1
|
Torices S, Teglas T, Naranjo O, Fattakhov N, Frydlova K, Cabrera R, Osborne OM, Sun E, Kluttz A, Toborek M. Occludin Regulates HIV-1 Infection by Modulation of the Interferon Stimulated OAS Gene Family. Mol Neurobiol 2023; 60:4966-4982. [PMID: 37209263 PMCID: PMC10199280 DOI: 10.1007/s12035-023-03381-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
HIV-1-associated blood brain barrier (BBB) alterations and neurocognitive disorders are frequent clinical manifestations in HIV-1 infected patients. The BBB is formed by cells of the neurovascular unit (NVU) and sealed together by tight junction proteins, such as occludin (ocln). Pericytes are a key cell type of NVU that can harbor HIV-1 infection via a mechanism that is regulated, at least in part, by ocln. After viral infection, the immune system starts the production of interferons, which induce the expression of the 2'-5'-oligoadenylate synthetase (OAS) family of interferon stimulated genes and activate the endoribonuclease RNaseL that provides antiviral protection by viral RNA degradation. The current study evaluated the involvement of the OAS genes in HIV-1 infection of cells of NVU and the role of ocln in controlling OAS antiviral signaling pathway. We identified that ocln modulates the expression levels of the OAS1, OAS2, OAS3, and OASL genes and proteins and, in turn, that the members of the OAS family can influence HIV replication in human brain pericytes. Mechanistically, this effect was regulated via the STAT signaling. HIV-1 infection of pericytes significantly upregulated expression of all OAS genes at the mRNA level but selectively OAS1, OAS2, and OAS3 at the protein level. Interestingly no changes were found in RNaseL after HIV-1 infection. Overall, these results contribute to a better understanding of the molecular mechanisms implicated in the regulation of HIV-1 infection in human brain pericytes and suggest a novel role for ocln in controlling of this process.
Collapse
Affiliation(s)
- Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA.
| | - Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Kristyna Frydlova
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Rosalba Cabrera
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Olivia M Osborne
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Enze Sun
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Allan Kluttz
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 11336, USA.
| |
Collapse
|
2
|
Govande AA, Babnis AW, Urban C, Habjan M, Hartmann R, Kranzusch PJ, Pichlmair A. RNase L-activating 2'-5' oligoadenylates bind ABCF1, ABCF3 and Decr-1. J Gen Virol 2023; 104. [PMID: 37676257 DOI: 10.1099/jgv.0.001890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
A notable signalling mechanism employed by mammalian innate immune signalling pathways uses nucleotide-based second messengers such as 2'3'-cGAMP and 2'-5'-oligoadenylates (OAs), which bind and activate STING and RNase L, respectively. Interestingly, the involvement of nucleotide second messengers to activate antiviral responses is evolutionarily conserved, as evidenced by the identification of an antiviral cGAMP-dependent pathway in Drosophila. Using a mass spectrometry approach, we identified several members of the ABCF family in human, mouse and Drosophila cell lysates as 2'-5' OA-binding proteins, suggesting an evolutionarily conserved function. Biochemical characterization of these interactions demonstrates high-affinity binding of 2'-5' OA to ABCF1, dependent on phosphorylated 2'-5' OA and an intact Walker A/B motif of the ABC cassette of ABCF1. As further support for species-specific interactions with 2'-5' OA, we additionally identified that the metabolic enzyme Decr1 from mouse, but not human or Drosophila cells, forms a high-affinity complex with 2'-5' OA. A 1.4 Å co-crystal structure of the mouse Decr1-2'-5' OA complex explains high-affinity recognition of 2'-5' OA and the mechanism of species specificity. Despite clear evidence of physical interactions, we could not identify profound antiviral functions of ABCF1, ABCF3 or Decr1 or 2'-5' OA-dependent regulation of cellular translation rates, as suggested by the engagement of ABCF proteins. Thus, although the biological consequences of the here identified interactions need to be further studied, our data suggest that 2'-5' OA can serve as a signalling hub to distribute a signal to different recipient proteins.
Collapse
Affiliation(s)
- Apurva A Govande
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Christian Urban
- Institute of Virology, Technical University of Munich, Munich, Germany
| | - Matthias Habjan
- Institute of Virology, Technical University of Munich, Munich, Germany
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Andreas Pichlmair
- Institute of Virology, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich partner site, Munich, Germany
| |
Collapse
|
3
|
Chu L, Gong Z, Wang W, Han GZ. Origin of the OAS-RNase L innate immune pathway before the rise of jawed vertebrates via molecular tinkering. Proc Natl Acad Sci U S A 2023; 120:e2304687120. [PMID: 37487089 PMCID: PMC10400998 DOI: 10.1073/pnas.2304687120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/26/2023] [Indexed: 07/26/2023] Open
Abstract
Discriminating self from nonself is fundamental to immunity. Yet, it remains largely elusive how the mechanisms of self and nonself discrimination originated. Sensing double-stranded RNA as nonself, the 2',5'-oligoadenylate synthetase (OAS)-ribonuclease L (RNase L) pathway represents a crucial component of innate immunity. Here, we combine phylogenomic and functional analyses to show that the functional OAS-RNase L pathway likely originated through tinkering with preexisting proteins before the rise of jawed vertebrates during or before the Silurian period (444 to 419 Mya). Multiple concerted losses of OAS and RNase L occurred during the evolution of jawed vertebrates, further supporting the ancient coupling between OAS and RNase L. Moreover, both OAS and RNase L genes evolved under episodic positive selection across jawed vertebrates, suggesting a long-running evolutionary arms race between the OAS-RNase L pathway and microbes. Our findings illuminate how an innate immune pathway originated via molecular tinkering.
Collapse
Affiliation(s)
- Lingyu Chu
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu210023, China
| | - Zhen Gong
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu210023, China
| | - Wenqiang Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu210023, China
| | - Guan-Zhu Han
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu210023, China
| |
Collapse
|
4
|
Jain A, Jain T, Mishra GK, Chandrakar K, Mukherjee K, Tiwari SP. Molecular characterization, putative structure and function, and expression profile of OAS1 gene in the endometrium of goats (Capra hircus). Reprod Biol 2023; 23:100760. [PMID: 37023663 DOI: 10.1016/j.repbio.2023.100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/18/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023]
Abstract
An interferon-inducible gene, 2'-5'-oligoadenylate synthetase-1 (OAS1), plays an essential role in uterine receptivity and conceptus development by controlling cell growth and differentiation in addition to anti-viral activities. As OAS1 gene has not yet been studied in caprine (cp), so present study was designed with the aim to amplify, sequence, characterize and in-silico analyze the coding sequence of the cpOAS1. Further, expression profile of cpOAS1 was performed by quantitative real-time PCR and western blot in the endometrium of pregnant and cyclic does. An 890 bp fragment of the cpOAS1 was amplified and sequenced. Nucleotide and deduced amino acid sequences revealed 99.6-72.3% identities with that of ruminants and non-ruminants. A constructed phylogenetic tree revealed that Ovis aries and Capra hircus differ from large ungulates. Various post-translational modifications (PTMs), 21 phosphorylation, two sumoylation, eight cysteines and 14 immunogenic sites were found in the cpOAS1. The domain, OAS1_C, is found in the cpOAS1 which carries anti-viral enzymatic activity, cell growth, and differentiation. Among the interacted proteins with cpOAS1, Mx1 and ISG17 well-known proteins are found that have anti-viral activity and play an important role during early pregnancy in ruminants. CpOAS1 protein (42/46 kDa and/or 69/71 kDa) was detected in the endometrium of pregnant and cyclic does. Both cpOAS1 mRNA and protein were expressed maximally (P<0.05) in the endometrium during pregnancy as compared to cyclic does. In conclusion, the cpOAS1 sequence is almost similar in structure and probably in function also to other species along with its higher expression during early pregnancy.
Collapse
Affiliation(s)
- Asit Jain
- Molecular Genetics Laboratory, Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Anjora, Durg, Chhattisgarh, India.
| | - Tripti Jain
- Molecular Genetics Laboratory, Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Anjora, Durg, Chhattisgarh, India
| | - Girish Kumar Mishra
- Molecular Genetics Laboratory, Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Anjora, Durg, Chhattisgarh, India
| | - Khushboo Chandrakar
- Molecular Genetics Laboratory, Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Anjora, Durg, Chhattisgarh, India
| | - Kishore Mukherjee
- Molecular Genetics Laboratory, Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Anjora, Durg, Chhattisgarh, India
| | - Sita Prasad Tiwari
- Molecular Genetics Laboratory, Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Anjora, Durg, Chhattisgarh, India
| |
Collapse
|
5
|
Torices S, Teglas T, Naranjo O, Fattakhov N, Frydlova K, Cabrera R, Osborne OM, Sun E, Kluttz A, Toborek M. Occludin regulates HIV-1 infection by modulation of the interferon stimulated OAS gene family. RESEARCH SQUARE 2023:rs.3.rs-2501091. [PMID: 36778388 PMCID: PMC9915789 DOI: 10.21203/rs.3.rs-2501091/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
HIV-1-associated blood brain barrier (BBB) alterations and neurocognitive disorders are frequent clinical manifestations in HIV-1 infected patients. The BBB is formed by cells of the neurovascular unit (NVU) and sealed together by tight junction (TJ) proteins, such as occludin (ocln). Pericytes are a key cell type of NVU that can harbor HIV-1 infection via a mechanism that is regulated, at least in part, by ocln. After viral infection, the immune system starts the production of interferons, which induce the expression of the 2'-5'-oligoadenylate synthetase (OAS) family of interferon stimulated genes and activate the endoribonuclease RNaseL that provides antiviral protection by viral RNA degradation. The current study evaluated the involvement of the OAS genes in HIV-1 infection of cells of NVU and the role of ocln in controlling OAS antiviral signaling pathway. We identified that ocln modulates the expression levels of the OAS1, OAS2, OAS3, and OASL genes and proteins and, in turn, that the members of the OAS family can influence HIV replication in human brain pericytes. Mechanistically, this effect was regulated via the STAT signaling. HIV-1 infection of pericytes significantly upregulated expression of all OAS genes at the mRNA level but selectively OAS1, OAS2 and OAS3 at the protein level. Interestingly no changes were found in RNaseL after HIV-1 infection. Overall, these results contribute to a better understanding of the molecular mechanisms implicated in the regulation of HIV-1 infection in human brain pericytes and suggest a novel role for ocln in controlling of this process.
Collapse
Affiliation(s)
- Silvia Torices
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Timea Teglas
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Oandy Naranjo
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Nikolai Fattakhov
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Kristyna Frydlova
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Rosalba Cabrera
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Olivia M Osborne
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Enze Sun
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Allan Kluttz
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | | |
Collapse
|
6
|
Banday AR, Stanifer ML, Florez-Vargas O, Onabajo OO, Papenberg BW, Zahoor MA, Mirabello L, Ring TJ, Lee CH, Albert PS, Andreakos E, Arons E, Barsh G, Biesecker LG, Boyle DL, Brahier MS, Burnett-Hartman A, Carrington M, Chang E, Choe PG, Chisholm RL, Colli LM, Dalgard CL, Dude CM, Edberg J, Erdmann N, Feigelson HS, Fonseca BA, Firestein GS, Gehring AJ, Guo C, Ho M, Holland S, Hutchinson AA, Im H, Irby L, Ison MG, Joseph NT, Kim HB, Kreitman RJ, Korf BR, Lipkin SM, Mahgoub SM, Mohammed I, Paschoalini GL, Pacheco JA, Peluso MJ, Rader DJ, Redden DT, Ritchie MD, Rosenblum B, Ross ME, Anna HPS, Savage SA, Sharma S, Siouti E, Smith AK, Triantafyllia V, Vargas JM, Vargas JD, Verma A, Vij V, Wesemann DR, Yeager M, Yu X, Zhang Y, Boulant S, Chanock SJ, Feld JJ, Prokunina-Olsson L. Genetic regulation of OAS1 nonsense-mediated decay underlies association with COVID-19 hospitalization in patients of European and African ancestries. Nat Genet 2022; 54:1103-1116. [PMID: 35835913 PMCID: PMC9355882 DOI: 10.1038/s41588-022-01113-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 05/26/2022] [Indexed: 12/22/2022]
Abstract
The chr12q24.13 locus encoding OAS1-OAS3 antiviral proteins has been associated with coronavirus disease 2019 (COVID-19) susceptibility. Here, we report genetic, functional and clinical insights into this locus in relation to COVID-19 severity. In our analysis of patients of European (n = 2,249) and African (n = 835) ancestries with hospitalized versus nonhospitalized COVID-19, the risk of hospitalized disease was associated with a common OAS1 haplotype, which was also associated with reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) clearance in a clinical trial with pegIFN-λ1. Bioinformatic analyses and in vitro studies reveal the functional contribution of two associated OAS1 exonic variants comprising the risk haplotype. Derived human-specific alleles rs10774671-A and rs1131454 -A decrease OAS1 protein abundance through allele-specific regulation of splicing and nonsense-mediated decay (NMD). We conclude that decreased OAS1 expression due to a common haplotype contributes to COVID-19 severity. Our results provide insight into molecular mechanisms through which early treatment with interferons could accelerate SARS-CoV-2 clearance and mitigate against severe COVID-19.
Collapse
Affiliation(s)
- A Rouf Banday
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Megan L Stanifer
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Oscar Florez-Vargas
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Olusegun O Onabajo
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Brenen W Papenberg
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Muhammad A Zahoor
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Lisa Mirabello
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Timothy J Ring
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Chia-Han Lee
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Paul S Albert
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Evgeny Arons
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Greg Barsh
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Leslie G Biesecker
- Center for Precision Health Research, National Human Genome Research Institute, Bethesda, MD, USA
| | - David L Boyle
- Altman Clinical & Translational Research Institute, UC San Diego Health Sciences, San Diego, CA, USA
| | - Mark S Brahier
- Georgetown University School of Medicine, Washington, DC, USA
| | | | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Euijin Chang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Rex L Chisholm
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Leandro M Colli
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Clifton L Dalgard
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Carolynn M Dude
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeff Edberg
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nathan Erdmann
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Benedito A Fonseca
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gary S Firestein
- Altman Clinical & Translational Research Institute, UC San Diego Health Sciences, San Diego, CA, USA
| | - Adam J Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Cuncai Guo
- Division of Cellular Polarity and Viral Infection, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michelle Ho
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Steven Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Amy A Hutchinson
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Hogune Im
- Genome Opinion, Inc., Seoul, Republic of Korea
| | - Les'Shon Irby
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael G Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Naima T Joseph
- Department of Obstetrics & Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hong Bin Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Robert J Kreitman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Bruce R Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Lipkin
- Department of Medicine and Program in Mendelian Genetics, Weill Cornell Medicine, New York, NY, USA
| | - Siham M Mahgoub
- Department of Medicine, Infectious Diseases Division, Howard University Hospital, Howard University College of Medicine, Washington, DC, USA
| | - Iman Mohammed
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Guilherme L Paschoalini
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jennifer A Pacheco
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David T Redden
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brooke Rosenblum
- Center for Precision Health Research, National Human Genome Research Institute, Bethesda, MD, USA
| | - M Elizabeth Ross
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Hanaisa P Sant Anna
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, National Human Genome Center, Howard University College of Medicine, Washington, DC, USA
| | - Eleni Siouti
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Vasiliki Triantafyllia
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Joselin M Vargas
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jose D Vargas
- Veterans Affairs Medical Center, Washington, DC, USA
| | - Anurag Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vibha Vij
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Duane R Wesemann
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Xu Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Steeve Boulant
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
- Division of Cellular Polarity and Viral Infection, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephen J Chanock
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jordan J Feld
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
7
|
Lu L, Wang H, Fang J, Zheng J, Liu B, Xia L, Li D. Overexpression of OAS1 Is Correlated With Poor Prognosis in Pancreatic Cancer. Front Oncol 2022; 12:944194. [PMID: 35898870 PMCID: PMC9309611 DOI: 10.3389/fonc.2022.944194] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background OAS1 expression in pancreatic cancer has been confirmed by many studies. However, the prognostic value and mechanism of OAS1 in pancreatic cancer have not been analyzed. Methods The RNA-seq in pancreatic cancer were obtained by UCSC XENA and GEO database. In addition, immunohistochemical validation and analysis were performed using samples from the 900th hospital. The prognosis of OAS1 was evaluated by timeROC package, Cox regression analysis, and Kaplan-Meier survival curves. Then, the main functional and biological signaling pathways enrichment and its relationship with the abundance of immune cells were analyzed by bioinformatics. Results OAS1 was highly expressed in pancreatic cancer compared with normal pancreatic tissue. High OAS1 expression was associated with poor overall survival (p<0.05). The OAS1 was significantly correlated to TNM staging (p=0.014). The timeROC analysis showed that the AUC of OAS1 was 0.734 for 3-year OS. In addition, the expression of OAS1 was significantly correlated with the abundance of a variety of immune markers. GSEA showed that enhanced signaling pathways associated with OAS1 include Apoptosis, Notch signaling pathway, and P53 signaling pathway. Conclusions OAS1 is a valuable prognostic factor in pancreatic cancer. Moreover, it may be a potential immunotherapeutic target.
Collapse
Affiliation(s)
- Lingling Lu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Huaxiang Wang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, China
| | - Jian Fang
- Department of Hepatobiliary Medicine, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiaolong Zheng
- Department of Hepatobiliary Disease, The 900th Hospital of the People’s Liberation Army Joint Logistics Support Force, Fuzhou, China
| | - Bang Liu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Lei Xia
- Department of Hepatobiliary Medicine, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Dongliang Li
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Hepatobiliary Disease, The 900th Hospital of the People’s Liberation Army Joint Logistics Support Force, Fuzhou, China
- *Correspondence: Dongliang Li,
| |
Collapse
|
8
|
Banday AR, Stanifer ML, Florez-Vargas O, Onabajo OO, Zahoor MA, Papenberg BW, Ring TJ, Lee CH, Andreakos E, Arons E, Barsh G, Biesecker LG, Boyle DL, Burnett-Hartman A, Carrington M, Chang E, Choe PG, Chrisholm RL, Dalgard C, Edberg J, Erdmann N, Feigelson HS, Firestein GS, Gehring AJ, Ho M, Holland S, Hutchinson AA, Im H, Ison MG, Kim HB, Kreitman RJ, Korf BR, Mirabello L, Pacheco JA, Peluso MJ, Rader DJ, Redden DT, Ritchie MD, Rosenbloom B, Sant Anna HP, Savage S, Siouti E, Triantafyllia V, Vargas JM, Verma A, Vij V, Wesemann DR, Yeager M, Yu X, Zhang Y, Boulant S, Chanock SJ, Feld JJ, Prokunina-Olsson L. Genetic regulation of OAS1 nonsense-mediated decay underlies association with risk of severe COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.07.09.21260221. [PMID: 34282422 PMCID: PMC8288155 DOI: 10.1101/2021.07.09.21260221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genomic regions have been associated with COVID-19 susceptibility and outcomes, including the chr12q24.13 locus encoding antiviral proteins OAS1-3. Here, we report genetic, functional, and clinical insights into genetic associations within this locus. In Europeans, the risk of hospitalized vs. non-hospitalized COVID-19 was associated with a single 19Kb-haplotype comprised of 76 OAS1 variants included in a 95% credible set within a large genomic fragment introgressed from Neandertals. The risk haplotype was also associated with impaired spontaneous but not treatment-induced SARS-CoV-2 clearance in a clinical trial with pegIFN-λ1. We demonstrate that two exonic variants, rs10774671 and rs1131454, affect splicing and nonsense-mediated decay of OAS1 . We suggest that genetically-regulated loss of OAS1 expression contributes to impaired spontaneous clearance of SARS-CoV-2 and elevated risk of hospitalization for COVID-19. Our results provide the rationale for further clinical studies using interferons to compensate for impaired spontaneous SARS-CoV-2 clearance, particularly in carriers of the OAS1 risk haplotypes.
Collapse
Affiliation(s)
- A Rouf Banday
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Megan L Stanifer
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Oscar Florez-Vargas
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Olusegun O Onabajo
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Muhammad A Zahoor
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Brenen W Papenberg
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Timothy J Ring
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Chia-Han Lee
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Evgeny Arons
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Greg Barsh
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Leslie G Biesecker
- Center for Precision Health Research, National Human Genome Research Institute, Bethesda, MD, USA
| | - David L Boyle
- Altman Clinical & Translational Research Institute, University of California San Diego Health Sciences, San Diego, CA, USA
| | | | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Euijin Chang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Rex L Chrisholm
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Clifton Dalgard
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jeff Edberg
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nathan Erdmann
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Gary S Firestein
- Altman Clinical & Translational Research Institute, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Adam J Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Michelle Ho
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Steven Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Amy A Hutchinson
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Hogune Im
- Genome Opinion Inc, Seoul, Republic of Korea
| | - Michael G Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hong Bin Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Robert J Kreitman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Bruce R Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lisa Mirabello
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jennifer A Pacheco
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David T Redden
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brooke Rosenbloom
- Center for Precision Health Research, National Human Genome Research Institute, Bethesda, MD, USA
| | - Hanaisa P Sant Anna
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Sharon Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Eleni Siouti
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Vasiliki Triantafyllia
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens
| | - Joselin M Vargas
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Anurag Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vibha Vij
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Duane R Wesemann
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Xu Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Steeve Boulant
- Division of Cellular Polarity and Viral Infection, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jordan J Feld
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
9
|
Yu H, Bruneau RC, Brennan G, Rothenburg S. Battle Royale: Innate Recognition of Poxviruses and Viral Immune Evasion. Biomedicines 2021; 9:biomedicines9070765. [PMID: 34356829 PMCID: PMC8301327 DOI: 10.3390/biomedicines9070765] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/17/2022] Open
Abstract
Host pattern recognition receptors (PRRs) sense pathogen-associated molecular patterns (PAMPs), which are molecular signatures shared by different pathogens. Recognition of PAMPs by PRRs initiate innate immune responses via diverse signaling pathways. Over recent decades, advances in our knowledge of innate immune sensing have enhanced our understanding of the host immune response to poxviruses. Multiple PRR families have been implicated in poxvirus detection, mediating the initiation of signaling cascades, activation of transcription factors, and, ultimately, the expression of antiviral effectors. To counteract the host immune defense, poxviruses have evolved a variety of immunomodulators that have diverse strategies to disrupt or circumvent host antiviral responses triggered by PRRs. These interactions influence the outcomes of poxvirus infections. This review focuses on our current knowledge of the roles of PRRs in the recognition of poxviruses, their elicited antiviral effector functions, and how poxviral immunomodulators antagonize PRR-mediated host immune responses.
Collapse
|
10
|
Zhang Y, Yu C. Prognostic characterization of OAS1/OAS2/OAS3/OASL in breast cancer. BMC Cancer 2020; 20:575. [PMID: 32560641 PMCID: PMC7304174 DOI: 10.1186/s12885-020-07034-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/03/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Prognostic biomarkers remain a focus in breast cancer during last decades. More reliable predictors to adequately characterize the prognosis of breast cancer are essential. The 2'-5'-oligoadenylate synthetases (OAS), composing of OAS1, OAS2, OAS3, and OAS-like (OASL), are interferon (IFN)-induced antiviral enzymes, with their prognostic roles remain to be characterized. METHODS Prognostic values of OAS family members were assessed by multiple public available resources. RESULTS High mRNA expression of OAS1 and OAS3 were correlated with worse prognosis for all breast cancer patients, whereas OAS2 was associated with favorable prognosis. The prognostic values of OAS family in different clinicopathologic subtypes were also characterized. In DNA methylation level, cg12560128 in OAS2, cg06800840 and cg26328872 in OASL showed significant prognostic values. The mRNA expression of OAS members signature in high/low risk overall survival groups was opposite to the high/low risk recurrence free survival groups. Neutrophil cell exhibited highest correlation with all OAS members in tumor immune infiltrating estimation. CONCLUSIONS This study provided new insight into the prognostic roles of OAS in breast cancer with potential mechanistic values.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Gastrointestinal Surgery Center and Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Chaoran Yu
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200025, P.R. China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200025, P.R. China.
| |
Collapse
|
11
|
Koul A, Gemmill D, Lubna N, Meier M, Krahn N, Booy EP, Stetefeld J, Patel TR, McKenna SA. Structural and Hydrodynamic Characterization of Dimeric Human Oligoadenylate Synthetase 2. Biophys J 2020; 118:2726-2740. [PMID: 32413313 PMCID: PMC7264852 DOI: 10.1016/j.bpj.2020.04.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/15/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
Oligoadenylate synthetases (OASs) are a family of interferon-inducible enzymes that require double-stranded RNA (dsRNA) as a cofactor. Upon binding dsRNA, OAS undergoes a conformational change and is activated to polymerize ATP into 2'-5'-oligoadenylate chains. The OAS family consists of several isozymes, with unique domain organizations to potentially interact with dsRNA of variable length, providing diversity in viral RNA recognition. In addition, oligomerization of OAS isozymes, potentially OAS1 and OAS2, is hypothesized to be important for 2'-5'-oligoadenylate chain building. In this study, we present the solution conformation of dimeric human OAS2 using an integrated approach involving small-angle x-ray scattering, analytical ultracentrifugation, and dynamic light scattering techniques. We also demonstrate OAS2 dimerization using immunoprecipitation approaches in human cells. Whereas mutation of a key active-site aspartic acid residue prevents OAS2 activity, a C-terminal mutation previously hypothesized to disrupt OAS self-association had only a minor effect on OAS2 activity. Finally, we also present the solution structure of OAS1 monomer and dimer, comparing their hydrodynamic properties with OAS2. In summary, our work presents the first, to our knowledge, dimeric structural models of OAS2 that enhance our understanding of the oligomerization and catalytic function of OAS enzymes.
Collapse
Affiliation(s)
- Amit Koul
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Darren Gemmill
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Nikhat Lubna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Markus Meier
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Natalie Krahn
- Department of Molecular Biology and Biochemistry, Yale University, New Haven, Connecticut
| | - Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Trushar R Patel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada; Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, Northwest Calgary, Alberta, Canada; Li Ka Shing Institute of Virology and Discovery Lab, University of Alberta, Edmonton, Alberta, Canada.
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
12
|
Kondratova AA, Cheon H, Dong B, Holvey-Bates EG, Hasipek M, Taran I, Gaughan C, Jha BK, Silverman RH, Stark GR. Suppressing PARylation by 2',5'-oligoadenylate synthetase 1 inhibits DNA damage-induced cell death. EMBO J 2020; 39:e101573. [PMID: 32323871 DOI: 10.15252/embj.2019101573] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022] Open
Abstract
High expression of 2',5'-oligoadenylate synthetase 1 (OAS1), which adds AMP residues in 2',5' linkage to a variety of substrates, is observed in many cancers as a part of the interferon-related DNA damage resistance signature (IRDS). Poly(ADP-ribose) (PAR) is rapidly synthesized from NAD+ at sites of DNA damage to facilitate repair, but excessive PAR synthesis due to extensive DNA damage results in cell death by energy depletion and/or activation of PAR-dependent programmed cell death pathways. We find that OAS1 adds AMP residues in 2',5' linkage to PAR, inhibiting its synthesis in vitro and reducing its accumulation in cells. Increased OAS1 expression substantially improves cell viability following DNA-damaging treatments that stimulate PAR synthesis during DNA repair. We conclude that high expression of OAS1 in cancer cells promotes their ability to survive DNA damage by attenuating PAR synthesis and thus preventing cell death.
Collapse
Affiliation(s)
- Anna A Kondratova
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
| | - HyeonJoo Cheon
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Beihua Dong
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Elise G Holvey-Bates
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Metis Hasipek
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Irina Taran
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Christina Gaughan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Babal K Jha
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Robert H Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - George R Stark
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
13
|
In silico identification of potential inhibitors against human 2'-5'- oligoadenylate synthetase (OAS) proteins. Comput Biol Chem 2020; 85:107211. [PMID: 32004971 DOI: 10.1016/j.compbiolchem.2020.107211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
As part of the type I IFN signaling, the 2'-5'- oligoadenylate synthetase (OAS) proteins have been involved in the progression of several non-viral diseases. Notably, OAS has been correlated with immune-modulatory functions that promote chronic inflammatory conditions, autoimmune disorders, cancer, and infectious diseases. In spite of this, OAS enzymes have been ignored as drug targets, and to date, there are no reports of compounds that can inhibit their activity. In this study, we have used homology modeling and virtual high-throughput screening to identify potential inhibitors of the human proteins OAS1, OAS2, and OAS3. Altogether, we have found 37 molecules that could exert a competitive inhibition in the ATP binding sites of OAS proteins, independently of the activation state of the enzyme. This latter characteristic, which might be crucial for a versatile inhibitor, was observed in compounds interacting with the residues Asp75, Asp77, Gln229, and Tyr230 in OAS1, and their equivalents in OAS2 and OAS3. Although there was little correlation between specific chemical fragments and their interactions, intermolecular contacts with OAS catalytic triad and other critical amino acids were mainly promoted by heterocycles with π electrons and hydrogen bond acceptors. In conclusion, this study provides a potential set of OAS inhibitors as well as valuable information for their design, development, and optimization.
Collapse
|
14
|
The Cellular Localization of the p42 and p46 Oligoadenylate Synthetase 1 Isoforms and Their Impact on Mitochondrial Respiration. Viruses 2019; 11:v11121122. [PMID: 31817188 PMCID: PMC6950736 DOI: 10.3390/v11121122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
The importance of the IFN-induced oligoadenylate synthetase (OAS) proteins and the OAS/RNase L pathway in the innate response against viral pathogens is well-established, however the observed differences in anti-viral activity between the human OAS1 p46 and p42 isoforms are not fully understood. The protein expression of these isoforms is determined by the SNP rs10774671, either being an A or a G allele resulting in expression of either the p42 or the p46 isoform. Using fluorescence microscopy and immunoblot analysis of fractionated cell samples, we show here that the CaaX motif is of key importance to the cellular localization. The OAS1 p42 isoform is mainly located in the cytosol, whereas the p46 isoform with a C-terminal CaaX motif is translocated to membranous organelles, like the mitochondria. We furthermore observed differences between p42 and p46 in their effect on mitochondrial physiology using high resolution respirometry and fluorometry. Overexpression of OAS1 p42 and IFN-β treatment of HeLa cells (AA genotype) resulted in significantly increased respiration, which was not seen with p46 overexpression. The difference in subcellular localization and mitochondrial effect of these two OAS1 isoforms might help to explain the anti-viral mechanisms that differentiate these proteins.
Collapse
|
15
|
Schwartz SL, Conn GL. RNA regulation of the antiviral protein 2'-5'-oligoadenylate synthetase. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1534. [PMID: 30989826 DOI: 10.1002/wrna.1534] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/25/2022]
Abstract
The innate immune system is a broad collection of critical intra- and extra-cellular processes that limit the infectivity of diverse pathogens. The 2'-5'-oligoadenylate synthetase (OAS) family of enzymes are important sensors of cytosolic double-stranded RNA (dsRNA) that play a critical role in limiting viral infection by activating the latent ribonuclease (RNase L) to halt viral replication and establish an antiviral state. Attesting to the importance of the OAS/RNase L pathway, diverse viruses have developed numerous distinct strategies to evade the effects of OAS activation. How OAS proteins are regulated by viral or cellular RNAs is not fully understood but several recent studies have provided important new insights into the molecular mechanisms of OAS activation by dsRNA. Other studies have revealed unanticipated features of RNA sequence and structure that strongly enhance activation of at least one OAS family member. While these discoveries represent important advances, they also underscore the fact that much remains to be learned about RNA-mediated regulation of the OAS/RNase L pathway. In particular, defining the full complement of RNA molecular signatures that activate OAS is essential to our understanding of how these proteins maximize their protective role against pathogens while still accurately discriminating host molecules to avoid inadvertent activation by cellular RNAs. A more complete knowledge of OAS regulation may also serve as a foundation for the development of novel antiviral therapeutic strategies and lead the way to a deeper understanding of currently unappreciated cellular functions of the OAS/RNase L pathway in the absence of infection. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation.
Collapse
Affiliation(s)
- Samantha L Schwartz
- Department of Biochemistry, Emory University School of Medicine and Graduate Program in Biochemistry, Cell and Developmental Biology (BCDB), Atlanta, Georgia
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine and Graduate Program in Biochemistry, Cell and Developmental Biology (BCDB), Atlanta, Georgia
| |
Collapse
|
16
|
Koul A, Deo S, Booy EP, Orriss GL, Genung M, McKenna SA. Impact of double-stranded RNA characteristics on the activation of human 2'-5'-oligoadenylate synthetase 2 (OAS2). Biochem Cell Biol 2019; 98:70-82. [PMID: 30965010 DOI: 10.1139/bcb-2019-0060] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human 2'-5' oligoadenylate synthetases (OAS) are a family of interferon-inducible proteins that, upon activation by double-stranded RNA, polymerize ATP into 2'-5' linked oligoadenylates. In this study, we probed the RNA cofactor specificity of the two smallest isozymes, OAS1 and OAS2. First, we developed a strategy for the expression and purification of recombinant human OAS2 from eukaryotic cells and quantified the activity of the enzyme relative to OAS1 in vitro. We then confirmed that both OAS2 domains, as opposed to only the domain containing the canonical catalytic aspartic acid triad, are required for enzymatic activity. Enzyme kinetics of both OAS1 and OAS2 in the presence of a variety of RNA binding partners enabled characterization of the maximum reaction velocity and apparent RNA-protein affinity of activating RNAs. While in this study OAS1 can be catalytically activated by dsRNA of any length greater than 19 bp, OAS2 showed a marked increase in activity with increasing dsRNA length with a minimum requirement of 35 bp. Interestingly, activation of OAS2 was also more efficient when the dsRNA contained 3'-overhangs, despite no significant impact on binding affinity. Highly structured viral RNAs that are established OAS1 activators were not able to activate OAS2 enzymatic activity based on the lack of extended stretches of dsRNA of greater than 35 bp. Together these results may highlight distinct subsets of biological RNAs to which different human OAS isozymes respond.
Collapse
Affiliation(s)
- Amit Koul
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Soumya Deo
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - George L Orriss
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Matthew Genung
- Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0W2, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
17
|
Molecular characterization of the 2′,5′-oligoadenylate synthetase family in the Chinese tree shrew (Tupaia belangeri chinensis). Cytokine 2019; 114:106-114. [DOI: 10.1016/j.cyto.2018.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 02/07/2023]
|
18
|
Intracellular RNA Sensing in Mammalian Cells: Role in Stress Response and Cancer Therapies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 344:31-89. [DOI: 10.1016/bs.ircmb.2018.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Wang BX, Fish EN. Interactions Between NS1 of Influenza A Viruses and Interferon-α/β: Determinants for Vaccine Development. J Interferon Cytokine Res 2017; 37:331-341. [PMID: 28514196 DOI: 10.1089/jir.2017.0032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Influenza A viruses (IAVs) cause mild to severe infections in humans with considerable socioeconomic and global health consequences. The host interferon (IFN)-α/β response, critical as the first line of defense against foreign pathogens, is induced upon detection of IAV genomic RNA in infected cells by host innate pattern recognition receptors. IFN-α/β production and subsequent activation of cell signaling result in the expression of antiviral IFN-stimulated genes whose products target various stages of the IAV life cycle to inhibit viral replication and the spread of infection and establish an antiviral state. IAVs, however, encode a multifunctional virulence factor, nonstructural protein 1 (NS1), that directly antagonizes the host IFN-α/β response to support viral replication. In this review, we highlight the mechanisms by which NS1 suppresses IFN-α/β production and subsequent cell signaling, and consider, therefore, the potential for recombinant IAVs lacking NS1 to be used as live-attenuated vaccines.
Collapse
Affiliation(s)
- Ben X Wang
- 1 Toronto General Hospital Research Institute, University Health Network , Toronto, Ontario, Canada .,2 Department of Immunology, University of Toronto , Toronto, Ontario, Canada
| | - Eleanor N Fish
- 1 Toronto General Hospital Research Institute, University Health Network , Toronto, Ontario, Canada .,2 Department of Immunology, University of Toronto , Toronto, Ontario, Canada
| |
Collapse
|
20
|
Yang Y, Xiong S, Cai B, Luo H, Dong E, Li Q, Ji G, Zhao C, Wen Y, Wei Y, Yang H. Mitochondrial C11orf83 is a potent Antiviral Protein Independent of interferon production. Sci Rep 2017; 7:44303. [PMID: 28418037 PMCID: PMC5394693 DOI: 10.1038/srep44303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/07/2017] [Indexed: 02/05/2023] Open
Abstract
Mitochondria have a central position in innate immune response via the adaptor protein MAVS in mitochondrial outer membrane to limit viral replication by inducing interferon production. Here, we reported that C11orf83, a component of complex III of electronic transfer chain in mitochondrial inner membrane, was a potent antiviral protein independent of interferon production. C11orf83 expression significantly increased in response to viral infection, and endows cells with stronger capability of inhibiting viral replication. Deletion of C11orf83 permits viral replication easier and cells were more vulnerable to viral killing. These effects mainly were mediated by triggering OAS3-RNase L system. C11orf83 overexpression induced higher transcription of OAS3, and knockdown either OAS3 or RNase L impaired the antiviral capability of C11orf83. Interestingly, the signaling from C11orf83 to OAS3-RNase L was independent of interferon production. Thus, our findings suggested a new antiviral mechanism by bridging cell metabolic machinery component with antiviral effectors.
Collapse
Affiliation(s)
- Yun Yang
- State Key Laboratory of Biotherapy and Cancer center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Shaoquan Xiong
- State Key Laboratory of Biotherapy and Cancer center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.,Department of Oncology, Affilicated Hospital of ChengDu University of Traditional Chinese Medicine, 610041, Chengdu, China
| | - Bei Cai
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Hui Luo
- State Key Laboratory of Biotherapy and Cancer center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - E Dong
- State Key Laboratory of Biotherapy and Cancer center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Qiqi Li
- State Key Laboratory of Biotherapy and Cancer center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Gaili Ji
- State Key Laboratory of Biotherapy and Cancer center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Chengjian Zhao
- State Key Laboratory of Biotherapy and Cancer center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Yanjun Wen
- State Key Laboratory of Biotherapy and Cancer center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Hanshuo Yang
- State Key Laboratory of Biotherapy and Cancer center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| |
Collapse
|
21
|
Ushijima H, Tsiapalis CM, Daum T, Schröder HC, Matthes E, Engels JW, Mag M, Muth J, Müller WEG. Synergistic Anti-Human Immunodeficiency Viral (HIV-1) Effect of the Immunomodulator Ampligen (Mismatched Double-Stranded RNA) with Inhibitors of Reverse Transcriptase and HIV-1 Regulatory Proteins. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029300400602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The potent antiviral effect of double stranded RNA, such as the mismatched poly(l)·poly(C12U) [Ampligen], 2′,3′-dideoxy-3′-fluorothymidine (FddThd) and antisense oligodeoxynucleotides (ODN) has been established in in vitro systems using cells infected with the human immunodeficiency virus type 1 (HIV-1). We report here that the immunomodulator poly(l)·poly(C12U) interacts synergistically with (1) the reverse transcriptase inhibitor FddThd (FIC value: 0.43), (2) the modified (5′- and 3′-end capped thioates) antisense ODN-4 directed against the splice acceptor site of the HIV-1/ tat gene (FIC value: 0.66) and (3) also with pyronin Y, a compound which prevents binding of HIV-1 Rev protein to the HIV-1 RRE element. These data suggest that combinations of poly(l)·poly(C12U), a stimulator of the natural antiviral protection system of the cells, with compounds targeting HIV1-specific processes should be considered as candidate treatments of AIDS patients.
Collapse
Affiliation(s)
- H. Ushijima
- Division of AIDS Virus, AIDS Research Center, National Institute of Health, Gakuen 4-7-1, Musashimurayamashi, Tokyo 208, Japan
| | - C. M. Tsiapalis
- Division of AIDS Virus, AIDS Research Center, National Institute of Health, Gakuen 4-7-1, Musashimurayamashi, Tokyo 208, Japan
| | - T. Daum
- Institut für Physiologische Chemie, Universität, Duesbergweg 6, 55099 Mainz, Germany
| | - H. C. Schröder
- Institut für Physiologische Chemie, Universität, Duesbergweg 6, 55099 Mainz, Germany
| | - E. Matthes
- Zentralinstitut für Molekularbiologie, Robert-Rössle-Straße 10, 1115 Berlin-Buch, Germany
| | - J. W. Engels
- Institut für Organische Chemie, Universität, Niederurseier Hang, 6000 Frankfurt (M) 50, Germany
| | - M. Mag
- Institut für Organische Chemie, Universität, Niederurseier Hang, 6000 Frankfurt (M) 50, Germany
| | - J. Muth
- Institut für Organische Chemie, Universität, Niederurseier Hang, 6000 Frankfurt (M) 50, Germany
| | - W. E. G. Müller
- Institut für Physiologische Chemie, Universität, Duesbergweg 6, 55099 Mainz, Germany
| |
Collapse
|
22
|
Banerjee S. RNase L and the NLRP3-inflammasome: An old merchant in a new trade. Cytokine Growth Factor Rev 2016; 29:63-70. [PMID: 26987611 DOI: 10.1016/j.cytogfr.2016.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/27/2016] [Indexed: 12/12/2022]
Abstract
The type I/III interferon (IFN)-inducible 2'-5'- oligoadenylate synthetase (OAS)/endoribonuclease L (RNase L) is a classical innate immune pathway that has been implicated in antiviral and antibacterial defense and also in hereditary prostate cancer. The OAS/RNase L pathway is activated when OAS senses double-stranded RNA and catalyzes the synthesis of 2'-5' linked oligodenylates (2-5A) from ATP. 2-5A then binds and activates RNase L, resulting cleavage of single-stranded RNAs. RNase L cleavage products are capable of activating RIG-like receptors such as RIG-I and MDA5 that leads to IFN-β expression during viral infection. Our recent findings suggest that beside the RLR pathway, RNase L cleavage products can also activate the NLRP3-inflammasome pathway, which requires DHX33 (DExD/H-box helicase) and the mitochondrial adaptor protein MAVS. Here we discuss this newly identified role of OAS-RNase L pathway in regulation of inflammasome signaling as an alternative antimicrobial mechanism that has potential as a target for development of new broad-spectrum antimicrobial and anti-inflammatory therapies.
Collapse
Affiliation(s)
- Shuvojit Banerjee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
23
|
Bhosle SM, Hunt A, Chaudhary J. A Modified Coupled Spectrophotometric Method to Detect 2-5 Oligoadenylate Synthetase Activity in Prostate Cell Lines. Biol Proced Online 2016; 18:9. [PMID: 26997919 PMCID: PMC4797170 DOI: 10.1186/s12575-016-0038-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/07/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND 2'-5' oligoadenylate synthetases (OAS) are interferon inducible enzymes that polymerizes ATP to 2'-5'-linked oligomers of adenylate (2-5As). As part of the innate immune response, these enzymes are activated by viral double stranded RNA or mRNAs with significant double stranded structure. The 2-5As in turn activate RNaseL that degrade single stranded RNAs. Three distinct forms of OAS exist in human cells (OAS1, 2 and 3) with each form having multiple spliced variants. The OAS enzymes and their spliced variants have different enzyme activities. OAS enzymes also play a significant role in regulating multiple cellular processes such as proliferation and apoptosis. Moreover, Single nucleotide polymorphisms that alter OAS activity are also associated with viral infection, diabetes and cancer. Thus detection of OAS enzyme activity with a simple spectrophotometric method in cells will be important in clinical research. RESULTS Here we propose a modified coupled spectrophotometric assay to detect 2-5 oligoadenylate synthetase (OAS) enzyme activity in prostate cell lines as a model system. The OAS enzyme from prostate cancer cell lysates was purified using Polyinosinic: polycytidylic acid (poly I:C) bound activated sepharose beads. The activated OAS enzyme eluted from Sepharose beads showed expression of p46 isoform of OAS1, generally considered the most abundant OAS isoform in elutes from DU14 cell line but not in other prostate cell line. In this assay the phosphates generated by the OAS enzymatic reaction is coupled with conversion of the substrate 2-amino-6-mercapto-7-methylpurine ribonucleoside (methylthioguanosine, a guanosine analogue; MESG) to a purine base product, 2-amino-6-mercapto-7-methylpurine and ribose1-phosphate via a catalyst purine nucleoside phosphorylase (phosphorylase) using a commercially available pyrophosphate kit. The absorbance of the purine base product is measured at 360 nm. The higher levels of phosphates detected in DU145 cell line indicates more activity of OAS in this prostate cancer cell line. CONCLUSION The modified simple method detected OAS enzyme activity with sensitivity and specificity, which could help in detection of OAS enzymes avoiding the laborious and radioactive methods.
Collapse
Affiliation(s)
- Sushma M. Bhosle
- Department of Biological Sciences, Centre for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314 USA
| | - Aisha Hunt
- Department of Biological Sciences, Centre for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314 USA
| | - Jaideep Chaudhary
- Department of Biological Sciences, Centre for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314 USA
| |
Collapse
|
24
|
Poulsen JB, Kjær KH, Justesen J, Martensen PM. Enzyme assays for synthesis and degradation of 2-5As and other 2'-5' oligonucleotides. BMC BIOCHEMISTRY 2015; 16:15. [PMID: 26113370 PMCID: PMC4481073 DOI: 10.1186/s12858-015-0043-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/15/2015] [Indexed: 01/12/2023]
Abstract
Background The 5′-triphosphorylated, 2′-5′-linked oligoadenylate polyribonucleotides (2-5As) are central to the interferon-induced antiviral 2-5A system. The 2-5As bind and activate the RNase L, an endoRNase degrading viral and cellular RNA leading to inhibition of viral replication. The 2-5A system is tightly controlled by synthesis and degradation of 2-5As. Whereas synthesis is mediated by the 2′-5′ oligoadenylate synthetase family of enzymes, degradation seems to be orchestrated by multiple enzyme nucleases including phosphodiesterase 12, the ectonucleotide pyrophosphatase/phosphodiesterase 1 and the A-kinase anchoring protein 7. Results Here we present assay tools for identification and characterization of the enzymes regulating cellular 2-5A levels. A procedure is described for the production of 2′-5′ oligoadenylates, which are then used as substrates for development and demonstration of enzyme assays measuring synthetase and nuclease activities, respectively. The synthetase assays produce only a single reaction product allowing for very precise kinetic assessment of the enzymes. We present an assay using dATP and the A(pA)3 tetramer core as substrates, which requires prior isolation of A(pA)3. A synthetase assay using either of the dNTPs individually together with NAD+ as substrates is also presented. The nuclease reactions make use of the isolated 2′-5′ oligoadenylates in producing a mixture of shorter reaction products, which are resolved by ion-exchange chromatography to determine the enzyme activities. A purified human 2′-5′ oligoadenylate synthetase and a purified human phosphodiesterase 12 along with crude extracts expressing those proteins, are used to demonstrate the assays. Conclusions This paper comprises an assay toolbox for identification and characterization of the synthetases and nucleases regulating cellular 2-5A levels. Assays are presented for both enzyme families. The assays can also be used to address a broader cellular role of the OAS enzymes, based on the multiple substrate specificity intrinsic to these proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12858-015-0043-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jesper Buchhave Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, DK-8000, Aarhus C, Denmark.
| | - Karina Hansen Kjær
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, DK-8000, Aarhus C, Denmark.
| | - Just Justesen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, DK-8000, Aarhus C, Denmark.
| | - Pia Møller Martensen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
25
|
Ibsen MS, Gad HH, Andersen LL, Hornung V, Julkunen I, Sarkar SN, Hartmann R. Structural and functional analysis reveals that human OASL binds dsRNA to enhance RIG-I signaling. Nucleic Acids Res 2015; 43:5236-48. [PMID: 25925578 PMCID: PMC4446440 DOI: 10.1093/nar/gkv389] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 12/25/2022] Open
Abstract
The oligoadenylate synthetase (OAS) enzymes are cytoplasmic dsRNA sensors belonging to the antiviral innate immune system. Upon binding to viral dsRNA, the OAS enzymes synthesize 2'-5' linked oligoadenylates (2-5As) that initiate an RNA decay pathway to impair viral replication. The human OAS-like (OASL) protein, however, does not harbor the catalytic activity required for synthesizing 2-5As and differs from the other human OAS family members by having two C-terminal ubiquitin-like domains. In spite of its lack of enzymatic activity, human OASL possesses antiviral activity. It was recently demonstrated that the ubiquitin-like domains of OASL could substitute for K63-linked poly-ubiquitin and interact with the CARDs of RIG-I and thereby enhance RIG-I signaling. However, the role of the OAS-like domain of OASL remains unclear. Here we present the crystal structure of the OAS-like domain, which shows a striking similarity with activated OAS1. Furthermore, the structure of the OAS-like domain shows that OASL has a dsRNA binding groove. We demonstrate that the OAS-like domain can bind dsRNA and that mutating key residues in the dsRNA binding site is detrimental to the RIG-I signaling enhancement. Hence, binding to dsRNA is an important feature of OASL that is required for enhancing RIG-I signaling.
Collapse
Affiliation(s)
- Mikkel Søes Ibsen
- Centre for Structural Biology, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Hans Henrik Gad
- Centre for Structural Biology, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Line Lykke Andersen
- Centre for Structural Biology, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Veit Hornung
- Institute of Molecular Medicine, University Hospital, University of Bonn, Bonn 53127, Germany
| | - Ilkka Julkunen
- Department of Virology, University of Turku, 20520 Turku, Finland Viral Infections Unit, National Institute for Health and Welfare, 00300 Helsinki, Finland
| | - Saumendra N Sarkar
- Department of Microbiology and Molecular Genetics, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Rune Hartmann
- Centre for Structural Biology, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
26
|
Ibsen MS, Gad HH, Thavachelvam K, Boesen T, Desprès P, Hartmann R. The 2'-5'-oligoadenylate synthetase 3 enzyme potently synthesizes the 2'-5'-oligoadenylates required for RNase L activation. J Virol 2014; 88:14222-31. [PMID: 25275129 PMCID: PMC4249133 DOI: 10.1128/jvi.01763-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/23/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The members of the oligoadenylate synthetase (OAS) family of proteins are antiviral restriction factors that target a wide range of RNA and DNA viruses. They function as intracellular double-stranded RNA (dsRNA) sensors that, upon binding to dsRNA, undergo a conformational change and are activated to synthesize 2'-5'-linked oligoadenylates (2-5As). 2-5As of sufficient length act as second messengers to activate RNase L and thereby restrict viral replication. We expressed human OAS3 using the baculovirus system and purified it to homogeneity. We show that recombinant OAS3 is activated at a substantially lower concentration of dsRNA than OAS1, making it a potent in vivo sensor of dsRNA. Moreover, we find that OAS3 synthesizes considerably longer 2-5As than previously reported, and that OAS3 can activate RNase L intracellularly. The combined high affinity for dsRNA and the capability to produce 2-5As of sufficient length to activate RNase L suggests that OAS3 is a potent activator of RNase L. In addition, we provide experimental evidence to support one active site of OAS3 located in the C-terminal OAS domain and generate a low-resolution structure of OAS3 using SAXS. IMPORTANCE We are the first to purify the OAS3 enzyme to homogeneity, which allowed us to characterize the mechanism utilized by OAS3 and identify the active site. We provide compelling evidence that OAS3 can produce 2'-5'-oligoadenylates of sufficient length to activate RNase L. This is contrary to what is described in the current literature but agrees with recent in vivo data showing that OAS3 harbors an antiviral activity requiring RNase L. Thus, our work redefines our understanding of the biological role of OAS3. Furthermore, we used a combination of mutagenesis and small-angle X-ray scattering to describe the active site and low-resolution structure of OAS3.
Collapse
Affiliation(s)
- Mikkel Søes Ibsen
- Centre for Structural Biology, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Hans Henrik Gad
- Centre for Structural Biology, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Karthiga Thavachelvam
- Centre for Structural Biology, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Thomas Boesen
- Centre for Structural Biology, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Philippe Desprès
- Unité Interactions Moléculaires Flavivirus-Hôtes, Institut Pasteur, Paris, France
| | - Rune Hartmann
- Centre for Structural Biology, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
27
|
Mitochondrial localization of the OAS1 p46 isoform associated with a common single nucleotide polymorphism. BMC Cell Biol 2014; 15:33. [PMID: 25205466 PMCID: PMC4165621 DOI: 10.1186/1471-2121-15-33] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/29/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The expression of 2'-5'-Oligoadenylate synthetases (OASs) is induced by type 1 Interferons (IFNs) in response to viral infection. The OAS proteins have a unique ability to produce 2'-5' Oligoadenylates, which bind and activate the ribonuclease RNase L. The RNase L degrades cellular RNAs which in turn inhibits protein translation and induces apoptosis. Several single nucleotide polymorphisms (SNPs) in the OAS1 gene have been associated with disease. We have investigated the functional effect of two common SNPs in the OAS1 gene. The SNP rs10774671 affects splicing to one of the exons in the OAS1 gene giving rise to differential expression of the OAS1 isoforms, and the SNP rs1131454 (former rs3741981) resides in exon 3 giving rise to OAS1 isoforms with either a Glycine or a Serine at position 162 in the core OAS unit. RESULTS We have used three human cell lines with different genotypes in the OAS1 SNP rs10774671, HeLa cells with the AA genotype, HT1080 cells with AG, and Daudi cells with GG. The main OAS1 isoform expressed in Daudi and HT1080 cells was p46, and the main OAS1 isoform expressed in HeLa cells was p42. In addition, low levels of the OAS1 p52 mRNA was detected in HeLa cells and p48 mRNA in Daudi cells, and trace amounts of p44a mRNA were detected in the three cell lines treated with type 1 interferon. We show that the OAS1 p46 isoform was localized in the mitochondria in Daudi cells, whereas the OAS1 isoforms in HeLa cells were primarily localized in cytoplasmic vacuoles/lysosomes. By using recombinantly expressed OAS1 mutant proteins, we found that the OAS1 SNP rs1131454 (former rs3741981) did not affect the enzymatic OAS1 activity. CONCLUSIONS The SNP rs10774671 determines differential expression of the OAS1 isoforms. In Daudi and HT1080 cells the p46 isoform is the most abundantly expressed isoform associated with the G allele, whereas in HeLa cells the most abundantly expressed isoform is p42 associated with the A allele. The SNP rs1131454 (former rs3741981) does not interfere with OAS1 enzyme activity. The OAS1 p46 isoform localizes to the mitochondria, therefore a full 2-5A system can now be found in the mitochondria.
Collapse
|
28
|
Murine AKAP7 has a 2',5'-phosphodiesterase domain that can complement an inactive murine coronavirus ns2 gene. mBio 2014; 5:e01312-14. [PMID: 24987090 PMCID: PMC4161237 DOI: 10.1128/mbio.01312-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Viral 2′,5′-phosphodiesterases (2′,5′-PDEs) help disparate RNA viruses evade the antiviral activity of interferon (IFN) by degrading 2′,5′-oligoadenylate (2-5A) activators of RNase L. A kinase anchoring proteins (AKAPs) bind the regulatory subunits of protein kinase A (PKA) to localize and organize cyclic AMP (cAMP) signaling during diverse physiological processes. Among more than 43 AKAP isoforms, AKAP7 appears to be unique in its homology to viral 2′,5′-PDEs. Here we show that mouse AKAP7 rapidly degrades 2-5A with kinetics similar to that of murine coronavirus (mouse hepatitis virus [MHV]) strain A59 ns2 and human rotavirus strain WA VP3 proteins. To determine whether AKAP7 could substitute for a viral 2′,5′-PDE, we inserted AKAP7 cDNA into an MHV genome with an inactivated ns2 gene. The AKAP7 PDE domain or N-terminally truncated AKAP7 (both lacking a nuclear localization motif), but not full-length AKAP7 or a mutant, AKAP7H185R, PDE domain restored the infectivity of ns2 mutant MHV in bone marrow macrophages and in livers of infected mice. Interestingly, the AKAP7 PDE domain and N-terminally deleted AKAP7 were present in the cytoplasm (the site of MHV replication), whereas full-length AKAP7 was observed only in nuclei. We suggest the possibility that viral acquisition of the host AKAP7 PDE domain might have occurred during evolution, allowing diverse RNA viruses to antagonize the RNase L pathway. Early virus-host interactions determine whether an infection is established, highlighting the need to understand fundamental mechanisms regulating viral pathogenesis. Recently, our laboratories reported a novel mode of regulation of the IFN antiviral response. We showed that the coronavirus MHV accessory protein ns2 antagonizes the type I IFN response, promoting viral replication and hepatitis. ns2 confers virulence by cleaving 2′,5′-oligoadenylate (2-5A) activators of RNase L in macrophages. We also reported that the rotavirus VP3 C-terminal domain (VP3-CTD) cleaves 2-5A and that it may rescue ns2 mutant MHV. Here we report that a cellular protein, AKAP7, has an analogous 2′,5′-phosphodiesterase (2′,5′-PDE) domain that is able to restore the growth of chimeric MHV expressing inactive ns2. The proviral effect requires cytoplasmic localization of the AKAP7 PDE domain. We speculate that AKAP7 is the ancestral precursor of viral proteins, such as ns2 and VP3, that degrade 2-5A to evade the antiviral activity of RNase L.
Collapse
|
29
|
Zhou Y, Kang MJ, Jha BK, Silverman RH, Lee CG, Elias JA. Role of ribonuclease L in viral pathogen-associated molecular pattern/influenza virus and cigarette smoke-induced inflammation and remodeling. THE JOURNAL OF IMMUNOLOGY 2013; 191:2637-46. [PMID: 23913960 DOI: 10.4049/jimmunol.1300082] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Interactions between cigarette smoke (CS) exposure and viral infection play an important role(s) in the pathogenesis of chronic obstructive pulmonary disease and a variety of other disorders. A variety of lines of evidence suggest that this interaction induces exaggerated inflammatory, cytokine, and tissue remodeling responses. We hypothesized that the 2'-5' oligoadenylate synthetase (OAS)/RNase L system, an innate immune antiviral pathway, plays an important role in the pathogenesis of these exaggerated responses. To test this hypothesis, we characterize the activation of 2'-5' OAS in lungs from mice exposed to CS and viral pathogen-associated molecular patterns (PAMPs)/live virus, alone and in combination. We also evaluated the inflammatory and remodeling responses induced by CS and virus/viral PAMPs in lungs from RNase L null and wild-type mice. These studies demonstrate that CS and viral PAMPs/live virus interact in a synergistic manner to stimulate the production of select OAS moieties. They also demonstrate that RNase L plays a critical role in the pathogenesis of the exaggerated inflammatory, fibrotic, emphysematous, apoptotic, TGF-β1, and type I IFN responses induced by CS plus virus/viral PAMP in combination. These studies demonstrate that CS is an important regulator of antiviral innate immunity, highlight novel roles of RNase L in CS plus virus induced inflammation, tissue remodeling, apoptosis, and cytokine elaboration and highlight pathways that may be operative in chronic obstructive pulmonary disease and mechanistically related disorders.
Collapse
Affiliation(s)
- Yang Zhou
- Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
30
|
Susceptibility to flavivirus-specific antiviral response of Oas1b affects the neurovirulence of the Far-Eastern subtype of tick-borne encephalitis virus. Arch Virol 2012; 158:1039-46. [PMID: 23266832 DOI: 10.1007/s00705-012-1579-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 10/10/2012] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is a zoonotic agent that causes fatal encephalitis in humans. 2'-5'-oligoadenylate synthetase 1b (Oas1b) has been identified as a flavivirus resistance gene, but most inbred laboratory mice do not possess a functional Oas1b gene. In this study, a congenic strain carrying a functional Oas1b gene, B6.MSM-Oas, was used to evaluate the pathogenicity of Far-Eastern TBEV. Although intracerebral infection of B6.MSM-Oas mice by Oshima 5-10 resulted in limited signs of illness, infection by Sofjin-HO resulted in death with severe neurologic signs. While Oshima 5-10 was cleared from the brain, Sofjin-HO was not cleared despite a similar level of expression of the intact Oas1b gene. Necrotic neurons with viral antigens and inflammatory reactions were observed in the brain infected with Sofjin-HO. These data indicate that the different susceptibility to the antiviral activity of Oas1b resulted in a difference in neurovirulence in the two TBEV strains.
Collapse
|
31
|
Noguchi S, Hamano E, Matsushita I, Hijikata M, Ito H, Nagase T, Keicho N. Differential effects of a common splice site polymorphism on the generation of OAS1 variants in human bronchial epithelial cells. Hum Immunol 2012; 74:395-401. [PMID: 23220500 PMCID: PMC7115495 DOI: 10.1016/j.humimm.2012.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 11/27/2012] [Accepted: 11/27/2012] [Indexed: 12/24/2022]
Abstract
The 2',5'-oligoadenylate synthetase 1 (OAS1) is one of the major interferon-inducible proteins and a critical component of the host defense system against viral infection. A single nucleotide polymorphism (SNP), rs10774671, presumably responsible for alternate splicing of this gene, has frequently been associated with a variety of viral diseases, including emerging respiratory infections. We investigated the SNP-dependent expression of OAS1 variants in primary cultured human bronchial epithelial cells. Total RNA was subjected to real-time RT-PCR with specific primer sets designed to amplify each transcript variant. We found that the p46 transcript was mainly expressed in cells with the GG genotype, whereas the p42 transcript was highly expressed, and the p44a (alternate exon in intron 5), p48, and p52 transcripts were expressed to a lesser extent, in cells with the AA genotype. Immunoblot analysis revealed that the p46 isoform and a smaller amount of the p42 isoform were present in cells with the GG genotype, whereas only the p42 isoform was clearly observed in cells with the AA genotype. Cellular DNA fragmentation induced by neutrophil elastase was more preferentially found in cells with the AA genotype. Thus, our findings provide insights into the potential role of OAS1 polymorphisms in respiratory infection.
Collapse
Affiliation(s)
- Satoshi Noguchi
- Department of Respiratory Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
- Department of Respiratory Medicine, University of Tokyo Hospital, Tokyo 113-0033, Japan
| | - Emi Hamano
- Department of Respiratory Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
- Department of Respiratory Medicine, University of Tokyo Hospital, Tokyo 113-0033, Japan
| | - Ikumi Matsushita
- Department of Respiratory Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Minako Hijikata
- Department of Respiratory Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Hideyuki Ito
- Department of Thoracic Surgery, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, University of Tokyo Hospital, Tokyo 113-0033, Japan
| | - Naoto Keicho
- Department of Respiratory Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
- Corresponding author. Address: Department of Respiratory Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan. Fax: +81 3 3202 7364.
| |
Collapse
|
32
|
Poulsen JB, Andersen KR, Kjær KH, Vestergaard AL, Justesen J, Martensen PM. Characterization of human phosphodiesterase 12 and identification of a novel 2'-5' oligoadenylate nuclease - The ectonucleotide pyrophosphatase/phosphodiesterase 1. Biochimie 2012; 94:1098-107. [PMID: 22285541 DOI: 10.1016/j.biochi.2012.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 01/12/2012] [Indexed: 11/19/2022]
Abstract
The vertebrate 2-5A system is part of the innate immune response and central to cellular antiviral activities. Upon activation by viral double-stranded RNA, 5'-triphosphorylated, 2'-5'-linked oligoadenylate polyribonucleotides (2-5As) are synthesized by one of several 2'-5' oligoadenylate synthetases. The 2-5As bind and activate RNase L, an unspecific endoribonuclease, resulting in viral and cellular RNA decay. Given that most endogenous RNAs are degraded by RNase L, continued enzyme activity will eventually lead to cell growth arrest and cell death. This is averted, when 2-5As and their 5'-dephosphorylated forms, the so-called 2-5A core molecules, are cleaved and thus inactivated by 2'-5'-specific nuclease(s), e.g. phosphodiesterase 12, thereby turning RNase L into its latent form. In this study, we have characterized the human phosphodiesterase 12 in vitro focusing on its ability to degrade 2-5As and 2-5A core molecules. We have found that the enzyme activity is distributive and is influenced by temperature, pH and divalent cations. This allowed us to determine V(max) and K(m) kinetic parameters for the enzyme. We have also identified a novel 2'-5'-oligoadenylate nuclease; the human plasma membrane-bound ectonucleotide pyrophosphatase/phosphodiesterase 1, suggesting that 2-5A catabolism may be a multienzyme-regulated process.
Collapse
Affiliation(s)
- Jesper B Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, C. F. Møllers Allé 3, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | |
Collapse
|
33
|
Poulsen JB, Andersen KR, Kjær KH, Durand F, Faou P, Vestergaard AL, Talbo GH, Hoogenraad N, Brodersen DE, Justesen J, Martensen PM. Human 2'-phosphodiesterase localizes to the mitochondrial matrix with a putative function in mitochondrial RNA turnover. Nucleic Acids Res 2011; 39:3754-70. [PMID: 21245038 PMCID: PMC3089451 DOI: 10.1093/nar/gkq1282] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The vertebrate 2-5A system is part of the innate immune system and central to cellular antiviral defense. Upon activation by viral double-stranded RNA, 5'-triphosphorylated, 2'-5'-linked oligoadenylate polyribonucleotides (2-5As) are synthesized by one of several 2'-5'-oligoadenylate synthetases. These unusual oligonucleotides activate RNase L, an unspecific endoribonuclease that mediates viral and cellular RNA breakdown. Subsequently, the 2-5As are removed by a 2'-phosphodiesterase (2'-PDE), an enzyme that apart from breaking 2'-5' bonds also degrades regular, 3'-5'-linked oligoadenylates. Interestingly, 2'-PDE shares both functionally and structurally characteristics with the CCR4-type exonuclease-endonuclease-phosphatase family of deadenylases. Here we show that 2'-PDE locates to the mitochondrial matrix of human cells, and comprise an active 3'-5' exoribonuclease exhibiting a preference for oligo-adenosine RNA like canonical cytoplasmic deadenylases. Furthermore, we document a marked negative association between 2'-PDE and mitochondrial mRNA levels following siRNA-directed knockdown and plasmid-mediated overexpression, respectively. The results indicate that 2'-PDE, apart from playing a role in the cellular immune system, may also function in mitochondrial RNA turnover.
Collapse
|
34
|
Lin RJ, Yu HP, Chang BL, Tang WC, Liao CL, Lin YL. Distinct antiviral roles for human 2',5'-oligoadenylate synthetase family members against dengue virus infection. THE JOURNAL OF IMMUNOLOGY 2010; 183:8035-43. [PMID: 19923450 DOI: 10.4049/jimmunol.0902728] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The 2',5'-oligoadenylate synthetase (OAS) and its downstream effector RNase L play important roles in host defense against virus infection. Oas1b, one of the eight Oas1 genes in the mouse genome, has been identified as a murine flavivirus-resistance gene. Four genes, OAS1, OAS2, OAS3, and OAS-like (OASL), have been identified in the human OAS gene family, and 10 isoforms, including OAS1 (p42, p44, p46, p48, and p52), OAS2 (p69 and p71), OAS3 (p100), and OASL (p30 and p59) can be generated by alternative splicing. In this study, we determined the role of the human OAS/RNase L pathway in host defense against dengue virus (DEN) infection and assessed the antiviral potential of each isoform in the human OAS family. DEN replication was reduced by overexpression and enhanced by knockdown of RNase L expression, indicating a protective role for RNase L against DEN replication in human cells. The human OAS1 p42, OAS1 p46, and OAS3 p100, but not the other OAS isoforms, blocked DEN replication via an RNase L-dependent mechanism. Furthermore, the anti-DEN activities of these three OAS isoforms correlated with their ability to trigger RNase L activation in DEN-infected cells. Thus, OAS1 p42/p46 and OAS3 p100 are likely to contribute to host defense against DEN infection and play a role in determining the outcomes of DEN disease severity.
Collapse
Affiliation(s)
- Ren-Jye Lin
- Institute of Biomedical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
35
|
Kulka M, Calvo MS, Ngo DT, Wales SQ, Goswami BB. Activation of the 2-5OAS/RNase L pathway in CVB1 or HAV/18f infected FRhK-4 cells does not require induction of OAS1 or OAS2 expression. Virology 2009; 388:169-84. [PMID: 19383565 DOI: 10.1016/j.virol.2009.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/09/2009] [Accepted: 03/14/2009] [Indexed: 01/23/2023]
Abstract
The latent, constitutively expressed protein RNase L is activated in coxsackievirus and HAV strain 18f infected FRhK-4 cells. Endogenous oligoadenylate synthetase (OAS) from uninfected and virus infected cell extracts synthesizes active forms of the triphosphorylated 2-5A oligomer (the only known activator of RNase L) in vitro and endogenous 2-5A is detected in infected cell extracts. However, only the largest OAS isoform, OAS3, is readily detected throughout the time course of infection. While IFNbeta treatment results in an increase in the level of all three OAS isoforms in FRhK-4 cells, IFNbeta pretreatment does not affect the temporal onset or enhancement of RNase L activity nor inhibit virus replication. Our results indicate that CVB1 and HAV/18f activate the 2-5OAS/RNase L pathway in FRhK-4 cells during permissive infection through endogenous levels of OAS, but contrary to that reported for some picornaviruses, CVB1 and HAV/18f replication is insensitive to this activated antiviral pathway.
Collapse
Affiliation(s)
- Michael Kulka
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD 20708, USA.
| | | | | | | | | |
Collapse
|
36
|
Maia CJB, Socorro S, Schmitt F, Santos CRA. Characterization of oligoadenylate synthetase-1 expression in rat mammary gland and prostate: effects of 17beta-estradiol on the regulation of OAS1g in both tissues. Mol Cell Biochem 2008; 314:113-21. [PMID: 18421422 DOI: 10.1007/s11010-008-9771-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 04/07/2008] [Indexed: 11/28/2022]
Abstract
OAS1 belongs to a protein family of interferon-induced enzymes characterized by their ability to catalyze the synthesis of 2'-5'-linked oligomers of adenosine from ATP (2-5A). 2-5A bind to the latent Ribonuclease L (RNase L), which subsequently dimerizes into the active form, acquiring the capacity of cleaving cellular and viral mRNA. Several studies indicate that OAS1 is an important inducer of apoptosis in human cancer cells and that it may be regulated by 17beta-estradiol (E(2)). The aim of this study was to characterize OAS1 gene expression in rat mammary gland and prostate, and to analyze its regulation by E(2) in both tissues. It is demonstrated that OAS1g is the most abundant OAS1 gene expressed in both tissues, and that OAS1 protein is present in the nucleus of rat mammary gland and prostate epithelial cells. In addition, it is shown by Real Time PCR that OAS1g is up-regulated by E(2) in rat mammary gland, but down-regulated in prostate, suggesting that the OAS1g gene may be related to estrogen dependent pathways in rat mammary gland and prostate physiology.
Collapse
Affiliation(s)
- C J B Maia
- Centre of Investigation in Health Sciences, CICS, University of Beira Interior. Henrique, Covilha, Portugal
| | | | | | | |
Collapse
|
37
|
Silverman RH. Viral encounters with 2',5'-oligoadenylate synthetase and RNase L during the interferon antiviral response. J Virol 2007; 81:12720-9. [PMID: 17804500 PMCID: PMC2169107 DOI: 10.1128/jvi.01471-07] [Citation(s) in RCA: 463] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Robert H Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue NB40, Cleveland, OH 44195, USA.
| |
Collapse
|
38
|
Rios JJ, Perelygin AA, Long MT, Lear TL, Zharkikh AA, Brinton MA, Adelson DL. Characterization of the equine 2'-5' oligoadenylate synthetase 1 (OAS1) and ribonuclease L (RNASEL) innate immunity genes. BMC Genomics 2007; 8:313. [PMID: 17822564 PMCID: PMC2048516 DOI: 10.1186/1471-2164-8-313] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 09/07/2007] [Indexed: 11/13/2022] Open
Abstract
Background The mammalian OAS/RNASEL pathway plays an important role in antiviral host defense. A premature stop-codon within the murine Oas1b gene results in the increased susceptibility of mice to a number of flaviviruses, including West Nile virus (WNV). Mutations in either the OAS1 or RNASEL genes may also modulate the outcome of WNV-induced disease or other viral infections in horses. Polymorphisms in the human OAS gene cluster have been previously utilized for case-control analysis of virus-induced disease in humans. No polymorphisms have yet been identified in either the equine OAS1 or RNASEL genes for use in similar case-control studies. Results Genomic sequence for equine OAS1 was obtained from a contig assembly generated from a shotgun subclone library of CHORI-241 BAC 100I10. Specific amplification of regions of the OAS1 gene from 13 horses of various breeds identified 33 single nucleotide polymorphisms (SNP) and two microsatellites. RNASEL cDNA sequences were determined for 8 mammals and utilized in a phylogenetic analysis. The chromosomal location of the RNASEL gene was assigned by FISH to ECA5p17-p16 using two selected CHORI-241 BAC clones. The horse genomic RNASEL sequence was assembled. Specific amplification of regions of the RNASEL gene from 13 horses identified 31 SNPs. Conclusion In this report, two dinucleotide microsatellites and 64 single nucleotide polymorphisms within the equine OAS1 and RNASEL genes were identified. These polymorphisms are the first to be reported for these genes and will facilitate future case-control studies of horse susceptibility to infectious diseases.
Collapse
Affiliation(s)
- Jonathan J Rios
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, Texas 77843, USA
| | - Andrey A Perelygin
- Biology Department, Georgia State University, 24 Peachtree Center Ave., Atlanta, Georgia 30302, USA
| | - Maureen T Long
- College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave., Gainesville, Florida 32608, USA
| | - Teri L Lear
- Department of Veterinary Science, University of Kentucky, 108 Maxwell H. Gluck Equine Research Center, Lexington, Kentucky, 40546, USA
| | - Andrey A Zharkikh
- Bioinformatics Department, Myriad Genetics, Inc., 320 Wakara Way, Salt Lake City, UT, 84108, USA
| | - Margo A Brinton
- Biology Department, Georgia State University, 24 Peachtree Center Ave., Atlanta, Georgia 30302, USA
| | - David L Adelson
- School of Molecular and Biomedical Science, University of Adelaide, SA 5005, Australia
| |
Collapse
|
39
|
Hovanessian AG. On the discovery of interferon-inducible, double-stranded RNA activated enzymes: the 2'-5'oligoadenylate synthetases and the protein kinase PKR. Cytokine Growth Factor Rev 2007; 18:351-61. [PMID: 17681872 DOI: 10.1016/j.cytogfr.2007.06.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The demonstration that double-stranded (ds) RNA inhibits protein synthesis in cell-free systems prepared from interferon-treated cells, lead to the discovery of the two interferon-induced, dsRNA-dependent enzymes: the serine/threonine protein kinase that is referred to as PKR and the 2',5'-oligoadenylate synthetase (2',5'-OAS), which converts ATP to 2',5'-linked oligoadenylates with the unusual 2'-5' instead of 3'-5' phosphodiesterase bond. We raised monoclonal and polyclonal antibodies against human PKR and the two larger forms of the 2',5'-OAS. Such specific antibodies proved to be indispensable for the detailed characterization of these enzyme and the cloning of cDNAs corresponding to the human PKR and the 69-71 and 100 kDa forms of the 2',5'-OAS. When activated by dsRNA, PKR becomes autophosphorylated and catalyzes phosphorylation of the protein synthesis initiation factor eIF2, whereas the 2'-5'OAS forms 2',5'-oligoadenylates that activate the latent endoribonuclease, the RNAse L. By inhibiting initiation of protein synthesis or by degrading RNA, these enzymes play key roles in two independent pathways that regulate overall protein synthesis and the mechanism of the antiviral action of interferon. In addition, these enzymes are now shown to regulate other cellular events, such as gene induction, normal control of cell growth, differentiation and apoptosis.
Collapse
Affiliation(s)
- Ara G Hovanessian
- UPR 2228 CNRS, UFR Biomédicale - Université René Descartes, 45 rue des Saints Pères, 75270 Paris Cedex 06, France.
| |
Collapse
|
40
|
Hovanessian AG, Justesen J. The human 2'-5'oligoadenylate synthetase family: unique interferon-inducible enzymes catalyzing 2'-5' instead of 3'-5' phosphodiester bond formation. Biochimie 2007; 89:779-88. [PMID: 17408844 DOI: 10.1016/j.biochi.2007.02.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 02/06/2007] [Indexed: 01/13/2023]
Abstract
The demonstration by Kerr and colleagues that double-stranded (ds) RNA inhibits drastically protein synthesis in cell-free systems prepared from interferon-treated cells, suggested the existence of an interferon-induced enzyme, which is dependent on dsRNA. Consequently, two distinct dsRNA-dependent enzymes were discovered: a serine/threonine protein kinase that nowadays is referred to as PKR and a 2'-5'oligoadenylate synthetase (2'-5'OAS) that polymerizes ATP to 2'-5'-linked oligomers of adenosine with the general formula pppA(2'p5'A)(n), n>or=1. The product is pppG2'p5'G when GTP is used as a substrate. Three distinct forms of 2'-5'OAS exist in human cells, small, medium, and large, which contain one, two, and three OAS units, respectively, and are encoded by distinct genes clustered on the 2'-5'OAS locus on human chromosome 12. OASL is an OAS like IFN-induced protein encoded by a gene located about 8 Mb telomeric from the 2'-5'OAS locus. OASL is composed of one OAS unit fused at its C-terminus with two ubiquitin-like repeats. The human OASL is devoid of the typical 2'-5'OAS catalytic activity. In addition to these structural differences between the various OAS proteins, the three forms of 2'-5'OAS are characterized by different subcellular locations and enzymatic parameters. These findings illustrate the apparent structural and functional complexity of the human 2'-5'OAS family, and suggest that these proteins may have distinct roles in the cell.
Collapse
Affiliation(s)
- Ara G Hovanessian
- UPR 2228 CNRS, UFR Biomédicale, Université René Descartes, 45 rue des Saints Pères, 75270 Paris Cedex 06, France.
| | | |
Collapse
|
41
|
Liu W, Liang SL, Liu H, Silverman R, Zhou A. Tumour suppressor function of RNase L in a mouse model. Eur J Cancer 2006; 43:202-9. [PMID: 17055253 DOI: 10.1016/j.ejca.2006.08.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 08/15/2006] [Accepted: 08/31/2006] [Indexed: 02/08/2023]
Abstract
RNase L is one of the key enzymes involved in the molecular mechanisms of interferon (IFN) actions. Upon binding with its activator, 5'-phosphorylated, 2'-5' oligoadenylates (2-5A), RNase L plays an important role in the antiviral and anti-proliferative functions of IFN, and exerts proapoptotic activity independent of IFN. In this study, we have found that RNase L retards proliferation in an IFN-dependent and independent fashion. To directly measure the effect of RNase L on tumour growth in the absence of other IFN-induced proteins, human RNase L cDNA was stably expressed in P-57 cells, an aggressive mouse fibrosarcoma cell line. Three clonal cell lines were isolated in which the overexpression of RNase L was 15-20-fold of the endogenous level. Groups of five nude mice were injected subcutaneously with either the human RNase L overexpressing clones (P-RL) or control cells transfected with an empty vector (P-Vec). Tumour growth by the two cell lines was monitored by measuring tumour volumes. In the P-RL group, tumour formation was significantly delayed and the tumours grew much slower compared to the control group. Morphologically, the P-RL tumour appeared to have more polygonal cells and increased single cell tumour necrosis. Interestingly, P-RL tumours eventually started to grow. Further analysis revealed, however, that these tumours no longer expressed ectopic RNase L. Our findings suggest that RNase L plays a critical role in the inhibition of fibrosarcoma growth in nude mice.
Collapse
Affiliation(s)
- Wendy Liu
- Department of Chemistry, Clinical Chemistry Program, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | | | | | | | | |
Collapse
|
42
|
Perelygin AA, Zharkikh AA, Scherbik SV, Brinton MA. The Mammalian 2′-5′ Oligoadenylate Synthetase Gene Family: Evidence for Concerted Evolution of Paralogous Oas1 Genes in Rodentia and Artiodactyla. J Mol Evol 2006; 63:562-76. [PMID: 17024523 DOI: 10.1007/s00239-006-0073-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 06/12/2006] [Indexed: 12/01/2022]
Abstract
Multiple 2'-5' oligoadenylate (2-5A) synthetases are important components of innate immunity in mammals. Gene families encoding these proteins have previously been studied mainly in humans and mice. To reconstruct the evolution of this gene family in mammals, a search for additional 2-5A synthetase genes was performed in rat, cattle, pig, and dog. Twelve 2'-5' oligoadenylate synthetase (Oas) genes were identified in the rat genome, including eight Oas1 genes, two Oas1 pseudogenes, single copies of Oas2 and Oas3, and two Oas-like genes, Oasl1 and Oasl2. Four OAS genes were detected in the pig genome and five OAS genes were found in both the cattle and dog genomes. An OAS3 gene was not found in either the cattle or the pig genome. While two tandemly duplicated OAS-like (OASL) genes were identified in the dog genome, only a single OASL orthologue was found in both the cattle and the pig genomes. The bovine and porcine OASL genes contain premature stop codons and encode truncated proteins, which lack the typical C-terminal double ubiquitin domains. The cDNA sequences of the rat, cattle, pig, and dog OAS genes were amplified, sequenced and compared with each other and with those in the human, mouse, horse, and chicken genomes. Evidence of concerted evolution of paralogous 2'-5' oligoadenylate synthetase 1 genes was obtained in rodents (Rodentia) and even-toed ungulates (Artiodactyla). Calculations using the nonparametric Kolmogorov-Smirnov test suggested that the homogenization of paralogous OAS1 sequences was due to gene conversion rather than stabilizing selection.
Collapse
Affiliation(s)
- Andrey A Perelygin
- Biology Department, Georgia State University, P.O. Box 4010, Atlanta, GA 30302-4010, USA.
| | | | | | | |
Collapse
|
43
|
Scherbik SV, Paranjape JM, Stockman BM, Silverman RH, Brinton MA. RNase L plays a role in the antiviral response to West Nile virus. J Virol 2006; 80:2987-99. [PMID: 16501108 PMCID: PMC1395436 DOI: 10.1128/jvi.80.6.2987-2999.2006] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alleles at the Flv locus determine disease outcome after a flavivirus infection in mice. Although comparable numbers of congenic resistant and susceptible mouse embryo fibroblasts (MEFs) are infected by the flavivirus West Nile virus (WNV), resistant MEFs produce approximately 100- to 150-fold lower titers than susceptible ones and flavivirus titers in the brains of resistant and susceptible animals can differ by >10,000-fold. The Flv locus was previously identified as the 2'-5' oligoadenylate synthetase 1b (Oas1b) gene. Oas gene expression is up-regulated by interferon (IFN), and after activation by double-stranded RNA, some mouse synthetases produce 2-5A, which activates latent RNase L to degrade viral and cellular RNAs. To determine whether the lower levels of intracellular flavivirus genomic RNA from resistant mice detected in cells at all times after infection were mediated by RNase L, RNase L activity levels in congenic resistant and susceptible cells were compared. Similar moderate levels of RNase L activation by transfected 2-5A were observed in both types of uninfected cells. After WNV infection, the mRNAs of IFN-beta and three Oas genes were up-regulated to similar levels in both types of cells. However, significant levels of RNase L activity were not detected until 72 h after WNV infection and the patterns of viral RNA cleavage products generated were similar in both types of cells. When RNase L activity was down-regulated in resistant cells via stable expression of a dominant negative RNase L mutant, approximately 5- to 10-times-higher yields of WNV were produced. Similarly, about approximately 5- to 10-times-higher virus yields were produced by susceptible C57BL/6 RNase L-/- cells compared to RNase L+/+ cells that were either left untreated or pretreated with IFN and/or poly(I) . poly(C). The data indicate that WNV genomic RNA is susceptible to RNase L cleavage and that RNase L plays a role in the cellular antiviral response to flaviviruses. The results suggest that RNase L activation is not a major component of the Oas1b-mediated flavivirus resistance phenotype.
Collapse
Affiliation(s)
- Svetlana V Scherbik
- Department of Biology, Georgia State University, P.O. Box 4010, Atlanta, Georgia 30302-4010, USA
| | | | | | | | | |
Collapse
|
44
|
Iordanov MS, Ryabinina OP, Schneider P, Magun BE. Two mechanisms of caspase 9 processing in double-stranded RNA- and virus-triggered apoptosis. Apoptosis 2005; 10:153-66. [PMID: 15711931 DOI: 10.1007/s10495-005-6070-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Viral double-stranded RNA (dsRNA) is a ubiquitous intracellular "alert signal" used by cells to detect viral infection and to mount anti-viral responses. DsRNA triggers a rapid (complete within 2-4 h) apoptosis in the highly-susceptible HeLa cell line. Here, we demonstrate that the apical event in this apoptotic cascade is the activation of procaspase 8. Downstream of caspase 8, the apoptotic signaling cascade bifurcates into a mitochondria-independent caspase 8/caspase 3 arm and a mitochondria-dependent, caspase 8/Bid/Bax/Bak/cytochrome c arm. Both arms impinge upon, and activate, procaspase 9 via two different cleavage sites within the procaspase 9 molecule (D330 and D315, respectively). This is the first in vivo demonstration that the "effector" caspase 3 plays an "initiator" role in the regulation of caspase 9. The dsRNA-induced apoptosis is potentiated by the inhibition of protein synthesis, whose role is to accelerate the execution of all apoptosis steps downstream of, and including, the activation of caspase 8. Thus, efficient apoptosis in response to viral dsRNA results from the co-operation of the two major apical caspases (8 and 9) and the dsRNA-activated protein kinase R (PKR)/ribonuclease L (RNase L) system that is essential for the inhibition of protein synthesis in response to viral infection.
Collapse
Affiliation(s)
- M S Iordanov
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
45
|
Tanaka N, Nakanishi M, Kusakabe Y, Goto Y, Kitade Y, Nakamura KT. Structural basis for recognition of 2',5'-linked oligoadenylates by human ribonuclease L. EMBO J 2004; 23:3929-38. [PMID: 15385955 PMCID: PMC524351 DOI: 10.1038/sj.emboj.7600420] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Accepted: 08/30/2004] [Indexed: 11/08/2022] Open
Abstract
An interferon-induced endoribonuclease, ribonuclease L (RNase L), is implicated in both the molecular mechanism of action of interferon and the fundamental control of RNA stability in mammalian cells. RNase L is catalytically active only after binding to an unusual activator molecule containing a 5'-phosphorylated 2',5'-linked oligoadenylate (2-5A), in the N-terminal half. Here, we report the crystal structure of the N-terminal ankyrin repeat domain (ANK) of human RNase L complexed with the activator 2-5A. This is the first structural view of an ankyrin repeat structure directly interacting with a nucleic acid, rather than with a protein. The ANK domain folds into eight ankyrin repeat elements and forms an extended curved structure with a concave surface. The 2-5A molecule is accommodated at a concave site and directly interacts with ankyrin repeats 2-4. Interestingly, two structurally equivalent 2-5A binding motifs are found at repeats 2 and 4. The structural basis for 2-5A recognition by ANK is essential for designing stable 2-5As with a high likelihood of activating RNase L.
Collapse
Affiliation(s)
- Nobutada Tanaka
- School of Pharmaceutical Sciences, Showa University, Hatanodai, Shinagawa-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Chase BI, Zhou Y, Xiang Y, Silverman RH, Zhou A. Proteasome-mediated degradation of RNase L in response to phorbol-12-myristate-13-acetate (PMA) treatment of mouse L929 cells. J Interferon Cytokine Res 2004; 23:565-73. [PMID: 14585196 DOI: 10.1089/107999003322485062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
2'-5' Oligoadenylate (2-5A)-dependent RNase L is one of the key enzymes involved in the molecular mechanisms of interferon (IFN) function. Although the regulation of RNase L by 2-5A has been studied extensively, relatively little is known about how RNase L is controlled by posttranslational processes. Here, we report that phorbol-12-myristate-13-acetate (PMA) treatment of mouse L929 fibroblasts caused rapid degradation of RNase L in a dose-dependent and time-dependent manner. RNase L levels were decreased to 40% of control levels after only 5 min exposure of cells to PMA, suggesting the involvement of protein kinase C (PKC). After PMA treatment for 1 h, RNase L levels decreased to 18% of the pretreatment levels. Decay of RNase L was measured by 2-5A binding assay, ribonuclease activity, and protein levels in Western blots probed with antibody to murine RNase L. PMA treatment caused decreases in the levels of RNase L in both cytoplasm and nucleus. To explore the mechanism of RNase L degradation, we treated cells with the selective proteasome inhibitors, ALLN, MG132, and PSI, prior to PMA treatment. These inhibitors completely blocked the degradation of RNase L caused by PMA. Our results show a novel regulatory pathway for RNase L that could have an impact on its antitumor and antiviral functions.
Collapse
Affiliation(s)
- Barbara I Chase
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | | | | | | | | |
Collapse
|
47
|
Englebienne P, Verhas M, Herst CV, De Meirleir K. Type I interferons induce proteins susceptible to act as thyroid receptor (TR) corepressors and to signal the TR for destruction by the proteasome: possible etiology for unexplained chronic fatigue. Med Hypotheses 2003; 60:175-80. [PMID: 12606231 DOI: 10.1016/s0306-9877(02)00353-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In some patients complaining of chronic fatigue such as those suffering from the chronic fatigue syndrome (CFS), no underlying physical cause can be clearly identified and they typically present a normal thyroid function. Several studies indicate a dysregulation in the type I interferons (IFN-alpha/beta) pathway in CFS resulting in a sustained upregulation of 2('),5(')-oligoadenylate synthetases (2-5OAS). Likewise, patients treated with IFN-alpha/beta usually complain of severe fatigue as a limiting side effect. Beside the 2-5OAS, IFN-alpha/beta induce also the expression of three closely related proteins of unknown function termed the 2-5OAS-like (2-5OASL) proteins. The amino acid sequences of the 2-5OASL proteins display 96% identity with the partial sequence of the thyroid receptor interacting protein (TRIP) 14, further contain two typical thyroid hormone receptor (TR) coregulator domains and feature two ubiquitin C-terminal domains. From these observations, we raise the hypothesis that the 2-5OASL proteins are TRIPs capable of, respectively, repressing TR transactivation and/or signaling the receptor for destruction by the proteasome. Such molecular mechanisms could explain the development of a clinical hypothyroid state in presence of a normal thyroid function.
Collapse
Affiliation(s)
- P Englebienne
- University of Brussels (ULB/VUB), N.V., Brussels, Belgium.
| | | | | | | |
Collapse
|
48
|
Müller WEG, Wiens M, Müller IM, Schröder HC. The Chemokine Networks in Sponges: Potential Roles in Morphogenesis, Immunity and Stem Cell Formation. INVERTEBRATE CYTOKINES AND THE PHYLOGENY OF IMMUNITY 2003; 34:103-43. [PMID: 14979666 DOI: 10.1007/978-3-642-18670-7_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Porifera (sponges) are now well accepted as the phylum which branched off first from the common ancestor of all metazoans, the Urmetazoa. The transition to the Metazoa became possible because during this phase, cell-cell as well as cell-matrix adhesion molecules evolved which allowed the formation of a colonial stage of animals. The next prerequisite for the evolution to the Urmetazoa was the establishment of an effective immune system which, flanked by apoptosis, allowed the formation of a first level of individuation. In sponges (with the model Suberites domuncula and Geodia cydonium), the main mediators of the immune responses are the chemokines. Since sponges lack a vascular system and consequently blood cells (in the narrow sense), we have used the term chemokines (in a broad sense) to highlight that the complex network of intercellular mediators initiates besides differentiation processes also cell movement. In the present review, the cDNAs encoding the following chemokines were described and the roles of their deduced proteins during self-self and nonself recognition outlined: the allograft inflammatory factor, the glutathione peroxidase, the endothelial-monocyte-activating polypeptide, the pre-B-cell colony-enhancing factor and the myotrophin as well as an enzyme, the (2-5)A synthetase, which is involved in cytokine response in vertebrates. A further step required to reach the evolutionary step of the integrated stage of the Urmetazoa was the acquisition of a stem cell system. In this review, first markers for stem cells (mesenchymal stem cell-like protein) as well as for chemokines involved in the maintenance of stem cells (noggin and glia maturation factor) are described at the molecular level, and a first functional analysis is approached. Taken together, it is outlined that the chemokine network was essential for the establishment of metazoans, which evolved approximately 600 to 800 million years ago.
Collapse
Affiliation(s)
- W E G Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, 55099 Mainz, Germany
| | | | | | | |
Collapse
|
49
|
Durbin RK, Mertz SE, Koromilas AE, Durbin JE. PKR protection against intranasal vesicular stomatitis virus infection is mouse strain dependent. Viral Immunol 2002; 15:41-51. [PMID: 11952146 DOI: 10.1089/088282402317340224] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The interferon-induced antiviral state is mediated by interferon-stimulated genes that are upregulated in concert after stimulation by type I interferons. Because so many viruses encode strategies to inactivate the interferon-inducible double-stranded RNA (dsRNA)-dependent protein kinase PKR, this protein is likely to be a major player in antiviral defense. Here we demonstrate the increased susceptibility of PKR-/- animals to vesicular stomatitis virus (VSV) by the intranasal route, but also demonstrate that the protective effects of PKR are mouse strain dependent. We have found the difference between wild-type-BALB/c and 129SvEv animals to be on the order of 5 logs, with high levels of virus present in the lungs of BALB/c but not 129SvEv animals. To evaluate the sensitivity of PKR-/- mice to VSV clearly, the PKR mutation was bred onto the resistant 129SvEv background. The increased sensitivity of PKR-/- mice, compared to PKR+/+ strain-matched controls, is on the order of 10-fold as measured by median lethal dose (LD50). PKR-/- 129 mice support VSV replication in the lung unlike controls. While this result clearly demonstrates an important role for PKR in protection against VSV infection of the lung, it also underlines the importance of other host factors in containing a viral infection.
Collapse
Affiliation(s)
- R K Durbin
- Children Research Institute, Children's Hospital, Columbus, Ohio 43205, USA.
| | | | | | | |
Collapse
|
50
|
Aissouni Y, Perez C, Calmels B, Benech PD. The cleavage/polyadenylation activity triggered by a U-rich motif sequence is differently required depending on the poly(A) site location at either the first or last 3'-terminal exon of the 2'-5' oligo(A) synthetase gene. J Biol Chem 2002; 277:35808-14. [PMID: 12082089 DOI: 10.1074/jbc.m200540200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Production of the two mRNAs encoding distinct forms of 2'-5'-oligoadenylate synthetase depends on processing that involves the recognition of alternative poly(A) sites and an internal 5'-splice site located within the first 3'-terminal exon. The resulting 1.6- and 1.8-kb mRNAs are expressed in fibroblast cell lines, whereas lymphoblastoid B cells, such as Daudi, produce only the 1.8-kb mRNA. In the present study, we have shown that the 3'-end processing at the last 3'-terminal exon occurs independently of the core poly(A) site sequence or the presence of regulatory elements. In contrast, in Daudi cells, the recognition of the poly(A) site at the first 3'-terminal exon is impaired because of an unfavorable sequence context. The 3'-end processing at this particular location requires a strong stabilization of the cleavage/polyadenylation factors, which can be achieved by the insertion of a 25-nucleotide long U-rich motif identified upstream of the last poly(A) site. Consequently, we speculate that in cells expressing the 1.6-kb mRNA, such as fibroblasts, direct or indirect participation of a specific mechanism or cell type-specific factors are required for an efficient polyadenylation at the first 3'-terminal exon.
Collapse
Affiliation(s)
- Youssef Aissouni
- U119 INSERM, Institute of Cancerology and Immunology of Marseille, 27 Boulevard Lei Roure, F-13009, Marseille, France
| | | | | | | |
Collapse
|