1
|
Huang R, Xiao H, Zhao J, Ju L, Wen Y, Xu Q, Cui X. GAP-43 is involved in the orientation of cell division by interacting with GΑI during neurogenesis. Int J Neurosci 2019; 130:144-152. [PMID: 31554446 DOI: 10.1080/00207454.2019.1667782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: Recent studies have shown that growth-associated protein-43 (GAP-43) may influence the mitotic-spindle orientation of Madin-Darby Canine Kidney (MDCK) cells through interacting with G proteins in vitro. However, whether GAP-43 interacts with the G proteins under the influence of mitotic spindle positioning related to the orientation of cell division during neurogenesis remains unclear. In order to explore the molecular mechanism in vivo, the GAP-43 transgenic mice were produced and the angles of cell division in the ventricular zone (VZ) during neurogenesis (embryonic period between 13.5 and 17.5 days) were measured in both transgenic mice and wild type mice by spindle angle analysis.Materials and methods: The interaction of GAP-43 and Gαi was detected by co-immunoprecipitation (co-IP), whereas the localization of GAP-43 was determined by immunofluorescence.Results: The results obtained using co-IP and immunofluorescence showed that GAP-43 is localized on the cell membrane and interacts with Gαi. This interaction dramatically induced a significant increase in the proportion of horizontally and intermediately dividing cells during the embryonic period of 13.5 days in the transgenic mouse brain, as observed by spindle angle analysis.Conclusions: It can be concluded that GAP-43 is involved in the orientation of cell division by interacting with Gαi, and that this may be an important mechanism for neurogenesis in the mammalian brain.
Collapse
Affiliation(s)
- Rui Huang
- Institute of Central Laboratory, Capital Institute of Pediatrics, Beijing, China.,Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Hui Xiao
- Institute of Central Laboratory, Capital Institute of Pediatrics, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Junpeng Zhao
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Lili Ju
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Yujun Wen
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Qunyuan Xu
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Xiaodai Cui
- Institute of Central Laboratory, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
2
|
Holahan MR. A Shift from a Pivotal to Supporting Role for the Growth-Associated Protein (GAP-43) in the Coordination of Axonal Structural and Functional Plasticity. Front Cell Neurosci 2017; 11:266. [PMID: 28912688 PMCID: PMC5583208 DOI: 10.3389/fncel.2017.00266] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/18/2017] [Indexed: 11/14/2022] Open
Abstract
In a number of animal species, the growth-associated protein (GAP), GAP-43 (aka: F1, neuromodulin, B-50, G50, pp46), has been implicated in the regulation of presynaptic vesicular function and axonal growth and plasticity via its own biochemical properties and interactions with a number of other presynaptic proteins. Changes in the expression of GAP-43 mRNA or distribution of the protein coincide with axonal outgrowth as a consequence of neuronal damage and presynaptic rearrangement that would occur following instances of elevated patterned neural activity including memory formation and development. While functional enhancement in GAP-43 mRNA and/or protein activity has historically been hypothesized as a central mediator of axonal neuroplastic and regenerative responses in the central nervous system, it does not appear to be the crucial substrate sufficient for driving these responses. This review explores the historical discovery of GAP-43 (and associated monikers), its transcriptional, post-transcriptional and post-translational regulation and current understanding of protein interactions and regulation with respect to its role in axonal function. While GAP-43 itself appears to have moved from a pivotal to a supporting factor, there is no doubt that investigations into its functions have provided a clearer understanding of the biochemical underpinnings of axonal plasticity.
Collapse
|
3
|
Huang R, Zhao J, Ju L, Wen Y, Xu Q. The influence of GAP-43 on orientation of cell division through G proteins. Int J Dev Neurosci 2015; 47:333-9. [PMID: 26380950 DOI: 10.1016/j.ijdevneu.2015.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/25/2015] [Accepted: 07/10/2015] [Indexed: 01/09/2023] Open
Abstract
Recent studies have shown that GAP-43 is highly expressed in horizontally dividing neural progenitor cells, and G protein complex are required for proper mitotic-spindle orientation of those progenitors in the mammalian developing cortex. In order to verify the hypothesis that GAP-43 may influence the orientation of cell division through interacting with G proteins during neurogenesis, the GAP-43 RNA from adult C57 mouse was cloned into the pEGFP-N1 vector, which was then transfected into Madin-Darby Canine Kidney (MDCK) cells cultured in a three-dimensional (3D) cell culture system. The interaction of GAP-43 with Gαi was detected by co-immunoprecipitation (co-IP), while cystogenesis of 3D morphogenesis of MDCK cells and expression of GAP-43 and Gαi were determined by immunofluorescence and Western blotting. The results showed are as follows: After being transfected by pEGFP-N1-GAP-43, GAP-43 was localized on the cell membrane and co-localized with Gαi, and this dramatically induced a defective cystogenesis in 3D morphogenesis of MDCK cells. The functional interaction between GAP-43 and Gαi proteins was proven by the co-IP assay. It can be considered from the results that the GAP-43 is involved in the orientation of cell division by interacting with Gαi and this should be an important mechanism for neurogenesis in the mammalian brain.
Collapse
Affiliation(s)
- Rui Huang
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Junpeng Zhao
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Lili Ju
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Yujun Wen
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Qunyuan Xu
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Zhao P, Cladman W, Van Tol HHM, Chidiac P. Fine-tuning of GPCR signals by intracellular G protein modulators. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 115:421-53. [PMID: 23415100 DOI: 10.1016/b978-0-12-394587-7.00010-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heterotrimeric G proteins convey receptor signals to intracellular effectors. Superimposed over the basic GPCR-G protein-effector scheme are three types of auxiliary proteins that also modulate Gα. Regulator of G protein signaling proteins and G protein signaling modifier proteins respectively promote GTPase activity and hinder GTP/GDP exchange to limit Gα activation. There are also diverse proteins that, like GPCRs, can promote nucleotide exchange and thus activation. Here we review the impact of these auxiliary proteins on GPCR signaling. Although their precise physiological functions are not yet clear, all of them can produce significant effects in experimental systems. These signaling changes are generally consistent with established effects on isolated Gα; however, the activation state of Gα is seldom verified and many such changes appear also to reflect the physical disruption of or indirect effects on interactions between Gα and its associated GPCR, Gβγ, and/or effector.
Collapse
Affiliation(s)
- Peishen Zhao
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | | | | | | |
Collapse
|
5
|
Tułodziecka K, Czeredys M, Nałęcz KA. Palmitoylcarnitine affects localization of growth associated protein GAP-43 in plasma membrane subdomains and its interaction with Gα(o) in neuroblastoma NB-2a cells. Neurochem Res 2012; 38:519-29. [PMID: 23224819 DOI: 10.1007/s11064-012-0944-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/26/2012] [Accepted: 11/28/2012] [Indexed: 11/24/2022]
Abstract
Palmitoylcarnitine was observed previously to promote differentiation of neuroblastoma NB-2a cells, and to affect protein kinase C (PKC). Palmitoylcarnitine was also observed to increase palmitoylation of several proteins, including a PKC substrate, whose expression augments during differentiation of neural cells-a growth associated protein GAP-43, known to bind phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)]. Since palmitoylated proteins are preferentially localized in sphingolipid- and cholesterol-rich microdomains of plasma membrane, the present study has been focused on a possible effect of palmitoylcarnitine on GAP-43 localization in these microdomains. Palmitoylcarnitine treatment resulted in GAP-43 appearance in floating fractions (rafts) in sucrose gradient and increased co-localization with cholesterol and with PI(4,5)P(2), although co-localization of both lipids decreased. GAP-43 disappeared from raft fraction upon treatment with 2-bromopalmitate (an inhibitor of palmitoylating enzymes) and after treatment with etomoxir (carnitine palmitoyltransferase I inhibitor). Raft localization of GAP-43 was completely abolished by treatment with methyl-β-cyclodextrin, a cholesterol binding agent, while there was no change upon sequestration of PI(4,5)P(2) with neomycin. GAP-43 co-precipitated with a monomeric form of Gα(o), a phenomenon diminished after palmitoylcarnitine treatment and paralleled by a decrease of Gα(o) in the raft fraction. These observations point to palmitoylation of GAP-43 as a mechanism leading to an increased localization of this protein in microdomains of plasma membrane rich in cholesterol, in majority different, however, from microdomains in which PI(4,5)P(2) is present. This localization correlates with decreased interaction with Gα(o) and suppression of its activity-an important step regulating neural cell differentiation.
Collapse
Affiliation(s)
- Karolina Tułodziecka
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| | | | | |
Collapse
|
6
|
Sato M, Ishikawa Y. Accessory proteins for heterotrimeric G-protein: Implication in the cardiovascular system. PATHOPHYSIOLOGY 2010; 17:89-99. [DOI: 10.1016/j.pathophys.2009.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/11/2009] [Accepted: 03/20/2009] [Indexed: 01/19/2023] Open
|
7
|
Zhao P, Nguyen CH, Chidiac P. The proline-rich N-terminal domain of G18 exhibits a novel G protein regulatory function. J Biol Chem 2010; 285:9008-17. [PMID: 20097748 DOI: 10.1074/jbc.m109.057174] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The protein G18 (also known as AGS4 or GPSM3) contains three conserved GoLoco/GPR domains in its central and C-terminal regions that bind to inactive Galpha(i), whereas the N-terminal region has not been previously characterized. We investigated whether this domain might itself regulate G protein activity by assessing the abilities of G18 and mutants thereof to modulate the nucleotide binding and hydrolytic properties of Galpha(i1) and Galpha(o). Surprisingly, in the presence of fluoroaluminate (AlF(4)(-)) both G proteins bound strongly to full-length G18 (G18wt) and to its isolated N-terminal domain (G18DeltaC) but not to its GoLoco region (DeltaNG18). Thus, it appears that its N-terminal domain promotes G18 binding to fluoroaluminate-activated Galpha(i/o). Neither G18wt nor any G18 mutant affected the GTPase activity of Galpha(i1) or Galpha(o). In contrast, complex effects were noted with respect to nucleotide binding. As inferred by the binding of [(35)S]GTPgammaS (guanosine 5'-O-[gamma-thio]triphosphate) to Galpha(i1), the isolated GoLoco region as expected acted as a guanine nucleotide dissociation inhibitor, whereas the N-terminal region exhibited a previously unknown guanine nucleotide exchange factor effect on this G protein. On the other hand, the N terminus inhibited [(35)S]GTPgammaS binding to Galpha(o), albeit to a lesser extent than the effect of the GoLoco region on Galpha(i1). Taken together, our results identify the N-terminal region of G18 as a novel G protein-interacting domain that may have distinct regulatory effects within the G(i/o) subfamily, and thus, it could potentially play a role in differentiating signals between these related G proteins.
Collapse
Affiliation(s)
- Peishen Zhao
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|
8
|
Yang H, Wan L, Song F, Wang M, Huang Y. Palmitoylation modification of Galpha(o) depresses its susceptibility to GAP-43 activation. Int J Biochem Cell Biol 2008; 41:1495-501. [PMID: 19146979 DOI: 10.1016/j.biocel.2008.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 12/09/2008] [Accepted: 12/16/2008] [Indexed: 11/26/2022]
Abstract
Interaction between GAP-43 (growth associated protein-43) and Galpha(o) (alpha subunit of Go protein) influences the signal transduction pathways leading to differentiation of neural cells. GAP-43 is known to increase guanine nucleotide exchange by Galpha(o), which is a major component of neuronal growth cone membranes. However, it is not clear whether GAP-43 stimulation is related to the Galpha(o) palmitoylation or the conversion of Galpha(o) from oligmers to monomers, which was shown to be a necessary regulatory factor in GDP/GTP exchange of Galpha(o). Here we expressed and purified GAP-43, GST-GAP-43 and Galpha(o) proteins, detected their stimulatory effect on [(35)S]-GTPgammaS binding of Galpha(o). It was found that the EC(50) of both GAP-43 and GST-GAP-43 activation were tenfold lower in case of depalmitoylated Galpha(o) than palmitoylated Galpha(o). Non-denaturing gel electrophoresis and p-PDM cross-linking analysis revealed that addition of GST-GAP-43 induced disassociation of depalmitoylated Galpha(o) from oligomers to monomers, but did not influence the oligomeric state of palmitoylated Galpha(o), which suggests that palmitoylation is a key regulatory factor in GAP-43 stimulation on Galpha(o). These results indicated the interaction of GAP-43 and Galpha(o) could accelerate conversion of depalmitoylated Galpha(o) but not palmitoylated Galpha(o) from oligomers to monomers, so as to increase the GTPgammaS binding activity of Galpha(o). Results here provide new evidence about how signaling protein palmitoylation is involved in the G-protein-coupled signal transduction cascade, and give a useful clue on the participation of GAP-43 in G-protein cycle by its preferential activation of depalmitoylated Galpha(o).
Collapse
Affiliation(s)
- Hui Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, China
| | | | | | | | | |
Collapse
|
9
|
Abstract
Heterotrimeric GTP-binding protein transduce signals initiated by a variety of hormones and neurotransmitters. Go, a member of the Go/Gi family, is the most abundant heterotrimeric GTP-binding protein in nervous tissues and has been implicated in neuronal differentiation. The mechanism by which Go modulates neuronal differentiation has not been, however, fully elucidated. Here, we identified small GTPase Rit as an interacting partner of the alpha-subunit of Go (Goalpha). The biochemical characterizations of Goalpha::Rit interaction revealed that Rit is a candidate downstream effector for Goalpha. Furthermore, dominant negative Rit inhibited Goalpha-induced neurite outgrowth and Erk phosphorylation in Neuro2a cells. These results suggest that Rit may be involved in the signaling pathway for Goalpha-mediated neuronal differentiation.
Collapse
|
10
|
Brunk I, Blex C, Rachakonda S, Höltje M, Winter S, Pahner I, Walther DJ, Ahnert-Hilger G. The first luminal domain of vesicular monoamine transporters mediates G-protein-dependent regulation of transmitter uptake. J Biol Chem 2006; 281:33373-85. [PMID: 16926160 DOI: 10.1074/jbc.m603204200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of vesicular monoamine transporters (VMATs) is down-regulated by the G-protein alpha-subunits of G(o2) and G(q), but the signaling pathways are not known. We show here that no such regulation is observed when VMAT1 or VMAT2 are expressed in Chinese hamster ovary (CHO) cells. However, when the intracellular compartments of VMAT-expressing CHO cells are preloaded with different monoamines, transport becomes susceptible to G-protein-dependent regulation, with differences between the two transporter isoforms. Epinephrine induces G-protein-mediated inhibition of transmitter uptake in CHOVMAT1 cells but prevents inhibition induced by dopamine in CHOVMAT2 cells. Epinephrine also antagonizes G-protein-mediated inhibition of monoamine uptake by VMAT2 expressing platelets or synaptic vesicles. In CHOVMAT2 cells G-protein-mediated inhibition of monoamine uptake can be induced by 5-hydroxytryptamine (serotonin) 1B receptor agonists, whereas alpha1 receptor agonists modulate uptake into CHOVMAT1 cells. Accordingly, 5-hydroxytryptamine 1B receptor antagonists prevent G-protein-mediated inhibition of uptake in partially filled platelets and synaptic vesicles expressing VMAT2. CHO cells expressing VMAT mutants with a shortened first vesicular loop transport monoamines. However, no or a reduced G-protein regulation of uptake can be initiated. In conclusion, vesicular content is involved in the activation of vesicle associated G-proteins via a structure sensing the luminal monoamine content. The first luminal loop of VMATs may represent a G-protein-coupled receptor that adapts vesicular filling.
Collapse
Affiliation(s)
- Irene Brunk
- Functional Cell Biology, Centre for Anatomy, Charité-Universitätsmedizin Berlin, Philippstrasse 12, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
G-protein coupled receptor (GPCR) signaling represents one of the most conserved and ubiquitous means in mammalian cells for transferring information across the plasma membrane to the intracellular environment. Heterotrimeric G-protein subunits play key roles in transducing these signals, and intracellular regulators influencing the activation state and interaction of these subunits regulate the extent and duration of GPCR signaling. One class of intracellular regulator, the non-receptor activators of G-protein signaling (or AGS proteins), are the major focus of this review. AGS proteins provide a basis for understanding the function of heterotrimeric G-proteins in both GPCR-driven and GPCR independent cellular signaling pathways.
Collapse
Affiliation(s)
- Mary J Cismowski
- Department of Physiology and Pharmacology, Northeastern Ohio Universities College of Medicine, 4209 State Route 44, Rootstown, OH, United States.
| |
Collapse
|
12
|
Cismowski MJ, Lanier SM. Activation of heterotrimeric G-proteins independent of a G-protein coupled receptor and the implications for signal processing. REVIEWS OF PHYSIOLOGY BIOCHEMISTRY AND PHARMACOLOGY 2006; 155:57-80. [PMID: 16041530 DOI: 10.1007/3-540-28217-3_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Heterotrimeric G-proteins are key transducers for signal transfer from outside the cell, mediating signals emanating from cell-surface G-protein coupled receptors (GPCR). Many, if not all, subtypes of heterotrimeric G-proteins are also regulated by accessory proteins that influence guanine nucleotide binding, guanosine triphosphate (GTP) hydrolysis, or subunit interactions. One subgroup of such accessory proteins (activators of G-protein signaling; AGS proteins) refer to a functionally defined group of proteins that activate selected G-protein signaring systems in the absence of classical G-protein coupled receptors. AGS and related proteins provide unexpected insights into the regulation of the G-protein activation-deactivation cycle. Different AGS proteins function as guanine nucleotide exchange factors or guanine nucleotide dissociation inhibitors and may also influence subunit interactions by interaction with GBgamma. These proteins play important roles in the generation or positioning of signaling complexes and of the regulation of GPCR signaling, and as alternative binding partners for G-protein subunits. Perhaps of even broader impact is the discovery that AGS proteins provide a foundation for the concept that heterotrimeric G-protein subunits are processing signals within the cell involving intrinsic cues that do not involve the classical signal input from a cell surface GPCR.
Collapse
Affiliation(s)
- M J Cismowski
- Northeastern Ohio Universities College of Medicine, Department of Physiology and Pharmacology, 4209 State Route 44, Rootstown, OH, USA
| | | |
Collapse
|
13
|
Abstract
Accessory proteins involved in signal processing through heterotrimeric G proteins are generally defined as proteins distinct from G protein-coupled receptor (GPCR), G protein, or classical effectors that regulate the strength/efficiency/specificity of signal transfer upon receptor activation or position these entities in the right microenvironment, contributing to the formation of a functional signal transduction complex. A flurry of recent studies have implicated an additional class of accessory proteins for this system that provide signal input to heterotrimeric G proteins in the absence of a cell surface receptor, serve as alternative binding partners for G protein subunits, provide unexpected modes of G protein regulation, and have introduced additional functional roles for G proteins. This group of accessory proteins includes the recently discovered Activators of G protein Signaling (AGS) proteins identified in a functional screen for receptor-independent activators of G protein signaling as well as several proteins identified in protein interaction screens and genetic screens in model organisms. These accessory proteins may influence GDP dissociation and nucleotide exchange at the G(alpha) subunit, alter subunit interactions within heterotrimeric G(alphabetagamma) independent of nucleotide exchange, or form complexes with G(alpha) or G(betagamma) independent of the typical G(alphabetagamma) heterotrimer. AGS and related accessory proteins reveal unexpected diversity in G protein subunits as signal transducers within the cell.
Collapse
Affiliation(s)
- Motohiko Sato
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
14
|
Zakharov VV, Bogdanova MN, Mosevitsky MI. Specific Proteolysis of Neuronal Protein GAP-43 by Calpain: Characterization, Regulation, and Physiological Role. BIOCHEMISTRY (MOSCOW) 2005; 70:897-907. [PMID: 16212546 DOI: 10.1007/s10541-005-0200-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanism of specific proteolysis of the neuronal protein GAP-43 in axonal terminals has been investigated. In synaptic terminals in vivo and in synaptosomes in vitro GAP-43 is cleaved only at the single peptide bond formed by Ser41; this is within the main effector domain of GAP-43. Proteolysis at this site involves the cysteine calcium-dependent neutral protease calpain. The following experimental evidences support this conclusion: 1) calcium-dependent proteolysis of GAP-43 in synaptosomes is insensitive to selective inhibitor of micro-calpain (PD151746), but it is completely blocked by micro- and m-calpain inhibitor PD150606; 2) GAP-43 proteolysis in the calcium ionophore A23187-treated synaptosomes is activated by millimolar concentration of calcium ions; 3) the pattern of fragmentation of purified GAP-43 by m-calpain (but not by micro-calpain) is identical to that observed in synaptic terminals in vivo. GAP-43 phosphorylated at Ser41 by protein kinase C (PKC) is resistant to the cleavage by calpain. In addition, calmodulin binding to GAP-43 decreases the rate of calpain-mediated GAP-43 proteolysis. Our results indicate that m-calpain-mediated GAP-43 proteolysis regulated by PKC and calmodulin is of physiological relevance, particularly in axonal growth cone guidance. We suggest that the function of the N-terminal fragment of GAP-43 (residues 1-40) formed during cleavage by m-calpain consists in activation of neuronal heterotrimeric GTP-binding protein G(o); this results in growth cone turning in response to repulsive signals.
Collapse
Affiliation(s)
- V V Zakharov
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina, Leningrad Region, 188300, Russia.
| | | | | |
Collapse
|
15
|
Activation of heterotrimeric G-proteins independent of a G-protein coupled receptor and the implications for signal processing. Rev Physiol Biochem Pharmacol 2005. [DOI: 10.1007/s10254-005-0042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Affiliation(s)
- W E Balch
- Department of Cellular Biology, The Scripps Research Institute, 10666 N. Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
17
|
Mosevitsky MI. Nerve Ending “Signal” Proteins GAP‐43, MARCKS, and BASP1. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 245:245-325. [PMID: 16125549 DOI: 10.1016/s0074-7696(05)45007-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mechanisms of growth cone pathfinding in the course of neuronal net formation as well as mechanisms of learning and memory have been under intense investigation for the past 20 years, but many aspects of these phenomena remain unresolved and even mysterious. "Signal" proteins accumulated mainly in the axon endings (growth cones and the presynaptic area of synapses) participate in the main brain processes. These proteins are similar in several essential structural and functional properties. The most prominent similarities are N-terminal fatty acylation and the presence of an "effector domain" (ED) that dynamically binds to the plasma membrane, to calmodulin, and to actin fibrils. Reversible phosphorylation of ED by protein kinase C modulates these interactions. However, together with similarities, there are significant differences among the proteins, such as different conditions (Ca2+ contents) for calmodulin binding and different modes of interaction with the actin cytoskeleton. In light of these facts, we consider GAP-43, MARCKS, and BASP1 both separately and in conjunction. Special attention is devoted to a discussion of apparent inconsistencies in results and opinions of different authors concerning specific questions about the structure of proteins and their interactions.
Collapse
Affiliation(s)
- Mark I Mosevitsky
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Russian Academy of Sciences, 188300 Gatchina Leningrad District, Russian Federation
| |
Collapse
|
18
|
Lehrmann E, Oyler J, Vawter MP, Hyde TM, Kolachana B, Kleinman JE, Huestis MA, Becker KG, Freed WJ. Transcriptional profiling in the human prefrontal cortex: evidence for two activational states associated with cocaine abuse. THE PHARMACOGENOMICS JOURNAL 2003; 3:27-40. [PMID: 12629581 PMCID: PMC1907635 DOI: 10.1038/sj.tpj.6500146] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CNS-focused cDNA microarrays were used to examine gene expression profiles in dorsolateral prefrontal cortex (dlPFC, Area 46) from seven individual sets of age- and post-mortem interval-matched male cocaine abusers and controls. The presence of cocaine and related metabolites was confirmed by gas chromatography-mass spectrometry. Sixty-five transcripts were differentially expressed, indicating alterations in energy metabolism, mitochondria and oligodendrocyte function, cytoskeleton and related signaling, and neuronal plasticity. There was evidence for two distinct states of transcriptional regulation, with increases in gene expression predominating in subjects testing positive for a metabolite indicative of recent 'crack' cocaine abuse and decreased expression profiles in the remaining cocaine subjects. This pattern was confirmed by quantitative polymerase chain reaction for select transcripts. These data suggest that cocaine abuse targets a distinct subset of genes in the dlPFC, resulting in either a state of acute activation in which increased gene expression predominates, or a relatively destimulated, refractory phase.
Collapse
Affiliation(s)
- E Lehrmann
- Cellular Neurobiology Research Branch, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ribas C, Takesono A, Sato M, Hildebrandt JD, Lanier SM. Pertussis toxin-insensitive activation of the heterotrimeric G-proteins Gi/Go by the NG108-15 G-protein activator. J Biol Chem 2002; 277:50223-5. [PMID: 12426323 DOI: 10.1074/jbc.c200567200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A ligand-independent activator of heterotrimeric brain G-protein was partially purified from detergent-solubilized extracts of the neuroblastoma-glioma cell hybrid NG108-15. The G-protein activator (NG108-15 G-protein activator (NG-GPA)) increased [(35)S]guanosine 5'-O-(thiotriphosphate) ([(35)S]GTPgammaS) to purified brain G-protein in a magnesium-dependent manner and promoted GDP dissociation from Galpha(o). The NG-GPA also increased GTPgammaS binding to purified, recombinant Galpha(i2), Galpha(i3), and Galpha(o), but minimally altered nucleotide binding to purified transducin. The NG-GPA increased GTPgammaS binding to membrane-bound G-proteins and inhibited basal, forskolin- and hormone-stimulated adenylyl cyclase activity in DDT(1)-MF-2 cell membranes. In contrast to G-protein coupled receptor-mediated activation of heterotrimeric G-proteins in DDT(1)-MF-2 cell membrane preparations, the action of the NG-GPA was not altered by treatment of the cells with pertussis toxin. ADP-ribosylation of purified brain G-protein also failed to alter the increase in GTPgammaS binding elicited by the NG-GPA. Thus, the NG-GPA acts in a manner distinct from that of a G-protein coupled receptor and other recently described receptor-independent activators of G-protein signaling. These data indicate the presence of unexpected regulatory domains on G(i)/G(o) proteins and suggest the existence of pertussis toxin-insensitive modes of signal input to G(i)/G(o) signaling systems.
Collapse
Affiliation(s)
- Catalina Ribas
- Centro de Biologia Molecular, Severo Ochoa (CSIC-UAM), Universidad Autonoma de Madrid, Cantoblanco, 28049-Madrid, Spain
| | | | | | | | | |
Collapse
|
20
|
Liang X, Lu Y, Neubert TA, Resh MD. Mass spectrometric analysis of GAP-43/neuromodulin reveals the presence of a variety of fatty acylated species. J Biol Chem 2002; 277:33032-40. [PMID: 12105219 DOI: 10.1074/jbc.m204607200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GAP-43 (neuromodulin) is a protein kinase C substrate that is abundant in developing and regenerating neurons. Thioester-linked palmitoylation at two cysteines near the GAP-43 N terminus has been implicated in directing membrane binding. Here, we use mass spectrometry to examine the stoichiometry of palmitoylation and the molecular identity of the fatty acid(s) attached to GAP-43 in vivo. GAP-43 expressed in either PC12 or COS-1 cells was acetylated at the N-terminal methionine. Approximately 35% of the N-terminal GAP-43 peptides were also modified by palmitate and/or stearate on Cys residues. Interestingly, a variety of acylated species was detected, in which one of the Cys residues was acylated by either palmitate or stearate, or both Cys residues were acylated by palmitates or stearates or a combination of palmitate and stearate. Depalmitoylation of membrane-bound GAP-43 did not release the protein from the membrane, implying that additional forces function to maintain membrane binding. Indeed, mutation of four basic residues within the N-terminal domain of GAP-43 dramatically reduced membrane localization of GAP-43 without affecting palmitoylation. These data reveal the heterogeneous nature of S-acylation in vivo and illustrate the power of mass spectrometry for identification of key regulatory protein modifications.
Collapse
Affiliation(s)
- Xiquan Liang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | |
Collapse
|
21
|
Blumer JB, Chandler LJ, Lanier SM. Expression analysis and subcellular distribution of the two G-protein regulators AGS3 and LGN indicate distinct functionality. Localization of LGN to the midbody during cytokinesis. J Biol Chem 2002; 277:15897-903. [PMID: 11832491 DOI: 10.1074/jbc.m112185200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activator of G-protein signaling 3 (AGS3) and LGN have a similar domain structure and contain four G-protein regulatory motifs that serve as anchors for the binding of the GDP-bound conformation of specific G-protein alpha subunits. As an initial approach to define further the different functional roles of AGS3 and LGN, we determined their expression profile and subcellular distribution. AGS3- and LGN-specific antisera indicated a widespread tissue distribution of LGN, whereas AGS3 is primarily enriched in brain. Brain punch biopsies of 13 discrete brain regions indicated that both AGS3 and LGN are expressed in all areas tested but are differentially regulated during development. LGN is expressed in neuronal, astroglial, and microglial cultures, whereas AGS3 expression is restricted to neurons. In primary neuronal cultures as well as in dividing cultures of PC12 cells, immunocytochemistry indicated distinct subcellular locations of AGS3 and LGN. The subcellular locations of the two proteins were differentially regulated by external stimuli and the cell cycle. In PC12 and COS7 cells, LGN moves from the nucleus to the midbody structure separating daughter cells during the later stages of mitosis, suggesting a role for G-proteins in cytokinesis. Thus, although AGS3 and LGN share a similar overall motif structure and both bind G-proteins, nature has endowed these proteins with different regulatory elements that allow functional diversity by virtue of tissue-specific expression and subcellular positioning.
Collapse
Affiliation(s)
- Joe B Blumer
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
22
|
Abstract
The IQ motif is widely distributed in both myosins and non-myosins and is quite common in the database that includes more than 900 Pfam entries. An examination of IQ motif-containing proteins that are known to bind calmodulin (CaM) indicates a wide diversity of biological functions that parallel the Ca2+-dependent targets. These proteins include a variety of neuronal growth proteins, myosins, voltage-operated channels, phosphatases, Ras exchange proteins, sperm surface proteins, a Ras Gap-like protein, spindle-associated proteins and several proteins in plants. The IQ motif occurs in some proteins with Ca2+-dependent CaM interaction where it may promote Ca2+-independent retention of CaM. The action of the IQ motif may result in complex signaling as observed for myosins and the L-type Ca2+ channels and is highly localized as required for sites of neuronal polarized growth and plasticity, fertilization, mitosis and cytoskeletal organization. The IQ motif associated with the unconventional myosins also promotes Ca2+ regulation of the vectorial movement of cellular constituents to these sites. Additional regulatory roles for this versatile motif seem likely.
Collapse
Affiliation(s)
- Martin Bähler
- Institut für Allegemeine Zoologie und Genetik, Westfälische Wilhelms Universität, Münster, Germany
| | | |
Collapse
|
23
|
Abstract
BACKGROUND Dynamic protein palmitoylation of signalling proteins is thought to be an important step in the regulation of signal transduction in eukaryotic cells. The enzyme responsible for protein palmitoylation in vertebrates, however, has not been identified. I have previously reported that p260/270, which is expressed in embryos of the silkworm Bombyx mori, has protein palmitoylase activity. RESULTS A homologue of Bombyx p260/270, mouse fatty-acid synthase (FAS), was shown to be expressed specifically throughout most of the central and peripheral nervous system in mouse embryos. Mouse FAS was expressed specifically in cultured primary neurones in which growth-associated protein (GAP)-43 was expressed. GAP-43, by protein palmitoylation, regulates Go signal transduction and neural axonal growth. In a cell-free system, purified FAS from mouse embryos transferred palmitate to GAP-43 through cysteine residues. Furthermore, cerulenin, an inhibitor of FAS, reduced axonal growth and in vivo palmitoylation of GAP-43 in cultured neurones. CONCLUSIONS Mouse FAS was hypothesized to be responsible for the palmitoylation of GAP-43 and subsequent regulation of axonal growth in mouse embryos.
Collapse
Affiliation(s)
- K Ueno
- Department of Developmental Biology, National Institute for Basic Biology, Myodaiji, Okazaki 444-8585, Japan.
| |
Collapse
|
24
|
Wu G, Bogatkevich GS, Mukhin YV, Benovic JL, Hildebrandt JD, Lanier SM. Identification of Gbetagamma binding sites in the third intracellular loop of the M(3)-muscarinic receptor and their role in receptor regulation. J Biol Chem 2000; 275:9026-34. [PMID: 10722752 DOI: 10.1074/jbc.275.12.9026] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gbetagamma binds directly to the third intracellular (i3) loop subdomain of the M(3)-muscarinic receptor (MR). In this report, we identified the Gbetagamma binding motif and G-protein-coupled receptor kinase (GRK2) phosphorylation sites in the M(3)-MR i3 loop via a strategy of deletional and site-directed mutagenesis. The Gbetagamma binding domain was localized to Cys(289)-His(330) within the M(3)-MR-Arg(252)-Gln(490) i3 loop, and the binding properties (affinity, influence of ionic strength) of the M(3)-MR-Cys(289)-His(330) i3 loop subdomain were similar to those observed for the entire i3 loop. Site-directed mutagenesis of the M(3)-MR-Cys(289)-His(330) i3 loop subdomain indicated that Phe(312), Phe(314), and a negatively charged region (Glu(324)-Asp(329)) were required for interaction with Gbetagamma. Generation of the full-length M(3)-MR-Arg(252)-Gln(490) i3 peptides containing the F312A mutation were also deficient in Gbetagamma binding and exhibited a reduced capacity for phosphorylation by GRK2. A similar, parallel strategy resulted in identification of major residues ((331)SSS(333) and (348)SASS(351)) phosphorylated by GRK2, which were just downstream of the Gbetagamma binding motif. Full-length M(3)-MR constructs lacking the 42-amino acid Gbetagamma binding domain (Cys(289)-His(330)) or containing the F312A mutation exhibited ligand recognition properties similar to wild type receptor and also effectively mediated agonist-induced increases in intracellular calcium following receptor expression in Chinese hamster ovary and/or COS 7 cells. However, the M(3)-MRDeltaCys(289)-His(330) and M(3)-MR(F312A) constructs were deficient in agonist-induced sequestration, indicating a key role for the Gbetagamma-M(3)-MR i3 loop interaction in receptor regulation and signal processing.
Collapse
Affiliation(s)
- G Wu
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
25
|
Kasahara S, Wang P, Nuss DL. Identification of bdm-1, a gene involved in G protein beta-subunit function and alpha-subunit accumulation. Proc Natl Acad Sci U S A 2000; 97:412-7. [PMID: 10618432 PMCID: PMC26677 DOI: 10.1073/pnas.97.1.412] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Targeted disruption of Galpha and Gbeta genes has established the requirement of an intact G protein signaling pathway for optimal execution of several important physiological processes, including pathogenesis, in the chestnut blight fungus Cryphonectria parasitica. We now report the identification of a G protein signal transduction component, beta disruption mimic factor-1, BDM-1. Disruption of the corresponding gene, bdm-1, resulted in a phenotype indistinguishable from that previously observed after disruption of the Gbeta subunit gene, cpgb-1. The BDM-1 deduced amino acid sequence contained several significant clusters of identity with mammalian phosducin, including a domain corresponding to a highly conserved 11-amino acid stretch that has been implicated in binding to the Gbetagamma dimer and two regions of defined Gbeta/phosducin contact points. Unlike the negative regulatory function proposed for mammalian phosducin, the genetic data presented in this report suggest that BDM-1 is required for or facilitates Gbeta function. Moreover, disruption of either bdm-1 or cpgb-1 resulted in a significant, posttranscriptional reduction in the accumulation of CPG-1, a key Galpha subunit required for a range of vital physiological processes.
Collapse
Affiliation(s)
- S Kasahara
- Center for Agricultural Biotechnology, University of Maryland Biotechnology Institute, University of Maryland, College Park, MD 20742-4450, USA
| | | | | |
Collapse
|
26
|
Aarts LH, Schotman P, Verhaagen J, Schrama LH, Gispen WH. The role of the neural growth associated protein B-50/GAP-43 in morphogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 446:85-106. [PMID: 10079839 DOI: 10.1007/978-1-4615-4869-0_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- L H Aarts
- Rudolf Magnus Institute for Neurosciences, Laboratory of Physiological Chemistry, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
NURNBERG B, TOGEL W, KRAUSE G, STORM R, BREITWEGLEHMANN E, SCHUNACK W. Non-peptide G-protein activators as promising tools in cell biology and potential drug leads. Eur J Med Chem 1999. [DOI: 10.1016/s0223-5234(99)80037-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
|
29
|
Bauer PH, Blüml K, Schröder S, Hegler J, Dees C, Lohse MJ. Interactions of phosducin with the subunits of G-proteins. Binding to the alpha as well as the betagamma subunits. J Biol Chem 1998; 273:9465-71. [PMID: 9545273 DOI: 10.1074/jbc.273.16.9465] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high affinity interactions of phosducin with G-proteins involve binding of phosducin to the G-protein betagamma subunits. Here we have investigated whether phosducin interacts also with G-protein alpha subunits. Interactions of phosducin with the individual subunits of Go were measured by retaining phosducin-G-protein subunit complexes on columns containing immobilized anti-phosducin antibodies. Both the alpha and the beta subunits of trimeric Go were specifically retained by the antibodies in the presence of phosducin. This binding was almost completely abolished for both subunits following protein kinase A-mediated phosphorylation of phosducin and was reduced, more for alpha than for beta subunits, by the stable GTP analog guanosine 5'-(3-O-thio)triphosphate. Isolated alphao was also retained on the columns in the presence of phosducin but not in the presence of protein kinase A-phosphorylated phosducin. Likewise, purified G-protein betagamma subunit complexes as well as purified alpha subunits of Go and Gt were precipitated together with His6-tagged phosducin with nickel-agarose; this co-precipitation occurred concentration-dependently, with apparent affinities for phosducin of 55 nM (Gbetagamma), 110 nM (alphao), and 200 nM (alphat). In functional experiments, the steady state GTPase activity of isolated alphao was inhibited by phosducin by approximately 60% with an IC50 value of approximately 300 nM, whereas the GTPase activity of trimeric Go was inhibited by approximately 90% with an IC50 value of approximately 10 nM. Phosducin did not inhibit the GTP-hydrolytic activity of isolated alphao as measured by single-turnover assays, but it inhibited the release of GDP from alphao; the rate constant of GDP release was decreased approximately 40% by 500 nM phosducin, and the inhibition occurred with an IC50 value for phosducin of approximately 100 nM. These data suggest that phosducin binds with high affinity to G-protein betagamma subunits and with lower affinity to G-protein alpha subunits. We propose that the alpha subunit-mediated effects of phosducin might increase both the extent and the rapidity of its inhibitory effects compared with an action via the betagamma subunit complex alone.
Collapse
Affiliation(s)
- P H Bauer
- Institut für Pharmakologie und Toxikologie der Universität Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Oestreicher AB, De Graan PN, Gispen WH, Verhaagen J, Schrama LH. B-50, the growth associated protein-43: modulation of cell morphology and communication in the nervous system. Prog Neurobiol 1997; 53:627-86. [PMID: 9447616 DOI: 10.1016/s0301-0082(97)00043-9] [Citation(s) in RCA: 236] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The growth-associated protein B-50 (GAP-43) is a presynaptic protein. Its expression is largely restricted to the nervous system. B-50 is frequently used as a marker for sprouting, because it is located in growth cones, maximally expressed during nervous system development and re-induced in injured and regenerating neural tissues. The B-50 gene is highly conserved during evolution. The B-50 gene contains two promoters and three exons which specify functional domains of the protein. The first exon encoding the 1-10 sequence, harbors the palmitoylation site for attachment to the axolemma and the minimal domain for interaction with G0 protein. The second exon contains the "GAP module", including the calmodulin binding and the protein kinase C phosphorylation domain which is shared by the family of IQ proteins. Downstream sequences of the second and non-coding sequences in the third exon encode species variability. The third exon also contains a conserved domain for phosphorylation by casein kinase II. Functional interference experiments using antisense oligonucleotides or antibodies, have shown inhibition of neurite outgrowth and neurotransmitter release. Overexpression of B-50 in cells or transgenic mice results in excessive sprouting. The various interactions, specified by the structural domains, are thought to underlie the role of B-50 in synaptic plasticity, participating in membrane extension during neuritogenesis, in neurotransmitter release and long-term potentiation. Apparently, B-50 null-mutant mice do not display gross phenotypic changes of the nervous system, although the B-50 deletion affects neuronal pathfinding and reduces postnatal survival. The experimental evidence suggests that neuronal morphology and communication are critically modulated by, but not absolutely dependent on, (enhanced) B-50 presence.
Collapse
Affiliation(s)
- A B Oestreicher
- Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, University of Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
31
|
Baker LP, Storm DR. Dynamic palmitoylation of neuromodulin (GAP-43) in cultured rat cerebellar neurons and mouse N1E-115 cells. Neurosci Lett 1997; 234:156-60. [PMID: 9364521 DOI: 10.1016/s0304-3940(97)00667-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We conducted pulse-chase and metabolic labeling experiments to determine directly whether palmitoylation of neuromodulin in neurons is dynamic, and if acylation is regulated. The rates of turnover of neuromodulin protein and associated palmitoyl groups were quantified using cultured cerebellar granule neurons and the neuronal cell line N1E-115. The half-life of [3H]palmitate bound to neuromodulin was approximately 5 h, whereas the half-life of the [35S]methionine-labeled neuromodulin was greater than 50 h. Metabolic and pulse-chase labeling experiments were carried out in the presence of various activators of cellular signaling pathways. Our data indicate that dynamic acylation and deacylation of neuromodulin in neurons are constitutive and are not regulated by G protein activation or other signals that control growth cone dynamics.
Collapse
Affiliation(s)
- L P Baker
- Department of Pharmacology, University of Washington, Seattle 98195-7280, USA
| | | |
Collapse
|
32
|
Gerendasy DD, Sutcliffe JG. RC3/neurogranin, a postsynaptic calpacitin for setting the response threshold to calcium influxes. Mol Neurobiol 1997; 15:131-63. [PMID: 9396008 DOI: 10.1007/bf02740632] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this review, we attempt to cover the descriptive, biochemical and molecular biological work that has contributed to our current knowledge about RC3/neurogranin function and its role in dendritic spine development, long-term potentiation, long-term depression, learning, and memory. Based on the data reviewed here, we propose that RC3, GAP-43, and the small cerebellum-enriched peptide, PEP-19, belong to a protein family that we have named the calpacitins. Membership in this family is based on sequence homology and, we believe, a common biochemical function. We propose a model wherein RC3 and GAP-43 regulate calmodulin availability in dendritic spines and axons, respectively, and calmodulin regulates their ability to amplify the mobilization of Ca2+ in response to metabotropic glutamate receptor stimulation. PEP-19 may serve a similar function in the cerebellum, although biochemical characterization of this molecule has lagged behind that of RC3 and GAP-43. We suggest that these molecules release CaM rapidly in response to large influxes of Ca2+ and slowly in response to small increases. This nonlinear response is analogous to the behavior of a capacitor, hence the name calpacitin. Since CaM regulates the ability of RC3 to amplify the effects of metabotropic glutamate receptor agonists, this activity must, necessarily, exhibit nonlinear kinetics as well. The capacitance of the system is regulated by phosphorylation by protein kinase C, which abrogates interactions between calmodulin and RC3 or GAP-43. We further propose that the ratio of phosphorylated to unphosphorylated RC3 determines the sliding LTP/LTD threshold in concept with Ca2+/ calmodulin-dependent kinase II. Finally, we suggest that the close association between RC3 and a subset of mitochondria serves to couple energy production with the synthetic events that accompany dendritic spine development and remodeling.
Collapse
Affiliation(s)
- D D Gerendasy
- Department of Molecular Biology, Scripps Research Institute
| | | |
Collapse
|
33
|
Abstract
Regulation by the synthetic glucocorticoid hormone, dexamethasone, of the levels of several G-protein alpha-subunits was studied during differentiation in PC12 cells. Similar patterns, although with different magnitudes, were observed in the changes in the levels of alpha il, alpha s, and alpha q induced by the treatments studied, whereas alpha o differed from the other alpha-subunits. Thus, nerve growth factor (NGF) treatment increased alpha il, alpha s, and alpha q, and forskolin increased alpha il and alpha q, with the increase in alpha il being greater than the increases in the other two alpha-subunits after both treatments. The increases in alpha il, alpha s, and alpha q induced by NGF were dependent on signaling through ras, since they did not occur in NGF-treated M17 cells, which express a dominant inhibitory Ha-ras. Treatment of PC12 cells with dexamethasone antagonized the increases in alpha il, alpha s, and alpha q induced by NGF or forskolin, almost completely blocking any changes from control levels. The level of alpha o also was increased in PC12 cells by treatment with NGF or forskolin, but, in contrast to the other G-protein alpha-subunits, the response to NGF was not antagonized by dexamethasone in PC12 cells, or by the deficient ras activity in M17 cells. However, ras influenced the alternative splicing that regulates the levels of the two alpha o subtypes, beta o1 and alpha o2, so they were expressed in a ratio of 1:2 in PC12 cells but 2:1 in ras-deficient M17 cells. These results demonstrated marked, and subtype-selective, influences of dexamethasone on the levels of G-protein alpha-subunits, an effect that may contribute to the effects of conditions that increase the levels of glucocorticoid hormones, such as stress or certain diseases, on signal transduction processes in brain.
Collapse
Affiliation(s)
- X Li
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 35294-0017, USA
| | | |
Collapse
|
34
|
Hamilton SE, Nathanson NM. Differential localization of G-proteins, G alpha o and G alpha i-1, -2, and -3, in polarized epithelial MDCK cells. Biochem Biophys Res Commun 1997; 234:1-7. [PMID: 9168949 DOI: 10.1006/bbrc.1997.6569] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
MDCK cells were stably transfected with rat G alpha o cDNA and confluent polarized monolayers were analyzed by immunocytochemistry to compare the intracellular targeting of G alpha o with the localization of the endogenously expressed G alpha i subunits. Immunofluorescence confocal microscopy showed that G alpha o is targeted strictly to the lateral membrane. Immunolocalization of G alpha i-1, -2, and -3 showed that G alpha i-1 and -2 are confined to the cytoplasm and G alpha i-3 is found on the lateral membrane, in the cytoplasm, and faintly on the apical surface of these cells. Thus, the different pertussis toxin-sensitive G-proteins are differentially localized in polarized epithelial cells.
Collapse
Affiliation(s)
- S E Hamilton
- Department of Pharmacology, University of Washington School of Medicine, Seattle 98195, USA
| | | |
Collapse
|
35
|
Abstract
Several lines of investigation have helped clarify the role of GAP-43 (FI, B-50 or neuromodulin) in regulating the growth state of axon terminals. In transgenic mice, overexpression of GAP-43 leads to the spontaneous formation of new synapses and enhanced sprouting after injury. Null mutation of the GAP-43 gene disrupts axonal pathfinding and is generally lethal shortly after birth. Manipulations of GAP-43 expression likewise have profound effects on neurite outgrowth for cells in culture. GAP-43 appears to be involved in transducing intra- and extracellular signals to regulate cytoskeletal organization in the nerve ending. Phosphorylation by protein kinase C is particularly significant in this regard, and is linked with both nerve-terminal sprouting and long-term potentiation. In the brains of humans and other primates, high levels of GAP-43 persist in neocortical association areas and in the limbic system throughout life, where the protein might play an important role in mediating experience-dependent plasticity.
Collapse
Affiliation(s)
- L I Benowitz
- Children's Hospital, Dept of Surgery, Boston, MA, USA
| | | |
Collapse
|
36
|
Sato M, Ribas C, Hildebrandt JD, Lanier SM. Characterization of a G-protein activator in the neuroblastoma-glioma cell hybrid NG108-15. J Biol Chem 1996; 271:30052-60. [PMID: 8939952 DOI: 10.1074/jbc.271.47.30052] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Purified bovine brain G-protein was used in a solution phase assay to identify membrane-associated proteins that influenced the activation of heterotrimeric G-proteins. Detergent-solubilized membrane extracts from the neuroblastoma-glioma cell hybrid NG108-15, but not the parent C6B4 glioma cell line, increased [35S]GTPgammaS binding to purified G-protein by approximately 460%. The G-protein activator was heat-sensitive, and the magnitude of its action was related to the amount of extract protein. The biophysical and biochemical properties of the G-protein activator were determined using DEAE ion exchange chromatography, gel filtration, and a lectin affinity matrix. In the presence of added GDP (1 microM), the enriched G-protein activator increased the initial rate of [35S]GTPgammaS binding to brain G-protein by up to 4-fold. In the absence of added GDP, the G-protein activator elicited an initial burst in [35S]GTPgammaS binding to brain G-protein within the first 30 s, after which the rate of nucleotide binding to G-protein was similar in the absence or presence of the G-protein activator. The stimulation of nucleotide binding to brain G-protein by the activator was also observed after resolution of Galpha from Gbetagamma. The G-protein activator was distinct from other proteins (neuromodulin, tubulin, and beta-amyloid precursor protein) that influence nucleotide binding to G-protein, indicating the existence of a novel signal accelerator.
Collapse
Affiliation(s)
- M Sato
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
37
|
Helmreich EJ, Hofmann KP. Structure and function of proteins in G-protein-coupled signal transfer. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1286:285-322. [PMID: 8982287 DOI: 10.1016/s0304-4157(96)00013-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- E J Helmreich
- Department of Clinical Biochemistry and Pathobiochemistry, University of Würzburg, Germany
| | | |
Collapse
|
38
|
Gamby C, Waage MC, Allen RG, Baizer L. Analysis of the role of calmodulin binding and sequestration in neuromodulin (GAP-43) function. J Biol Chem 1996; 271:26698-705. [PMID: 8900147 DOI: 10.1074/jbc.271.43.26698] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We demonstrated previously that forced expression of the neuronal phosphoprotein neuromodulin (also known as GAP-43, F1, B-50, and p57) in mouse anterior pituitary AtT-20 cells enhances depolarization-mediated secretion and alters cellular morphology. Here we analyze the role of calmodulin binding by neuromodulin in these responses. In cells expressing wild-type neuromodulin, a complex with calmodulin that is sensitive to intracellular calcium and phosphorylation is localized to the plasma membrane. Transfection of several mutant forms of neuromodulin shows that the effects of this protein on secretion are dependent on both calmodulin binding and association with the plasma membrane. In contrast, the morphological changes depend only on membrane association. Thus, the multitude of effects of neuromodulin noted in previous studies may result from divergent properties of this protein.
Collapse
Affiliation(s)
- C Gamby
- R. S. Dow Neurological Sciences Institute, Good Samaritan Hospital and Medical Center, Portland, Oregon 97209, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Heterotrimeric G proteins are recognized as versatile switches linking cell surface receptors to cellular effectors. Beside their location at the plasma membrane G proteins are found on intracellular membranes. Studies with modulators of G protein activity suggest that G proteins associated with organelle membranes are involved in various steps of secretion and vesicular function. In contrast to hormonal responses involving G proteins little is currently known about possible receptors or activators and effectors interacting with intracellular G proteins. This short review focuses on recent developments elucidating the role of organelle-associated G proteins.
Collapse
Affiliation(s)
- B Nürnberg
- Institut für Pharmakologie, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin, Germany
| | | |
Collapse
|
40
|
Gamby C, Waage MC, Allen RG, Baizer L. Growth-associated protein-43 (GAP-43) facilitates peptide hormone secretion in mouse anterior pituitary AtT-20 cells. J Biol Chem 1996; 271:10023-8. [PMID: 8626556 DOI: 10.1074/jbc.271.17.10023] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The neuronal growth-associated protein (GAP)-43 (neuromodulin, B-50, F1), which is concentrated in the growth cones of elongating axons during neuronal development and in nerve terminals in restricted regions of the adult nervous system, has been implicated in the release of neurotransmitter. To study the role of GAP-43 in evoked secretion, we transfected mouse anterior pituitary AtT-20 cells with the rat GAP-43 cDNA and derived stably transfected cell lines. Depolarization-mediated beta-endorphin secretion was greatly enhanced in the GAP-43-expressing AtT-20 cells without a significant change in Ca2+ influx; in contrast, expression of GAP-43 did not alter corticotropin-releasing factor-evoked hormone secretion. The transfected cells also displayed a flattened morphology and extended processes when plated on laminin-coated substrates. These results suggest that AtT-20 cells are a useful model system for further investigations on the precise biological function(s) of GAP-43.
Collapse
Affiliation(s)
- C Gamby
- R. S. DOW Neurological Sciences Institute, Good Samaritan Hospital and Medical Center, Portland, Oregon 97209, USA
| | | | | | | |
Collapse
|
41
|
Hasegawa H, Murayama T, Takahashi A, Itakura C, Nomura Y. Changes of GTP binding proteins, not neurofilament-associated proteins, in the brain of the neurofilament-deficient quail, "Quiver". Neurochem Int 1996; 28:221-29. [PMID: 8719712 DOI: 10.1016/0197-0186(95)00066-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A neurofilament (NF)-deficient mutant of the Japanese quail was named "Quiver", as it showed generalized quivering as a clinical sign. NF consists of three major subunits; low, middle and high. We previously reported that the noradrenaline and 5-hydroxytryptamine content in the neostriatum of the Quiver's brain was different from that in the normal quail, although disappearance of the three NF proteins occurred in all areas of the Quiver's brain. Thus, NF-related proteins may show considerable changes in the specific sites of Quiver's brain. In this study, an examination was made of the changes in NF-related proteins in the Quiver, by immunoblotting analysis. The amounts of cyclin-dependent kinase 5 (cdk5), which phosphorylates NF proteins, and tau which is a substrate of cdk5, in the neostriatum of the Quiver, were essentially the same as those in the normal quail, although NF proteins could not be detected in the Quiver. The amount of alpha-tubulin in the Quiver's brain was similar to that in the normal quail. Next, we investigated the changes of GTP binding (G) proteins in the Quiver's brain, because cytoskeletal components such as tubulin and F-actin bind with G proteins. [32P]ADP-ribosylation of G proteins (Gs by cholera toxin and Gi/G0 by pertussis toxin) in the neostriatum of the Quiver increased significantly, although alpha subunits of G proteins showed no change by immunoblotting analysis. The ratios of the trimer form in G proteins thus appear to increase more in the NF-deficient Quiver brain than in the brain of the normal quail. The G proteins-mediated adenylate cyclase activities were the same in the brain of both the Quiver and the normal quail. Possible interactions between NFs and G proteins are discussed.
Collapse
Affiliation(s)
- H Hasegawa
- Department of Pharmacology, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- J P Liu
- Department of Medical Oncology, Newcastle Mater Misericordiae Hospital, New South Wales, Australia
| |
Collapse
|
43
|
Helms JB. Role of heterotrimeric GTP binding proteins in vesicular protein transport: indications for both classical and alternative G protein cycles. FEBS Lett 1995; 369:84-8. [PMID: 7641891 DOI: 10.1016/0014-5793(95)00620-o] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Heterotrimeric G proteins are involved in hormonal signal transduction across the plasma membrane. Recent evidence suggests that they have a role in vesicular protein transport as well. Biochemical probes that interfere with the classical G protein cycle have been applied to the field of intracellular membrane transport to study their mechanism of action. Evidence has been obtained that intracellular G proteins act both through classical and alternative G protein cycles.
Collapse
Affiliation(s)
- J B Helms
- Universität Heidelberg, Institut für Biochemie I, Germany
| |
Collapse
|
44
|
Philibert K, Zwiers H. Evidence for multisite ADP-ribosylation of neuronal phosphoprotein B-50/GAP-43. Mol Cell Biochem 1995; 149-150:183-90. [PMID: 8569728 DOI: 10.1007/bf01076576] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The neuronal phosphoprotein B-50/GAP-43 is associated with neuronal growth and regeneration and is involved in the calcium/CaM and G(o) signal transduction systems. In particular, B-50 interacts uniquely with CaM by binding in the absence of Ca2+. Previously identified as a major neuronal substrate for protein kinase C, which releases CaM via phosphorylation, B-50 has more recently been shown to be a substrate for endogenous ADP-ribosyltransferases. In the present study, we utilized amino acid modification with iodoacetamide and chemical stability to mercury and neutral hydroxylamine to demonstrate that the predominant site of ADP-ribosylation is Cys 3 and/or Cys 4. Chymotryptic peptide mapping further revealed a second, less labelled site of ribosylation in the C-terminal region. The results also demonstrate that, in contrast to PKC phosphorylation, ADP-ribosylation of B-50 does not mediate CaM binding. Since Cys 3 and Cys 4, by palmitoylation, are important for membrane anchoring, our findings suggest that ADP-ribosylation of B-50 may have a role in directing the intracellular localization of the protein. Hence, ribosylation of B-50 may mediate where B-50 interacts with signal transduction pathways.
Collapse
Affiliation(s)
- K Philibert
- Department of Medical Physiology, University of Calgary, Health Sciences Centre, Alberta, Canada
| | | |
Collapse
|
45
|
|
46
|
Sato M, Kataoka R, Dingus J, Wilcox M, Hildebrandt JD, Lanier SM. Factors determining specificity of signal transduction by G-protein-coupled receptors. Regulation of signal transfer from receptor to G-protein. J Biol Chem 1995; 270:15269-76. [PMID: 7797513 DOI: 10.1074/jbc.270.25.15269] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Among subfamilies of G-protein-coupled receptors, agonists initiate several cell signaling events depending on the receptor subtype (R) and the type of G-protein (G) or effector molecule (E) expressed in a particular cell. Determinants of signaling specificity/efficiency may operate at the R-G interface, where events are influenced by cell architecture or accessory proteins found in the receptor's microenvironment. This issue was addressed by characterizing signal transfer from R to G following stable expression of the alpha 2A/D adrenergic receptor in two different membrane environments (NIH-3T3 fibroblasts and the pheochromocytoma cell line, PC-12). Receptor coupling to endogenous G-proteins in both cell types was eliminated by pertussis toxin pretreatment and R-G signal transfer restored by reconstitution of cell membranes with purified brain G-protein. Thus, the receptor has access to the same population of G-proteins in the two different environments. In this signal restoration assay, agonist-induced activation of G was 3-9-fold greater in PC-12 as compared with NIH-3T3 alpha 2-adrenergic receptor transfectants. The cell-specific differences in signal transfer were observed over a range of receptor densities or G-protein concentration. The augmented signal transfer in PC-12 versus NIH-3T3 transfectants occurred despite a 2-3-fold lower level of receptors existing in the R-G-coupled state (high affinity, guanyl-5'-yl imidodiphosphate-sensitive agonist binding), suggesting the existence of other membrane factors that influence the nucleotide binding behavior of G-protein in the two cell types. Detergent extraction of PC-12 but not NIH-3T3 membranes yielded a heat-sensitive, macromolecular entity that increased 35S-labeled guanosine 5'-O-(thiotriphosphate) binding to brain G-protein in a concentration-dependent manner. These data indicate that the transfer of signal from R to G is regulated by a cell type-specific, membrane-associated protein that enhances the agonist-induced activation of G.
Collapse
Affiliation(s)
- M Sato
- Department of Pharmacology, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
The function and structures of G proteins and their role in the regulation of adenylyl cyclase is reviewed.
Collapse
Affiliation(s)
- A G Gilman
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas 75235, USA
| |
Collapse
|
48
|
Okamoto T, Takeda S, Murayama Y, Ogata E, Nishimoto I. Ligand-dependent G protein coupling function of amyloid transmembrane precursor. J Biol Chem 1995; 270:4205-8. [PMID: 7876177 DOI: 10.1074/jbc.270.9.4205] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Amyloid precursor protein (APP), a transmembrane precursor of beta-amyloid, possesses a function whereby it associates with G(o) through its cytoplasmic His657-Lys676. Here we demonstrate that APP has a receptor function. In phospholipid vesicles consisting of baculovirally made APP695 and brain trimeric G(o), 22C11, a monoclonal antibody against the extracellular domain of APP, increased GTP gamma S binding and the turnover number of GTPase of G(o) without affecting its intrinsic GTPase activity. This effect of 22C11 was specific among various antibodies and was observed neither in G(o) vesicles nor in APP695/Gi2 vesicles. In APP695/G(o) vesicles, synthetic APP66-81, the epitope of 22C11, competitively antagonized the action of 22C11. Monoclonal antibody against APP657-676, the G(o) binding domain of APP695, specifically blocked 22C11-dependent activation of G(o). Therefore, APP has a potential receptor function whereby it specifically activates G(o) in a ligand-dependent and ligand-specific manner.
Collapse
Affiliation(s)
- T Okamoto
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown
| | | | | | | | | |
Collapse
|
49
|
Strittmatter SM, Fankhauser C, Huang PL, Mashimo H, Fishman MC. Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43. Cell 1995; 80:445-52. [PMID: 7859286 DOI: 10.1016/0092-8674(95)90495-6] [Citation(s) in RCA: 311] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
GAP-43 has been termed a "growth" or "plasticity" protein because it is expressed at high levels in neuronal growth cones during development and during axonal regeneration. By homologous recombination, we generated mice lacking GAP-43. The mice die in the early postnatal period. GAP-43-deficient retinal axons remain trapped in the chiasm for 6 days, unable to navigate past this midline decision point. Over the subsequent weeks of life, most GAP-43-deficient axons do enter the appropriate tracts, and the adult CNS is grossly normal. There is no evidence for interference with nerve growth rate, and cultured neurons extend neurites and growth cones in a fashion indistinguishable from controls. Thus, the GAP-43 protein is not essential for axonal outgrowth or growth cone formation per se, but is required at certain decision points, such as the optic chiasm. This is compatible with the hypothesis that GAP-43 serves to amplify pathfinding signals from the growth cone.
Collapse
Affiliation(s)
- S M Strittmatter
- Developmental Biology Laboratory, Harvard Medical School, Massachusetts General Hospital-East, Charlestown 02129
| | | | | | | | | |
Collapse
|
50
|
GAP-43 controls the availability of secretory chromaffin granules for regulated exocytosis by stimulating a granule-associated G0. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43811-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|