and function, respectively. Finally, FgVam7 has been shown to positively regulate the expression of several deoxynivalenol (DON) biosynthesis genes TRI5, TRI6 and TRI101, and DON production. Our studies provide evidence for SNARE proteins as an additional means of regulatory mechanisms that govern growth, differentiation and virulence of pathogenic fungi.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Bing Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Qin Fang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Ying Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| |
Collapse
|
10
|
Paradas WC, Crespo TM, Salgado LT, de Andrade LR, Soares AR, Hellio C, Paranhos RR, Hill LJ, de Souza GM, Kelecom AGAC, Da Gama BAP, Pereira RC, Amado-Filho GM. Mevalonosomes: specific vacuoles containing the mevalonate pathway in Plocamium brasiliense cortical cells (Rhodophyta). JOURNAL OF PHYCOLOGY 2015; 51:225-235. [PMID: 26986518 DOI: 10.1111/jpy.12270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 01/21/2015] [Indexed: 06/05/2023]
Abstract
This paper has identified, for the first time in a member of the Rhodophyta, a vacuolar organelle containing enzymes that are involved in the mevalonate pathway-an important step in red algal isoprenoid biosynthesis. These organelles were named mevalonosomes (Mev) and were found in the cortical cells (CC) of Plocamium brasiliense, a marine macroalgae that synthesizes several halogenated monoterpenes. P. brasiliense specimens were submitted to a cytochemical analysis of the activity of the 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS). Using transmission electron microscopy (TEM), we confirmed the presence of HMGS activity within the Mev. Because HMGS is necessary for the biosynthesis of halogenated monoterpenes, we isolated a hexanic fraction (HF) rich in halogenated monoterpenes from P. brasiliense that contained a pentachlorinated monoterpene as a major metabolite. Because terpenes are often related to chemical defense, the antifouling (AF) activity of pentachlorinated monoterpene was tested. We found that the settlement of the mussel Perna perna was reduced by HF treatment (2.25 times less than control; 40% and 90% of fouled surface, respectively; P = 0.001; F9,9 = 1.13). The HF (at 10 μg · mL(-1) ) also inhibited three species of fouling microalgae (Chlorarachnion reptans, Cylindrotheca cloisterium, and Exanthemachrysis gayraliae), while at a higher concentration (50 μg · mL(-1) ), it inhibited the bacteria Halomonas marina, Polaribacter irgensii, Pseudoalteromonas elyakovii, Shewanella putrefaciens, and Vibrio aestuarianus. The AF activity of P. brasiliense halogenated monoterpenes and the localization of HMGS activity inside Mev suggest that this cellular structure found in CC may play a role in thallus protection against biofouling.
Collapse
Affiliation(s)
- Wladimir Costa Paradas
- Departamento de Biologia Marinha, Universidade Federal Fluminense, Outeiro São João Batista, s/no., Niterói, Rio de Janeiro, Brazil
| | - Thalita Mendes Crespo
- Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915, Rio de Janeiro, Brazil
| | - Leonardo Tavares Salgado
- Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915, Rio de Janeiro, Brazil
| | - Leonardo Rodrigues de Andrade
- Centro de Ciências da Saúde, Instituto de Ciências Biomédicas, Departamento de Histologia e Embriologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, bloco: B, sala F2-27, Rio de Janeiro, Brazil
| | - Angélica Ribeiro Soares
- Núcleo de Pesquisas em Ecologia e Desenvolvimento Social de Macaé, Universidade Federal do Rio de Janeiro, Rua Rotary Club, s/no., São José do Barreto, Macaé, Rio de Janeiro, Brazil
| | - Claire Hellio
- Université de Bretagne Occidentale, LEMAR UMR 6539, IUEM - Technopole Brest-Iroise, Rue Dumont d'Urville, Plouzané, France
| | - Ricardo Rogers Paranhos
- Departamento de Biologia Marinha, Universidade Federal Fluminense, Outeiro São João Batista, s/no., Niterói, Rio de Janeiro, Brazil
| | - Lilian Jorge Hill
- Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915, Rio de Janeiro, Brazil
| | - Geysa Marinho de Souza
- Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915, Rio de Janeiro, Brazil
| | | | - Bernardo Antônio Perez Da Gama
- Departamento de Biologia Marinha, Universidade Federal Fluminense, Outeiro São João Batista, s/no., Niterói, Rio de Janeiro, Brazil
| | - Renato Crespo Pereira
- Departamento de Biologia Marinha, Universidade Federal Fluminense, Outeiro São João Batista, s/no., Niterói, Rio de Janeiro, Brazil
| | - Gilberto Menezes Amado-Filho
- Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Kistler HC, Broz K. Cellular compartmentalization of secondary metabolism. Front Microbiol 2015; 6:68. [PMID: 25709603 PMCID: PMC4321598 DOI: 10.3389/fmicb.2015.00068] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/20/2015] [Indexed: 12/26/2022] Open
Abstract
Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors shared with the most essential processes of the cell (e.g., amino acids, acetyl CoA, NADPH), enzymes for secondary metabolite synthesis are compartmentalized at conserved subcellular sites that position pathway enzymes to use these common biochemical precursors. Co-compartmentalization of secondary metabolism pathway enzymes also may function to channel precursors, promote pathway efficiency and sequester pathway intermediates and products from the rest of the cell. In this review we discuss the compartmentalization of three well-studied fungal secondary metabolite biosynthetic pathways for penicillin G, aflatoxin and deoxynivalenol, and summarize evidence used to infer subcellular localization. We also discuss how these metabolites potentially are trafficked within the cell and may be exported.
Collapse
Affiliation(s)
- H. Corby Kistler
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of MinnesotaSaint Paul, MN, USA
| | | |
Collapse
|
12
|
Lim FY, Keller NP. Spatial and temporal control of fungal natural product synthesis. Nat Prod Rep 2014; 31:1277-86. [PMID: 25142354 PMCID: PMC4162804 DOI: 10.1039/c4np00083h] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite their oftentimes-elusive ecological role, fungal natural products have, for better or worse, impacted our daily lives tremendously owing to their diverse and potent bioactive properties. This Janus-faced nature of fungal natural products inevitably ushered in a field of research dedicated towards understanding the ecology, organisms, genes, enzymes, and biosynthetic pathways that give rise to this arsenal of diverse and complex chemistry. Ongoing research in fungal secondary metabolism has not only increased our appreciation for fungal natural products as an asset but also sheds light on the pivotal role that these once-regarded "metabolic wastes" play in fungal biology, defense, and stress response in addition to their potential contributions towards human mycoses. Full orchestration of secondary metabolism requires not only the seamless coordination between temporal and spatial control of SM-associated machineries (e.g. enzymes, cofactors, intermediates, and end-products) but also integration of these machineries into primary metabolic processes and established cellular mechanisms. An intriguing, but little known aspect of microbial natural product synthesis lies in the spatial organization of both pathway intermediates and enzymes responsible for the production of these compounds. In this highlight, we summarize some major breakthroughs in understanding the genes and regulation of fungal natural product synthesis and introduce the current state of knowledge on the spatial and temporal control of fungal natural product synthesis.
Collapse
Affiliation(s)
- Fang Yun Lim
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, U.S.A.,Corresponding author Professor Nancy P. Keller, Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Madison WI, U.S.A., Tel: (608)-262-9795; Fax: (608)-262-8418;
| |
Collapse
|
13
|
Freitag J, Ast J, Linne U, Stehlik T, Martorana D, Bölker M, Sandrock B. Peroxisomes contribute to biosynthesis of extracellular glycolipids in fungi. Mol Microbiol 2014; 93:24-36. [DOI: 10.1111/mmi.12642] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Johannes Freitag
- Department of Biology; Philipps-Universität Marburg; Karl-von-Frisch-Str. 8 35032 Marburg Germany
- Senckenberg Gesellschaft für Naturforschung; Cluster for Integrative Fungal Research; Georg-Voigt-Str. 14-16 60325 Frankfurt am Main Germany
| | - Julia Ast
- Department of Biology; Philipps-Universität Marburg; Karl-von-Frisch-Str. 8 35032 Marburg Germany
| | - Uwe Linne
- Department of Chemistry; Philipps-Universität Marburg; Hans-Meerwein-Str. 2 35032 Marburg Germany
- SYNMIKRO; Philipps-Universität Marburg; Hans-Meerwein-Str. 35032 Marburg Germany
| | - Thorsten Stehlik
- Department of Biology; Philipps-Universität Marburg; Karl-von-Frisch-Str. 8 35032 Marburg Germany
| | - Domenica Martorana
- Department of Biology; Philipps-Universität Marburg; Karl-von-Frisch-Str. 8 35032 Marburg Germany
| | - Michael Bölker
- Department of Biology; Philipps-Universität Marburg; Karl-von-Frisch-Str. 8 35032 Marburg Germany
- SYNMIKRO; Philipps-Universität Marburg; Hans-Meerwein-Str. 35032 Marburg Germany
- LOEWE Excellence Cluster for Integrative Fungal Research (IPF); Philipps-Universität Marburg; Karl-von-Frisch-Str. 8 35032 Marburg Germany
| | - Björn Sandrock
- Department of Biology; Philipps-Universität Marburg; Karl-von-Frisch-Str. 8 35032 Marburg Germany
| |
Collapse
|
14
|
|
15
|
Ren A, Li MJ, Shi L, Mu DS, Jiang AL, Han Q, Zhao MW. Profiling and quantifying differential gene transcription provide insights into ganoderic acid biosynthesis in Ganoderma lucidum in response to methyl jasmonate. PLoS One 2013; 8:e65027. [PMID: 23762280 PMCID: PMC3676390 DOI: 10.1371/journal.pone.0065027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/21/2013] [Indexed: 01/09/2023] Open
Abstract
Ganoderma lucidum is a mushroom with traditional medicinal properties that has been widely used in China and other countries in Eastern Asia. Ganoderic acids (GA) produced by G. lucidum exhibit important pharmacological activities. Previous studies have demonstrated that methyl jasmonate (MeJA) is a potent inducer of GA biosynthesis and the expression of genes involved in the GA biosynthesis pathway in G. lucidum. To further explore the mechanism of GA biosynthesis, cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) was used to identify genes that are differentially expressed in response to MeJA. Using 64 primer combinations, over 3910 transcriptionally derived fragments (TDFs) were obtained. Reliable sequence data were obtained for 390 of 458 selected TDFs. Ninety of these TDFs were annotated with known functions through BLASTX searching the GenBank database, and 12 annotated TDFs were assigned into secondary metabolic pathways by searching the KEGGPATHWAY database. Twenty-five TDFs were selected for qRT-PCR analysis to confirm the expression patterns observed with cDNA-AFLP. The qRT-PCR results were consistent with the altered patterns of gene expression revealed by the cDNA-AFLP technique. Additionally, the transcript levels of 10 genes were measured at the mycelium, primordia, and fruiting body developmental stages of G. lucidum. The greatest expression levels were reached during primordia for all of the genes except cytochrome b2 reached its highest expression level in the mycelium stage. This study not only identifies new candidate genes involved in the regulation of GA biosynthesis but also provides further insight into MeJA-induced gene expression and secondary metabolic response in G. lucidum.
Collapse
Affiliation(s)
- Ang Ren
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing, Jiangsu, P.R. China
| | - Meng-Jiao Li
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing, Jiangsu, P.R. China
| | - Liang Shi
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing, Jiangsu, P.R. China
| | - Da-Shuai Mu
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing, Jiangsu, P.R. China
| | - Ai-Liang Jiang
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing, Jiangsu, P.R. China
| | - Qin Han
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing, Jiangsu, P.R. China
| | - Ming-Wen Zhao
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing, Jiangsu, P.R. China
- * E-mail:
| |
Collapse
|
16
|
Menke J, Weber J, Broz K, Kistler HC. Cellular development associated with induced mycotoxin synthesis in the filamentous fungus Fusarium graminearum. PLoS One 2013; 8:e63077. [PMID: 23667578 PMCID: PMC3646755 DOI: 10.1371/journal.pone.0063077] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/28/2013] [Indexed: 12/21/2022] Open
Abstract
Several species of the filamentous fungus Fusarium colonize plants and produce toxic small molecules that contaminate agricultural products, rendering them unsuitable for consumption. Among the most destructive of these species is F. graminearum, which causes disease in wheat and barley and often infests the grain with harmful trichothecene mycotoxins. Synthesis of these secondary metabolites is induced during plant infection or in culture in response to chemical signals. Our results show that trichothecene biosynthesis involves a complex developmental process that includes dynamic changes in cell morphology and the biogenesis of novel subcellular structures. Two cytochrome P-450 oxygenases (Tri4p and Tri1p) involved in early and late steps in trichothecene biosynthesis were tagged with fluorescent proteins and shown to co-localize to vesicles we provisionally call “toxisomes.” Toxisomes, the inferred site of trichothecene biosynthesis, dynamically interact with motile vesicles containing a predicted major facilitator superfamily protein (Tri12p) previously implicated in trichothecene export and tolerance. The immediate isoprenoid precursor of trichothecenes is the primary metabolite farnesyl pyrophosphate. Changes occur in the cellular localization of the isoprenoid biosynthetic enzyme HMG CoA reductase when cultures non-induced for trichothecene biosynthesis are transferred to trichothecene biosynthesis inducing medium. Initially localized in the cellular endomembrane system, HMG CoA reductase, upon induction of trichothecene biosynthesis, increasingly is targeted to toxisomes. Metabolic pathways of primary and secondary metabolism thus may be coordinated and co-localized under conditions when trichothecene biosynthesis occurs.
Collapse
Affiliation(s)
- Jon Menke
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Jakob Weber
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
- Molekulare Phytopathologie, Universität Hamburg, Hamburg, Germany
| | - Karen Broz
- USDA ARS Cereal Disease Laboratory, St. Paul, Minnesota, United States of America
| | - H. Corby Kistler
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
- USDA ARS Cereal Disease Laboratory, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
Recent studies conducted in our laboratory demonstrate that Aspergillus parasiticus synthesizes and stores aflatoxin in transport vesicles and endosomes. Proteomics data suggest that enzymes involved in the synthesis of other secondary metabolites as well as enzymes involved in response to heat, osmotic, and oxidative stress also localize to these subcellular organelles. In order to better understand how cells integrate the regulation and function of secondary metabolite biosynthesis and stress response, it is important to understand the composition and function of the membrane-bound organelles that house this biosynthetic machinery. Isolation of vesicles, endosomes, and vacuoles (V fraction) is, therefore, an essential method to study secondary metabolism in A. parasiticus at the cellular level. Here, we describe a "one-step density gradient" method for purification of a highly heterogeneous cell fraction consisting of transport vesicles, endosomes, and vacuoles from protoplasts prepared from A. parasiticus cells harvested during aflatoxin synthesis.
Collapse
|
18
|
A vacuolar membrane protein affects drastically the biosynthesis of the ACV tripeptide and the beta-lactam pathway of Penicillium chrysogenum. Appl Microbiol Biotechnol 2012; 97:795-808. [DOI: 10.1007/s00253-012-4256-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/15/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
|
19
|
Xu X, Yang J, An Y, Pan Y, Liu G. Over-expression of pcvA involved in vesicle-vacuolar fusion affects the conidiation and penicillin production in Penicillium chrysogenum. Biotechnol Lett 2011; 34:519-26. [PMID: 22109934 DOI: 10.1007/s10529-011-0792-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/02/2011] [Indexed: 02/04/2023]
Abstract
Rab GTPase is required for vesicle-vacuolar fusion during the vacuolar biogenesis in fungi. Rab GTPase-encoding gene, pcvA, was cloned from Penicillium chrysogenum: it contained five introns and its predicted protein contained the conserved Rab GTPase domain involved in GTP-binding and hydrolysis. Over-expression of pcvA significantly stimulated the vesicle-vacuolar fusion but repressed the conidiation and decreased conidial tolerance against thermal stress. Penicillin production was decreased in the pcvA over-expressed strain suggesting that pcvA is involved in vesicle-vacuolar fusion participates in the penicillin biosynthesis in P. chrysogenum.
Collapse
Affiliation(s)
- Xinxin Xu
- The Key Laboratory of Systematic Mycology and Lichenology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | | | | | |
Collapse
|
20
|
Frandsen RJN, Schütt C, Lund BW, Staerk D, Nielsen J, Olsson S, Giese H. Two novel classes of enzymes are required for the biosynthesis of aurofusarin in Fusarium graminearum. J Biol Chem 2011; 286:10419-28. [PMID: 21296881 DOI: 10.1074/jbc.m110.179853] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have reported the functional characterization of 9 out of 11 genes found in the gene cluster responsible for biosynthesis of the polyketide pigment aurofusarin in Fusarium graminearum. Here we reanalyze the function of a putative aurofusarin pump (AurT) and the two remaining orphan genes, aurZ and aurS. Targeted gene replacement of aurZ resulted in the discovery that the compound YWA1, rather than nor-rubrofusarin, is the primary product of F. graminearum polyketide synthase 12 (FgPKS12). AurZ is the first representative of a novel class of dehydratases that act on hydroxylated γ-pyrones. Replacement of the aurS gene resulted in accumulation of rubrofusarin, an intermediate that also accumulates when the GIP1, aurF, or aurO genes in the aurofusarin cluster are deleted. Based on the shared phenotype and predicted subcellular localization, we propose that AurS is a member of an extracellular enzyme complex (GIP1-AurF-AurO-AurS) responsible for converting rubrofusarin into aurofusarin. This implies that rubrofusarin, rather than aurofusarin, is pumped across the plasma membrane. Replacement of the putative aurofusarin pump aurT increased the rubrofusarin-to- aurofusarin ratio, supporting that rubrofusarin is normally pumped across the plasma membrane. These results provide functional information on two novel classes of proteins and their contribution to polyketide pigment biosynthesis.
Collapse
Affiliation(s)
- Rasmus J N Frandsen
- Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark.
| | | | | | | | | | | | | |
Collapse
|
21
|
Roze LV, Chanda A, Linz JE. Compartmentalization and molecular traffic in secondary metabolism: a new understanding of established cellular processes. Fungal Genet Biol 2010; 48:35-48. [PMID: 20519149 DOI: 10.1016/j.fgb.2010.05.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/11/2010] [Accepted: 05/12/2010] [Indexed: 01/15/2023]
Abstract
Great progress has been made in understanding the regulation of expression of genes involved in secondary metabolism. Less is known about the mechanisms that govern the spatial distribution of the enzymes, cofactors, and substrates that mediate catalysis of secondary metabolites within the cell. Filamentous fungi in the genus Aspergillus synthesize an array of secondary metabolites and provide useful systems to analyze the mechanisms that mediate the temporal and spatial regulation of secondary metabolism in eukaryotes. For example, aflatoxin biosynthesis in Aspergillus parasiticus has been studied intensively because this mycotoxin is highly toxic, mutagenic, and carcinogenic in humans and animals. Using aflatoxin synthesis to illustrate key concepts, this review focuses on the mechanisms by which sub-cellular compartmentalization and intra-cellular molecular traffic contribute to the initiation and completion of secondary metabolism within the cell. We discuss the recent discovery of aflatoxisomes, specialized trafficking vesicles that participate in the compartmentalization of aflatoxin synthesis and export of the toxin to the cell exterior; this work provides a new and clearer understanding of how cells integrate secondary metabolism into basic cellular metabolism via the intra-cellular trafficking machinery.
Collapse
Affiliation(s)
- Ludmila V Roze
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI-48824, USA
| | | | | |
Collapse
|
22
|
Paul GC, Thomas CR. A structured model for hyphal differentiation and penicillin production using Penicillium chrysogenum. Biotechnol Bioeng 2009; 51:558-72. [PMID: 18629820 DOI: 10.1002/(sici)1097-0290(19960905)51:5<558::aid-bit8>3.0.co;2-b] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A structured kinetic model describing growth, differentiation, and penicillin production in submerged Penicillium chrysogenum fermentations is reported. The filamentous hyphae are divided into four distinct regions on the basis of the activities and structure of hyphal compartments, viz., actively growing (mainly apical) regions, nongrowing or penicillin producing regions, vacuoles, and degenerated or metabolically inactive regions. A mechanistic approach is taken to give quantitative descriptions of differentiation and degeneration as a consequence of vacuolation. The growth and degeneration of vacuoles are expressed in the form of a population balance. The model assumes that newly generated vacuoles appear by differentiation of healthy regions, grow in size with limitation of available substrate, and eventually give rise to empty hyphal compartments. In the model the penicillin production is related to the amounts of the nongrowing regions of the hyphae. The model is used for successful predictions of the amounts of the four hyphal regions and the penicillin G production rate throughout the fed-batch fermentations of an industrial P. chrysogenum strain under different glucose feeding regimes. Quantitative information on proportions of the hyphal regions was obtained from image analysis measurements and the parameters of the kinetic model were identified. When the glucose feed rate to the production culture is switched between a high and a low value, the model can successfully predict the dynamic changes of differentiation and the resulting penicillin production caused by the variations in the nutrient conditions. The use of image analysis to characterize differentiation as a basis for structured modeling of the penicillin fermentation appears to be very powerful, and the method has great potential for use in process simulation and control of antibiotic fermentations.
Collapse
Affiliation(s)
- G C Paul
- BBSRC Centre for Biochemical Engineering School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | |
Collapse
|
23
|
Abstract
Eukaryotes have evolved highly conserved vesicle transport machinery to deliver proteins to the vacuole. In this study we show that the filamentous fungus Aspergillus parasiticus employs this delivery system to perform new cellular functions, the synthesis, compartmentalization, and export of aflatoxin; this secondary metabolite is one of the most potent naturally occurring carcinogens known. Here we show that a highly pure vesicle-vacuole fraction isolated from A. parasiticus under aflatoxin-inducing conditions converts sterigmatocystin, a late intermediate in aflatoxin synthesis, to aflatoxin B(1); these organelles also compartmentalize aflatoxin. The role of vesicles in aflatoxin biosynthesis and export was confirmed by blocking vesicle-vacuole fusion using 2 independent approaches. Disruption of A. parasiticus vb1 (encodes a protein homolog of AvaA, a small GTPase known to regulate vesicle fusion in A. nidulans) or treatment with Sortin3 (blocks Vps16 function, one protein in the class C tethering complex) increased aflatoxin synthesis and export but did not affect aflatoxin gene expression, demonstrating that vesicles and not vacuoles are primarily involved in toxin synthesis and export. We also observed that development of aflatoxigenic vesicles (aflatoxisomes) is strongly enhanced under aflatoxin-inducing growth conditions. Coordination of aflatoxisome development with aflatoxin gene expression is at least in part mediated by Velvet (VeA), a global regulator of Aspergillus secondary metabolism. We propose a unique 2-branch model to illustrate the proposed role for VeA in regulation of aflatoxisome development and aflatoxin gene expression.
Collapse
|
24
|
Saikia S, Scott B. Functional analysis and subcellular localization of two geranylgeranyl diphosphate synthases from Penicillium paxilli. Mol Genet Genomics 2009; 282:257-71. [PMID: 19529962 PMCID: PMC2729982 DOI: 10.1007/s00438-009-0463-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 05/28/2009] [Indexed: 10/26/2022]
Abstract
The filamentous fungus Penicillium paxilli contains two distinct geranylgeranyl diphosphate (GGPP) synthases, GgsA and GgsB (PaxG). PaxG and its homologues in Neotyphodium lolii and Fusarium fujikuroi are associated with diterpene secondary metabolite gene clusters. The genomes of other filamentous fungi including Aspergillus fumigatus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae and Fusarium graminearum also contain two or more copies of GGPP synthase genes, although the diterpene metabolite capability of these fungi is not known. The objective of this study was to understand the biological significance of the presence of two copies of GGPP synthases in P. paxilli by investigating their subcellular localization. Using a carotenoid complementation assay and gene deletion analysis, we show that P. paxilli GgsA and PaxG have GGPP synthase activities and that paxG is required for paxilline biosynthesis, respectively. In the DeltapaxG mutant background ggsA was unable to complement paxilline biosynthesis. A GgsA-EGFP fusion protein was localized to punctuate organelles and the EGFP-GRV fusion protein, containing the C-terminus tripeptide GRV of PaxG, was localized to peroxisomes. A truncated PaxG mutant lacking the C-terminus tripeptide GRV was unable to complement a DeltapaxG mutant demonstrating that the tripeptide is functionally important for paxilline biosynthesis.
Collapse
Affiliation(s)
- Sanjay Saikia
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand.
| | | |
Collapse
|
25
|
Abstract
Penicillins and cephalosporins are β‐lactam antibiotics widely used in human medicine. The biosynthesis of these compounds starts by the condensation of the amino acids l‐α‐aminoadipic acid, l‐cysteine and l‐valine to form the tripeptide δ‐l‐α‐aminoadipyl‐l‐cysteinyl‐d‐valine catalysed by the non‐ribosomal peptide ‘ACV synthetase’. Subsequently, this tripeptide is cyclized to isopenicillin N that in Penicillium is converted to hydrophobic penicillins, e.g. benzylpenicillin. In Acremonium and in streptomycetes, isopenicillin N is later isomerized to penicillin N and finally converted to cephalosporin. Expression of genes of the penicillin (pcbAB, pcbC, pendDE) and cephalosporin clusters (pcbAB, pcbC, cefD1, cefD2, cefEF, cefG) is controlled by pleitropic regulators including LaeA, a methylase involved in heterochromatin rearrangement. The enzymes catalysing the last two steps of penicillin biosynthesis (phenylacetyl‐CoA ligase and isopenicillin N acyltransferase) are located in microbodies, as shown by immunoelectron microscopy and microbodies proteome analyses. Similarly, the Acremonium two‐component CefD1–CefD2 epimerization system is also located in microbodies. This compartmentalization implies intracellular transport of isopenicillin N (in the penicillin pathway) or isopenicillin N and penicillin N in the cephalosporin route. Two transporters of the MFS family cefT and cefM are involved in transport of intermediates and/or secretion of cephalosporins. However, there is no known transporter of benzylpenicillin despite its large production in industrial strains.
Collapse
Affiliation(s)
- Juan F Martín
- Institute of Biotechnology of León, Science Park, Avda. Real 1, 24006 León, Spain.
| | | | | |
Collapse
|
26
|
Chanda A, Roze LV, Pastor A, Frame MK, Linz JE. Purification of a vesicle-vacuole fraction functionally linked to aflatoxin synthesis in Aspergillus parasiticus. J Microbiol Methods 2009; 78:28-33. [PMID: 19358865 DOI: 10.1016/j.mimet.2009.03.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 03/31/2009] [Accepted: 03/31/2009] [Indexed: 10/20/2022]
Abstract
Current studies in our laboratory demonstrate a functional link between vesicles, vacuoles and aflatoxin biosynthesis in the filamentous fungus, Aspergillus parasiticus. Under aflatoxin inducing conditions in liquid yeast-extract sucrose medium, A. parasiticus undergoes a shift from vacuole biogenesis to accumulation of an enhanced number of vesicles which exhibit significant heterogeneity in size and density. As a first step in conducting a detailed analysis of the role of these organelles in aflatoxin synthesis, we developed a novel method to purify the vesicle and vacuole fraction using protoplasts prepared from cells harvested during aflatoxin synthesis. The method includes the following steps: 1] preparation of protoplasts from mycelia grown for 36 h under aflatoxin inducing conditions; 2] release of vesicles and vacuoles from purified protoplasts in the presence of Triton X-100; and 3] fractionation of the vesicles and vacuoles using a "one-step high density cushion". The vesicle-vacuole fraction showed a 35 fold enrichment in alpha-mannosidase activity (vacuole marker) and non-detectable succinate dehydrogenase and lactate dehydrogenase activities (mitochondrial and cytoplasmic markers, respectively). Confocal laser scanning microscopy with the vacuole dyes MDY-64 and CMAC demonstrated that the fraction contained pure vesicles and vacuoles and was devoid of membranous debris. Transmission electron microscopy (TEM) confirmed that no mitochondria or unbroken protoplasts contaminated the purified fraction. The purified organelles exhibited significant size heterogeneity with a range of sizes similar to that observed in whole cells and protoplasts.
Collapse
Affiliation(s)
- Anindya Chanda
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
27
|
El-Sabbagh N, Harvey LM, McNeil B. Effects of dissolved carbon dioxide on growth, nutrient consumption, cephalosporin C synthesis and morphology of Acremonium chrysogenum in batch cultures. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2007.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
van der Lende TR, van de Kamp M, Berg M, Sjollema K, Bovenberg RAL, Veenhuis M, Konings WN, Driessen AJM. delta-(L-alpha-Aminoadipyl)-L-cysteinyl-D-valine synthetase, that mediates the first committed step in penicillin biosynthesis, is a cytosolic enzyme. Fungal Genet Biol 2002; 37:49-55. [PMID: 12223189 DOI: 10.1016/s1087-1845(02)00036-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Penicillin biosynthesis by Penicillium chrysogenum is a compartmentalized process. The first catalytic step is mediated by delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACV synthetase), a high molecular mass enzyme that condenses the amino acids L-alpha-aminoadipate, L-cysteine, and L-valine into the tripeptide ACV. ACV synthetase has previously been localized to the vacuole where it is thought to utilize amino acids from the vacuolar pools. We localized ACV synthetase by subcellular fractionation and immuno-electron microscopy under conditions that prevented proteolysis and found it to co-localize with isopenicillin N synthetase in the cytosol, while acyltransferase localizes in microbodies. These data imply that the key enzymatic steps in penicillin biosynthesis are confined to only two compartments, i.e., the cytosol and microbody.
Collapse
Affiliation(s)
- Ted R van der Lende
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Pócsi I, Emri T, Sámi L, Leiter E, Szentirmai A. The glutathione metabolism of the beta-lactam producer filamentous fungus Penicillium chrysogenum. Acta Microbiol Immunol Hung 2002; 48:393-411. [PMID: 11791340 DOI: 10.1556/amicr.48.2001.3-4.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glutathione (gamma-L-glutamyl-L-cysteinyl-glycine; GSH) shares structural similarities with the beta-lactam biosynthetic intermediate ACV-tripeptide (delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine). Not surprisingly, GSH has been reported to inhibit the beta-lactam biosynthetic machinery quite effectively and, hence, strategies to decrease the intracellular GSH concentrations without influencing negatively the physiological status of idiophasic mycelia would attract industrial interests. Here we present a detailed map of the GSH metabolic network of P. chrysogenum and show a promising way to keep the GSH pool selectively down under penicillin producing conditions. This procedure includes a well-controlled and transient lowering of pH at the beginning of the production phase, and it relies on the GSH-dependent detoxification of the protonophore penicillin side-chain precursors phenoxyacetic acid (POA) and phenylacetic acid (PA). Encouraging preliminary fed-batch fermentation experiments have been performed to test this technological proposal. Interestingly, the mechanism of the activation of POA and PA to the appropriate CoA derivatives has remained yet to be answered but the involvement of GSH seems to be rather unlikely in this case. Our data also challenge the hypothesis that the formation of different kinds of penicillins would be an alternative to GSH-dependent detoxification processes in P. chrysogenum.
Collapse
Affiliation(s)
- I Pócsi
- Department of Microbiology and Biotechnology, Faculty of Sciences, University of Debrecen, P.O. Box 63, H-4010 Debrecen, Hungary
| | | | | | | | | |
Collapse
|
30
|
Roehr M. History of biotechnology in Austria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2001; 69:125-49. [PMID: 11036693 DOI: 10.1007/3-540-44964-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Austria has contributed significantly to the progress of the biotechnologies in the past and is actively engaged in doing so today. This review describes the early history of biotechnology in Austria, beginning with the Vienna process of baker's yeast manufacture in 1846, up to the achievements of the 20th century, e.g. the submerged vinegar process, penicillin V, immune biotechnology, biomass as a renewable source of fermentation products (power alcohol, biogas, organic acids etc.), biopulping, biopolymers, biocatalysis, mammalian cell technology, nanotechnology of bacterial surface layers, and environmental biotechnology.
Collapse
Affiliation(s)
- M Roehr
- Institut für Biochemische Technologie und Mikrobiologie, Technische Universität Wien, Austria.
| |
Collapse
|
31
|
Leiter E, Emri T, Gyémánt G, Nagy I, Pócsi I, Winkelmann G, Pócsi I. Penicillin V production by Penicillium chrysogenum in the presence of Fe3+ and in low-iron culture medium. Folia Microbiol (Praha) 2001; 46:127-32. [PMID: 11501399 DOI: 10.1007/bf02873590] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Late-exponential-phase Penicillium chrysogenum mycelia grown in a complex medium possessed an intracellular iron concentration of 650 mumol/L (2.2 +/- 0.6 mumol per g mycelial dry mass). This iron reserve was sufficient to ensure growth and antibiotic production after transferring mycelia into a defined low-iron minimal medium. Although the addition of Fe3+ to the Fe-limited cultures increased significantly the intracellular iron levels the surplus iron did not influence the production of penicillin V. Supplements of purified major P. chrysogenum siderophores (coprogen and ferrichrome) into the fermentation media did not affect the beta-lactam production and intracellular iron level. Neither 150 nor 300 mumol/L extracellular Fe3+ concentrations disturbed the glutathione metabolism of the fungus, and increased the oxidative stress caused by 700 mmol/L H2O2. Nevertheless, when iron was applied in the FeII oxidation state the oxidative cell injuries caused by the peroxide were significantly enhanced.
Collapse
Affiliation(s)
- E Leiter
- Department of Microbiology and Biotechnology, Faculty of Science, University of Debrecen, 4010 Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
32
|
van Gulik WM, de Laat WT, Vinke JL, Heijnen JJ. Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-G. Biotechnol Bioeng 2000; 68:602-18. [PMID: 10799985 DOI: 10.1002/(sici)1097-0290(20000620)68:6<602::aid-bit3>3.0.co;2-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A detailed stoichiometric model was developed for growth and penicillin-G production in Penicillium chrysogenum. From an a priori metabolic flux analysis using this model it appeared that penicillin production requires significant changes in fluxes through the primary metabolic pathways. This is brought about by the biosynthesis of carbon precursors for the beta-lactan nucleus and an increased demand for NADPH, mainly for sulfate reduction. As a result, significant changes in flux partitioning occur around four principal nodes in primary metabolism. These are located at: (1) glucose-6-phosphate; (2) 3-phosphoglycerate; (3) mitochondrial pyruvate; and (4) mitochondrial isocitrate. These nodes should be regarded as potential bottlenecks for increased productivity. The flexibility of these principal nodes was investigated by experimental manipulation of the fluxes through the central metabolic pathways using a high-producing strain of P. chrysogenum. Metabolic fluxes were manipulated through growth of the cells on different substrates in carbon-limited chemostat culture. Metabolic flux analysis, based on measured input and output fluxes, was used to calculate the fluxes around the principal nodes. It was found that, for growth on glucose, ethanol, and acetate, the flux partitioning around these nodes differed significantly. However, this had hardly any effect on penicillin productivity, showing that primary carbon metabolism is not likely to contain potential bottlenecks. Further experiments were performed to manipulate the total metabolic demand for the cofactor nicotinamide adenine dinucleotide phosphate (NADPH). NADPH demand was increased stepwise by cultivating the cells on glucose or xylose as the carbon source combined with either ammonia or nitrate as the nitrogen source, which resulted in a stepwise decrease of penicillin production. This clearly shows that, in penicillin fermentation, possible limitations in primary metabolism reside in the supply/regeneration of cofactors (NADPH) rather than in the supply of carbon precursors.
Collapse
Affiliation(s)
- W M van Gulik
- Delft University of Technology, Kluyver Laboratory for Biotechnology, Julianalaan 67, 2628 BC Delft, The Netherlands.
| | | | | | | |
Collapse
|
33
|
Cossins EA. Canadian Society of Plant Physiologists Gold Medal Review / Synthèse médaillée d'or de la Société canadienne physiologie végétaleThe fascinating world of folate and one-carbon metabolism. ACTA ACUST UNITED AC 2000. [DOI: 10.1139/b00-061] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Folate was first isolated from spinach leaves in 1941 and characterized as pteroylglutamic acid. Although plants, fungi, and bacteria synthesize folate de novo, animal cells lack key enzymes of the folate biosynthetic pathway and a dietary source of folate is required for normal growth and development. Folates have importance in human nutrition, health, and disease, and antifolate drugs are commonly used in cancer chemotherapy. In the majority of living cells folates occur as one-carbon substituted tetrahydropteroylpolyglutamate derivatives. These folates donate one-carbon groups during the synthesis of purines, formylmethionyl-tRNA, thymidylate, serine, and methionine. In the last 30 years, research on the folate biochemistry of plant species has intensified and been aided by the development of improved methods for folate isolation and characterization. These studies have resulted in basic information on the nature of plant folylpolyglutamates, folate biosynthesis, the enzymology of several folate-dependent reactions, and the roles of chloroplasts, mitochondria, and the cytosol in the pathways of one-carbon metabolism.Key words: plants, folates, folate biosynthesis, folate-dependent enzymes, one-carbon metabolism.
Collapse
|
34
|
Brown MP, Brown-Jenco CS, Payne GA. Genetic and molecular analysis of aflatoxin biosynthesis. Fungal Genet Biol 1999; 26:81-98. [PMID: 10328980 DOI: 10.1006/fgbi.1998.1114] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- M P Brown
- InterLink Associates, 11930 Heritage Oak Place, Suite 4, Auburn, California 95603, USA
| | | | | |
Collapse
|
35
|
Tudzynski B, Hölter K. Gibberellin biosynthetic pathway in Gibberella fujikuroi: evidence for a gene cluster. Fungal Genet Biol 1998; 25:157-70. [PMID: 9917370 DOI: 10.1006/fgbi.1998.1095] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Differential screening of a Gibberella fujikuroi cDNA library was used to successfully clone and identify genes involved in the pathway of gibberellin biosynthesis. Several cDNA clones that hybridized preferentially to a cDNA probe prepared from mycelium induced for gibberellin production were isolated and characterized. The deduced amino acid sequences of two (identical) clones contained the conserved heme-binding motif of cytochrome P450 monooxygenases (FXXGXXXCXG). One of these cDNA fragments was used as a homologous probe for the screening of a genomic library. A hybridizing 6.7-kb genomic SalI fragment was cloned into pUC19. The sequencing of this clone revealed that a second cytochrome P450 monooxygenase gene was closely linked to the first one. Since at least four cytochrome P450 monooxygenase-catalyzed steps are involved in the synthesis of gibberellins, chromosome walking was performed to find a further gene of this family or other genes involved in gibberellin pathway. Next to the two P450 monooxygenase genes, a putative geranylgeranyl diphosphate synthase gene, the copalyl diphosphate synthase gene, which is the first specific gene of the gibberellin pathway, and a third P450 monooxygenase gene were identified. These results suggest that at least some of the genes involved in the biosynthesis of gibberellins are closely linked in a gene cluster in G. fujikuroi, as has been recently found for other "dispensable" pathways in fungi.
Collapse
Affiliation(s)
- B Tudzynski
- Institut für Botanik, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, Münster, 48149, Germany
| | | |
Collapse
|
36
|
Abstract
The most commonly used beta-lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporin. Penicillin is produced as an end product by some fungi, most notably by Aspergillus (Emericella) nidulans and Penicillium chrysogenum. Cephalosporins are synthesized by both bacteria and fungi, e.g., by the fungus Acremonium chrysogenum (Cephalosporium acremonium). The biosynthetic pathways leading to both secondary metabolites start from the same three amino acid precursors and have the first two enzymatic reactions in common. Penicillin biosynthesis is catalyzed by three enzymes encoded by acvA (pcbAB), ipnA (pcbC), and aatA (penDE). The genes are organized into a cluster. In A. chrysogenum, in addition to acvA and ipnA, a second cluster contains the genes encoding enzymes that catalyze the reactions of the later steps of the cephalosporin pathway (cefEF and cefG). Within the last few years, several studies have indicated that the fungal beta-lactam biosynthesis genes are controlled by a complex regulatory network, e. g., by the ambient pH, carbon source, and amino acids. A comparison with the regulatory mechanisms (regulatory proteins and DNA elements) involved in the regulation of genes of primary metabolism in lower eukaryotes is thus of great interest. This has already led to the elucidation of new regulatory mechanisms. Furthermore, such investigations have contributed to the elucidation of signals leading to the production of beta-lactams and their physiological meaning for the producing fungi, and they can be expected to have a major impact on rational strain improvement programs. The knowledge of biosynthesis genes has already been used to produce new compounds.
Collapse
Affiliation(s)
- A A Brakhage
- Lehrstuhl für Mikrobiologie, Universität München, D-80638 Munich, Germany.
| |
Collapse
|
37
|
Mach RL, Zeilinger S, Kristufek D, Kubicek CP. Ca2+-calmodulin antagonists interfere with xylanase formation and secretion in Trichoderma reesei. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1403:281-9. [PMID: 9685681 DOI: 10.1016/s0167-4889(98)00068-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The addition of Ca2+-antagonizers (La2+), Ca2+-ionophores (A23187) and Ca2+-complexing agents (EGTA) inhibited the formation of xylanase activity in resting mycelia of Trichoderma reesei. The inhibition by the ionophore was reversed by the addition of Ca2+ ions. A similar inhibitory effect was obtained by the addition of the calmodulin inhibitors, trifluoroperazine, chlorpromazine and quinacrine, hence suggesting that the observed effect of Ca2+ on xylanase formation occurred via calmodulin. The inhibition of xylanase formation by trifluoroperazine was accompanied by an inhibition of formation of the xyn2 transcript, and of the hph (hygromycin B-phosphotransferase-encoding) gene when fused downstream of the 5'-regulatory signals of the T. reesei xyn2 gene, indicating that calmodulin is required for xyn2 induction. At trifluoroperazine concentrations, which inhibited extracellular xylanase formation only slightly (about 30%), the cell-free extracts exhibited slightly increased xylanase activities. Subcellular fractionation showed that in these mycelia, the XYN II protein was distributed over a range of light vesicular fractions. This accumulated XYN II protein had the same Mr as the secreted, extracellular enzyme, indicating that it had already passed Golgi-located preprotein processing. Trifluoroperazine also specifically interfered with the endogenous, Ca2+-dependent phosphorylation of a 20-kDa protein, which was predominantly observed in cell-free extracts from mycelia growing on xylan. From these data, we conclude that calmodulin is required for xylanase II formation by T. reesei both at a transcriptional level as well as at a post-Golgi step of the secretory pathway. We also suggest that at least one of these two steps may be mediated via Ca2+-calmodulin-dependent phosphorylation.
Collapse
Affiliation(s)
- R L Mach
- Abteilung für Mikrobielle Biochemie, Institut für Biochemische Technologie und Mikrobiologie, TU Wien, Getreidemarkt 9/172-5, A-1060 Vienna, Austria
| | | | | | | |
Collapse
|
38
|
Cox PW, Paul GC, Thomas CR. Image analysis of the morphology of filamentous micro-organisms. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 4):817-827. [PMID: 9579057 DOI: 10.1099/00221287-144-4-817] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- P W Cox
- Centre for Bioprocess Engineering, School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - G C Paul
- Centre for Bioprocess Engineering, School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - C R Thomas
- Centre for Bioprocess Engineering, School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
39
|
Paul GC, Thomas CR. Characterisation of mycelial morphology using image analysis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1998; 60:1-59. [PMID: 9468800 DOI: 10.1007/bfb0102278] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Image analysis is now well established in quantifying and characterising microorganisms from fermentation samples. In filamentous fermentations it has become an invaluable tool for characterising complex mycelial morphologies, although it is not yet used extensively in industry. Recent method developments include characterisation of spore germination from the inoculum stage and of the subsequent dispersed and pellet forms. Further methods include characterising vacuolation and simple structural differentiation of mycelia, also from submerged cultures. Image analysis can provide better understanding of the development of mycelial morphology, of the physiological states of the microorganisms in the fermenter, and of their interactions with the fermentation conditions. This understanding should lead to improved design and operation of mycelial fermentations.
Collapse
Affiliation(s)
- G C Paul
- Centre for Bioprocess Engineering, School of Chemical Engineering University of Birmingham, Edgbaston, UK.
| | | |
Collapse
|
40
|
Payne GA, Brown MP. Genetics and physiology of aflatoxin biosynthesis. ANNUAL REVIEW OF PHYTOPATHOLOGY 1998; 36:329-62. [PMID: 15012504 DOI: 10.1146/annurev.phyto.36.1.329] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Aflatoxins are the most thoroughly studied mycotoxins. Elegant early research on the biosynthetic scheme of the pathway has allowed a molecular characterization of aflatoxin biosynthesis and its regulation. Genetic studies on aflatoxin biosynthesis in Aspergillus flavus and A. parasiticus, and sterigmatocystin biosynthesis in A. nidulans, led to the cloning of 17 genes responsible for 12 enzymatic conversions in the AF/ST pathways. Pathway-specific regulation is by a Zn(II)2Cys6 DNA-binding protein that regulates the transcription of all pathway genes. Less is known about the global factors that regulate aflatoxin biosynthesis, but there is a clear link between development and aflatoxin biosynthesis. There is also a large body of information on physiological factors involved in aflatoxin biosynthesis, but it has been difficult to understand their role in the regulation of this pathway. This chapter discusses current knowledge on the molecular biology and genetics of the pathway, and provides a summary of the physiological factors known to influence aflatoxin formation.
Collapse
Affiliation(s)
- G A Payne
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695-7616, USA.
| | | |
Collapse
|
41
|
Karaffa L, Sándor E, Kozma J, Szentirmai A. Methionine enhances sugar consumption, fragmentation, vacuolation and cephalosporin-C production in Acremonium chrysogenum. Process Biochem 1997. [DOI: 10.1016/s0032-9592(97)00003-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
42
|
Kleinkauf H, von Döhren H. Enzymatic generation of complex peptides. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1997; 48:27-53. [PMID: 9204682 DOI: 10.1007/978-3-0348-8861-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
43
|
Emri T, Pócsi I, Szentirmai A. Phenoxyacetic acid induces glutathione-dependent detoxification and depletes the glutathione pool in Penicillium chrysogenum. J Basic Microbiol 1997; 37:181-6. [PMID: 9265740 DOI: 10.1002/jobm.3620370306] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Enzymes of the glutathione-dependent detoxification pathway (glutathione S-transferase and gamma-glutamyl-transpeptidase) were induced, and the glutathione pool was completely depleted by phenoxyacetic acid in Penicillium chrysogenum mycelia incubated for 15 h in a culture medium containing lactose as a carbon source and sodium glutamate as a nitrogen source. A significant increase in both the oxidised glutathione concentrations and the glutathione reductase activities were also observed. 1-Chloro-2,4-dinitrobenzene--a potent substrate and inducer of glutathione S-transferase-initiated very similar physiological changes but no beta-lactam production could be detected in this case. When (NH4)2HPO4 was used as a nitrogen source the penicillin biosynthesis was repressed and the induction of gamma-glutamyltranspeptidase by phenoxyacetic acid was hindered considerably.
Collapse
Affiliation(s)
- T Emri
- Department of Microbiology and Biotechnology, Kossuth Lajos University, Debrecen, Hungary
| | | | | |
Collapse
|
44
|
Kleinkauf H, Von Döhren H. A nonribosomal system of peptide biosynthesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:335-51. [PMID: 8612601 DOI: 10.1111/j.1432-1033.1996.00335.x] [Citation(s) in RCA: 267] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This review covers peptide structures originating from the concerted action of enzyme systems without the direct participation of nucleic acids. Biosynthesis proceeds by formation of linear peptidyl intermediates which may be enzymatically modified as well as transformed into specific cyclic structures. The respective enzyme systems are constructed of biosynthetic modules integrated into multienzyme structures. Genetic and DNA-sequence analysis of biosynthetic gene clusters have revealed extensive similarities between prokaryotic and eukaryotic systems, conserved principles of organisation, and a unique mechanism of transport of intermediates during elongation and modification steps involving 4'-phospho-pantetheine. These similarities permit the identification of peptide synthetases and related aminoacyl-ligases and acyl-ligases from sequence data. Similarities to other biosynthetic systems involved in the assembly of polyketide metabolites are discussed.
Collapse
Affiliation(s)
- H Kleinkauf
- Institute of Biochemistry and Molecular Biology, Technical University Berlin, Germany
| | | |
Collapse
|
45
|
Abstract
Austria is a small European country with a small number of universities and biotechnological industries, but with great efforts in the implementation of environmental consciousness and corresponding legal standards. This review attempts to describe the biotechnological landscape of Austria, thereby focusing on the highlights in research by industry, universities, and research laboratories, as published during 1990 to early 1995. These will include microbial metabolite (organic acids, antibiotics) and biopolymer (polyhydroxibutyrate, S-layers) production; enzyme (cellulases, hemicellulases, ligninases) technology and biocatalysis; environmental biotechnology; plant breeding and plant protection; mammalian cell products; fermenter design; and bioprocess engineering.
Collapse
Affiliation(s)
- C P Kubicek
- Section Microbial Biochemistry, University of Technology of Vienna, Wien, Austria
| |
Collapse
|
46
|
Kleinkauf H, von Döhren H. The nonribosomal peptide biosynthetic system--on the origins of structural diversity of peptides, cyclopeptides and related compounds. Antonie Van Leeuwenhoek 1995; 67:229-42. [PMID: 7539997 DOI: 10.1007/bf00873687] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A variety of peptides have been detected in microorganisms. Some have found applications in various fields, for example the classical beta-lactam antibiotics, immunosuppressors like cyclosporin, promising new antibacterials like teichoplanin or daptomycin and antifungals like echinocandin. For none of these has it been established how their complicated biosynthetic pathways have evolved or what functions they fulfill within or for their producers. So it is unclear what selection processes limit the range of their structural analogues within various groups of microorganisms. We here consider recent data in the field of biosynthesis and how they may suggest mechanisms of genetic diversity. These may illustrate the complexity of genetic and intracellular organization of biosynthetic pathways and indicate the cellular context of some metabolites related to the complex background of the production of each metabolite. Research focusing on various targets like the increase of productivity of fermentations or the spread of resistances to antibacterials is slowly being understood.
Collapse
Affiliation(s)
- H Kleinkauf
- Institute of Biochemistry and Molecular Biology, Technical University Berlin, Germany
| | | |
Collapse
|
47
|
Abstract
If we include beta-lactam antibiotics on the grounds that they have the same biosynthetic origin, peptides remain commercially the most important group of pharmaceuticals. However, our increasing knowledge of the genetic and enzymic background to biosynthesis, and of the regulation of metabolite production, will eventually bring a more unified approach to bioactive compounds. Mixing of structural types will become important, and we will be able to use our knowledge of biosynthetic genes and their regulatory networks. We will also benefit from an appreciation of the modular organization of catalytic functions, substrate transfer mechanisms and signalling between interacting enzymes. Since all of this is, in fact, the basis for enzymic synthesis of complex natural products in vivo, the exploitation of living cells requires mastery of a formidable network of cellular controls and compartments. For the present we are able to see fascinating connections emerging between genes in a variety of reaction sequences, not only in biosynthetic but also in degradative pathways. Peptide synthetases show surprising similarities to acylcoenzyme A synthetases, which are key enzymes in forming polyketides as well as in generating the CoA-derivatives that serve as substrates in degradative pathways. 4'-Phosphopantetheine, the functional half of CoA, plays a key role as the intrinsic transfer cofactor in various multienzyme systems. The comparatively small catalogue of reactions modifying natural products, notably epimerization, methylation, hydroxylation, decarboxylation (of peptides) and reduction/dehydration (of polyketides) can be found within or amongst biosynthetic proteins, generally as modules and organized in a specified order. The biochemist is coming close to the synthetic chemist's recipes, and may soon be recruiting proteins to carry them out.
Collapse
Affiliation(s)
- H von Döhren
- Institut für Biochemie und Molekulare Biologie Technische Universitt Berlin, Germany
| |
Collapse
|
48
|
Hillenga DJ, Versantvoort HJ, Driessen AJ, Konings WN. Structural and functional properties of plasma membranes from the filamentous fungus Penicillium chrysogenum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 224:581-7. [PMID: 7925375 DOI: 10.1111/j.1432-1033.1994.t01-1-00581.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Functional plasma membranes from the filamentous fungus Penicillium chrysogenum have been isolated with the objective of studying transport processes. The isolation procedure consists of three steps, namely homogenization of cells with a Braun MSK homogenizer, followed by Percoll gradient centrifugation and floatation of membranes in a three-step Nycodenz gradient. This method can be applied to strains which differ significantly in morphology and penicillin-production capacity. Plasma membranes were fused with liposomes containing the beef heart mitochondrial cytochrome-c oxidase. In the presence of reduced cytochrome c, the hybrid membranes maintained a high proton motive force that functions as a driving force for the uptake of the amino acids arginine and valine via distinct transport systems.
Collapse
Affiliation(s)
- D J Hillenga
- Department of Microbiology, Unviersity of Groningen, The Netherlands
| | | | | | | |
Collapse
|
49
|
Cohen G, Argaman A, Schreiber R, Mislovati M, Aharonowitz Y. The thioredoxin system of Penicillium chrysogenum and its possible role in penicillin biosynthesis. J Bacteriol 1994; 176:973-84. [PMID: 8106340 PMCID: PMC205147 DOI: 10.1128/jb.176.4.973-984.1994] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Penicillium chrysogenum is an important producer of penicillin antibiotics. A key step in their biosynthesis is the oxidative cyclization of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV) to isopenicillin N by the enzyme isopenicillin N synthase (IPNS). bis-ACV, the oxidized disulfide form of ACV is, however, not a substrate for IPNS. We report here the characterization of a broad-range disulfide reductase from P. chrysogenum that efficiently reduces bis-ACV to the thiol monomer. When coupled in vitro with IPNS, it converts bis-ACV to isopenicillin N and may therefore play a role in penicillin biosynthesis. The disulfide reductase consists of two protein components, a 72-kDa NADPH-dependent reductase, containing two identical subunits, and a 12-kDa general disulfide reductant. The latter reduces disulfide bonds in low-molecular-weight compounds and in proteins. The genes coding for the reductase system were cloned and sequenced. Both possess introns. A comparative analysis of their predicted amino acid sequences showed that the 12-kDa protein shares 26 to 60% sequence identity with thioredoxins and that the 36-kDa protein subunit shares 44 to 49% sequence identity with the two known bacterial thioredoxin reductases. In addition, the P. chrysogenum NADPH-dependent reductase is able to accept thioredoxin as a substrate. These results establish that the P. chrysogenum broad-range disulfide reductase is a member of the thioredoxin family of oxidoreductases. This is the first example of the cloning of a eucaryotic thioredoxin reductase gene.
Collapse
Affiliation(s)
- G Cohen
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel
| | | | | | | | | |
Collapse
|
50
|
Aharonowitz Y, Bergmeyer J, Cantoral JM, Cohen G, Demain AL, Fink U, Kinghorn J, Kleinkauf H, MacCabe A, Palissa H. Delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase, the multienzyme integrating the four primary reactions in beta-lactam biosynthesis, as a model peptide synthetase. BIO/TECHNOLOGY (NATURE PUBLISHING COMPANY) 1993; 11:807-10. [PMID: 7763859 DOI: 10.1038/nbt0793-807] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
ACV synthetase forms the tripeptide precursor of penicillins and cephalosporins from alpha-aminoadipate, cysteine, and valine. Catalytic sites for substrate carboxyl activation as adenylates, peptide bond formations, epimerization and release of the tripeptide-thioester are integrated in multifunctional enzymes of 405 to 425 kD. These have been characterized from several pro- and eukaryotic beta-lactam producers. Implications of these results for the thio-template mechanism of peptide formation are discussed, as well as the use of this multienzyme as a model system for enzymatic peptide synthesis.
Collapse
Affiliation(s)
- Y Aharonowitz
- Institut für Biochemie und Molekulare Biologie, Technische Universität Berlin, F.R.G
| | | | | | | | | | | | | | | | | | | |
Collapse
|