1
|
Kim YT, Huh JW, Choi YH, Yoon HK, Nguyen TT, Chun E, Jeong G, Park S, Ahn S, Lee WK, Noh YW, Lee KS, Ahn HS, Lee C, Lee SM, Kim KS, Suh GJ, Jeon K, Kim S, Jin M. Highly secreted tryptophanyl tRNA synthetase 1 as a potential theranostic target for hypercytokinemic severe sepsis. EMBO Mol Med 2024; 16:40-63. [PMID: 38177528 PMCID: PMC10883277 DOI: 10.1038/s44321-023-00004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 01/06/2024] Open
Abstract
Despite intensive clinical and scientific efforts, the mortality rate of sepsis remains high due to the lack of precise biomarkers for patient stratification and therapeutic guidance. Secreted human tryptophanyl-tRNA synthetase 1 (WARS1), an endogenous ligand for Toll-like receptor (TLR) 2 and TLR4 against infection, activates the genes that signify the hyperinflammatory sepsis phenotype. High plasma WARS1 levels stratified the early death of critically ill patients with sepsis, along with elevated levels of cytokines, chemokines, and lactate, as well as increased numbers of absolute neutrophils and monocytes, and higher Sequential Organ Failure Assessment (SOFA) scores. These symptoms were recapitulated in severely ill septic mice with hypercytokinemia. Further, injection of WARS1 into mildly septic mice worsened morbidity and mortality. We created an anti-human WARS1-neutralizing antibody that suppresses proinflammatory cytokine expression in marmosets with endotoxemia. Administration of this antibody into severe septic mice attenuated cytokine storm, organ failure, and early mortality. With antibiotics, the antibody almost completely prevented fatalities. These data imply that blood-circulating WARS1-guided anti-WARS1 therapy may provide a novel theranostic strategy for life-threatening systemic hyperinflammatory sepsis.
Collapse
Affiliation(s)
- Yoon Tae Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Jin Won Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yun Hui Choi
- R&D Center, MirimGENE, Incheon, Republic of Korea
| | | | | | - Eunho Chun
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Geunyeol Jeong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Sunyoung Park
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Sungwoo Ahn
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Won-Kyu Lee
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, Republic of Korea
| | - Young-Woock Noh
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, Republic of Korea
| | - Kyoung Sun Lee
- Non-Clinical Evaluation Center, Osong Medical Innovation Foundation, Cheongju, Republic of Korea
| | - Hee-Sung Ahn
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Cheolju Lee
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Sang Min Lee
- Department of Internal Medicine, Gil Medical Center, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Kyung Su Kim
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gil Joon Suh
- Department of Emergency Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyeongman Jeon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, The interdisciplinary graduate program in integrative biotechnology, College of Pharmacy & College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon, Republic of Korea
| | - Mirim Jin
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea.
- R&D Center, MirimGENE, Incheon, Republic of Korea.
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea.
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
2
|
Yokosawa T, Wakasugi K. Tryptophan-Starved Human Cells Overexpressing Tryptophanyl-tRNA Synthetase Enhance High-Affinity Tryptophan Uptake via Enzymatic Production of Tryptophanyl-AMP. Int J Mol Sci 2023; 24:15453. [PMID: 37895133 PMCID: PMC10607379 DOI: 10.3390/ijms242015453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Our previous study demonstrated that L-tryptophan (Trp)-depleted cells display a marked enhancement in Trp uptake facilitated by extracellular tryptophanyl-tRNA synthetase (TrpRS). Here, we show that Trp uptake into TrpRS-overexpressing cells is also markedly elevated upon Trp starvation. These findings indicate that a Trp-deficient condition is critical for Trp uptake, not only into cells to which TrpRS protein has been added but also into TrpRS-overexpressing cells. We also show that overexpression of TrpRS mutants, which cannot synthesize tryptophanyl-AMP, does not promote Trp uptake, and that inhibition of tryptophanyl-AMP synthesis suppresses this uptake. Overall, these data suggest that tryptophanyl-AMP production by TrpRS is critical for high-affinity Trp uptake.
Collapse
Affiliation(s)
- Takumi Yokosawa
- Komaba Organization for Educational Excellence, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Keisuke Wakasugi
- Komaba Organization for Educational Excellence, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Biros E, Malabu UH, Vangaveti VN, Birosova E, Moran CS. The IFN-γ-mini/TrpRS signaling axis: an insight into the pathophysiology of osteoporosis and therapeutic potential. Cytokine Growth Factor Rev 2022; 64:7-11. [DOI: 10.1016/j.cytogfr.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022]
|
4
|
Paley EL. Towards Understanding COVID-19: Molecular Insights, Co-infections, Associated Disorders, and Aging. J Alzheimers Dis Rep 2021; 5:571-600. [PMID: 34514341 PMCID: PMC8385430 DOI: 10.3233/adr-210010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND COVID-19 can be related to any diseases caused by microbial infection(s) because 1) co-infection with COVID-19-related virus and other microorganism(s) and 2) because metabolites produced by microorganisms such as bacteria, fungi, and protozoan can be involved in necrotizing pneumonia and other necrotizing medical conditions observed in COVID-19. OBJECTIVE By way of illustration, the microbial metabolite of aromatic amino acid tryptophan, a biogenic amine tryptamine inducing neurodegeneration in cell and animal models, also induces necrosis. METHODS This report includes analysis of COVID-19 positivity by zip codes in Florida and relation of the positivity to population density, possible effect of ecological and social factors on spread of COVID-19, autopsy analysis of COVID-19 cases from around the world, serum metabolomics analysis, and evaluation of autoantigenome related to COVID-19. RESULTS In the present estimations, COVID-19 positivity percent per zip code population varied in Florida from 4.65% to 44.3% (February 2021 data). COVID-19 analysis is partially included in my book Microbial Metabolism and Disease (2021). The autoantigenome related to COVID-19 is characterized by alterations in protein biosynthesis proteins including aminoacyl-tRNA synthetases. Protein biosynthesis alteration is a feature of Alzheimer's disease. Serum metabolomics of COVID-19 positive patients show alteration in shikimate pathway metabolism, which is associated with the presence of Alzheimer's disease-associated human gut bacteria. CONCLUSION Such alterations in microbial metabolism and protein biosynthesis can lead to toxicity and neurodegeneration as described earlier in my book Protein Biosynthesis Interference in Disease (2020).
Collapse
Affiliation(s)
- Elena L. Paley
- Expert BioMed, Inc. and Nonprofit Public Charity Stop Alzheimers Corp., Miami-Dade, FL, USA
| |
Collapse
|
5
|
Li J, Zhu K, Miao L, Rong L, Zhao Y, Li S, Ma L, Li J, Zhang C, Xiao D, Foo JL, Yu A. Simultaneous Improvement of Limonene Production and Tolerance in Yarrowia lipolytica through Tolerance Engineering and Evolutionary Engineering. ACS Synth Biol 2021; 10:884-896. [PMID: 33715363 DOI: 10.1021/acssynbio.1c00052] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Limonene is an important plant natural product widely used in food and cosmetics production as well as in the pharmaceutical and chemical industries. However, low efficiency of plant extraction and high energy consumption in chemical synthesis limit the sustainability of industrial limonene production. Recently, the advancement of metabolic engineering and synthetic biology has facilitated the engineering of microbes into microbial cell factories for producing limonene. However, the deleterious effects on cellular activity by the toxicity of limonene is the major obstacle in achieving high-titer production of limonene in engineered microbes. In this study, by using transcriptomics, we identified 82 genes from the nonconventional yeast Yarrowia lipolytica that were up-regulated when exposed to limonene. When overexpressed, 8 of the gene candidates improved tolerance of this yeast to exogenously added limonene. To determine whether overexpression of these genes could also improve limonene production, we individually coexpressed the tolerance-enhancing genes with a limonene synthase gene. Indeed, expression of 5 of the 8 candidate genes enhanced limonene production in Y. lipolytica. Particularly, overexpressing YALI0F19492p led to an 8-fold improvement in product titer. Furthermore, through short-term adaptive laboratory evolution strategy, in combination with morphological and cytoplasmic membrane integrity analysis, we shed light on the underlying mechanism of limonene cytotoxicity to Y. lipolytica. This study demonstrated an effective strategy for improving limonene tolerance of Y. lipolytica and limonene titer in the host strain through the combinatorial use of tolerance engineering and evolutionary engineering.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 13th Street TEDA, Tianjin 300457, PR China
| | - Kun Zhu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 13th Street TEDA, Tianjin 300457, PR China
| | - Lin Miao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 13th Street TEDA, Tianjin 300457, PR China
| | - Lanxin Rong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 13th Street TEDA, Tianjin 300457, PR China
| | - Yu Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 13th Street TEDA, Tianjin 300457, PR China
| | - Shenglong Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 13th Street TEDA, Tianjin 300457, PR China
| | - Lijuan Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 13th Street TEDA, Tianjin 300457, PR China
| | - Jianxun Li
- Agricultural Processing Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Cuiying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 13th Street TEDA, Tianjin 300457, PR China
| | - Dongguang Xiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 13th Street TEDA, Tianjin 300457, PR China
| | - Jee Loon Foo
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 117456 Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 13th Street TEDA, Tianjin 300457, PR China
| |
Collapse
|
6
|
Mini-TrpRS is essential for IFNγ-induced monocyte-derived giant cell formation. Cytokine 2021; 142:155486. [PMID: 33721618 DOI: 10.1016/j.cyto.2021.155486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/07/2021] [Accepted: 02/24/2021] [Indexed: 11/24/2022]
Abstract
Truncated tryptophanyl-tRNA synthetase (mini-TrpRS), like any other aminoacyl-tRNA synthetases, canonically functions as a protein synthesis enzyme. Here we provide evidence for an additional signaling role of mini-TrpRS in the formation of monocyte-derived multinuclear giant cells (MGCs). Interferon-gamma (IFNγ) readily induced monocyte aggregation leading to MGC formation with paralleled marked upregulation of mini-TrpRS. Small interfering (si)RNA, targeting mini-TrpRS in the presence of IFNγ prevented monocyte aggregation. Moreover, blockade of mini-TrpRS, either by siRNA, or the cognate amino acid and decoy substrate D-Tryptophan to prevent mini-TrpRS signaling, resulted in a marked reduction in expression of the purinergic receptor P2X 7 (P2RX7) in monocytes activated by IFNγ. Our findings identify mini-TrpRS as a critical signaling molecule in a mechanism by which IFNγ initiates monocyte-derived giant cell formation.
Collapse
|
7
|
Wickström R, Fowler Å, Goiny M, Millischer V, Ygberg S, Schwieler L. The Kynurenine Pathway is Differentially Activated in Children with Lyme Disease and Tick-Borne Encephalitis. Microorganisms 2021; 9:microorganisms9020322. [PMID: 33557172 PMCID: PMC7913947 DOI: 10.3390/microorganisms9020322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 01/03/2023] Open
Abstract
In children, tick-borne encephalitis and neuroborreliosis are common infections affecting the central nervous system. As inflammatory pathways including cytokine expression are activated in these children and appear to be of importance for outcome, we hypothesized that induction of the kynurenine pathway may be part of the pathophysiological mechanism. Inflammatory biomarkers were analyzed in cerebrospinal fluid from 22 children with tick-borne encephalitis (TBE), 34 children with neuroborreliosis (NB) and 6 children with no central nervous system infection. Cerebrospinal fluid levels of kynurenine and kynurenic acid were increased in children with neuroborreliosis compared to the comparison group. A correlation was seen between expression of several cerebrospinal fluid cytokines and levels of kynurenine and kynurenic acid in children with neuroborreliosis but not in children with tick-borne encephalitis. These findings demonstrate a strong induction of the kynurenine pathway in children with neuroborreliosis which differs from that seen in children with tick-borne encephalitis. The importance of brain kynurenic acid (KYNA) in both immune modulation and neurotransmission raises the possibility that abnormal levels of the compound in neuroborreliosis might be of importance for the pathophysiology of the disease. Drugs targeting the enzymes of this pathway may open the venue for novel therapeutic interventions.
Collapse
Affiliation(s)
- Ronny Wickström
- Neuropediatric Unit, Department for Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden; (R.W.); (S.Y.)
| | - Åsa Fowler
- Division of Paediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden;
| | - Michel Goiny
- Department of Physiology & Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Vincent Millischer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria;
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sofia Ygberg
- Neuropediatric Unit, Department for Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden; (R.W.); (S.Y.)
| | - Lilly Schwieler
- Department of Physiology & Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Correspondence: ; Tel.: +46-707489402; Fax: +46-8-310-622
| |
Collapse
|
8
|
Yokosawa T, Sato A, Wakasugi K. Tryptophan Depletion Modulates Tryptophanyl-tRNA Synthetase-Mediated High-Affinity Tryptophan Uptake into Human Cells. Genes (Basel) 2020; 11:genes11121423. [PMID: 33261077 PMCID: PMC7760169 DOI: 10.3390/genes11121423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/07/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
The novel high-affinity tryptophan (Trp)-selective transport system is present at elevated levels in human interferon-γ (IFN-γ)-treated and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells. High-affinity Trp uptake into cells results in extracellular Trp depletion and immune suppression. We have previously shown that both IDO1 and tryptophanyl-tRNA synthetase (TrpRS), whose expression levels are increased by IFN-γ, have a crucial function in high-affinity Trp uptake into human cells. Here, we aimed to elucidate the relationship between TrpRS and IDO1 in high-affinity Trp uptake. We demonstrated that overexpression of IDO1 in HeLa cells drastically enhances high-affinity Trp uptake upon addition of purified TrpRS protein to uptake assay buffer. We also clarified that high-affinity Trp uptake by Trp-starved cells is significantly enhanced by the addition of TrpRS protein to the assay buffer. Moreover, we showed that high-affinity Trp uptake is also markedly elevated by the addition of TrpRS protein to the assay buffer of cells overexpressing another Trp-metabolizing enzyme, tryptophan 2,3-dioxygenase (TDO2). Taken together, we conclude that Trp deficiency is crucial for high-affinity Trp uptake mediated by extracellular TrpRS.
Collapse
Affiliation(s)
- Takumi Yokosawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
| | - Aomi Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan;
| | - Keisuke Wakasugi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan;
- Correspondence: ; Tel.: +81-3-5454-4392
| |
Collapse
|
9
|
Wakasugi K, Yokosawa T. Non-canonical functions of human cytoplasmic tyrosyl-, tryptophanyl- and other aminoacyl-tRNA synthetases. Enzymes 2020; 48:207-242. [PMID: 33837705 DOI: 10.1016/bs.enz.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aminoacyl-tRNA synthetases catalyze the aminoacylation of their cognate tRNAs. Here we review the accumulated knowledge of non-canonical functions of human cytoplasmic aminoacyl-tRNA synthetases, especially tyrosyl- (TyrRS) and tryptophanyl-tRNA synthetase (TrpRS). Human TyrRS and TrpRS have an extra domain. Two distinct cytokines, i.e., the core catalytic "mini TyrRS" and the extra C-domain, are generated from human TyrRS by proteolytic cleavage. Moreover, the core catalytic domains of human TyrRS and TrpRS function as angiogenic and angiostatic factors, respectively, whereas the full-length forms are inactive for this function. It is also known that many synthetases change their localization in response to a specific signal and subsequently exhibit alternative functions. Furthermore, some synthetases function as sensors for amino acids by changing their protein interactions in an amino acid-dependent manner. Further studies will be necessary to elucidate regulatory mechanisms of non-canonical functions of aminoacyl-tRNA synthetases in particular, by analyzing the effect of their post-translational modifications.
Collapse
Affiliation(s)
- Keisuke Wakasugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Takumi Yokosawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Abstract
Tryptophan (TRP), an essential amino acid in mammals, is involved in several physiological processes including neuronal function, immunity, and gut homeostasis. In humans, TRP is metabolized via the kynurenine and serotonin pathways, leading to the generation of biologically active compounds, such as serotonin, melatonin and niacin. In addition to endogenous TRP metabolism, resident gut microbiota also contributes to the production of specific TRP metabolites and indirectly influences host physiology. The variety of physiologic functions regulated by TRP reflects the complex pattern of diseases associated with altered homeostasis. Indeed, an imbalance in the synthesis of TRP metabolites has been associated with pathophysiologic mechanisms occurring in neurologic and psychiatric disorders, in chronic immune activation and in the immune escape of cancer. In this chapter, the role of TRP metabolism in health and disease is presented. Disorders involving the central nervous system, malignancy, inflammatory bowel and cardiovascular disease are discussed.
Collapse
Affiliation(s)
- Stefano Comai
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Antonella Bertazzo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Martina Brughera
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Sara Crotti
- Institute of Paediatric Research-Città della Speranza, Padua, Italy.
| |
Collapse
|
11
|
Jobin PG, Solis N, Machado Y, Bell PA, Kwon NH, Kim S, Overall CM, Butler GS. Matrix metalloproteinases inactivate the proinflammatory functions of secreted moonlighting tryptophanyl-tRNA synthetase. J Biol Chem 2019; 294:12866-12879. [PMID: 31324718 DOI: 10.1074/jbc.ra119.009584] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/11/2019] [Indexed: 01/08/2023] Open
Abstract
Tryptophanyl-tRNA synthetase (WRS) is a cytosolic aminoacyl-tRNA synthetase essential for protein synthesis. WRS is also one of a growing number of intracellular proteins that are attributed distinct noncanonical "moonlighting" functions in the extracellular milieu. Moonlighting aminoacyl-tRNA synthetases regulate processes such as inflammation, but how these multifunctional enzymes are themselves regulated remains unclear. Here, we demonstrate that WRS is secreted from human macrophages, fibroblasts, and endothelial cells in response to the proinflammatory cytokine interferon γ (IFNγ). WRS signaled primarily through Toll-like receptor 2 (TLR2) in macrophages, leading to phosphorylation of the p65 subunit of NF-κB with associated loss of NF-κB inhibitor α (IκB-α) protein. This signaling initiated secretion of tumor necrosis factor α (TNFα) and CXCL8 (IL8) from macrophages. We also demonstrated that WRS is a potent monocyte chemoattractant. Of note, WRS increased matrix metalloproteinase (MMP) activity in the conditioned medium of macrophages in a TNFα-dependent manner. Using purified recombinant proteins and LC-MS/MS to identify proteolytic cleavage sites, we demonstrated that multiple MMPs, but primarily macrophage MMP7 and neutrophil MMP8, cleave secreted WRS at several sites. Loss of the WHEP domain following cleavage at Met48 generated a WRS proteoform that also results from alternative splicing, designated Δ1-47 WRS. The MMP-cleaved WRS lacked TLR signaling and proinflammatory activities. Thus, our results suggest that moonlighting WRS promotes IFNγ proinflammatory activities, and these responses can be dampened by MMPs.
Collapse
Affiliation(s)
- Parker G Jobin
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nestor Solis
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Faculty of Dentistry, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yoan Machado
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Faculty of Dentistry, Vancouver, British Columbia V6T 1Z3, Canada
| | - Peter A Bell
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Faculty of Dentistry, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nam Hoon Kwon
- College of Pharmacy, Seoul National University, 151-742 Seoul, Republic of Korea; Medicinal Bioconvergance Research Center, Seoul National University, 151-742 Seoul, Republic of Korea
| | - Sunghoon Kim
- College of Pharmacy, Seoul National University, 151-742 Seoul, Republic of Korea; Medicinal Bioconvergance Research Center, Seoul National University, 151-742 Seoul, Republic of Korea
| | - Christopher M Overall
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Faculty of Dentistry, Vancouver, British Columbia V6T 1Z3, Canada.
| | - Georgina S Butler
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Faculty of Dentistry, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
12
|
Lazar IM, Karcini A, Ahuja S, Estrada-Palma C. Proteogenomic Analysis of Protein Sequence Alterations in Breast Cancer Cells. Sci Rep 2019; 9:10381. [PMID: 31316139 PMCID: PMC6637242 DOI: 10.1038/s41598-019-46897-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 07/04/2019] [Indexed: 12/04/2022] Open
Abstract
Cancer evolves as a result of an accumulation of mutations and chromosomal aberrations. Developments in sequencing technologies have enabled the discovery and cataloguing of millions of such mutations. The identification of protein-level alterations, typically by using reversed-phase protein arrays or mass spectrometry, has lagged, however, behind gene and transcript-level observations. In this study, we report the use of mass spectrometry for detecting the presence of mutations-missense, indels and frame shifts-in MCF7 and SKBR3 breast cancer, and non-tumorigenic MCF10A cells. The mutations were identified by expanding the database search process of raw mass spectrometry files by including an in-house built database of mutated peptides (XMAn-v1) that complemented a minimally redundant, canonical database of Homo sapiens proteins. The work resulted in the identification of nearly 300 mutated peptide sequences, of which ~50 were characterized by quality tandem mass spectra. We describe the criteria that were used to select the mutated peptide sequences, evaluate the parameters that characterized these peptides, and assess the artifacts that could have led to false peptide identifications. Further, we discuss the functional domains and biological processes that may be impacted by the observed peptide alterations, and how protein-level detection can support the efforts of identifying cancer driving mutations and genes. Mass spectrometry data are available via ProteomeXchange with identifier PXD014458.
Collapse
Affiliation(s)
- Iulia M Lazar
- Department of Biological Sciences, Virginia Tech 1981 Kraft Drive, Blacksburg, VA, 24061, USA. .,Carilion School of Medicine and Virginia Tech 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
| | - Arba Karcini
- Department of Biological Sciences, Virginia Tech 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Shreya Ahuja
- Department of Biological Sciences, Virginia Tech 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Carly Estrada-Palma
- Department of Biochemistry, Virginia Tech 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| |
Collapse
|
13
|
Miyanokoshi M, Yokosawa T, Wakasugi K. Tryptophanyl-tRNA synthetase mediates high-affinity tryptophan uptake into human cells. J Biol Chem 2018; 293:8428-8438. [PMID: 29666190 DOI: 10.1074/jbc.ra117.001247] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/03/2018] [Indexed: 01/08/2023] Open
Abstract
The tryptophan (Trp) transport system has a high affinity and selectivity toward Trp, and has been reported to exist in both human and mouse macrophages. Although this system is highly expressed in interferon-γ (IFN-γ)-treated cells and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells, its identity remains incompletely understood. Tryptophanyl-tRNA synthetase (TrpRS) is also highly expressed in IFN-γ-treated cells and also has high affinity and selectivity for Trp. Here, we investigated the effects of human TrpRS expression on Trp uptake into IFN-γ-treated human THP-1 monocytes or HeLa cells. Inhibition of human TrpRS expression by TrpRS-specific siRNAs decreased and overexpression of TrpRS increased Trp uptake into the cells. Of note, the TrpRS-mediated uptake system had more than hundred-fold higher affinity for Trp than the known System L amino acid transporter, promoted uptake of low Trp concentrations, and had very high Trp selectivity. Moreover, site-directed mutagenesis experiments indicated that Trp- and ATP-binding sites, but not tRNA-binding sites, in TrpRS are essential for TrpRS-mediated Trp uptake into the human cells. We further demonstrate that the addition of purified TrpRS to cell culture medium increases Trp uptake into cells. Taken together, our results reveal that TrpRS plays an important role in high-affinity Trp uptake into human cells.
Collapse
Affiliation(s)
- Miki Miyanokoshi
- From the Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan and
| | - Takumi Yokosawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keisuke Wakasugi
- From the Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan and .,Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
Paley EL, Perry G. Towards an Integrative Understanding of tRNA Aminoacylation-Diet-Host-Gut Microbiome Interactions in Neurodegeneration. Nutrients 2018; 10:nu10040410. [PMID: 29587458 PMCID: PMC5946195 DOI: 10.3390/nu10040410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023] Open
Abstract
Transgenic mice used for Alzheimer’s disease (AD) preclinical experiments do not recapitulate the human disease. In our models, the dietary tryptophan metabolite tryptamine produced by human gut microbiome induces tryptophanyl-tRNA synthetase (TrpRS) deficiency with consequent neurodegeneration in cells and mice. Dietary supplements, antibiotics and certain drugs increase tryptamine content in vivo. TrpRS catalyzes tryptophan attachment to tRNAtrp at initial step of protein biosynthesis. Tryptamine that easily crosses the blood–brain barrier induces vasculopathies, neurodegeneration and cell death via TrpRS competitive inhibition. TrpRS inhibitor tryptophanol produced by gut microbiome also induces neurodegeneration. TrpRS inhibition by tryptamine and its metabolites preventing tryptophan incorporation into proteins lead to protein biosynthesis impairment. Tryptophan, a least amino acid in food and proteins that cannot be synthesized by humans competes with frequent amino acids for the transport from blood to brain. Tryptophan is a vulnerable amino acid, which can be easily lost to protein biosynthesis. Some proteins marking neurodegenerative pathology, such as tau lack tryptophan. TrpRS exists in cytoplasmic (WARS) and mitochondrial (WARS2) forms. Pathogenic gene variants of both forms cause TrpRS deficiency with consequent intellectual and motor disabilities in humans. The diminished tryptophan-dependent protein biosynthesis in AD patients is a proof of our model-based disease concept.
Collapse
Affiliation(s)
- Elena L Paley
- Expert Biomed, Inc., 11933 SW 271st TER Homestead, Miami Dade, FL 33032-3305, USA.
- Stop Alzheimers Corp., Miami Dade, FL 33032, USA.
- Nova Southeastern University, 3301 College Ave, Fort Lauderdale, FL 33314, USA.
| | - George Perry
- Stop Alzheimers Corp., Miami Dade, FL 33032, USA.
- University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA.
| |
Collapse
|
15
|
Sykes EK, McDonald CE, Ghazanfar S, Mactier S, Thompson JF, Scolyer RA, Yang JY, Mann GJ, Christopherson RI. A 14-Protein Signature for Rapid Identification of Poor Prognosis Stage III Metastatic Melanoma. Proteomics Clin Appl 2017; 12:e1700094. [PMID: 29227041 DOI: 10.1002/prca.201700094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/08/2017] [Indexed: 11/10/2022]
Abstract
PURPOSE To validate differences in protein levels between good and poor prognosis American Joint Committee on Cancer (AJCC) stage III melanoma patients and compile a protein panel to stratify patient risk. EXPERIMENTAL DESIGN Protein extracts from melanoma metastases within lymph nodes in patients with stage III disease with good (n = 16, >4 years survival) and poor survival (n = 14, <2 years survival) were analyzed by selected reaction monitoring (SRM). Diagonal Linear Discriminant Analysis (DLDA) was performed to generate a protein biomarker panel. RESULTS SRM analysis identified ten proteins that were differentially abundant between good and poor prognosis stage III melanoma patients. The ten differential proteins were combined with 22 proteins identified in our previous work. A panel of 14 proteins was selected by DLDA that was able to accurately classify patients into prognostic groups based on levels of these proteins. CONCLUSIONS AND CLINICAL RELEVANCE The ten differential proteins identified by SRM have biological significance in cancer progression. The final signature of 14 proteins identified by SRM could be used to identify AJCC stage III melanoma patients likely to have poor outcomes who may benefit from adjuvant systemic therapy.
Collapse
Affiliation(s)
- Erin K Sykes
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | | | - Shila Ghazanfar
- School of Mathematics and Statistics, University of Sydney, NSW, Australia
| | - Swetlana Mactier
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - John F Thompson
- Melanoma Institute Australia, University of Sydney, North Sydney, NSW, Australia.,Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,University of Sydney at Westmead Millennium Institute, Westmead, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, University of Sydney, North Sydney, NSW, Australia.,Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Jean Y Yang
- School of Mathematics and Statistics, University of Sydney, NSW, Australia
| | - Graham J Mann
- Melanoma Institute Australia, University of Sydney, North Sydney, NSW, Australia.,University of Sydney at Westmead Millennium Institute, Westmead, NSW, Australia
| | | |
Collapse
|
16
|
Norris EL, Headlam MJ, Dave KA, Smith DD, Bukreyev A, Singh T, Jayakody BA, Chappell KJ, Collins PL, Gorman JJ. Proteoform-Specific Insights into Cellular Proteome Regulation. Mol Cell Proteomics 2016; 15:3297-3320. [PMID: 27451424 PMCID: PMC5054351 DOI: 10.1074/mcp.o116.058438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Indexed: 01/29/2023] Open
Abstract
Knowledge regarding compositions of proteomes at the proteoform level enhances insights into cellular phenotypes. A strategy is described herein for discovery of proteoform-specific information about cellular proteomes. This strategy involved analysis of data obtained by bottom-up mass spectrometry of multiple protein OGE separations on a fraction by fraction basis. The strategy was exemplified using five matched sets of lysates of uninfected and human respiratory syncytial virus-infected A549 cells. Template matching demonstrated that 67.3% of 10475 protein profiles identified focused to narrow pI windows indicative of efficacious focusing. Furthermore, correlation between experimental and theoretical pI gradients indicated reproducible focusing. Based on these observations a proteoform profiling strategy was developed to identify proteoforms, detect proteoform diversity and discover potential proteoform regulation. One component of this strategy involved examination of the focusing profiles for protein groups. A novel concordance analysis facilitated differentiation between proteoforms, including proteoforms generated by alternate splicing and proteolysis. Evaluation of focusing profiles and concordance analysis were applicable to cells from a single and/or multiple biological states. Statistical analyses identified proteoform variation between biological states. Regulation relevant to cellular responses to human respiratory syncytial virus was revealed. Western blotting and Protomap analyses validated the proteoform regulation. Discovery of STAT1, WARS, MX1, and HSPB1 proteoform regulation by human respiratory syncytial virus highlighted the impact of the profiling strategy. Novel truncated proteoforms of MX1 were identified in infected cells and phosphorylation driven regulation of HSPB1 proteoforms was correlated with infection. The proteoform profiling strategy is generally applicable to investigating interactions between viruses and host cells and the analysis of other biological systems.
Collapse
Affiliation(s)
| | | | | | - David D Smith
- §Statistics Unit, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Alexander Bukreyev
- ¶Respiratory Virus Section, Laboratory of Infectious Diseases, National Institute for Allergy and Infectious Diseases, NIH, Bethesda, Maryland, and
| | | | | | - Keith J Chappell
- ‖School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Peter L Collins
- ¶Respiratory Virus Section, Laboratory of Infectious Diseases, National Institute for Allergy and Infectious Diseases, NIH, Bethesda, Maryland, and
| | - Jeffrey J Gorman
- From the ‡Protein Discovery Centre and ‖School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
17
|
Clinical and microarray analysis of breast cancers of all subtypes from two prospective preoperative chemotherapy studies. Br J Cancer 2016; 115:411-9. [PMID: 27415010 PMCID: PMC4985347 DOI: 10.1038/bjc.2016.184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 05/08/2016] [Accepted: 05/19/2016] [Indexed: 02/08/2023] Open
Abstract
Background: We aimed to analyse clinical and gene expression profiles to predict pathologic complete response and disease-free survival using two consecutive, prospective, preoperative chemotherapy trial cohorts. Methods: Clinicopathological and gene expression data were evaluated in a cohort from two consecutive phase II preoperative studies that included patients with stage IIA–IIIC breast cancer of all subtypes. Analysed specimens were obtained before preoperative chemotherapy, and cDNA microarray analyses were performed using the Affymetrix Gene Chip U133 plus 2.0. Results: Between December 2005 and December 2010, 122 patients were analysed. The pathologic complete response rate was significantly higher in HER2+ and HR−/HER2− cancers. Age, pathologic complete response, HR−/HER2− status, and lymph node positivity (⩾4) were significant poor prognostic factors for disease-free survival. For the cDNA microarray analyses, sufficient tumour samples were available from 78 of the 107 patients (73%). An 8-gene signature predictive of pathologic complete response and a 17-gene signature predictive of prognosis were identified. Patients were categorised into low-risk (n=45) and high-risk groups (n=33) (HR 70.0, P=0.004). Conclusions: This study yielded preliminary data on the expression of specific genes predicting pathologic complete response and disease-free survival in a cohort of chemonaïve breast cancer patients. Further validation may distinguish those who would benefit most from perioperative chemotherapy as well as those needing further intervention.
Collapse
|
18
|
Xu G, Zou WQ, Du SJ, Wu MJ, Xiang TX, Luo ZG. Mechanism of dihydroartemisinin-induced apoptosis in prostate cancer PC3 cells: An iTRAQ-based proteomic analysis. Life Sci 2016; 157:1-11. [PMID: 27234895 DOI: 10.1016/j.lfs.2016.05.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 04/18/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
AIMS Prostate cancer (PCa) is one of the most common cancers in men in the world. Advanced PCa, especially castration-resistant PCa (CRPC), is difficult to cure. There is an urgent need to develop novel agents for CPRC. Dihydroartemisinin (DHA) is a semisynthetic derivative of artemisinin and is a well-known antimalarial drug. DHA has been documented to be a potential anticancer agent for PCa. However, the mechanisms underlying the anticancer activity of DHA are still unknown. MAIN METHODS Proteomics analysis based on iTRAQ technology was performed to determine the protein profile changes in human prostate cancer PC3 cells treated by DHA, and apoptosis was detected by flow cytometry and transmission electron microscopy. KEY FINDINGS DHA induced obvious apoptosis in PC3 cells. Using iTRAQ technology, we found 86 differentially expressed proteins linked to the cytotoxicity of DHA in PC3 cells. Gene ontology analysis showed the differentially expressed proteins were mainly associated with the protein synthesis and translation. Protein interaction network analysis and KEGG pathway analysis revealed altered aminoacyl-tRNA biosynthesis and metabolic pathways. Moreover, one candidate protein, heat shock protein HSP70 (HSPA1A), was identified by western blot analysis. SIGNIFICANCE Our results indicate that multiple mechanisms involved in the anticancer activity of DHA in PC3 cells. Decreased HSP70 expression may have an important role in DHA-induced apoptosis in PC3 cells. Our data also provide novel insights into the anticancer mechanisms of DHA.
Collapse
Affiliation(s)
- Ge Xu
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Wen-Qin Zou
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Shi-Juan Du
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Ming-Jun Wu
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Ting-Xiu Xiang
- Artron BioResearch Inc., 3938 North Fraser Way, Burnaby, BC, V5J 5H6, Canada
| | - Zi-Guo Luo
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
19
|
Identification of a residue crucial for the angiostatic activity of human mini tryptophanyl-tRNA synthetase by focusing on its molecular evolution. Sci Rep 2016; 6:24750. [PMID: 27094087 PMCID: PMC4837363 DOI: 10.1038/srep24750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/04/2016] [Indexed: 11/28/2022] Open
Abstract
Human tryptophanyl-tRNA synthetase (TrpRS) exists in two forms: a full-length TrpRS and a mini TrpRS. We previously found that human mini, but not full-length, TrpRS is an angiostatic factor. Moreover, it was shown that the interaction between mini TrpRS and the extracellular domain of vascular endothelial (VE)-cadherin is crucial for its angiostatic activity. However, the molecular mechanism of the angiostatic activity of human mini TrpRS is only partly understood. In the present study, we investigated the effects of truncated (mini) form of TrpRS proteins from human, bovine, or zebrafish on vascular endothelial growth factor (VEGF)-stimulated chemotaxis of human umbilical vein endothelial cells (HUVECs). We show that both human and bovine mini TrpRSs inhibited VEGF-induced endothelial migration, whereas zebrafish mini TrpRS did not. Next, to identify residues crucial for the angiostatic activity of human mini TrpRS, we prepared several site-directed mutants based on amino acid sequence alignments among TrpRSs from various species and demonstrated that a human mini K153Q TrpRS mutant cannot inhibit VEGF-stimulated HUVEC migration and cannot bind to the extracellular domain of VE-cadherin. Taken together, we conclude that the Lys153 residue of human mini TrpRS is a VE-cadherin binding site and is therefore crucial for its angiostatic activity.
Collapse
|
20
|
Noh KT, Cho J, Chun SH, Jang JH, Cha GS, Jung ID, Jang DD, Park YM. Resveratrol regulates naïve CD 8+ T-cell proliferation by upregulating IFN-γ-induced tryptophanyl-tRNA synthetase expression. BMB Rep 2016; 48:283-8. [PMID: 25248565 PMCID: PMC4578568 DOI: 10.5483/bmbrep.2015.48.5.190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Indexed: 12/29/2022] Open
Abstract
We found that resveratrol enhances interferon (IFN)-γ-induced tryptophanyl-tRNA-synthetase (TTS) expression in bone marrow-derived dendritic cells (BMDCs). Resveratrol-induced TTS expression is associated with glycogen synthase kinase-3β (GSK-3β) activity. In addition, we found that resveratrol regulates naïve CD8+ T-cell polarization by modulating GSK-3β activity in IFN-γ-stimulated BMDCs, and that resveratol induces upregulation of TTS in CD8+ T-cells in the in vivo tumor environment. Taken together, resveratrol upregulates IFN-γ-induced TTS expression in a GSK-3β-dependent manner, and this TTS modulation is crucial for DC-mediated T-cell modulation. [BMB Reports 2015; 48(5): 283-288]
Collapse
Affiliation(s)
- Kyung Tae Noh
- Department of Infectious Diseases, Armed Forces Medical Research Institute, Daejeon 305-878, Korea
| | - Joon Cho
- Department of Neurosurgery, College of Medicine, Konkuk University, Seoul 143-701, Korea
| | - Sung Hak Chun
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, KU Open Innovation Center and School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Jong-Hwa Jang
- Department of Dental Hygiene, Hanseo University, Seosan 356-706, Korea
| | - Gil Sun Cha
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, KU Open Innovation Center and School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - In Duk Jung
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, KU Open Innovation Center and School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Dong Deuk Jang
- Department of Infectious Diseases, Armed Forces Medical Research Institute, Daejeon 305-878, Korea
| | - Yeong-Min Park
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, KU Open Innovation Center and School of Medicine, Konkuk University, Chungju 380-701, Korea
| |
Collapse
|
21
|
Al-Gubory K, Arianmanesh M, Garrel C, Fowler P. The conceptus regulates tryptophanyl-tRNA synthetase and superoxide dismutase 2 in the sheep caruncular endometrium during early pregnancy. Int J Biochem Cell Biol 2015; 60:112-8. [DOI: 10.1016/j.biocel.2014.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/07/2014] [Accepted: 12/22/2014] [Indexed: 10/24/2022]
|
22
|
Dürr S, Kindler V. Implication of indolamine 2,3 dioxygenase in the tolerance toward fetuses, tumors, and allografts. J Leukoc Biol 2013; 93:681-7. [DOI: 10.1189/jlb.0712347] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
23
|
Dewan V, Reader J, Forsyth KM. Role of aminoacyl-tRNA synthetases in infectious diseases and targets for therapeutic development. Top Curr Chem (Cham) 2013; 344:293-329. [PMID: 23666077 DOI: 10.1007/128_2013_425] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aminoacyl-tRNA synthetases (AARSs) play a pivotal role in protein synthesis and cell viability. These 22 "housekeeping" enzymes (1 for each standard amino acid plus pyrrolysine and o-phosphoserine) are specifically involved in recognizing and aminoacylating their cognate tRNAs in the cellular pool with the correct amino acid prior to delivery of the charged tRNA to the protein synthesis machinery. Besides serving this canonical function, higher eukaryotic AARSs, some of which are organized in the cytoplasm as a multisynthetase complex of nine enzymes plus additional cellular factors, have also been implicated in a variety of non-canonical roles. AARSs are involved in the regulation of transcription, translation, and various signaling pathways, thereby ensuring cell survival. Based in part on their versatility, AARSs have been recruited by viruses to perform essential functions. For example, host synthetases are packaged into some retroviruses and are required for their replication. Other viruses mimic tRNA-like structures in their genomes, and these motifs are aminoacylated by the host synthetase as part of the viral replication cycle. More recently, it has been shown that certain large DNA viruses infecting animals and other diverse unicellular eukaryotes encode tRNAs, AARSs, and additional components of the protein-synthesis machinery. This chapter will review our current understanding of the role of host AARSs and tRNA-like structures in viruses and discuss their potential as anti-viral drug targets. The identification and development of compounds that target bacterial AARSs, thereby serving as novel antibiotics, will also be discussed. Particular attention will be given to recent work on a number of tRNA-dependent AARS inhibitors and to advances in a new class of natural "pro-drug" antibiotics called Trojan Horse inhibitors. Finally, we will explore how bacteria that naturally produce AARS-targeting antibiotics must protect themselves against cell suicide using naturally antibiotic resistant AARSs, and how horizontal gene transfer of these AARS genes to pathogens may threaten the future use of this class of antibiotics.
Collapse
Affiliation(s)
- Varun Dewan
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, Center for RNA Biology, and Center for Retroviral Research, The Ohio State University, Columbus, OH, 43210, USA
| | | | | |
Collapse
|
24
|
Amino-acyl tRNA synthetases generate dinucleotide polyphosphates as second messengers: functional implications. Top Curr Chem (Cham) 2013; 344:189-206. [PMID: 23536246 DOI: 10.1007/128_2013_426] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this chapter we describe aminoacyl-tRNA synthetase (aaRS) production of dinucleotide polyphosphate in response to stimuli, their interaction with various signaling pathways, and the role of diadenosine tetraphosphate and diadenosine triphosphate as second messengers. The primary role of aaRS is to mediate aminoacylation of cognate tRNAs, thereby providing a central role for the decoding of genetic code during protein translation. However, recent studies suggest that during evolution, "moonlighting" or non-canonical roles were acquired through incorporation of additional domains, leading to regulation by aaRSs of a spectrum of important biological processes, including cell cycle control, tissue differentiation, cellular chemotaxis, and inflammation. In addition to aminoacylation of tRNA, most aaRSs can also produce dinucleotide polyphosphates in a variety of physiological conditions. The dinucleotide polyphosphates produced by aaRS are biologically active both extra- and intra-cellularly, and seem to function as important signaling molecules. Recent findings established the role of dinucleotide polyphosphates as second messengers.
Collapse
|
25
|
Trp-tRNA synthetase bridges DNA-PKcs to PARP-1 to link IFN-γ and p53 signaling. Nat Chem Biol 2012; 8:547-54. [PMID: 22504299 DOI: 10.1038/nchembio.937] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 02/07/2012] [Indexed: 12/11/2022]
Abstract
Interferon-γ (IFN-γ) engenders strong antiproliferative responses, in part through activation of p53. However, the long-known IFN-γ-dependent upregulation of human Trp-tRNA synthetase (TrpRS), a cytoplasmic enzyme that activates tryptophan to form Trp-AMP in the first step of protein synthesis, is unexplained. Here we report a nuclear complex of TrpRS with the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) and with poly(ADP-ribose) polymerase 1 (PARP-1), the major PARP in human cells. The IFN-γ-dependent poly(ADP-ribosyl)ation of DNA-PKcs (which activates its kinase function) and concomitant activation of the tumor suppressor p53 were specifically prevented by Trp-SA, an analog of Trp-AMP that disrupted the TrpRS-DNA-PKcs-PARP-1 complex. The connection of TrpRS to p53 signaling in vivo was confirmed in a vertebrate system. These and further results suggest an unexpected evolutionary expansion of the protein synthesis apparatus to a nuclear role that links major signaling pathways.
Collapse
|
26
|
Decreased IDO activity and increased TTS expression break immune tolerance in patients with immune thrombocytopenia. J Clin Immunol 2011; 31:643-9. [PMID: 21487895 DOI: 10.1007/s10875-011-9525-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Indoleamine 2,3-dioxygenase (IDO) can promote peripheral immune tolerance and control autoimmune responses through tryptophan catabolism. Tryptophanyl-tRNA synthetase (TTS) can protect T cells from IDO-mediated cell injury. Impaired IDO-mediated tryptophan catabolism has been observed in some autoimmune diseases. MATERIALS AND METHODS The concentrations of plasma kynurenine and tryptophan were detected by high-pressure liquid chromatography. The expressions of IDO and TTS were analyzed by real-time quantitative polymerase chain reaction and flow cytometry. RESULTS Compared with healthy controls, the PBMCs of patients with immune thrombocytopenia (ITP) had significantly increased expressions of IDO and TTS, especially IDO. However, the plasma tryptophan concentration was significantly elevated, and kynurenine concentration was significantly reduced in ITP patients. In CD4(+) and CD8(+) T cells of the ITP patients, IDO expressions were significantly lower than those in healthy controls, but in CD19(+) and CD14(+) cells, IDO expression significantly increased. Conversely, TTS expressions in CD4(+) and CD8(+) T cells of the ITP patients were significantly higher than those in healthy controls, but there was no difference either in CD19(+) or CD14(+) cells. CONCLUSION These results suggest that the activity of IDO enzyme is insufficient in ITP patients. Increased TTS expressions from CD4(+) and CD8(+) T cells might link to a pathogenic mechanism involved in increasing survival of autoreactive T cells in ITP patients.
Collapse
|
27
|
Mrozik KM, Zilm PS, Bagley CJ, Hack S, Hoffmann P, Gronthos S, Bartold PM. Proteomic characterization of mesenchymal stem cell-like populations derived from ovine periodontal ligament, dental pulp, and bone marrow: analysis of differentially expressed proteins. Stem Cells Dev 2011; 19:1485-99. [PMID: 20050811 DOI: 10.1089/scd.2009.0446] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Postnatal mesenchymal stem/stromal-like cells (MSCs) including periodontal ligament stem cells (PDLSCs), dental pulp stem cells (DPSCs), and bone marrow stromal cells (BMSCs) are capable of self-renewal and differentiation into multiple mesenchymal cell lineages. Despite their similar expression of MSC-associated and osteoblastic markers, MSCs retain the capacity to generate structures resembling the microenvironments from which they are derived in vivo and represent a promising therapy for the regeneration of complex tissues in the clinical setting. With this in mind, systematic approaches are required to identify the differential protein expression patterns responsible for lineage commitment and mediating the formation of these complex structures. This is the first study to compare the differential proteomic expression profiles of ex vivo-expanded ovine PDLSCs, DPSCs, and BMSCs derived from an individual donor. The two-dimensional electrophoresis was performed and regulated proteins were identified by liquid chromatography--electrospray-ionization tandem mass spectrometry (MS and MS/MS), database searching, and de novo sequencing. In total, 58 proteins were differentially expressed between at least 2 MSC populations in both sheep, 12 of which were up-regulated in one MSC population relative to the other two. In addition, the regulation of selected proteins was also conserved between equivalent human MSC populations. We anticipate that differential protein expression profiling will provide a basis for elucidating the protein expression patterns and molecular cues that are crucial in specifying the characteristic growth and developmental capacity of dental and non-dental tissue-derived MSC populations. These expression patterns can serve as important tools for the regeneration of particular tissues in future stem cell-based tissue engineering studies using animal models.
Collapse
Affiliation(s)
- Krzysztof M Mrozik
- Colgate Australian Clinical Dental Research Centre, Dental School, The University of Adelaide, Adelaide, Australia.
| | | | | | | | | | | | | |
Collapse
|
28
|
Kido O, Fukushima K, Ueno Y, Inoue J, Jefferson DM, Shimosegawa T. Compensatory role of inducible annexin A2 for impaired biliary epithelial anion-exchange activity of inflammatory cholangiopathy. J Transl Med 2009; 89:1374-86. [PMID: 19823170 DOI: 10.1038/labinvest.2009.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The peribiliary inflammation of cholangiopathy affects the physiological properties of biliary epithelial cells (cholangiocyte), including bicarbonate-rich ductular secretion. We revealed the upregulation of annexin A2 (ANXA2) in cholangiocytes in primary biliary cirrhosis (PBC) by a proteomics approach and evaluated its physiological significance. Global protein expression profiles of a normal human cholangiocyte line (H69) in response to interferon-gamma (IFNgamma) were obtained by two-dimensional electrophoresis followed by MALDI-TOF-MS. Histological expression patterns of the identified molecules in PBC liver were confirmed by immunostaining. H69 cells stably transfected with doxycyclin-inducible ANXA2 were subjected to physiological evaluation. Recovery of the intracellular pH after acute alkalinization was measured consecutively by a pH indicator with a specific inhibitor of anion exchanger (AE), 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS). Protein kinase-C (PKC) activation was measured by PepTag Assay and immunoblotting. Twenty spots that included ANXA2 were identified as IFNgamma-responsive molecules. Cholangiocytes of PBC liver were decorated by the unique membranous overexpression of ANXA2. Apical ANXA2 of small ducts of PBC was directly correlated with the clinical cholestatic markers and transaminases. Controlled induction of ANXA2 resulted in significant increase of the DIDS-inhibitory fraction of AE activity of H69, which was accompanied by modulation of PKC activity. We, therefore, identified ANXA2 as an IFNgamma-inducible gene in cholangiocytes that could serve as a potential histological marker of inflammatory cholangiopathy, including PBC. We conclude that inducible ANXA2 expression in cholangiocytes may play a compensatory role for the impaired AE activity of cholangiocytes in PBC in terms of bicarbonate-rich ductular secretion and bile formation through modulation of the PKC activity.
Collapse
Affiliation(s)
- Osamu Kido
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Yadav MC, Burudi EME, Alirezaei M, Flynn CC, Watry DD, Lanigan CM, Fox HS. IFN-gamma-induced IDO and WRS expression in microglia is differentially regulated by IL-4. Glia 2007; 55:1385-96. [PMID: 17661345 PMCID: PMC2486430 DOI: 10.1002/glia.20544] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Indoleamine 2,3-dioxygenase (IDO), a tryptophan catabolizing enzyme, has been implicated in the pathogenesis of various neurological disorders. IDO expression is induced by IFN-gamma and leads to neurotoxicity by generating quinolinic acid. Additionally, it inhibits the immune response through both tryptophan depletion and generating other tryptophan catabolites. IL-4 and IL-13 have been shown to control IDO expression by antagonizing the effects of IFN-gamma in different cell types. Here, we investigated the effects of these cytokines on IDO expression in microglia. Interestingly, we observed that both IL-4 and IL-13 greatly enhanced IFN-gamma-induced IDO expression. However, tryptophanyl-tRNA synthetase (WRS), which is coinduced with IDO by IFN-gamma, is downregulated by IL-4 and IL-13. The effect of IL-4 and IL-13 was independent of STAT-6. Modulation of IDO but not WRS was eliminated by inhibition of protein phosphatase 2A (PP2A) activity. The phosphatidylinositol 3-kinase (PI3K) pathway further differentiated the regulation of these two enzymes, as inhibiting the PI3K pathway eliminated IFN-gamma induction of IDO, whereas such inhibition greatly enhanced WRS expression. These findings show discordance between modulations of expression of two distinct enzymes utilizing tryptophan as a common substrate, and raise the possibility of their involvement in regulating immune responses in various neurological disorders.
Collapse
Affiliation(s)
- Manisha C Yadav
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Krause P, Singer E, Darley PI, Klebensberger J, Groettrup M, Legler DF. Prostaglandin E2is a key factor for monocyte-derived dendritic cell maturation: enhanced T cell stimulatory capacity despite IDO. J Leukoc Biol 2007; 82:1106-14. [PMID: 17698915 DOI: 10.1189/jlb.0905519] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The exclusive ability of dendritic cells (DCs) to stimulate primary and secondary immune responses favors the use of antigen-loaded human monocyte-derived DCs (MoDCs) in vaccinations against tumors. Previous studies demonstrated that PGE(2) is fundamental during MoDC maturation to facilitate migration toward lymph node-derived chemokines. A recent study challenged the use of PGE(2), as PGE(2) induced IDO in mature MoDCs. In MoDCs compatible for clinical use, we now demonstrate that PGE(2) is responsible for IDO induction if matured by soluble CD40 ligand, LPS, or cytokines. In contrast, IDO expression in MoDCs matured by TLR3 triggering occurs independently of PGE(2). It is surprising that despite active IDO protein, MoDCs matured with PGE(2) display a greater potential to stimulate naïve CD4(+) and CD8(+) T cell proliferation, which is not increased further by IDO inhibition. Moreover, we found elevated levels of tryptophanyl-tRNA-synthetase (TTS) in T cells cultured with PGE(2)-matured MoDCs. Our data demonstrate that PGE(2) induces IDO in MoDCs but that T cell-stimulating capacities of PGE(2)-matured MoDCs overcome IDO activity, probably through TTS induction. As PGE(2) is critical for DC migration and enhances the capability of MoDCs to induce T cell proliferation, we highly recommend supplementing DC maturation stimuli with PGE(2) for use in clinical trials.
Collapse
Affiliation(s)
- Petra Krause
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Unterseestrasse 47, CH-8280, Kreuzlingen, Switzerland
| | | | | | | | | | | |
Collapse
|
31
|
Bouyssié D, Gonzalez de Peredo A, Mouton E, Albigot R, Roussel L, Ortega N, Cayrol C, Burlet-Schiltz O, Girard JP, Monsarrat B. Mascot file parsing and quantification (MFPaQ), a new software to parse, validate, and quantify proteomics data generated by ICAT and SILAC mass spectrometric analyses: application to the proteomics study of membrane proteins from primary human endothelial cells. Mol Cell Proteomics 2007; 6:1621-37. [PMID: 17533220 DOI: 10.1074/mcp.t600069-mcp200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteomics strategies based on nanoflow (nano-) LC-MS/MS allow the identification of hundreds to thousands of proteins in complex mixtures. When combined with protein isotopic labeling, quantitative comparison of the proteome from different samples can be achieved using these approaches. However, bioinformatics analysis of the data remains a bottleneck in large scale quantitative proteomics studies. Here we present a new software named Mascot File Parsing and Quantification (MFPaQ) that easily processes the results of the Mascot search engine and performs protein quantification in the case of isotopic labeling experiments using either the ICAT or SILAC (stable isotope labeling with amino acids in cell culture) method. This new tool provides a convenient interface to retrieve Mascot protein lists; sort them according to Mascot scoring or to user-defined criteria based on the number, the score, and the rank of identified peptides; and to validate the results. Moreover the software extracts quantitative data from raw files obtained by nano-LC-MS/MS, calculates peptide ratios, and generates a non-redundant list of proteins identified in a multisearch experiment with their calculated averaged and normalized ratio. Here we apply this software to the proteomics analysis of membrane proteins from primary human endothelial cells (ECs), a cell type involved in many physiological and pathological processes including chronic inflammatory diseases such as rheumatoid arthritis. We analyzed the EC membrane proteome and set up methods for quantitative analysis of this proteome by ICAT labeling. EC microsomal proteins were fractionated and analyzed by nano-LC-MS/MS, and database searches were performed with Mascot. Data validation and clustering of proteins were performed with MFPaQ, which allowed identification of more than 600 unique proteins. The software was also successfully used in a quantitative differential proteomics analysis of the EC membrane proteome after stimulation with a combination of proinflammatory mediators (tumor necrosis factor-alpha, interferon-gamma, and lymphotoxin alpha/beta) that resulted in the identification of a full spectrum of EC membrane proteins regulated by inflammation.
Collapse
Affiliation(s)
- David Bouyssié
- Laboratoire de Protéomique et Spectrométrie de Masse des Biomolécules, Equipe Labellisée Ligue 2006, Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, 205 route de Narbonne, 31077, Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhu L, Ji F, Wang Y, Zhang Y, Liu Q, Zhang JZ, Matsushima K, Cao Q, Zhang Y. Synovial Autoreactive T Cells in Rheumatoid Arthritis Resist IDO-Mediated Inhibition. THE JOURNAL OF IMMUNOLOGY 2006; 177:8226-33. [PMID: 17114500 DOI: 10.4049/jimmunol.177.11.8226] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A hallmark of T cell-mediated autoimmunity is the persistence of autoreactive T cells. However, it remains to elucidate the manner in which synovial T cells are sustained in patients with rheumatoid arthritis (RA). We found that dendritic cells (DC) and tissues from the synovial joints of RA patients expressed higher levels of IDO than DC from healthy donors. Interestingly, T cells derived from the joint synovial fluid (SF) of RA patients proliferated in response to either autologous or allogeneic IDO-positive DC, an outcome that was not affected by the addition of IDO inhibitor 1-methyl-D-tryptophan (1-MT). In contrast, addition of 1-MT to the culture stimulated with allogeneic or autologous IDO-positive DC significantly enhanced the proliferation of T cells derived from peripheral blood of healthy donors or from peripheral blood of RA patients. Furthermore, we found that functionally active tryptophanyl-tRNA-synthetase (TTS) was significantly elevated in T cells derived from the SF of RA patients, leading to enhanced storage of tryptophan in T cells and to subsequent resistance to IDO-mediated deprivation of tryptophan. The RA SF enhancement of TTS expression in T cells was blocked by mAb to IFN-gamma and TNF-alpha. These results suggest that the resistance of T cells to IDO-mediated deprivation of tryptophan represents a mechanism by which autoreactive T cells are sustained in vivo in RA patients. Specifically, blocking of the up-regulation of TTS expression in T cells presents an avenue for development of a novel therapeutic approach to treatment of RA.
Collapse
Affiliation(s)
- Lingqiao Zhu
- Joint Immunology Laboratory, Institute of Health Sciences and Shanghai Institute of Immunology, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200225, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Paley EL, Smelyanski L, Malinovskii V, Subbarayan PR, Berdichevsky Y, Posternak N, Gershoni JM, Sokolova O, Denisova G. Mapping and molecular characterization of novel monoclonal antibodies to conformational epitopes on NH2 and COOH termini of mammalian tryptophanyl-tRNA synthetase reveal link of the epitopes to aggregation and Alzheimer's disease. Mol Immunol 2006; 44:541-57. [PMID: 16616781 DOI: 10.1016/j.molimm.2006.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 02/07/2006] [Accepted: 02/09/2006] [Indexed: 11/17/2022]
Abstract
Tryptophanyl-tRNA synthetase (TrpRS) is an interferon-induced phosphoprotein with autoantigenic and cytokine activities detected in addition to its canonical function in tRNA aminoacylation. The availability of monoclonal antibodies (mAbs) specific for TrpRS is important for development of tools for TrpRS monitoring. A molecular characterization of two mAbs raised in mice, using purified, enzymatically active bovine TrpRS as the inoculating antigen, is presented in this report. These IgG1 antibodies are specific for bovine, human and rabbit but not E. coli TrpRS. Immunoreactivity and specificity of mAbs were verified with purified recombinant hTrpRS expressed in E. coli and TrpRS-derived synthetic peptides. One of the mAbs, 9D7 is able to disaggregate fibrils formed by Ser32-Tyr50 TrpRS-peptide. Epitope mapping revealed that disaggregation ability correlates with binding of 9D7 to this peptide in ELISA and immunocytochemistry. This epitope covers a significant part of N-terminal extension that suggested to be proteolytically deleted in vivo from the full-length TrpRS whereas remaining COOH-fragment possesses a cytokine activity. For epitope mapping of mAb 6C10, the affinity selected phage-displayed peptides were used as a database for prediction of conformational discontinuous epitopes within hTrpRS crystal structure. Using computer algorithm, this epitope is attributed to COOH-terminal residues Asp409-Met425. In immunoblotting, the 6C10 mAb reacts preferably with (i) oligomer than monomer, and (ii) bound than free TrpRS forms. The hTrpRS expression was shown to correlate with growth rates of neuroblastoma and pancreatic cancer cells. Immunohistochemically both mAbs revealed extracellular plaque-like aggregates in hippocampus of Alzheimer's disease brain.
Collapse
Affiliation(s)
- Elena L Paley
- Department of Urology, Northwestern University Feinberg School of Medicine, Tarry Research Building 16/759, 303 E. Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Boasso A, Herbeuval JP, Hardy AW, Winkler C, Shearer GM. Regulation of indoleamine 2,3-dioxygenase and tryptophanyl-tRNA-synthetase by CTLA-4-Fc in human CD4+ T cells. Blood 2004; 105:1574-81. [PMID: 15466932 DOI: 10.1182/blood-2004-06-2089] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Indoleamine-2,3-dioxygenase (IDO) and tryptophanyl-tRNA-synthetase (TTS) are interferon-gamma (IFN-gamma)-inducible enzymes that are responsible for tryptophan degradation and for its use in protein synthesis, respectively. IFN-gamma-induced IDO has immunomodulatory properties in murine and human models. A concomitant increase of TTS has been postulated to protect the IDO-expressing cells from tryptophan catabolism. IDO can be induced in dendritic cells (DCs) by recombinant soluble cytotoxic T lymphocyte antigen-4 (CTLA-4-Fc). We investigated the effects of CTLA-4-Fc on IDO and TTS mRNA expression in human peripheral blood mononuclear cells (PBMCs) and isolated leukocyte subsets. CTLA-4-Fc exposure induced increased IDO and TTS expression in unseparated PBMCs, as well as in monocyte-derived mature DCs. CD4(+) T cells isolated from CTLA-4-Fc-treated PBMCs showed increased IDO and TTS compared with untreated cells. CD8(+) T cells from CTLA-4-Fc-treated PBMCs expressed increased levels of TTS but not IDO. Pretreatment of PBMCs with CTLA-4-Fc inhibited the activation of CD4(+) T cells induced by influenza A virus (Flu) or phytohemagglutinin A (PHA), but had no effect on CD8(+) T cells. This is the first report of IDO and TTS regulation by the CTLA-4-B7 system in human CD4(+) and CD8(+) T cells, and raises the possibility that these 2 tryptophan-modulating enzymes provide an important mechanism for regulating immune responses.
Collapse
Affiliation(s)
- Adriano Boasso
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
T helper (Th) cells can be polarized into two different main subtypes, Th1 and Th2 cells. Their activation is linked to the eradication of different pathogens and to dissimilar immunological dysfunctions, which implies differences also in their protein expression patterns. To identify these differences, CD4(+) T cells were isolated from human cord blood, polarized in vitro to Th1 and Th2 and activated via CD3 and CD28. Cells were lysed, soluble proteins were separated with two-dimensional electrophoresis and differing protein spots were identified with peptide mass fingerprinting. The expression of 14 proteins differed in Th1 and Th2 cells after both 7 and 14 days of polarization. Twelve of the proteins could be identified, most of which are new in this context. Two proteins were differentially modified in the two cell types. Especially, N-terminal acetylation of cyclophilin A was stronger in Th1 than in Th2 cells. To compare the RNA and the protein levels of the identified genes, mRNA expression was measured with Affymetrix oligonucleotide microarrays (HG-U133A). The mRNA and protein expression level correlated only in six cases out of eleven, which highlights the complementary roles that proteomics and transcriptomics have in the elucidation of biological phenomena.
Collapse
Affiliation(s)
- Kirsi Rautajoki
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, BioCity, Turku, Finland
| | | | | |
Collapse
|
36
|
Anderson SL, Qiu J, Rubin BY. Tocotrienols induce IKBKAP expression: a possible therapy for familial dysautonomia. Biochem Biophys Res Commun 2003; 306:303-9. [PMID: 12788105 DOI: 10.1016/s0006-291x(03)00971-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Familial dysautonomia (FD), a neurodegenerative genetic disorder primarily affecting individuals of Ashkenazi Jewish descent, is caused by mutations in the IKBKAP gene which encodes the IkappaB kinase complex-associated protein (IKAP). The more common or major mutation causes aberrant splicing, resulting in a truncated form of IKAP. Tissues from individuals homozygous for the major mutation contain both mutant and wild-type IKAP transcripts. The apparent leaky nature of this mutation prompted a search for agents capable of elevating the level of expression of the wild-type IKAP transcript. We report the ability of tocotrienols, members of the vitamin E family, to increase transcription of IKAP mRNA in FD-derived cells, with corresponding increases in the correctly spliced transcript and normal protein. These findings suggest that in vivo supplementation with tocotrienols may elevate IKBKAP gene expression and in turn increase the amount of functional IKAP protein produced in FD patients.
Collapse
Affiliation(s)
- Sylvia L Anderson
- Laboratory for Familial Dysautonomia Research, Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | | | | |
Collapse
|
37
|
Wakasugi K, Slike BM, Hood J, Otani A, Ewalt KL, Friedlander M, Cheresh DA, Schimmel P. A human aminoacyl-tRNA synthetase as a regulator of angiogenesis. Proc Natl Acad Sci U S A 2002; 99:173-7. [PMID: 11773626 PMCID: PMC117534 DOI: 10.1073/pnas.012602099] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aminoacyl-tRNA synthetases catalyze the first step of protein synthesis. It was shown recently that human tyrosyl-tRNA synthetase (TyrRS) can be split into two fragments having distinct cytokine activities, thereby linking protein synthesis to cytokine signaling pathways. Tryptophanyl-tRNA synthetase (TrpRS) is a close homologue of TyrRS. A natural fragment, herein designated as mini TrpRS, was shown by others to be produced by alternative splicing. Production of this fragment is reported to be stimulated by IFN-gamma, a cytokine that also stimulates production of angiostatic factors. Mini TrpRS is shown here to be angiostatic in a mammalian cell culture system, the chicken embryo, and two independent angiogenesis assays in the mouse. The full-length enzyme is inactive in the same assays. Thus, protein synthesis may be linked to the regulation of angiogenesis by a natural fragment of TrpRS.
Collapse
Affiliation(s)
- Keisuke Wakasugi
- The Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Otani A, Slike BM, Dorrell MI, Hood J, Kinder K, Ewalt KL, Cheresh D, Schimmel P, Friedlander M. A fragment of human TrpRS as a potent antagonist of ocular angiogenesis. Proc Natl Acad Sci U S A 2002; 99:178-83. [PMID: 11773625 PMCID: PMC117535 DOI: 10.1073/pnas.012601899] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pathological angiogenesis contributes directly to profound loss of vision associated with many diseases of the eye. Recent work suggests that human tyrosyl- and tryptophanyl-tRNA synthetases (TrpRS) link protein synthesis to signal transduction pathways including angiogenesis. In this study, we show that a recombinant form of a COOH-terminal fragment of TrpRS is a potent antagonist of vascular endothelial growth factor-induced angiogenesis in a mouse model and of naturally occurring retinal angiogenesis in the neonatal mouse. The angiostatic activity is dose-dependent in both systems. The recombinant fragment is similar in size to one generated naturally by alternative splicing and can be produced by proteolysis of the full-length protein. In contrast, the full-length protein is inactive as an antagonist of angiogenesis. These results suggest that fragments of TrpRS, as naturally occurring and potentially nonimmunogenic anti-angiogenics, can be used for the treatment of neovascular eye diseases.
Collapse
Affiliation(s)
- Atsushi Otani
- Department of Cell Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jorgensen R, Søgaard TM, Rossing AB, Martensen PM, Justesen J. Identification and characterization of human mitochondrial tryptophanyl-tRNA synthetase. J Biol Chem 2000; 275:16820-6. [PMID: 10828066 DOI: 10.1074/jbc.275.22.16820] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A full-length cDNA clone encoding the human mitochondrial tryptophanyl-tRNA synthetase (h(mt)TrpRS) has been identified. The deduced amino acid sequence shows high homology to both the mitochondrial tryptophanyl-tRNA synthetase ((mt)TrpRS) from Saccharomyces cerevisiae and to different eubacterial forms of tryptophanyl-tRNA synthetase (TrpRS). Using the baculovirus expression system, we have expressed and purified the protein with a carboxyl-terminal histidine tag. The purified His-tagged h(mt)TrpRS catalyzes Trp-dependent exchange of PP(i) in the PP(i)-ATP exchange assay. Expression of h(mt)TrpRS in both human and insect cells leads to high levels of h(mt)TrpRS localizing to the mitochondria, and in insect cells the first 18 amino acids constitute the mitochondrial localization signal sequence. Until now the human cytoplasmic tryptophanyl-tRNA synthetase (hTrpRS) was thought to function as the h(mt)TrpRS, possibly in the form of a splice variant. However, no mitochondrial localization signal sequence was ever detected and the present identification of a different (mt)TrpRS almost certainly rules out that possibility. The h(mt)TrpRS shows kinetic properties similar to human mitochondrial phenylalanyl-tRNA synthetase (h(mt)PheRS), and h(mt)TrpRS is not induced by interferon-gamma as is hTrpRS.
Collapse
Affiliation(s)
- R Jorgensen
- Department of Molecular and Structural Biology, University of Aarhus, 8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
40
|
Anderson SL, Carton JM, Zhang X, Rubin BY. Genomic organization and chromosomal localization of a new member of the murine interferon-induced guanylate-binding protein family. J Interferon Cytokine Res 1999; 19:487-94. [PMID: 10386861 DOI: 10.1089/107999099313938] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An RNA species has been identified whose nucleotide sequence is closely related to the mRNA encoding the murine interferon (IFN)-induced guanylate-binding protein-1 (mGBP1) and an mRNA encoding an isoprenylated protein that is constitutively expressed in various organs in the rat. Sequence analysis of the gene encoding this newly identified RNA reveals that in its 5'-region it is identical to a DNA fragment reported to represent the 5'-region of a gene termed mGBP2. In light of this homology, we term this newly identified gene product mGBP2. mGBP2 is inducible following IFN treatment in animals bearing Gbp1a alleles, in which mGBP1 is transcriptionally upregulated by IFN treatment, as well as in animals bearing Gbp1b alleles, in which mGBP1 is not induced in response to IFN treatment. The genomic organizations of the genes encoding mGBP1 and mGBP2 are similar, and the nucleotide sequences of their IFN-responsive-like elements and their relative locations are conserved. Gbp1 and Gbp2 map to a genetically indistinguishable site on the distal arm of chromosome 3.
Collapse
Affiliation(s)
- S L Anderson
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| | | | | | | |
Collapse
|
41
|
Paley EL. Tryptamine-mediated stabilization of tryptophanyl-tRNA synthetase in human cervical carcinoma cell line. Cancer Lett 1999; 137:1-7. [PMID: 10376788 DOI: 10.1016/s0304-3835(98)00342-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tryptamine is an endogenous neuroactive metabolite of tryptophan. Interpretation of the function of this bioamine, however, is restricted to manipulation with tryptamine synthetic pathways. Meanwhile, tryptamine is a potent inhibitor of protein biosynthesis, via the competitive inhibition of tryptophanyl-tRNA synthetase (TrpRS). The influence of the persistent tryptamine inhibition on the half-life and cellular content of TrpRS was examined by chase labeling of HeLa cells and the tryptamine-resistant subline with [35S]methionine. The results indicate that long-term tryptamine treatment of HeLa cells led to a significant increase in the half-life of TrpRS while the content, in vivo phosphorylation and gene dose of TrpRS were unchanged. These findings suggest that survival of drug-resistant cells may not be due to TrpRS gene amplification, but to stabilization of TrpRS. It was shown that tryptamine is an effective inhibitor of HeLa cell growth. In contrast to the well-characterized antineoplastic compounds, conferring a many hundred-fold elevated drug resistance to tumor cells, resistance to tryptamine at very low levels was difficult to achieve, i.e. the 2-fold resistant subline was selected after 19 months of treatment of HeLa cells with gradually increasing concentrations of tryptamine. The tryptamine-resistant HeLa subline exhibited a slower growth rate than the original HeLa line when similar concentrations of both cell populations were seeded on the plates. A low tryptamine resistance and a lack of TrpRS gene amplification were observed in two tryptamine-resistant HeLa sublines and three Chinese hamster sublines. The role of TrpRS in oncogenesis and the perspective for tryptamine as a potential anti-cancer drug are discussed.
Collapse
Affiliation(s)
- E L Paley
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel.
| |
Collapse
|
42
|
Vartanian A, Prudovsky I, Suzuki H, Dal Pra I, Kisselev L. Opposite effects of cell differentiation and apoptosis on Ap3A/Ap4A ratio in human cell cultures. FEBS Lett 1997; 415:160-2. [PMID: 9350987 DOI: 10.1016/s0014-5793(97)01086-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The biological role of diadenosine oligophosphates (DAOP) remains obscure in spite of numerous attempts to solve this enigma. It is known that Ap3A contrary to Ap4A accumulates in human cultured cells treated with interferons (IFNs) alpha or gamma. Since IFNs are considered as antiproliferative regulators, we assumed that different cell status may be associated with varying intracellular levels of DAOP. Promyelocytic human cell line HL60 induced by phorbol ester (TPA) to differentiate to macrophage-like cells in culture exhibits a profound loss of proliferative potential. Here we have shown a 4-5-fold increase in Ap3A concentration in HL60 cells induced by TPA, similar to the effect of IFN, while the Ap4A concentration remained unchanged. On the contrary, in cells undergoing apoptosis induced by VP16, a topoisomerase II inhibitor, the Ap3A concentration considerably decreased, while the Ap4A concentration increased. These findings combined with earlier results suggest an involvement of the Ap3A/Ap4A ratio in signal transduction pathways controlling the cell status.
Collapse
Affiliation(s)
- A Vartanian
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow
| | | | | | | | | |
Collapse
|
43
|
Turpaev K, Hartmann R, Kisselev L, Justesen J. Ap3A and Ap4A are primers for oligoadenylate synthesis catalyzed by interferon-inducible 2-5A synthetase. FEBS Lett 1997; 408:177-81. [PMID: 9187362 DOI: 10.1016/s0014-5793(97)00365-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The biological role of Ap3A synthesized in cells by tryptophanyl-tRNA synthetase (WRS) is unknown. Previously we have demonstrated that the cellular level of Ap3A significantly increases after interferon treatment. Here we show that the human 46 kDa 2-5A synthetase efficiently utilizes Ap3A as a primer for oligoadenylate synthesis. The Km for Ap3A is several-fold lower than for Ap4A and 100-fold lower than for ATP. This implies that Ap3A might be a natural primer for the 2'-adenylation reaction catalysed by 2-5A synthetase. Since WRS and 2-5A synthetase are both interferon-inducible proteins, a new link between two interferon-dependent enzymes is established.
Collapse
Affiliation(s)
- K Turpaev
- Department of Molecular and Structural Biology, Aarhus University, Denmark
| | | | | | | |
Collapse
|
44
|
Paley EL. A mammalian tryptophanyl-tRNA synthetase is associated with protein kinase activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:780-8. [PMID: 9108248 DOI: 10.1111/j.1432-1033.1997.00780.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bovine Trp-tRNA synthetase is a dimer with subunit molecular mass of 60 kDa (p60) which catalyzes ATP-dependent formation of tryptophanyl-tRNA. Evidence is presented that Trp-tRNA synthetase whose homogeneity had been proven by SDS/PAGE and silver staining of the gel is autophosphorylated in vitro. Anti-(Trp-tRNA synthetase) antibodies, whose specificity was verified by using a combination of different approaches, were able to effectively inhibit and immunoprecipitate the Trp-tRNA-synthetase-associated kinase activity. The two-dimensional tryptic phosphopeptide map of autophosphorylated p60 Trp-tRNA synthetase was found to be similar to that of its major 40-kDa degradation fragment bearing resemblance to previously demonstrated unlabeled peptide patterns of the Trp-tRNA synthetase forms. Trp-tRNA synthetase which had undergone denaturation during SDS/PAGE, regained serine/threonine specific protein kinase activity (PK 60) after guanidine treatment. Trp-tRNA synthetase induced phosphorylation of specific substrate such as 100-kDa protein in non-immune but not in anti-(Trp-tRNA synthetase) sera which distinguishes Trp-tRNA-synthetase-associated kinase from other protein kinases. Sequence analysis permitted the identification of regions of bovine Trp-tRNA synthetase sharing similarity with the catalytic domains of known protein kinases. These findings suggest that PK 60 and Trp-tRNA synthetase (p60) are either closely related or identical.
Collapse
Affiliation(s)
- E L Paley
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Israel
| |
Collapse
|
45
|
Senju S, Nishimura Y. Identification of human and mouse GP-1, a putative member of a novel G-protein family. Biochem Biophys Res Commun 1997; 231:360-4. [PMID: 9070279 DOI: 10.1006/bbrc.1997.6103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To identify genes induced in monocytes by interferon-gamma, we carried out PCR-based cDNA subtraction and subsequent differential display on mRNA isolated from a human monocytic leukemia cell line, THP-1. We detected a novel gene encoding a protein bearing GTP-binding motifs, the characteristics of GTP-binding proteins (G-proteins). We also identified the mouse homologue of this gene and designated the gene GP-1. The amino acid sequence of GP-1 deduced from the nucleotide sequence is highly conserved in human and mouse (97% identical over the entire protein), suggesting a fundamental physiological role for this molecule. As amino acid sequences of GTP-binding motifs of human and mouse GP-1 are practically identical to those of recently identified putative G-proteins of nematode, AGP-1 and CGP-1, these proteins are likely to be members of the same, novel G-protein family. GP-1 mRNA was readily detected in mouse brain, thymus, lung, and kidney, while GP-1 mRNA is rarely expressed in liver.
Collapse
Affiliation(s)
- S Senju
- Department of Neuroscience and Immunology, Kumamoto University Graduate School of Medical Sciences, Japan
| | | |
Collapse
|
46
|
Shen T, Anderson SL, Rubin BY. Use of alternative polyadenylation sites in the synthesis of mRNAs encoding the interferon-induced tryptophanyl tRNA synthetase. Gene 1996; 179:225-9. [PMID: 8972904 DOI: 10.1016/s0378-1119(96)00361-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The interferon-mediated induction of the gene encoding the human tryptophanyl tRNA synthetase (WRS) results in the production of two mRNA species differing in size by approximately 800 base pairs (bp). Two distinctly sized cDNAs differing by approximately 800 bp were isolated from a cDNA library generated from mRNA prepared from IFN-gamma-treated cells. Northern blot analysis using cDNA probes recognizing different regions of the WRS mRNA reveals distinctly sized mRNAs differing in the length of their 3' untranslated regions. Differential display analysis using oligo dT primers demonstrates that the different sized WRS mRNAs result from alternative polyadenylation of this transcript.
Collapse
Affiliation(s)
- T Shen
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| | | | | |
Collapse
|
47
|
Turpaev KT, Zakhariev VM, Sokolova IV, Narovlyansky AN, Amchenkova AM, Justesen J, Frolova LY. Alternative processing of the tryptophanyl-tRNA synthetase mRNA from interferon-treated human cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:732-7. [PMID: 8856077 DOI: 10.1111/j.1432-1033.1996.0732h.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have analysed the structure of mRNA isoforms of the human gene encoding tryptophanyl-tRNA synthetase (Trp-tRNA synthetase) expressed in the epithelial CaOv cells and MT-4 lymphocytes. The Trp-tRNA synthetase gene is induced by interferon-gamma in both lines and, in MT-4 lymphocytes, also by interferon-alpha. Four Trp-tRNA synthetase mRNA isoforms have different combinations of the first exons IA, IB and II. Two transcription initiation sites (P1 and P2) were detected 90 bp from each other. Processing of the primary transcript initiated from the P1 start site generates the mRNA isoform where exon IA joins to exon II. The other three isoforms are produced by alternative splicing of the primary transcript produced from the P2 start site. Isoform 2 has a 3'-end fragment of exon IA joined to exon II. Isoform 3 contains exons IA and IB. Isoform 4 contains exon IA and exon III and lacks exon II encoding the N-terminus of the Trp-tRNA synthetase. Therefore, the two primary transcripts of the Trp-tRNA synthetase gene differ only in the 5' flank sequence between P1 and P2, and this fragment regulates their processing. Both interferon-alpha and interferon-gamma induce exon IA-containing and exon IB-containing isoforms of the Trp-tRNA synthetase mRNA.
Collapse
Affiliation(s)
- K T Turpaev
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
48
|
Vartanian A, Narovlyansky A, Amchenkova A, Turpaev K, Kisselev L. Interferons induce accumulation of diadenosine triphosphate (Ap3A) in human cultured cells. FEBS Lett 1996; 381:32-4. [PMID: 8641433 DOI: 10.1016/0014-5793(96)00073-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
After incubation of human monocytes J96 and human myeloid leukemia HL60 cells with interferons (IFN) alpha or gamma, the Ap3A concentration considerably increases in parallel with accumulation of tryptophanyl-tRNA synthetase (TrpRS, EC 6.1.1.2). The Ap3A formation in response to IFNs is catalysed by an excessive amount of TrpRS. Although the Ap3A function still remains unknown, its accumulation may imply the Ap3A involvement in the IFN-signalling pathway.
Collapse
Affiliation(s)
- A Vartanian
- Engelhardt Institute of Molecular Biology, Russian Academy Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
49
|
Kalvakolanu DV, Borden EC. An overview of the interferon system: signal transduction and mechanisms of action. Cancer Invest 1996; 14:25-53. [PMID: 8597888 DOI: 10.3109/07357909609018435] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- D V Kalvakolanu
- Department of Microbology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
50
|
Affiliation(s)
- D C Yang
- Department of Chemistry, Georgetown University, Washington DC 20057, USA
| |
Collapse
|