1
|
Smolak P, Nguyen M, Diamond C, Wescott H, Doedens JR, Schooley K, Snouwaert JN, Bock MG, Harrison D, Watt AP, Koller BH, Gabel CA. Target Cell Activation of a Structurally Novel NOD-Like Receptor Pyrin Domain-Containing Protein 3 Inhibitor NT-0796 Enhances Potency. J Pharmacol Exp Ther 2024; 388:798-812. [PMID: 38253384 DOI: 10.1124/jpet.123.001941] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome is a central regulator of innate immunity, essential for processing and release of interleukin-1β and pyroptotic cell death. As endogenous NLRP3 activating triggers are hallmarks of many human chronic inflammatory diseases, inhibition of NLRP3 has emerged as a therapeutic target. Here we identify NDT-19795 as a novel carboxylic acid-containing NLRP3 activation inhibitor in both human and mouse monocytes and macrophages. Remarkably, conversion of the carboxylate to an isopropyl-ester (NT-0796) greatly enhances NLRP3 inhibitory potency in human monocytes. This increase is attributed to the ester-containing pharmacophore being more cell-penetrant than the acid species and, once internalized, the ester being metabolized to NDT-19795 by carboxylesterase-1 (CES-1). Mouse macrophages do not express CES-1, and NT-0796 is ineffective in these cells. Mice also contain plasma esterase (Ces1c) activity which is absent in humans. To create a more human-like model, we generated a mouse line in which the genome was modified, removing Ces1c and replacing this segment of DNA with the human CES-1 gene driven by a mononuclear phagocyte-specific promoter. We show human CES-1 presence in monocytes/macrophages increases the ability of NT-0796 to inhibit NLRP3 activation both in vitro and in vivo. As NLRP3 is widely expressed by monocytes/macrophages, the co-existence of CES-1 in these same cells affords a unique opportunity to direct ester-containing NLRP3 inhibitors precisely to target cells of interest. Profiling NT-0796 in mice humanized with respect to CES-1 biology enables critical modeling of the pharmacokinetics and pharmacodynamics of this novel therapeutic candidate. SIGNIFICANCE STATEMENT: Inhibition of NLRP3 represents a desirable therapeutic strategy for the treatment of multiple human disorders. In this study pharmacological properties of a structurally-novel, ester-containing NLRP3 inhibitor NT-0796 are characterized. To study pharmacodynamics of NT-0796 in vivo, a mouse line was engineered possessing more human-like traits with respect to carboxylesterase biology. In the context of these hCES-1 mice, NT-0796 serves as a more effective inhibitor of NLRP3 activation than the corresponding acid, highlighting the full translational potential of the ester strategy.
Collapse
Affiliation(s)
- Pamela Smolak
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - MyTrang Nguyen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - Christine Diamond
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - Heather Wescott
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - John R Doedens
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - Kenneth Schooley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - John N Snouwaert
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - Mark G Bock
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - David Harrison
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - Alan P Watt
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - Beverly H Koller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - Christopher A Gabel
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| |
Collapse
|
2
|
Szafran B, Borazjani A, Scheaffer HL, Crow JA, McBride AM, Adekanye O, Wonnacott CB, Lehner R, Kaplan BLF, Ross MK. Carboxylesterase 1d Inactivation Augments Lung Inflammation in Mice. ACS Pharmacol Transl Sci 2022; 5:919-931. [PMID: 36268116 PMCID: PMC9578131 DOI: 10.1021/acsptsci.2c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 11/28/2022]
Abstract
Carboxylesterases are members of the serine hydrolase superfamily and metabolize drugs, pesticides, and lipids. Previous research showed that inhibition of carboxylesterase 1 (CES1) in human macrophages altered the immunomodulatory effects of lipid mediators called prostaglandin glyceryl esters, which are produced by cyclooxygenase-catalyzed oxygenation of the endocannabinoid 2-arachidonoylglycerol (2-AG). Ces1d - the mouse ortholog of human CES1 - is the most abundant Ces isoform in murine lung tissues and alveolar macrophages and a major target of organophosphate poisons. Monoacylglycerol lipase (Magl) is also expressed in murine lung and is the main enzyme responsible for 2-AG catabolism. Several metabolic benefits are observed in Ces1d-/- mice fed a high-fat diet; thus, we wondered whether pharmacological and genetic inactivation of Ces1d in vivo might also ameliorate the acute inflammatory response to lipopolysaccharide (LPS). C57BL/6 mice were treated with WWL229 (Ces1d inhibitor) or JZL184 (Magl inhibitor), followed 30 min later by either LPS or saline. Wild-type (WT) and Ces1d-/- mice were also administered LPS to determine the effect of Ces1d knockout. Mice were sacrificed at 6 and 24 h, and cytokines were assessed in serum, lung, liver, and adipose tissues. Lipid mediators were quantified in lung tissues, while activity-based protein profiling and enzyme assays determined the extent of lung serine hydrolase inactivation by the inhibitors. WWL229 was shown to augment LPS-induced lung inflammation in a female-specific manner, as measured by enhanced neutrophil infiltration and Il1b mRNA. The marked Ces inhibition in female lung by 4 h after drug treatment might explain this sex difference, although the degree of Ces inhibition in female and male lungs was similar at 6 h. In addition, induction of lung Il6 mRNA and prostaglandin E2 by LPS was more pronounced in Ces1d-/- mice than in WT mice. Thus, WWL229 inhibited lung Ces1d activity and augmented the female lung innate immune response, an effect observed in part in Ces1d-/- mice and Ces1d/CES1-deficient murine and human macrophages. In contrast, JZL184 attenuated LPS-induced Il1b and Il6 mRNA levels in female lung, suggesting that Ces1d and Magl have opposing effects. Mapping the immunomodulatory molecules/pathways that are regulated by Ces1d in the context of lung inflammation will require further research.
Collapse
Affiliation(s)
- Brittany
N. Szafran
- Department
of Comparative Biomedical Sciences, Center for Environmental Health
Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi39762, United States
| | - Abdolsamad Borazjani
- Department
of Comparative Biomedical Sciences, Center for Environmental Health
Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi39762, United States
| | - Hannah L. Scheaffer
- Department
of Biochemistry, Molecular Biology, Entomology, and Plant Pathology,
College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, Mississippi39762, United States
| | - J. Allen Crow
- Department
of Comparative Biomedical Sciences, Center for Environmental Health
Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi39762, United States
| | - Ann Marie McBride
- Department
of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi39762, United States
| | - Oluwabori Adekanye
- Department
of Comparative Biomedical Sciences, Center for Environmental Health
Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi39762, United States
| | - Caitlin B. Wonnacott
- Department
of Comparative Biomedical Sciences, Center for Environmental Health
Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi39762, United States
| | - Richard Lehner
- Departments
of Cell Biology and Pediatrics, Group on Molecular & Cell Biology
of Lipids, University of Alberta, Edmonton, ABT6G 2R3, Canada
| | - Barbara L. F. Kaplan
- Department
of Comparative Biomedical Sciences, Center for Environmental Health
Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi39762, United States
| | - Matthew K. Ross
- Department
of Comparative Biomedical Sciences, Center for Environmental Health
Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi39762, United States
| |
Collapse
|
3
|
Liu J, Yao B, Gao L, Zhang Y, Huang S, Wang X. Emerging role of carboxylesterases in nonalcoholic fatty liver disease. Biochem Pharmacol 2022; 205:115250. [PMID: 36130649 DOI: 10.1016/j.bcp.2022.115250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/02/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is increasingly recognized as a global public health problem. Carboxylesterases (CESs), as potential influencing factors of NAFLD, are very important to improve clinical outcomes. This review aims to deeply understand the role of CESs in the progression of NAFLD and proposes that CESs can be used as potential targets for NAFLD treatment. We first introduced CESs and analyzed the relationship between CESs and hepatic lipid metabolism and inflammation. Then, we further reviewed the regulation of nuclear receptors on CESs, including PXR, CAR, PPARα, HNF4α and FXR, which may influence the progression of NAFLD. Finally, we evaluated the advantages and disadvantages of existing NAFLD animal models and summarized the application of CES-related animal models in NAFLD research. In general, this review provides an overview of the relationship between CESs and NAFLD and discusses the role and potential value of CESs in the treatment and prevention of NAFLD.
Collapse
Affiliation(s)
- Jie Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Liangcai Gao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
4
|
Xiang C, Xiang J, Yang X, Zhu B, Mo Q, Zhou L, Gong P. An easily available endoplasmic reticulum targeting near-infrared fluorescent probe for esterase imaging in vitro and in vivo. Analyst 2022; 147:789-793. [PMID: 35107444 DOI: 10.1039/d1an02260a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here, we report an easily available endoplasmic reticulum-targeting near-infrared fluorescent probe (ER-CE), which can detect esterase in the endoplasmic reticulum and monitor the changes in the esterase amount in tumors in mice in real time. These results indicate that ER-CE is expected to become a powerful analysis tool for the research of endoplasmic reticulum esterase-related diseases.
Collapse
Affiliation(s)
- Chunbai Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Yang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baode Zhu
- School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Quanyi Mo
- School of Applied Biology, Shenzhen Institute of Technology, No. 1 Jiangjunmao, Shenzhen 518116, P. R. China.
| | - Lihua Zhou
- School of Applied Biology, Shenzhen Institute of Technology, No. 1 Jiangjunmao, Shenzhen 518116, P. R. China.
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
5
|
Scheaffer H, Borazjani A, Szafran BN, Ross MK. Inactivation of CES1 Blocks Prostaglandin D 2 Glyceryl Ester Catabolism in Monocytes/Macrophages and Enhances Its Anti-inflammatory Effects, Whereas the Pro-inflammatory Effects of Prostaglandin E 2 Glyceryl Ester Are Attenuated. ACS OMEGA 2020; 5:29177-29188. [PMID: 33225149 PMCID: PMC7675540 DOI: 10.1021/acsomega.0c03961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/19/2020] [Indexed: 05/04/2023]
Abstract
Human monocytic cells in blood have important roles in host defense and express the enzyme carboxylesterase 1 (CES1). This metabolic serine hydrolase plays a critical role in the metabolism of many molecules, including lipid mediators called prostaglandin glyceryl esters (PG-Gs), which are formed during cyclooxygenase-mediated oxygenation of the endocannabinoid 2-arachidonoylglycerol. Some PG-Gs have been shown to exhibit anti-inflammatory effects; however, they are unstable compounds, and their hydrolytic breakdown generates pro-inflammatory prostaglandins. We hypothesized that by blocking the ability of CES1 to hydrolyze PG-Gs in monocytes/macrophages, the beneficial effects of anti-inflammatory prostaglandin D2-glyceryl ester (PGD2-G) could be augmented. The goals of this study were to determine whether PGD2-G is catabolized by CES1, evaluate the degree to which this metabolism is blocked by small-molecule inhibitors, and assess the immunomodulatory effects of PGD2-G in macrophages. A human monocytic cell line (THP-1 cells) was pretreated with increasing concentrations of known small-molecule inhibitors that block CES1 activity [chlorpyrifos oxon (CPO), WWL229, or WWL113], followed by incubation with PGD2-G (10 μM). Organic solvent extracts of the treated cells were analyzed by liquid chromatography with tandem mass spectrometry to assess levels of the hydrolysis product PGD2. Further, THP-1 monocytes with normal CES1 expression (control cells) and "knocked-down" CES1 expression (CES1KD cells) were employed to confirm CES1's role in PGD2-G catabolism. We found that CES1 has a prominent role in PGD2-G hydrolysis in this cell line, accounting for about 50% of its hydrolytic metabolism, and that PGD2-G could be stabilized by the inclusion of CES1 inhibitors. The inhibitor potency followed the rank order: CPO > WWL113 > WWL229. THP-1 macrophages co-treated with WWL113 and PGD2-G prior to stimulation with lipopolysaccharide exhibited a more pronounced attenuation of pro-inflammatory cytokine levels (interleukin-6 and TNFα) than by PGD2-G treatment alone. In contrast, prostaglandin E2-glyceryl ester (PGE2-G) had opposite effects compared to those of PGD2-G, which appeared to be dependent on the hydrolysis of PGE2-G to PGE2. These results suggest that the anti-inflammatory effects induced by PGD2-G can be further augmented by inactivating CES1 activity with specific small-molecule inhibitors, while pro-inflammatory effects of PGE2-G are attenuated. Furthermore, PGD2-G (and/or its downstream metabolites) was shown to activate the lipid-sensing receptor PPARγ, resulting in altered "alternative macrophage activation" response to the Th2 cytokine interleukin-4. These findings suggest that inhibition of CES1 and other enzymes that regulate the levels of pro-resolving mediators such as PGD2-G in specific cellular niches might be a novel anti-inflammatory approach.
Collapse
Affiliation(s)
- Hannah
L. Scheaffer
- Department
of Biochemistry, Molecular Biology, Entomology, & Plant Pathology,
College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Abdolsamad Borazjani
- Center
for Environmental Health Sciences, Department of Comparative Biomedical
Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Brittany N. Szafran
- Center
for Environmental Health Sciences, Department of Comparative Biomedical
Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Matthew K. Ross
- Center
for Environmental Health Sciences, Department of Comparative Biomedical
Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
6
|
Sun Y, Wang J, Hao K. A Pharmacokinetic and Pharmacodynamic Evaluation of the Anti-Hepatocellular Carcinoma Compound 4- N-Carbobenzoxy-gemcitabine (Cbz-dFdC). Molecules 2020; 25:molecules25092218. [PMID: 32397338 PMCID: PMC7248705 DOI: 10.3390/molecules25092218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/23/2020] [Accepted: 05/06/2020] [Indexed: 11/21/2022] Open
Abstract
Gemcitabine (dFdC) demonstrates significant effectiveness against solid tumors in vitro and in vivo; however, its clinical application is limited because it tends to easily undergo deamination metabolism. Therefore, we synthesized 4-N-carbobenzoxy-gemcitabine (Cbz-dFdC) as a lead prodrug and conducted a detailed pharmacokinetic, metabolic, and pharmacodynamic evaluation. After intragastric Cbz-dFdC administration, the Cmax of Cbz-dFdC and dFdC was 451.1 ± 106.7 and 1656.3 ± 431.5 ng/mL, respectively. The Tmax of Cbz-dFdC and dFdC was 2 and 4 h, respectively. After intragastric administration of Cbz-dFdC, this compound was mainly distributed in the intestine due to low carboxylesterase-1 (CES1) activity. Cbz-dFdC is activated by CES1 in both humans and rats. The enzyme kinetic curves were well fitted by the Michaelis–Menten equation in rats’ blood, plasma, and tissue homogenates and S9 of the liver and kidney, as well as human liver S9 and CES1 recombinase. The pharmacodynamic results showed that the Cbz-dFdC have a good antitumor effect in the HepG2 cell and in tumor-bearing mice, respectively. In general, Cbz-dFdC has good pharmaceutical characteristics and is therefore a good candidate for a potential prodrug.
Collapse
Affiliation(s)
| | | | - Kun Hao
- Correspondence: ; Tel./Fax: +86-25-83271170
| |
Collapse
|
7
|
Bouknight KD, Jurkouich KM, Compton JR, Khavrutskii IV, Guelta MA, Harvey SP, Legler PM. Structural and kinetic evidence of aging after organophosphate inhibition of human Cathepsin A. Biochem Pharmacol 2020; 177:113980. [PMID: 32305437 DOI: 10.1016/j.bcp.2020.113980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/14/2020] [Indexed: 11/30/2022]
Abstract
Human Cathepsin A (CatA) is a lysosomal serine carboxypeptidase of the renin-angiotensin system (RAS) and is structurally similar to acetylcholinesterase (AChE). CatA can remove the C-terminal amino acids of endothelin I, angiotensin I, Substance P, oxytocin, and bradykinin, and can deamidate neurokinin A. Proteomic studies identified CatA and its homologue, SCPEP1, as potential targets of organophosphates (OP). CatA could be stably inhibited by low µM to high nM concentrations of racemic sarin (GB), soman (GD), cyclosarin (GF), VX, and VR within minutes to hours at pH 7. Cyclosarin was the most potent with a kinetically measured dissociation constant (KI) of 2 µM followed by VR (KI = 2.8 µM). Bimolecular rate constants for inhibition by cyclosarin and VR were 1.3 × 103 M-1sec-1 and 1.2 × 103 M-1sec-1, respectively, and were approximately 3-orders of magnitude lower than those of human AChE indicating slower reactivity. Notably, both AChE and CatA bound diisopropylfluorophosphate (DFP) comparably and had KIDFP = 13 µM and 11 µM, respectively. At low pH, greater than 85% of the enzyme spontaneously reactivated after OP inhibition, conditions under which OP-adducts of cholinesterases irreversibly age. At pH 6.5 CatA remained stably inhibited by GB and GF and <10% of the enzyme spontaneously reactivated after 200 h. A crystal structure of DFP-inhibited CatA was determined and contained an aged adduct. Similar to AChE, CatA appears to have a "backdoor" for product release. CatA has not been shown previously to age. These results may have implications for: OP-associated inflammation; cardiovascular effects; and the dysregulation of RAS enzymes by OP.
Collapse
Affiliation(s)
- Kayla D Bouknight
- Hampton University, 100 E Queen St, Hampton, VA 23668, United States
| | - Kayla M Jurkouich
- Case Western Reserve University, Dept. of Biomedical Engineering, Cleveland, 10900 Euclid Avenue, OH 44106, United States
| | - Jaimee R Compton
- U.S. Naval Research Laboratory, 4555 Overlook Ave., Washington, DC 20375, United States
| | - Ilja V Khavrutskii
- Uniformed Services University, Armed Forces Radiobiology Research Institute, 4301 Jones Bridge Rd., Bethesda, MD 20889-5648, United States
| | - Mark A Guelta
- U.S. Army Combat Capabilities and Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, MD 21010, United States
| | - Steven P Harvey
- U.S. Army Combat Capabilities and Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, MD 21010, United States
| | - Patricia M Legler
- U.S. Naval Research Laboratory, 4555 Overlook Ave., Washington, DC 20375, United States.
| |
Collapse
|
8
|
Liu M, Chu Y, Liu H, Su Y, Zhang Q, Jiao J, Liu M, Ding J, Liu M, Hu Y, Dai Y, Zhang R, Liu X, Deng Y, Song Y. Accelerated Blood Clearance of Nanoemulsions Modified with PEG-Cholesterol and PEG-Phospholipid Derivatives in Rats: The Effect of PEG-Lipid Linkages and PEG Molecular Weights. Mol Pharm 2019; 17:1059-1070. [DOI: 10.1021/acs.molpharmaceut.9b00770] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Mengyang Liu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Yanyi Chu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huan Liu
- Shanghai STA Phamarceutical Product Company Ltd., No. 90, Nandelin Road, Waigaoqiao
Free Trade Zone, Shanghai 200131, China
| | - Yuqing Su
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Qi Zhang
- Department of General Surgery, General Hospital of Benxi Iron and Steel Company Ltd., No. 29 Renmin Road, Pingshan District, Benxi, Liaoning 117000, China
| | - Jiao Jiao
- Department of Applied Chemistry, Yuncheng University, Yuncheng, Shanxi 044000, China
| | - Mingqi Liu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Junqiang Ding
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Min Liu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Yawei Hu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Yueying Dai
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Rongping Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| |
Collapse
|
9
|
Kaphalia L, Srinivasan MP, Kakumanu RD, Kaphalia BS, Calhoun WJ. Ethanol Exposure Impairs AMPK Signaling and Phagocytosis in Human Alveolar Macrophages: Role of Ethanol Metabolism. Alcohol Clin Exp Res 2019; 43:1682-1694. [PMID: 31211863 DOI: 10.1111/acer.14131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chronic alcohol consumption impairs alveolar macrophage's (AM) function and increases risk for developing lung infection and pneumonia. However, the mechanism and metabolic basis of alcohol-induced AM dysfunction leading to lung infection are not well defined, but may include altered ethanol (EtOH) and reactive oxygen species metabolism and cellular energetics. Therefore, oxidative stress, endoplasmic reticulum (ER) stress, the formation of fatty acid ethyl esters [FAEEs, nonoxidative metabolites of EtOH], AMP-activated protein kinase (AMPK) signaling, and phagocytic function were examined in freshly isolated AM incubated with EtOH. METHODS AMs separated from bronchoalveolar lavage fluid samples obtained from normal volunteers were incubated with EtOH for 24 hours. AMPK signaling and ER stress were assessed using Western blotting, FAEEs by GC-MS, oxidative stress by immunofluorescence using antibodies to 4-hydroxynonenal, and phagocytosis by latex beads. Oxidative stress was also measured in EtOH-treated AMs with/without AMPK activator [5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)] or inhibitor (Compound C), and in AMs incubated with FAEEs. mRNA expression for interleukins (IL-6 and IL-8), monocyte chemoattractant protein (MCP)-1, and transforming growth factor (TGF)-β was measured in AM treated with EtOH or FAEEs using RT-PCR. RESULTS EtOH exposure to AM increased oxidative stress, ER stress, and synthesis of FAEEs, decreased phosphorylated AMPK, and impaired phagocytosis. Attenuation or exacerbation of EtOH-induced oxidative stress by AICAR or Compound C, respectively, suggests a link between AMPK signaling, EtOH metabolism, and related oxidative stress. The formation of FAEEs may contribute to EtOH-induced oxidative stress as FAEEs also produced concentration-dependent oxidative stress. An increased mRNA expression of IL-6, IL-8, and MCP-1 by FAEEs is key finding to suggest a metabolic basis of EtOH-induced inflammatory response. CONCLUSIONS EtOH-induced impaired phagocytosis, oxidative stress, ER stress, and dysregulated AMPK signaling are plausibly associated with the formation of FAEEs and may participate in the pathogenesis of nonspecific pulmonary inflammation.
Collapse
Affiliation(s)
- Lata Kaphalia
- Division of Pulmonary, Critical Care Medicine, and Sleep, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas.,Division of Allergy & Clinical Immunology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Mukund P Srinivasan
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Ramu D Kakumanu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | | | - William J Calhoun
- Division of Pulmonary, Critical Care Medicine, and Sleep, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas.,Division of Allergy & Clinical Immunology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
10
|
Fang WL, Tang YJ, Guo XF, Wang H. A fluorescent probe for carbon monoxide based on allyl ether rather than allyl ester: A practical strategy to avoid the interference of esterase in cell imaging. Talanta 2019; 205:120070. [PMID: 31450480 DOI: 10.1016/j.talanta.2019.06.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/10/2019] [Accepted: 06/18/2019] [Indexed: 01/31/2023]
Abstract
Pd0-mediated Tsuji-Trost reaction is a practical strategy to design fluorescent probes for carbon monoxide (CO) sensing, and in such reaction CO can reduce Pd2+ to Pd0 in-situ and remove allyl groups on fluorophores. In most of these probes, esters are commonly used to link allyl on fluorophores. We found that the ester groups could be hydrolyzed by esterase activity of fetal bovine serum (FBS), while FBS is a requisite in cell culture, and the hydrolysis could interfere the Pd0-mediated Tsuji-Trost reaction. In this study, we synthesized a fluorescent probe (Cou-CO) using allyl ether as reaction site rather than allyl ester. Cou-CO is non-fluorescence, and could react with CO under the presence of Pd0 to form Cou with strong fluorescence, and the maximum excitation and emission wavelengths of Cou are 464 nm and 495 nm respectively. Cou-CO shows excellent selectivity to CO and could avoid the effect of FBS with the limit of detection for CO is 78 nm. Finally, Cou-CO was successfully applied for imaging of CO in living cells.
Collapse
Affiliation(s)
- Wen-Le Fang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying-Jie Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiao-Feng Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hong Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
11
|
Bürger M, Chory J. Structural and chemical biology of deacetylases for carbohydrates, proteins, small molecules and histones. Commun Biol 2018; 1:217. [PMID: 30534609 PMCID: PMC6281622 DOI: 10.1038/s42003-018-0214-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/31/2018] [Indexed: 01/02/2023] Open
Abstract
Deacetylation is the removal of an acetyl group and occurs on a plethora of targets and for a wide range of biological reasons. Several pathogens deacetylate their surface carbohydrates to evade immune response or to support biofilm formation. Furthermore, dynamic acetylation/deacetylation cycles govern processes from chromatin remodeling to posttranslational modifications that compete with phosphorylation. Acetylation usually occurs on nitrogen and oxygen atoms and are referred to as N- and O-acetylation, respectively. This review discusses the structural prerequisites that enzymes must have to catalyze the deacetylation reaction, and how they adapted by formation of specific substrate and metal binding sites.
Collapse
Affiliation(s)
- Marco Bürger
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Joanne Chory
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| |
Collapse
|
12
|
Szafran BN, Lee JH, Borazjani A, Morrison P, Zimmerman G, Andrzejewski KL, Ross MK, Kaplan BLF. Characterization of Endocannabinoid-Metabolizing Enzymes in Human Peripheral Blood Mononuclear Cells under Inflammatory Conditions. Molecules 2018; 23:molecules23123167. [PMID: 30513753 PMCID: PMC6321211 DOI: 10.3390/molecules23123167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/20/2018] [Accepted: 11/28/2018] [Indexed: 01/09/2023] Open
Abstract
Endocannabinoid-metabolizing enzymes are downregulated in response to lipopolysaccharide (LPS)-induced inflammation in mice, which may serve as a negative feedback mechanism to increase endocannabinoid levels and reduce inflammation. Increased plasma levels of the pro-inflammatory cytokine interleukin-6 (IL-6) and decreased fatty acid amide hydrolase (FAAH) activity in peripheral lymphocytes from individuals diagnosed with Huntington’s disease (HD) suggests that a similar negative feedback system between inflammation and the endocannabinoid system operates in humans. We investigated whether CpG- (unmethylated bacterial DNA) and LPS-induced IL-6 levels in peripheral blood mononuclear cells (PBMCs) from non-HD and HD individuals modulated the activities of endocannabinoid hydrolases monoacylglycerol lipase (MAGL) and carboxylesterase (CES). Baseline plasma IL-6 levels and 2-arachidonoylglycerol (2-AG) hydrolytic activity in PBMC lysates were not different in HD and non-HD individuals. Inhibition of MAGL and CES1 activity in PBMCs using the inhibitors JZL184 and WWL113, respectively, demonstrated that MAGL was the dominant 2-AG hydrolytic enzyme in PBMCs, regardless of disease state. Correlative analyses of 2-AG hydrolytic activity versus enzyme abundance confirmed this conclusion. Flow cytometric analysis of PBMCs showed that MAGL and CES1 were primarily expressed in monocytes and to a lesser extent in lymphocytes. In conclusion, these data suggest that IL-6 did not influence 2-AG hydrolytic activity in human PBMCs; however, monocytic MAGL was shown to be the predominant 2-AG hydrolytic enzyme.
Collapse
Affiliation(s)
- Brittany N Szafran
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39759, USA.
| | - Jung Hwa Lee
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39759, USA.
| | - Abdolsamad Borazjani
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39759, USA.
| | - Peter Morrison
- Department of Neurology, University of Rochester, Rochester, NY 14627, USA.
| | - Grace Zimmerman
- Department of Neurology, University of Rochester, Rochester, NY 14627, USA.
| | - Kelly L Andrzejewski
- Department of Neurology, University of Rochester, Rochester, NY 14627, USA.
- Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY 14211, USA.
| | - Matthew K Ross
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39759, USA.
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39759, USA.
| |
Collapse
|
13
|
Wang J, Xu W, Yang Z, Yan Y, Xie X, Qu N, Wang Y, Wang C, Hua J. New Diketopyrrolopyrrole-Based Ratiometric Fluorescent Probe for Intracellular Esterase Detection and Discrimination of Live and Dead Cells in Different Fluorescence Channels. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31088-31095. [PMID: 30129745 DOI: 10.1021/acsami.8b11365] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A new diketopyrrolopyrrole-based fluorescent probe (DPP-AM) was designed and synthesized for ratiometric detection of esterase and for imaging of live and dead cells in different modes. DPP-AM showed red fluorescence because of the intramolecular charge transfer (ICT) process from the DPP moiety to the pyridinium cation and gave remarkable ratio changes (about 70 folds), with the fluorescence changing from red to yellow, after treating with esterase because of the broken ICT process. Besides, the detection limit of DPP-AM toward esterase in vitro was 9.51 × 10-5 U/mL. After pretreating with H2O2 and ultraviolet light radiation, the health status of TPC1 cells was successfully imaged. More importantly, DPP-AM showed yellow fluorescence in live cells and a red fluorescent signal in dead cells, indicating that DPP-AM has great potential applications for assessing esterase activity as well as for discriminating live and dead cells.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, College of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Weibo Xu
- Department of Oncology , Shanghai Medical College, Fudan University , Shanghai 200032 , China
- Department of Head and Neck Surgery , Fudan University Shanghai Cancer Center , Shanghai 200032 , China
| | - Zhicheng Yang
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, College of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Yongchao Yan
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, College of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Xiaoxu Xie
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, College of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Ning Qu
- Department of Oncology , Shanghai Medical College, Fudan University , Shanghai 200032 , China
- Department of Head and Neck Surgery , Fudan University Shanghai Cancer Center , Shanghai 200032 , China
| | - Yu Wang
- Department of Oncology , Shanghai Medical College, Fudan University , Shanghai 200032 , China
- Department of Head and Neck Surgery , Fudan University Shanghai Cancer Center , Shanghai 200032 , China
| | - Chengyun Wang
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, College of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Jianli Hua
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, College of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| |
Collapse
|
14
|
Bradbury P, Traini D, Ammit AJ, Young PM, Ong HX. Repurposing of statins via inhalation to treat lung inflammatory conditions. Adv Drug Deliv Rev 2018; 133:93-106. [PMID: 29890243 DOI: 10.1016/j.addr.2018.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/14/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022]
Abstract
Despite many therapeutic advancements over the past decade, the continued rise in chronic inflammatory lung diseases incidence has driven the need to identify and develop new therapeutic strategies, with superior efficacy to treat these diseases. Statins are one class of drug that could potentially be repurposed as an alternative treatment for chronic lung diseases. They are currently used to treat hypercholesterolemia by inhibiting the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, that catalyses the rate limiting step in the mevalonate biosynthesis pathway, a key intermediate in cholesterol metabolism. Recent research has identified statins to have other protective pleiotropic properties including anti-inflammatory, anti-oxidant, muco-inhibitory effects that may be beneficial for the treatment of chronic inflammatory lung diseases. However, clinical studies have yielded conflicting results. This review will summarise some of the current evidences for statins pleiotropic effects that could be applied for the treatment of chronic inflammatory lung diseases, their mechanisms of actions, and the potential to repurpose statins as an inhaled therapy, including a detailed discussion on their different physical-chemical properties and how these characteristics could ultimately affect treatment efficacies. The repurposing of statins from conventional anti-cholesterol oral therapy to inhaled anti-inflammatory formulation is promising, as it provides direct delivery to the airways, reduced risk of side effects, increased bioavailability and tailored physical-chemical properties for enhanced efficacy.
Collapse
|
15
|
Presence and inter-individual variability of carboxylesterases (CES1 and CES2) in human lung. Biochem Pharmacol 2018; 150:64-71. [PMID: 29407485 DOI: 10.1016/j.bcp.2018.01.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/12/2018] [Indexed: 11/20/2022]
Abstract
Lungs are pharmacologically active organs and the pulmonary drug metabolism is of interest for inhaled drugs design. Carboxylesterases (CESs) are enzymes catalyzing the hydrolysis of many structurally different ester, amide and carbamate chemicals, including prodrugs. For the first time, the presence, kinetics, inhibition and inter-individual variations of the major liver CES isozymes (CES1 and CES2) were investigated in cytosol and microsomes of human lungs from 20 individuals using 4-nitrophenyl acetate (pNPA), 4-methylumbelliferyl acetate (4-MUA), and fluorescein diacetate (FD) as substrates the rates of hydrolysis (Vmax) for pNPA and 4-MUA, unlike FD, were double in microsomes than in cytosol. In these cellular fractions, the Vmax of pNPA, as CES1 marker, were much greater (30-50-fold) than those of FD, as a specific CES2 marker. Conversely, the Km values were comparable suggesting the involvement of the same enzymes. Inhibition studies revealed that the FD hydrolysis was inhibited by bis-p-nitrophenylphosphate, phenylmethanesulfonyl fluoride, and loperamide (specific for CES2), whereas the pNPA and 4-MUA hydrolysis inhibition was limited. Inhibitors selective for other esterases missed having any effect on above-mentioned activities. In cytosol and microsomes of 20 lung samples, inter-individual variations were found for the hydrolysis of pNPA (2.5-5-fold), FD or 4-MUA (8-15-fold). Similar variations were also observed in CES1 and CES2 gene expression, although determined in a small number (n = 9) of lung samples. The identification of CES1 and CES2 and their variability in human lungs are important for drug metabolism and design of prodrugs which need to be activated in this organ.
Collapse
|
16
|
Wierdl M, Tsurkan L, Hatfield MJ, Potter PM. Tumour-selective targeting of drug metabolizing enzymes to treat metastatic cancer. Br J Pharmacol 2016; 173:2811-8. [PMID: 27423046 DOI: 10.1111/bph.13553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 11/28/2022] Open
Abstract
Carboxylesterases (CEs) are ubiquitous enzymes responsible for the detoxification of ester-containing xenobiotics. This hydrolysis reaction results in the formation of the corresponding carboxylic acid and alcohol. Due to their highly plastic active site, CEs can hydrolyze structurally very distinct and complex molecules. Because ester groups significantly increase the water solubility of compounds, they are frequently used in the pharmaceutical industry to make relatively insoluble compounds more bioavailable. By default, this results in CEs playing a major role in the distribution and metabolism of these esterified drugs. However, this can be exploited to selectively improve compound hydrolysis, and using specific in vivo targeting techniques can be employed to generate enhanced drug activity. Here, we seek to detail the human CEs involved in esterified molecule hydrolysis, compare and contrast these with CEs present in small mammals and describe novel methods to improve drug therapy by specific delivery of CEs to cells in vivo. Finally, we will discuss the development of such approaches for their potential application towards malignant disease.
Collapse
Affiliation(s)
- Monika Wierdl
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lyudmila Tsurkan
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - M Jason Hatfield
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Philip M Potter
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
17
|
Kühl AA, Erben U, Cieluch C, Spieckermann S, Gröne J, Lohneis P, Pape UF, Arsenic R, Utku N. Tissue-infiltrating plasma cells are an important source of carboxylesterase 2 contributing to the therapeutic efficacy of prodrugs. Cancer Lett 2016; 378:51-8. [DOI: 10.1016/j.canlet.2016.04.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/19/2016] [Accepted: 04/27/2016] [Indexed: 12/16/2022]
|
18
|
Knobloch J, Yakin Y, Körber S, Grensemann B, Bendella Z, Boyaci N, Gallert WJ, Yanik SD, Jungck D, Koch A. Simvastatin requires activation in accessory cells to modulate T-cell responses in asthma and COPD. Eur J Pharmacol 2016; 788:294-305. [PMID: 27343379 DOI: 10.1016/j.ejphar.2016.06.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 06/17/2016] [Accepted: 06/22/2016] [Indexed: 01/09/2023]
Abstract
T-cell-dependent airway and systemic inflammation triggers the progression of chronic obstructive pulmonary disease (COPD) and asthma. Retrospective studies suggest that simvastatin has anti-inflammatory effects in both diseases but it is unclear, which cell types are targeted. We hypothesized that simvastatin modulates T-cell activity. Circulating CD4+ and CD8+ T-cells, either pure, co-cultured with monocytes or alveolar macrophages (AM) or in peripheral blood mononuclear cells (PBMCs), were ex vivo activated towards Th1/Tc1 or Th2/Tc2 and incubated with simvastatin. Markers for Th1/Tc1 (IFNγ) and Th2/Tc2 (IL-5, IL-13) were measured by ELISA; with PBMCs this was done comparative between 11 healthy never-smokers, 11 current smokers without airflow limitation, 14 smokers with COPD and 11 never-smokers with atopic asthma. T-cell activation induced IFNγ, IL-5 and IL-13 in the presence and absence of accessory cells. Simvastatin did not modulate cytokine expression in pure T-cell fractions. β-hydroxy-simvastatin acid (activated simvastatin) suppressed IL-5 and IL-13 in pure Th2- and Tc2-cells. Simvastatin suppressed IL-5 and IL-13 in Th2-cells co-cultivated with monocytes or AM, which was partially reversed by the carboxylesterase inhibitor benzil. Simvastatin suppressed IL-5 production of Th2/Tc2-cells in PBMCs without differences between cohorts and IL-13 stronger in never-smokers and asthma compared to COPD. Simvastatin induced IFNγ in Th1/Tc1-cells in PBMCs of all cohorts except asthmatics. Simvastatin requires activation in accessory cells likely by carboxylesterase to suppress IL-5 and IL-13 in Th2/Tc2-cells. The effects on Il-13 are partially reduced in COPD. Asthma pathogenesis prevents simvastatin-induced IFNγ up-regulation. Simvastatin has anti-inflammatory effects that could be of interest for asthma therapy.
Collapse
Affiliation(s)
- Jürgen Knobloch
- Department of Internal Medicine III, Bergmannsheil University Hospital, Bochum, Germany; Department of Pneumology, Clinic III for Internal Medicine, University of Cologne, Cologne, Germany.
| | - Yakup Yakin
- Department of Internal Medicine III, Bergmannsheil University Hospital, Bochum, Germany; Department of Pneumology, Clinic III for Internal Medicine, University of Cologne, Cologne, Germany
| | - Sandra Körber
- Department of Internal Medicine III, Bergmannsheil University Hospital, Bochum, Germany
| | - Barbara Grensemann
- Department of Pneumology, Clinic III for Internal Medicine, University of Cologne, Cologne, Germany
| | - Zeynep Bendella
- Department of Pneumology, Clinic III for Internal Medicine, University of Cologne, Cologne, Germany
| | - Niyazi Boyaci
- Department of Pneumology, Clinic III for Internal Medicine, University of Cologne, Cologne, Germany
| | - Willem-Jakob Gallert
- Department of Internal Medicine III, Bergmannsheil University Hospital, Bochum, Germany
| | - Sarah Derya Yanik
- Department of Internal Medicine III, Bergmannsheil University Hospital, Bochum, Germany
| | - David Jungck
- Department of Internal Medicine III, Bergmannsheil University Hospital, Bochum, Germany; Department of Pneumology, Clinic III for Internal Medicine, University of Cologne, Cologne, Germany
| | - Andrea Koch
- Department of Internal Medicine III, Bergmannsheil University Hospital, Bochum, Germany; Department of Pneumology, Clinic III for Internal Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
19
|
Foti RS, Dalvie DK. Cytochrome P450 and Non-Cytochrome P450 Oxidative Metabolism: Contributions to the Pharmacokinetics, Safety, and Efficacy of Xenobiotics. ACTA ACUST UNITED AC 2016; 44:1229-45. [PMID: 27298339 DOI: 10.1124/dmd.116.071753] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/10/2016] [Indexed: 12/16/2022]
Abstract
The drug-metabolizing enzymes that contribute to the metabolism or bioactivation of a drug play a crucial role in defining the absorption, distribution, metabolism, and excretion properties of that drug. Although the overall effect of the cytochrome P450 (P450) family of drug-metabolizing enzymes in this capacity cannot be understated, advancements in the field of non-P450-mediated metabolism have garnered increasing attention in recent years. This is perhaps a direct result of our ability to systematically avoid P450 liabilities by introducing chemical moieties that are not susceptible to P450 metabolism but, as a result, may introduce key pharmacophores for other drug-metabolizing enzymes. Furthermore, the effects of both P450 and non-P450 metabolism at a drug's site of therapeutic action have also been subject to increased scrutiny. To this end, this Special Section on Emerging Novel Enzyme Pathways in Drug Metabolism will highlight a number of advancements that have recently been reported. The included articles support the important role of non-P450 enzymes in the clearance pathways of U.S. Food and Drug Administration-approved drugs over the past 10 years. Specific examples will detail recent reports of aldehyde oxidase, flavin-containing monooxygenase, and other non-P450 pathways that contribute to the metabolic, pharmacokinetic, or pharmacodynamic properties of xenobiotic compounds. Collectively, this series of articles provides additional support for the role of non-P450-mediated metabolic pathways that contribute to the absorption, distribution, metabolism, and excretion properties of current xenobiotics.
Collapse
Affiliation(s)
- Robert S Foti
- Pharmacokinetics and Drug Metabolism, Amgen, Cambridge, Massachusetts (R.S.F.); and Pharmacokinetics, Dynamics, and Metabolism, Pfizer, La Jolla, California (D.K.D.)
| | - Deepak K Dalvie
- Pharmacokinetics and Drug Metabolism, Amgen, Cambridge, Massachusetts (R.S.F.); and Pharmacokinetics, Dynamics, and Metabolism, Pfizer, La Jolla, California (D.K.D.)
| |
Collapse
|
20
|
Tulbah AS, Ong HX, Colombo P, Young PM, Traini D. Could simvastatin be considered as a potential therapy for chronic lung diseases? A debate on the pros and cons. Expert Opin Drug Deliv 2016; 13:1407-20. [PMID: 27212150 DOI: 10.1080/17425247.2016.1193150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Simvastatin (SV) is a drug from the statin class, currently used orally as an anti-cholesterolemic drug. It inhibits the 3-hydroxy-3-methyl-glutaryl-Coenzyme A (HMG-CoA) reductase to reduce cholesterol synthesis. Recently, it has been found that SV also has several other protective pharmacological actions unrelated to its anti-cholesterol effects that might be beneficial in the treatment of chronic airway diseases. AREAS COVERED This review summarizes the evidence relating to SV as a potential anti-inflammatory, anti-oxidant and muco-inhibitory agent, administered both orally and via pulmonary inhalation, and discusses its pro and cons. Evidence could potentially be used to support the delivery of SV as inhaled formulation for the treatment of chronic respiratory diseases. EXPERT OPINION The use of SV as anti-inflammatory, anti-oxidant and muco-inhibitory agent for drug delivery to the lung is promising. Inhaled SV formulations could allow the delivery profile to be customized and optimized to take advantage of the rapid onset of action, low systemic side effect and improved physico-chemical stability. This treatment could potentially to be used clinically for the localized treatment of lung diseases where inflammation and oxidative stress production is present.
Collapse
Affiliation(s)
- Alaa S Tulbah
- a Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , Sydney University , Australia.,b Faculty of Pharmacy , Umm Al Qura University , Makkah , Saudi Arabia
| | - Hui Xin Ong
- a Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , Sydney University , Australia
| | - Paolo Colombo
- c Department of Pharmacy , University of Parma , Parma , Italy
| | - Paul M Young
- a Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , Sydney University , Australia
| | - Daniela Traini
- a Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , Sydney University , Australia
| |
Collapse
|
21
|
Purification of a chymotrypsin-like enzyme present on adult Schistosoma mansoni worms from infected mice and its characterization as a host carboxylesterase. Parasitology 2016; 143:646-57. [DOI: 10.1017/s0031182016000184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYA serine protease-like enzyme found in detergent extracts of Schistosoma mansoni adult worms perfused from infected mice has been purified from mouse blood and further characterized. The enzyme is approximately 85 kDa and hydrolyses N-acetyl-DL-phenylalanine β-naphthyl–ester, a chromogenic substrate for chymotrypsin-like enzymes. The enzyme from S. mansoni worms appears to be antigenically and enzymatically similar to a molecule that is present in normal mouse blood and so is seemingly host-derived. The enzyme was partially purified by depleting normal mouse serum of albumin using sodium chloride and cold ethanol, followed by repeated rounds of purification by one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis. The purified material was subjected to tandem mass spectrometry and its derived peptides found to belong to mouse carboxylesterase 1C. Its ability to hydrolyse α- or β-naphthyl acetates, which are general esterase substrates, has been confirmed. A similar carboxylesterase was purified and characterized from rat blood. Additional evidence to support identification of the enzyme as a carboxylesterase has been provided. Possible roles of the enzyme in the mouse host–parasite relationship could be to ease the passage of worms through the host's blood vessels and/or in immune evasion.
Collapse
|
22
|
Regulations of Xenobiotics and Endobiotics on Carboxylesterases: A Comprehensive Review. Eur J Drug Metab Pharmacokinet 2016; 41:321-30. [DOI: 10.1007/s13318-016-0326-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Fendri A, Frikha F, Louati H, Bou Ali M, Gargouri H, Gargouri Y, Miled N. Cloning and molecular modeling of a thermostable carboxylesterase from the chicken uropygial glands. J Mol Graph Model 2014; 56:1-9. [PMID: 25541525 DOI: 10.1016/j.jmgm.2014.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/24/2014] [Accepted: 11/30/2014] [Indexed: 01/09/2023]
Abstract
Starting from total uropygial glands mRNAs, chicken uropygial carboxylesterase (cuCES) cDNA was synthesized by RT-PCR and cloned into the PGEM-T vector. Amino acid sequence of the cuCES is compared to that of human liver carboxylesterase 1 (hCES1). Given the high amino acid sequence homology between the two enzymes, a 3-D structure model of the chicken carboxylesterase was built using the structure of hCES1 as template. By following this model and utilizing molecular dynamics (MD) simulations, the resistance of the chicken carboxylesterase at high temperatures could be explained. The docking of substrate analogs into the cuCES active site was used to explain the fact that the chicken carboxylesterase cannot hydrolyze efficiently large substrate molecules.
Collapse
Affiliation(s)
- Ahmed Fendri
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax (ENIS), route de Soukra, BPW 3038 Sfax, Tunisia.
| | - Fakher Frikha
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax (ENIS), route de Soukra, BPW 3038 Sfax, Tunisia
| | - Hanen Louati
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax (ENIS), route de Soukra, BPW 3038 Sfax, Tunisia
| | - Madiha Bou Ali
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax (ENIS), route de Soukra, BPW 3038 Sfax, Tunisia
| | - Hela Gargouri
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax (ENIS), route de Soukra, BPW 3038 Sfax, Tunisia
| | - Youssef Gargouri
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax (ENIS), route de Soukra, BPW 3038 Sfax, Tunisia
| | - Nabil Miled
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax (ENIS), route de Soukra, BPW 3038 Sfax, Tunisia
| |
Collapse
|
24
|
Anestopoulos I, Voulgaridou GP, Georgakilas AG, Franco R, Pappa A, Panayiotidis MI. Epigenetic therapy as a novel approach in hepatocellular carcinoma. Pharmacol Ther 2014; 145:103-19. [PMID: 25205159 DOI: 10.1016/j.pharmthera.2014.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/02/2014] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver malignancy and one with high fatality. Its 5-year survival rate remains low and thus, there is a need for improvement of current treatment strategies as well as development of novel targeted methodologies in order to optimize existing therapeutic protocols. To this end, only recently, it was discovered that its pathophysiology also involves epigenetic alterations in DNA methylation, histone modifications and/or non-coding microRNA patterns. Unlike genetic events, epigenetic alterations are reversible and thus potentially considered to be an alternative option in cancer treatment protocols. In this review, we describe the general characteristics and resulted major alterations of the epigenetic machinery as well as current state of progress of epigenetic therapy (via different single or combinatorial experimental approaches) in HCC.
Collapse
Affiliation(s)
- Ioannis Anestopoulos
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Alexandros G Georgakilas
- School of Applied Mathematical & Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Rodrigo Franco
- Redox Biology Center, School of Veterinary Medicine & Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | |
Collapse
|
25
|
Sakai K, Igarashi M, Yamamuro D, Ohshiro T, Nagashima S, Takahashi M, Enkhtuvshin B, Sekiya M, Okazaki H, Osuga JI, Ishibashi S. Critical role of neutral cholesteryl ester hydrolase 1 in cholesteryl ester hydrolysis in murine macrophages. J Lipid Res 2014; 55:2033-40. [PMID: 24868095 DOI: 10.1194/jlr.m047787] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydrolysis of intracellular cholesteryl ester (CE) is the rate-limiting step in the efflux of cholesterol from macrophage foam cells. In mouse peritoneal macrophages (MPMs), this process is thought to involve several enzymes: hormone-sensitive lipase (Lipe), carboxylesterase 3 (Ces3), neutral CE hydrolase 1 (Nceh1). However, there is some disagreement over the relative contributions of these enzymes. To solve this problem, we first compared the abilities of several compounds to inhibit the hydrolysis of CE in cells overexpressing Lipe, Ces3, or Nceh1. Cells overexpressing Ces3 had negligible neutral CE hydrolase activity. We next examined the effects of these inhibitors on the hydrolysis of CE and subsequent cholesterol trafficking in MPMs. CE accumulation was increased by a selective inhibitor of Nceh1, paraoxon, and two nonselective inhibitors of Nceh1, (+)-AS115 and (-)-AS115, but not by two Lipe-selective inhibitors, orlistat and 76-0079. Paraoxon inhibited cholesterol efflux to apoA-I or HDL, while 76-0079 did not. These results suggest that Nceh1 plays a dominant role over Lipe in the hydrolysis of CE and subsequent cholesterol efflux in MPMs.
Collapse
Affiliation(s)
- Kent Sakai
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Masaki Igarashi
- Department of Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655 Japan
| | - Daisuke Yamamuro
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Taichi Ohshiro
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Shuichi Nagashima
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Manabu Takahashi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Bolormaa Enkhtuvshin
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Motohiro Sekiya
- Department of Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655 Japan
| | - Hiroaki Okazaki
- Department of Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655 Japan
| | - Jun-ichi Osuga
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| |
Collapse
|
26
|
Multiple dosing of simvastatin inhibits airway mucus production of epithelial cells: implications in the treatment of chronic obstructive airway pathologies. Eur J Pharm Biopharm 2013; 84:566-72. [PMID: 23474382 DOI: 10.1016/j.ejpb.2013.01.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/22/2012] [Accepted: 01/29/2013] [Indexed: 01/29/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterised by mucus hyper-production. This pathology, together with other inflammatory contributions, leads to airway obstruction and breathing complications. Newer therapeutic approaches are of increased interest, including the use of HMG-CoA reductase inhibitors. Retrospective studies have shown that statins are effective in reducing patient mortality and blood cytokines levels. These findings suggest statins may also provide a new therapeutic approach in COPD treatment. PURPOSE The aim of the present work was to study the transport of simvastatin (SV) across Calu-3 epithelial cells and to investigate its pharmacological action with respect to reduction in mucus production. METHODS Calu-3 cells were grown under liquid covered culture (LCC) conditions for transport studies in order to demonstrate the ability of SV to transport across the monolayer. For mucus detection, cells were grown under air interface culture (AIC) conditions. Samples collected for microscope analysis were stained with alcian blue; images of the stained cell surface were acquired and the mucus was quantified as the RGBB ratio. RESULTS SV was transported through the cell monolayer and 'retained' inside the Calu-3 cells. Colour analysis of stained Calu-3 monolayers microscope-images showed that chronic administration of SV for 14 days caused a significant inhibition in mucus production. CONCLUSION These findings suggest that local delivery of SV directly to the lungs may provide a promising treatment and potential disease management approach of COPD, with significant effects on mucus reduction.
Collapse
|
27
|
Baker PE, Cole TB, Cartwright M, Suzuki SM, Thummel KE, Lin YS, Co AL, Rettie AE, Kim JH, Furlong CE. Identifying safer anti-wear triaryl phosphate additives for jet engine lubricants. Chem Biol Interact 2012; 203:257-64. [PMID: 23085349 DOI: 10.1016/j.cbi.2012.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/22/2012] [Accepted: 10/10/2012] [Indexed: 11/15/2022]
Abstract
Individuals aboard jet aircraft may be exposed to potentially toxic triaryl organophosphate anti-wear lubricant additives (TAPs) that are converted by cytochromes P450 into toxic metabolites. Consequences of exposure could be reduced by using less toxic TAPs. Our goal was to determine whether an in vitro assay for inhibition of butyrylcholinesterase (BChE) by bioactivated TAPs would be predictive of inhibition of serine active-site enzymes in vivo. The in vitro assay involved TAP bioactivation with liver microsomes and NADPH, followed by incubation with human BChE and measurement of BChE activity. Of 19 TAPs tested, tert-butylated isomers produced the least BChE inhibition. To determine the relevance of these results in vivo, mice were exposed to Durad 125 (D125; a commercial mixture of TAP esters) or to TAPs demonstrating low or no BChE inhibition when assayed in vitro. Inhibition of BChE by bioactivated TAPs in vitro correlated well with inhibition of other serine active-site enzymes in vivo, with the exception of brain acetylcholinesterase and neuropathy target esterase (NTE), which were not inhibited by any TAP tested following single exposures. A recombinant catalytic domain of NTE (rNEST) exhibited classical kinetic properties of NTE. The metabolite of tri-(o-cresyl) phosphate (ToCP), 2-(o-cresyl)-4H-1,3,2-benzodioxaphosphoran-2-one (CBDP), inhibited rNEST in vitro, but with an IC(50) value almost 6-times higher than for inhibition of BChE. Physiologically-relevant concentrations of the flavonoid naringenin dramatically reduced D125 bioconversion in vitro. The in vitro assay should provide a valuable tool for prescreening candidate TAP anti-wear additives, identifying safer additives and reducing the number of animals required for in vivo toxicity testing.
Collapse
Affiliation(s)
- Paul E Baker
- Department of Medicine-Division of Medical Genetics, University of Washington, Seattle, WA 98195, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bovine Carboxylesterases: Evidence for Two CES1 and Five Families of CES Genes on Chromosome 18. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012; 4:11-20. [PMID: 20161341 DOI: 10.1016/j.cbd.2008.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Predicted bovine carboxylesterase (CES) protein and gene sequences were derived from bovine (Bos taurus) genomic sequence data. Two bovine CES1 genes (CES1.1 and CES1.2) were located on chromosome 18 encoding amino acid sequences that were 81% identical. Two forms of CES1.2 were also observed apparently caused by an indel polymorphism encoded at the C-terminus end. Two CES gene clusters were observed on chromosome 18: CES5-CES1.1-CES1.2 and CES2-CES3-CES6. Bovine CES1, CES2, CES3, CES5 and CES6 shared 39-45% identity with each other, but showed 71-76% identity with each of the five corresponding human CES family members. Phylogeny studies indicated that bovine CES genes originated from five ancestral gene duplication events which predated the eutherian mammalian common ancestor. In addition, a subsequent CES1 gene duplication event is proposed during mammalian evolution prior to the appearance of the Bovidae common ancestor ~ 20 MY ago.
Collapse
|
29
|
Albert Š, Gätschenberger H, Azzami K, Gimple O, Grimmer G, Sumner S, Fujiyuki T, Tautz J, Mueller MJ. Evidence of a novel immune responsive protein in the Hymenoptera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:968-981. [PMID: 22001069 DOI: 10.1016/j.ibmb.2011.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/20/2011] [Accepted: 09/27/2011] [Indexed: 05/31/2023]
Abstract
Honeybee populations are severely threatened by parasites and diseases. Recent outbreaks of Colony Collapse Disorder (CCD) has caused loss of more than 35% of bee colonies in the USA, and this is thought to at least in part be due to parasites and/or disease. Interestingly, the honeybee possesses of a limited set of immune genes compared to other insects. Non-canonical immune genes of honeybee are of interest because they may provide greater insights into the peculiar nature of the immune system of this social insect. Previous analyses of bee haemolymph upon bacterial challenge identified a novel leucine-rich repeat protein termed IRP30. Here we show that IRP30 behaves as a typical secreted immune protein. It is expressed simultaneously with carboxylesterase upon treatment with bacteria or other elicitors of immune response. Furthermore we characterize the gene and the mRNA encoding this protein and the IRP30 protein itself. Its regulation and evolution reveal that IRP30 belongs to a protein family, distributed broadly among Hymenoptera, suggesting its ancient function in immune response. We document an interesting case of a recent IRP30 loss in the ant Atta cephalotes and hypothesize that a putative IRP30 homolog of Nasonia emerged by convergent evolution rather than diverged from a common ancestor.
Collapse
Affiliation(s)
- Štefan Albert
- BEEgroup, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Comparative Structures and Evolution of Vertebrate Carboxyl Ester Lipase (CEL) Genes and Proteins with a Major Role in Reverse Cholesterol Transport. CHOLESTEROL 2011; 2011:781643. [PMID: 22162806 PMCID: PMC3227413 DOI: 10.1155/2011/781643] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 08/30/2011] [Indexed: 12/20/2022]
Abstract
Bile-salt activated carboxylic ester lipase (CEL) is a major triglyceride, cholesterol ester and vitamin ester hydrolytic enzyme contained within pancreatic and lactating mammary gland secretions. Bioinformatic methods were used to predict the amino acid sequences, secondary and tertiary structures and gene locations for CEL genes, and encoded proteins using data from several vertebrate genome projects. A proline-rich and O-glycosylated 11-amino acid C-terminal repeat sequence (VNTR) previously reported for human and other higher primate CEL proteins was also observed for other eutherian mammalian CEL sequences examined. In contrast, opossum CEL contained a single C-terminal copy of this sequence whereas CEL proteins from platypus, chicken, lizard, frog and several fish species lacked the VNTR sequence. Vertebrate CEL genes contained 11 coding exons. Evidence is presented for tandem duplicated CEL genes for the zebrafish genome. Vertebrate CEL protein subunits shared 53-97% sequence identities; demonstrated sequence alignments and identities for key CEL amino acid residues; and conservation of predicted secondary and tertiary structures with those previously reported for human CEL. Phylogenetic analyses demonstrated the relationships and potential evolutionary origins of the vertebrate CEL family of genes which were related to a nematode carboxylesterase (CES) gene and five mammalian CES gene families.
Collapse
|
31
|
Marin L, Colombo P, Bebawy M, Young PM, Traini D. Chronic obstructive pulmonary disease: patho-physiology, current methods of treatment and the potential for simvastatin in disease management. Expert Opin Drug Deliv 2011; 8:1205-20. [PMID: 21615218 DOI: 10.1517/17425247.2011.588697] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Chronic Obstructive Pulmonary Disease (COPD) is a severe disease that leads to a non-reversible obstruction of the small airways. The prevalence of this disease is rapidly increasing in developed countries, and in 2020 it has been predicted that this disease will reach the third cause of mortality worldwide. COPD patients do not respond well to current treatment modalities, such as bronchodilators and corticosteroids. AREAS COVERED This review article focuses on the patho-physiology of COPD, explores current approaches to alleviate and treat the disease, and discusses the potential use of statins for treatment. Specifically, the mechanism of action and metabolism of simvastatin, the most known and studied molecule among the statin family, are critically reviewed. EXPERT OPINION Various cellular pathways have been implicated in COPD, with alveolar macrophages emerging as pivotal inflammatory mediators in the COPD patho-physiology. Recently, emerging anti-cytokine therapies, such as PDE4 inhibitors and ACE inhibitors, have shown good anti-inflammatory properties that can be useful in COPD treatment. Recently, statins as a drug class have gained much interest with respect to COPD management, following studies which show simvastatin to exert effective anti-inflammatory effects, via inhibition of the mevalonic acid cascade in alveolar macrophages.
Collapse
Affiliation(s)
- Laura Marin
- Pharmaceutical Department, Faculty of Pharmacy, University of Parma, Parma, Italy
| | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
| | - Masaki Igarashi
- University of Tokyo Tokyo, Japan (Igarashi, Sekiya, Okazaki)
| | - Motohiro Sekiya
- University of Tokyo Tokyo, Japan (Igarashi, Sekiya, Okazaki)
| | - Hiroaki Okazaki
- University of Tokyo Tokyo, Japan (Igarashi, Sekiya, Okazaki)
| | | |
Collapse
|
33
|
Mikata K, Isobe N, Kaneko H. Biotransformation and Enzymatic Reactions of Synthetic Pyrethroids in Mammals. Top Curr Chem (Cham) 2011; 314:113-35. [DOI: 10.1007/128_2011_254] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
Sekiya M, Osuga JI, Igarashi M, Okazaki H, Ishibashi S. The Role of Neutral Cholesterol Ester Hydrolysis in Macrophage Foam Cells. J Atheroscler Thromb 2011; 18:359-64. [DOI: 10.5551/jat.7013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
35
|
Waters MD, Jackson M, Lea I. Characterizing and predicting carcinogenicity and mode of action using conventional and toxicogenomics methods. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2010; 705:184-200. [DOI: 10.1016/j.mrrev.2010.04.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 04/07/2010] [Accepted: 04/08/2010] [Indexed: 01/10/2023]
|
36
|
Igarashi M, Osuga JI, Uozaki H, Sekiya M, Nagashima S, Takahashi M, Takase S, Takanashi M, Li Y, Ohta K, Kumagai M, Nishi M, Hosokawa M, Fledelius C, Jacobsen P, Yagyu H, Fukayama M, Nagai R, Kadowaki T, Ohashi K, Ishibashi S. The Critical Role of Neutral Cholesterol Ester Hydrolase 1 in Cholesterol Removal From Human Macrophages. Circ Res 2010; 107:1387-95. [DOI: 10.1161/circresaha.110.226613] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Masaki Igarashi
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Jun-ichi Osuga
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Hiroshi Uozaki
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Motohiro Sekiya
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Shuichi Nagashima
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Manabu Takahashi
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Satoru Takase
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Mikio Takanashi
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Yongxue Li
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Keisuke Ohta
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Masayoshi Kumagai
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Makiko Nishi
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Masakiyo Hosokawa
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Christian Fledelius
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Poul Jacobsen
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Hiroaki Yagyu
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Masashi Fukayama
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Ryozo Nagai
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Takashi Kadowaki
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Ken Ohashi
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| | - Shun Ishibashi
- From the Departments of Metabolic Diseases (M.I., M.S., S.T., M. Takanashi, Y.L., K. Ohta, M.K., M.N., T.K., K. Ohashi), Pathology (H.U., M.F.), and Cardiovascular Medicine (R.N.), Graduate School of Medicine, University of Tokyo, Japan; Division of Endocrinology and Metabolism (J.-i.O., S.N., M.T., H.Y., S.I.), the Department of Medicine, Jichi Medical University, Tochigi, Japan; Faculty of Pharmaceutical Sciences, Chiba Institute of Science (M.H.), Japan; and Diabetes Research Unit (C.F., P.J.),
| |
Collapse
|
37
|
Hatfield MJ, Tsurkan L, Hyatt JL, Yu X, Edwards CC, Hicks LD, Wadkins RM, Potter PM. Biochemical and molecular analysis of carboxylesterase-mediated hydrolysis of cocaine and heroin. Br J Pharmacol 2010; 160:1916-28. [PMID: 20649590 DOI: 10.1111/j.1476-5381.2010.00700.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Carboxylesterases (CEs) metabolize a wide range of xenobiotic substrates including heroin, cocaine, meperidine and the anticancer agent CPT-11. In this study, we have purified to homogeneity human liver and intestinal CEs and compared their ability with hydrolyse heroin, cocaine and CPT-11. EXPERIMENTAL APPROACH The hydrolysis of heroin and cocaine by recombinant human CEs was evaluated and the kinetic parameters determined. In addition, microsomal samples prepared from these tissues were subjected to chromatographic separation, and substrate hydrolysis and amounts of different CEs were determined. KEY RESULTS In contrast to previous reports, cocaine was not hydrolysed by the human liver CE, hCE1 (CES1), either as highly active recombinant protein or as CEs isolated from human liver or intestinal extracts. These results correlated well with computer-assisted molecular modelling studies that suggested that hydrolysis of cocaine by hCE1 (CES1), would be unlikely to occur. However, cocaine, heroin and CPT-11 were all substrates for the intestinal CE, hiCE (CES2), as determined using both the recombinant protein and the tissue fractions. Again, these data were in agreement with the modelling results. CONCLUSIONS AND IMPLICATIONS These results indicate that the human liver CE is unlikely to play a role in the metabolism of cocaine and that hydrolysis of this substrate by this class of enzymes is via the human intestinal protein hiCE (CES2). In addition, because no enzyme inhibition is observed at high cocaine concentrations, potentially this route of hydrolysis is important in individuals who overdose on this agent.
Collapse
Affiliation(s)
- M J Hatfield
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Holmes RS, Wright MW, Laulederkind SJF, Cox LA, Hosokawa M, Imai T, Ishibashi S, Lehner R, Miyazaki M, Perkins EJ, Potter PM, Redinbo MR, Robert J, Satoh T, Yamashita T, Yan B, Yokoi T, Zechner R, Maltais LJ. Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins. Mamm Genome 2010; 21:427-41. [PMID: 20931200 PMCID: PMC3127206 DOI: 10.1007/s00335-010-9284-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 07/27/2010] [Indexed: 12/11/2022]
Abstract
Mammalian carboxylesterase (CES or Ces) genes encode enzymes that participate in xenobiotic, drug, and lipid metabolism in the body and are members of at least five gene families. Tandem duplications have added more genes for some families, particularly for mouse and rat genomes, which has caused confusion in naming rodent Ces genes. This article describes a new nomenclature system for human, mouse, and rat carboxylesterase genes that identifies homolog gene families and allocates a unique name for each gene. The guidelines of human, mouse, and rat gene nomenclature committees were followed and "CES" (human) and "Ces" (mouse and rat) root symbols were used followed by the family number (e.g., human CES1). Where multiple genes were identified for a family or where a clash occurred with an existing gene name, a letter was added (e.g., human CES4A; mouse and rat Ces1a) that reflected gene relatedness among rodent species (e.g., mouse and rat Ces1a). Pseudogenes were named by adding "P" and a number to the human gene name (e.g., human CES1P1) or by using a new letter followed by ps for mouse and rat Ces pseudogenes (e.g., Ces2d-ps). Gene transcript isoforms were named by adding the GenBank accession ID to the gene symbol (e.g., human CES1_AB119995 or mouse Ces1e_BC019208). This nomenclature improves our understanding of human, mouse, and rat CES/Ces gene families and facilitates research into the structure, function, and evolution of these gene families. It also serves as a model for naming CES genes from other mammalian species.
Collapse
Affiliation(s)
- Roger S Holmes
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX 78227-5301, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Organ-specific carboxylesterase profiling identifies the small intestine and kidney as major contributors of activation of the anticancer prodrug CPT-11. Biochem Pharmacol 2010; 81:24-31. [PMID: 20833148 DOI: 10.1016/j.bcp.2010.09.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 08/30/2010] [Accepted: 09/01/2010] [Indexed: 12/26/2022]
Abstract
The activation of the anticancer prodrug CPT-11, to its active metabolite SN-38, is primarily mediated by carboxylesterases (CE). In humans, three CEs have been identified, of which human liver CE (hCE1; CES1) and human intestinal CE (hiCE; CES2) demonstrate significant ability to hydrolyze the drug. However, while the kinetic parameters of CPT-11 hydrolysis have been measured, the actual contribution of each enzyme to activate the drug in biological samples has not been addressed. Hence, we have used a combination of specific CE inhibition and conventional chromatographic techniques to determine the amounts, and hydrolytic activity, of CEs present within human liver, kidney, intestinal and lung specimens. These studies confirm that hiCE demonstrates the most efficient kinetic parameters for CPT-11 activation, however, due to the high levels of hCE1 that are expressed in liver, the latter enzyme can contribute up to 50% of the total of drug hydrolysis in this tissue. Conversely, in human duodenum, jejunum, ileum and kidney, where hCE1 expression is very low, greater than 99% of the conversion of CPT-11 to SN-38 was mediated by hiCE. Furthermore, analysis of lung microsomal extracts indicated that CPT-11 activation was more proficient in samples obtained from smokers. Overall, our studies demonstrate that hCE1 plays a significant role in CPT-11 hydrolysis even though it is up to 100-fold less efficient at drug activation than hiCE, and that drug activation in the intestine and kidney are likely major contributors to SN-38 production in vivo.
Collapse
|
40
|
Holmes RS, Cox LA, VandeBerg JL. Mammalian carboxylesterase 3: comparative genomics and proteomics. Genetica 2010; 138:695-708. [PMID: 20422440 PMCID: PMC2896070 DOI: 10.1007/s10709-010-9438-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 01/15/2010] [Indexed: 02/05/2023]
Abstract
At least five families of mammalian carboxylesterases (CES) catalyse the hydrolysis or transesterification of a wide range of drugs and xenobiotics and may also participate in fatty acyl and cholesterol ester metabolism. In this study, in silico methods were used to predict the amino acid sequences, secondary and tertiary structures, and gene locations for CES3 genes and encoded proteins using data from several mammalian genome projects. Mammalian CES3 genes were located within a CES gene cluster with CES2 and CES6 genes, usually containing 13 exons transcribed on the positive DNA strand. Evidence is reported for duplicated CES3 genes for the chimp and mouse genomes. Mammalian CES3 protein subunits shared 58-97% sequence identity and exhibited sequence alignments and identities for key CES amino acid residues as well as extensive conservation of predicted secondary and tertiary structures with those previously reported for human CES1. The human genome project has previously reported CES3 mRNA isoform expression in several tissues, particularly in colon, trachea and in brain. Predicted human CES3 isoproteins were apparently derived from exon shuffling and are likely to be secreted extracellularly or retained within the cytoplasm. Mouse CES3-like transcripts were localized in specific regions of the mouse brain, including the cerebellum, and may play a role in the detoxification of drugs and xenobiotics in neural tissues and other tissues of the body. Phylogenetic analyses demonstrated the relationships and potential evolutionary origins of the mammalian CES3 family of genes which were related to but distinct from other mammalian CES gene families.
Collapse
Affiliation(s)
- Roger S Holmes
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX 78227, USA.
| | | | | |
Collapse
|
41
|
Takami Y, Uto H, Tamai T, Sato Y, Ishida YI, Morinaga H, Sakakibara Y, Moriuchi A, Oketani M, Ido A, Nakajima T, Okanoue T, Tsubouchi H. Identification of a novel biomarker for oxidative stress induced by hydrogen peroxide in primary human hepatocytes using the 2-nitrobenzenesulfenyl chloride isotope labeling method. Hepatol Res 2010; 40:438-45. [PMID: 20236361 DOI: 10.1111/j.1872-034x.2009.00615.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM Oxidative stress is involved in the progression of non-alcoholic steatohepatitis (NASH). However, there are few biomarkers that are easily measured and accurately reflect the disease states. The aim of this study was to identify novel oxidative stress markers using the 2-nitrobenzenesulfenyl (NBS) stable isotope labeling method and to examine the clinical utility of these diagnostic markers for NASH. METHODS Proteins extracted from phosphate buffered saline- and hydrogen peroxide-loaded human primary hepatocyte were labeled with the [(12)C]- and [(13)C]-NBS reagents, respectively. Pairs of peaks with 6-Da differences in which the [(13)C]-NBS labeling was more intense than the [(12)C]-NBS labeling were detected by MALDI-TOF/MS and identified by MS/MS ion searching. RESULTS Four pairs of peaks, m/z 1705-1711, m/z 1783-1789, m/z 1902-1908 and m/z 2790-2796, were identified as cytochrome c oxidase VIb (COX6B), liver carboxylesterase 1 (CES1), carbamoyl-phosphate synthase 1 (CPS1) and superoxide dismutase (MnSOD), respectively. Furthermore, serum MnSOD protein levels were significantly higher in NASH patients than in simple steatosis (SS) patients. The serum MnSOD levels tended to increase in parallel with the stage of fibrosis. CONCLUSION The NBS labeling technique was useful to identify biomarkers. Serum MnSOD may be a useful biomarker that can distinguish between SS and NASH.
Collapse
Affiliation(s)
- Yoichiro Takami
- Department of Digestive and Lifestyle-related Disease, Health Research, Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Staudinger JL, Xu C, Cui YJ, Klaassen CD. Nuclear receptor-mediated regulation of carboxylesterase expression and activity. Expert Opin Drug Metab Toxicol 2010; 6:261-71. [PMID: 20163318 PMCID: PMC2826721 DOI: 10.1517/17425250903483215] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Emerging evidence demonstrates that several nuclear receptor (NR) family members regulate drug-inducible expression and activity of several important carboxylesterase (CES) enzymes in mammalian liver and intestine. Numerous clinically prescribed anticancer prodrugs, carbamate and pyrethroid insecticides, environmental toxicants and procarcinogens are substrates for CES enzymes. Moreover, a key strategy used in rational drug design frequently utilizes an ester linkage methodology to selectively target a prodrug, or to improve the water solubility of a novel compound. AREAS COVERED IN THIS REVIEW This review summarizes the current state of knowledge regarding NR-mediated regulation of CES enzymes in mammals and highlights their importance in drug metabolism, drug-drug interactions and toxicology. WHAT THE READER WILL GAIN New knowledge regarding the transcriptional regulation of CES enzymes by NR proteins pregnane x receptor (NR1I2) and constitutive androstane receptor (NR1I3) has recently come to light through the use of knockout and transgenic mouse models. Novel insights regarding the species-specific cross-regulation of glucocorticoid receptor (NR3C1) and PPAR-alpha (NR1C1) signaling and CES gene expression are discussed. TAKE HOME MESSAGE Elucidation of the role of NR-mediated regulation of CES enzymes in liver and intestine will have a significant impact on rational drug design and the development of novel prodrugs, especially for patients on combination therapy.
Collapse
Affiliation(s)
- Jeff L Staudinger
- Department of Pharmacology and Toxicology, University of Kansas, 1251 Wescoe Hall Dr., Lawrence, KS 66045, USA.
| | | | | | | |
Collapse
|
43
|
Analytical approaches to investigate protein-pesticide adducts. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 878:1312-9. [PMID: 19879817 DOI: 10.1016/j.jchromb.2009.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 09/15/2009] [Accepted: 10/14/2009] [Indexed: 11/24/2022]
Abstract
Organophosphorus pesticides primarily elicit toxicity via their common covalent adduction of acetylcholinesterase (AChE), but pesticide binding to additional sensitive secondary targets may also compromise health. We have utilised tritiated-diisopropylfluorophosphate ((3)H-DFP) binding to quantify the levels of active immune and brain tissue serine hydrolases, and visualise them using autoradiography after protein separation by one-dimensional and two-dimensional techniques. Preincubation of protein extracts with pesticide in vitro or dosing of rats with pesticide in vivo was followed by (3)H-DFP radiolabelling. Pesticide targets were identified by a reduction in (3)H-DFP radiolabelling relative to controls, and characterised by their tissue presence, molecular weight, and isoelectric point. Conventional column chromatography was employed to enrich pesticide targets to enable their further characterisation, and/or identification by mass spectrometry. The major in vivo pesticide targets characterised were 66 kDa, serum albumin, and 60 kDa, likely carboxylesterase 1, both of which displayed differential pesticide binding character under conditions producing approximately 30% tissue AChE inhibition. The characterisation and identification of sensitive pesticide secondary targets will enable an evaluation of their potential contribution to the ill health that may arise from chronic low-dose pesticide exposures. Additionally, secondary targets may provide useful biomonitors and/or bioscavengers of pesticide exposures.
Collapse
|
44
|
Sekiya M, Osuga JI, Nagashima S, Ohshiro T, Igarashi M, Okazaki H, Takahashi M, Tazoe F, Wada T, Ohta K, Takanashi M, Kumagai M, Nishi M, Takase S, Yahagi N, Yagyu H, Ohashi K, Nagai R, Kadowaki T, Furukawa Y, Ishibashi S. Ablation of neutral cholesterol ester hydrolase 1 accelerates atherosclerosis. Cell Metab 2009; 10:219-28. [PMID: 19723498 DOI: 10.1016/j.cmet.2009.08.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 07/18/2009] [Accepted: 08/14/2009] [Indexed: 01/06/2023]
Abstract
Cholesterol ester (CE)-laden macrophage foam cells are the hallmark of atherosclerosis, and the hydrolysis of intracellular CE is one of the key steps in foam cell formation. Although hormone-sensitive lipase (LIPE) and cholesterol ester hydrolase (CEH), which is identical to carboxylsterase 1 (CES1, hCE1), were proposed to mediate the neutral CE hydrolase (nCEH) activity in macrophages, recent evidences have suggested the involvement of other enzymes. We have recently reported the identification of a candidate, neutral cholesterol ester hydrolase 1(Nceh1). Here we demonstrate that genetic ablation of Nceh1 promotes foam cell formation and the development of atherosclerosis in mice. We further demonstrate that Nceh1 and Lipe mediate a comparable degree of nCEH activity in macrophages and together account for most of the activity. Mice lacking both Nceh1 and Lipe aggravated atherosclerosis in an additive manner. Thus, Nceh1 is a promising target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Motohiro Sekiya
- Department of Metabolic Diseases, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Nontypeable Haemophilus influenzae clearance by alveolar macrophages is impaired by exposure to cigarette smoke. Infect Immun 2009; 77:4232-42. [PMID: 19620348 DOI: 10.1128/iai.00305-09] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHI) is an opportunistic gram-negative pathogen that causes respiratory infections and is associated with progression of respiratory diseases. Cigarette smoke is a main risk factor for development of respiratory infections and chronic respiratory diseases. Glucocorticoids, which are anti-inflammatory drugs, are still the most common therapy for these diseases. Alveolar macrophages are professional phagocytes that reside in the lung and are responsible for clearing infections by the action of their phagolysosomal machinery and promotion of local inflammation. In this study, we dissected the interaction between NTHI and alveolar macrophages and the effect of cigarette smoke on this interaction. We showed that alveolar macrophages clear NTHI infections by adhesion, phagocytosis, and phagolysosomal processing of the pathogen. Bacterial uptake requires host actin polymerization, the integrity of plasma membrane lipid rafts, and activation of the phosphatidylinositol 3-kinase (PI3K) signaling cascade. Parallel to bacterial clearance, macrophages secrete tumor necrosis factor alpha (TNF-alpha) upon NTHI infection. In contrast, exposure to cigarette smoke extract (CSE) impaired alveolar macrophage phagocytosis, although NTHI-induced TNF-alpha secretion was not abrogated. Mechanistically, our data showed that CSE reduced PI3K signaling activation triggered by NTHI. Treatment of CSE-exposed cells with the glucocorticoid dexamethasone reduced the amount of TNF-alpha secreted upon NTHI infection but did not compensate for CSE-dependent phagocytic impairment. The deleterious effect of cigarette smoke was observed in macrophage cell lines and in human alveolar macrophages obtained from smokers and from patients with chronic obstructive pulmonary disease.
Collapse
|
46
|
Igarashi M, Osuga JI, Isshiki M, Sekiya M, Okazaki H, Takase S, Takanashi M, Ohta K, Kumagai M, Nishi M, Fujita T, Nagai R, Kadowaki T, Ishibashi S. Targeting of neutral cholesterol ester hydrolase to the endoplasmic reticulum via its N-terminal sequence. J Lipid Res 2009; 51:274-85. [PMID: 19592704 DOI: 10.1194/jlr.m900201-jlr200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Neutral cholesterol ester hydrolase (NCEH) accounts for a large part of the nCEH activity in macrophage foam cells, a hallmark of atherosclerosis, but its subcellular localization and structure-function relationship are unknown. Here, we determined subcellular localization, glycosylation, and nCEH activity of a series of NCEH mutants expressed in macrophages. NCEH is a single-membrane-spanning type II membrane protein comprising three domains: N-terminal, catalytic, and lipid-binding domains. The N-terminal domain serves as a type II signal anchor sequence to recruit NCEH to the endoplasmic reticulum (ER) with its catalytic domain within the lumen. All of the putative N-linked glycosylation sites (Asn(270), Asn(367), and Asn(389)) of NCEH are glycosylated. Glycosylation at Asn(270), which is located closest to the catalytic serine motif, is important for the enzymatic activity. Cholesterol loading by incubation with acetyl-LDL does not change the ER localization of NCEH. In conclusion, NCEH is targeted to the ER of macrophages, where it hydrolyzes CE to deliver cholesterol for efflux out of the cells.
Collapse
Affiliation(s)
- Masaki Igarashi
- Department of Metabolic Diseases, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Jokanović M. Current understanding of the mechanisms involved in metabolic detoxification of warfare nerve agents. Toxicol Lett 2009; 188:1-10. [DOI: 10.1016/j.toxlet.2009.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/17/2009] [Accepted: 03/23/2009] [Indexed: 11/25/2022]
|
48
|
Paraoxonase 1 (PON1) modulates the toxicity of mixed organophosphorus compounds. Toxicol Appl Pharmacol 2009; 236:142-53. [PMID: 19371602 DOI: 10.1016/j.taap.2009.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 01/27/2009] [Accepted: 02/01/2009] [Indexed: 11/23/2022]
Abstract
A transgenic mouse model of the human hPON1(Q192R) polymorphism was used to address the role of paraoxonase (PON1) in modulating toxicity associated with exposure to mixtures of organophosphorus (OP) compounds. Chlorpyrifos oxon (CPO), diazoxon (DZO), and paraoxon (PO) are potent inhibitors of carboxylesterases (CaE). We hypothesized that a prior exposure to these OPs would increase sensitivity to malaoxon (MO), a CaE substrate, and the degree of the effect would vary among PON1 genotypes if the OP was a physiologically significant PON1 substrate in vivo. CPO and DZO are detoxified by PON1. For CPO hydrolysis, hPON1(R192) has a higher catalytic efficiency than hPON1(Q192). For DZO hydrolysis, the two alloforms have nearly equal catalytic efficiencies. For PO hydrolysis, the catalytic efficiency of PON1 is too low to be physiologically relevant. When wild-type mice were exposed dermally to CPO, DZO, or PO followed 4-h later by increasing doses of MO, toxicity was increased compared to mice receiving MO alone, presumably due to CaE inhibition. Potentiation of MO toxicity by CPO and DZO was greater in PON1(-/-) mice, which have greatly reduced capacity to detoxify CPO or DZO. Potentiation by CPO was more pronounced in hPON1(Q192) mice than in hPON1(R192) mice due to the decreased efficiency of hPON1(Q192) for detoxifying CPO. Potentiation by DZO was similar in hPON1(Q192) and hPON1(R192) mice, which are equally efficient at hydrolyzing DZO. Potentiation by PO was equivalent among all four genotypes. These results indicate that PON1 status can have a major influence on CaE-mediated detoxication of OP compounds.
Collapse
|
49
|
Harada T, Nakagawa Y, Wadkins RM, Potter PM, Wheelock CE. Comparison of benzil and trifluoromethyl ketone (TFK)-mediated carboxylesterase inhibition using classical and 3D-quantitative structure-activity relationship analysis. Bioorg Med Chem 2008; 17:149-64. [PMID: 19062296 DOI: 10.1016/j.bmc.2008.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 11/02/2008] [Accepted: 11/06/2008] [Indexed: 10/21/2022]
Abstract
Carboxylesterases are enzymes that hydrolyze a broad suite of endogenous and exogenous ester-containing compounds to the corresponding alcohol and carboxylic acid. These enzymes metabolize a number of therapeutics including the anti-tumor agent CPT-11, the anti-viral drug oseltamivir, and the anti-thrombogenic agent clopidogrel as well as many agrochemicals. In addition, carboxylesterases are involved in lipid homeostasis, including cholesterol metabolism and transport with a proposed role in the development of atherosclerosis. Several different scaffolds capable of inhibiting carboxylesterases have been reported, including organophosphates, carbamates, trifluoromethyl ketone-containing structures (TFKs), and aromatic ethane-1,2-diones. Of these varied groups, only the 1,2-diones evidence carboxylesterase isoform-selectivity, which is an important characteristic for therapeutic application and probing biological mechanisms. This study constructed a series of classical and 3D-QSAR models to examine the physiochemical parameters involved in the observed selectivity of three mammalian carboxylesterases: human intestinal carboxylesterase (hiCE), human carboxylesterase 1 (hCE1), and rabbit carboxylesterase (rCE). CoMFA-based models for the benzil-analogs described 88%, 95% and 76% of observed activity for hiCE, hCE1 and rCE, respectively. For TFK-containing compounds, two distinct models were constructed using either the ketone or gem-diol form of the inhibitor. For all three enzymes, the CoMFA ketone models comprised more biological activity than the corresponding gem-diol models; however the differences were small with described activity for all models ranging from 85-98%. A comprehensive model incorporating both benzil and TFK structures described 92%, 85% and 87% of observed activity for hiCE, hCE1 and rCE, respectively. Both classical and 3D-QSAR analysis showed that the observed isoform-selectivity with the benzil-analogs could be described by the volume parameter. This finding was successfully applied to examine substrate selectivity, demonstrating that the relative volumes of the alcohol and acid moieties of ester-containing substrates were predictive for whether hydrolysis was preferred by hiCE or hCE1. Based upon the integrated benzil and TFK model, the next generation inhibitors should combine the A-ring and the 1,2-dione of the benzil inhibitor with the long alkyl chain of the TFK-inhibitor in order to optimize selectivity and potency. These new inhibitors could be useful for elucidating the role of carboxylesterase activity in fatty acid homeostasis and the development of atherosclerosis as well as effecting the controlled activation of carboxylesterase-based prodrugs in situ.
Collapse
Affiliation(s)
- Toshiyuki Harada
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
50
|
Hatfield JM, Wierdl M, Wadkins RM, Potter PM. Modifications of human carboxylesterase for improved prodrug activation. Expert Opin Drug Metab Toxicol 2008; 4:1153-65. [PMID: 18721110 DOI: 10.1517/17425255.4.9.1153] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Carboxylesterases (CEs) are ubiquitous enzymes responsible for the hydrolysis of numerous clinically useful drugs. As ester moieties are frequently included in molecules to improve their water solubility and bioavailability, de facto they become substrates for CEs. OBJECTIVE In this review, we describe the properties of human CEs with regard to their ability to activate anticancer prodrugs and demonstrate how structure-based design can be used to modulate substrate specificity and to increase efficiency of hydrolysis. METHODS A specific example using CPT-11 and a human liver CE is discussed. However, these techniques can be applied to other enzymes and their associated prodrugs. RESULTS Structure-guided mutagenesis of CEs can be employed to alter substrate specificity and generate novel enzymes that are efficacious at anticancer prodrug activation.
Collapse
Affiliation(s)
- Jason M Hatfield
- Department of Molecular Pharmacology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|