1
|
Belosludtseva NV, Ilzorkina AI, Serov DA, Dubinin MV, Talanov EY, Karagyaur MN, Primak AL, Liu J, Belosludtsev KN. ANT-Mediated Inhibition of the Permeability Transition Pore Alleviates Palmitate-Induced Mitochondrial Dysfunction and Lipotoxicity. Biomolecules 2024; 14:1159. [PMID: 39334925 PMCID: PMC11430505 DOI: 10.3390/biom14091159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Hyperlipidemia is a major risk factor for vascular lesions in diabetes mellitus and other metabolic disorders, although its basis remains poorly understood. One of the key pathogenetic events in this condition is mitochondrial dysfunction associated with the opening of the mitochondrial permeability transition (MPT) pore, a drop in the membrane potential, and ROS overproduction. Here, we investigated the effects of bongkrekic acid and carboxyatractyloside, a potent blocker and activator of the MPT pore opening, respectively, acting through direct interaction with the adenine nucleotide translocator, on the progression of mitochondrial dysfunction in mouse primary lung endothelial cells exposed to elevated levels of palmitic acid. Palmitate treatment (0.75 mM palmitate/BSA for 6 days) resulted in an 80% decrease in the viability index of endothelial cells, which was accompanied by mitochondrial depolarization, ROS hyperproduction, and increased colocalization of mitochondria with lysosomes. Bongkrekic acid (25 µM) attenuated palmitate-induced lipotoxicity and all the signs of mitochondrial damage, including increased spontaneous formation of the MPT pore. In contrast, carboxyatractyloside (10 μM) stimulated cell death and failed to prevent the progression of mitochondrial dysfunction under hyperlipidemic stress conditions. Silencing of gene expression of the predominate isoform ANT2, similar to the action of carboxyatractyloside, led to increased ROS generation and cell death under conditions of palmitate-induced lipotoxicity in a stably transfected HEK293T cell line. Altogether, these results suggest that targeted manipulation of the permeability transition pore through inhibition of ANT may represent an alternative approach to alleviate mitochondrial dysfunction and cell death in cell culture models of fatty acid overload.
Collapse
Affiliation(s)
- Natalia V Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Anna I Ilzorkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Dmitriy A Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov St. 38, 119991 Moscow, Russia
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Mikhail V Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Eugeny Yu Talanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Maxim N Karagyaur
- Medical Research and Education Institute, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119191 Moscow, Russia
| | - Alexandra L Primak
- Medical Research and Education Institute, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119191 Moscow, Russia
| | - Jiankang Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Konstantin N Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| |
Collapse
|
2
|
Pan T, Yang B, Yao S, Wang R, Zhu Y. Exploring the multifaceted role of adenosine nucleotide translocase 2 in cellular and disease processes: A comprehensive review. Life Sci 2024; 351:122802. [PMID: 38857656 DOI: 10.1016/j.lfs.2024.122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Adenosine nucleotide translocases (ANTs) are a family of proteins abundant in the inner mitochondrial membrane, primarily responsible for shuttling ADP and ATP across the mitochondrial membrane. Additionally, ANTs are key players in balancing mitochondrial energy metabolism and regulating cell death. ANT2 isoform, highly expressed in undifferentiated and proliferating cells, is implicated in the development and drug resistance of various tumors. We conduct a detailed analysis of the potential mechanisms by which ANT2 may influence tumorigenesis and drug resistance. Notably, the significance of ANT2 extends beyond oncology, with roles in non-tumor cell processes including blood cell development, gastrointestinal motility, airway hydration, nonalcoholic fatty liver disease, obesity, chronic kidney disease, and myocardial development, making it a promising therapeutic target for multiple pathologies. To better understand the molecular mechanisms of ANT2, this review summarizes the structural properties, expression patterns, and basic functions of the ANT2 protein. In particular, we review and analyze the controversy surrounding ANT2, focusing on its role in transporting ADP/ATP across the inner mitochondrial membrane, its involvement in the composition of the mitochondrial permeability transition pore, and its participation in apoptosis.
Collapse
Affiliation(s)
- Tianhui Pan
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Bin Yang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Sheng Yao
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Rui Wang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China.
| |
Collapse
|
3
|
Tian J, Jia K, Wang T, Guo L, Xuan Z, Michaelis EK, Swerdlow RH, Du H. Hippocampal transcriptome-wide association study and pathway analysis of mitochondrial solute carriers in Alzheimer's disease. Transl Psychiatry 2024; 14:250. [PMID: 38858380 PMCID: PMC11164935 DOI: 10.1038/s41398-024-02958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024] Open
Abstract
The etiopathogenesis of late-onset Alzheimer's disease (AD) is increasingly recognized as the result of the combination of the aging process, toxic proteins, brain dysmetabolism, and genetic risks. Although the role of mitochondrial dysfunction in the pathogenesis of AD has been well-appreciated, the interaction between mitochondrial function and genetic variability in promoting dementia is still poorly understood. In this study, by tissue-specific transcriptome-wide association study (TWAS) and further meta-analysis, we examined the genetic association between mitochondrial solute carrier family (SLC25) genes and AD in three independent cohorts and identified three AD-susceptibility genes, including SLC25A10, SLC25A17, and SLC25A22. Integrative analysis using neuroimaging data and hippocampal TWAS-predicted gene expression of the three susceptibility genes showed an inverse correlation of SLC25A22 with hippocampal atrophy rate in AD patients, which outweighed the impacts of sex, age, and apolipoprotein E4 (ApoE4). Furthermore, SLC25A22 downregulation demonstrated an association with AD onset, as compared with the other two transcriptome-wide significant genes. Pathway and network analysis related hippocampal SLC25A22 downregulation to defects in neuronal function and development, echoing the enrichment of SLC25A22 expression in human glutamatergic neurons. The most parsimonious interpretation of the results is that we have identified AD-susceptibility genes in the SLC25 family through the prediction of hippocampal gene expression. Moreover, our findings mechanistically yield insight into the mitochondrial cascade hypothesis of AD and pave the way for the future development of diagnostic tools for the early prevention of AD from a perspective of precision medicine by targeting the mitochondria-related genes.
Collapse
Affiliation(s)
- Jing Tian
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Kun Jia
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Tienju Wang
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Lan Guo
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Zhenyu Xuan
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Elias K Michaelis
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Russell H Swerdlow
- Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Heng Du
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA.
- Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
4
|
Terzioglu M, Veeroja K, Montonen T, Ihalainen TO, Salminen TS, Bénit P, Rustin P, Chang YT, Nagai T, Jacobs HT. Mitochondrial temperature homeostasis resists external metabolic stresses. eLife 2023; 12:RP89232. [PMID: 38079477 PMCID: PMC10712956 DOI: 10.7554/elife.89232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Based on studies with a fluorescent reporter dye, Mito Thermo Yellow (MTY), and the genetically encoded gTEMP ratiometric fluorescent temperature indicator targeted to mitochondria, the temperature of active mitochondria in four mammalian and one insect cell line was estimated to be up to 15°C above that of the external environment to which the cells were exposed. High mitochondrial temperature was maintained in the face of a variety of metabolic stresses, including substrate starvation or modification, decreased ATP demand due to inhibition of cytosolic protein synthesis, inhibition of the mitochondrial adenine nucleotide transporter and, if an auxiliary pathway for electron transfer was available via the alternative oxidase, even respiratory poisons acting downstream of oxidative phosphorylation (OXPHOS) complex I. We propose that the high temperature of active mitochondria is an inescapable consequence of the biochemistry of OXPHOS and is homeostatically maintained as a primary feature of mitochondrial metabolism.
Collapse
Affiliation(s)
- Mügen Terzioglu
- Faculty of Medicine and Health Technology, Tampere UniversityTampereFinland
| | - Kristo Veeroja
- Faculty of Medicine and Health Technology, Tampere UniversityTampereFinland
| | - Toni Montonen
- Faculty of Medicine and Health Technology, Tampere UniversityTampereFinland
| | - Teemu O Ihalainen
- Faculty of Medicine and Health Technology, Tampere UniversityTampereFinland
| | - Tiina S Salminen
- Faculty of Medicine and Health Technology, Tampere UniversityTampereFinland
| | - Paule Bénit
- Université Paris Cité, Inserm, Maladies Neurodéveloppementales et NeurovasculairesParisFrance
| | - Pierre Rustin
- Université Paris Cité, Inserm, Maladies Neurodéveloppementales et NeurovasculairesParisFrance
| | - Young-Tae Chang
- SANKEN (The Institute of Scientific and Industrial Research), Osaka UniversityIbarakiJapan
| | | | - Howard T Jacobs
- Faculty of Medicine and Health Technology, Tampere UniversityTampereFinland
- Department of Environment and Genetics, La Trobe UniversityMelbourneAustralia
| |
Collapse
|
5
|
Han D, Chen J, Chen W, Wang Y. Bongkrekic Acid and Burkholderia gladioli pathovar cocovenenans: Formidable Foe and Ascending Threat to Food Safety. Foods 2023; 12:3926. [PMID: 37959045 PMCID: PMC10648470 DOI: 10.3390/foods12213926] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Bongkrekic acid (BKA) poisoning, induced by the contamination of Burkholderia gladioli pathovar cocovenenans, has a long-standing history of causing severe outbreaks of foodborne illness. In recent years, it has emerged as a lethal food safety concern, presenting significant challenges to public health. This review article highlights the recent incidents of BKA poisoning and current research discoveries on the pathogenicity of B. gladioli pv. cocovenenans and underlying biochemical mechanisms for BKA synthesis. Moreover, the characterization of B. gladioli pv. cocovenenans and the identification of the bon gene cluster provide a crucial foundation for developing targeted interventions to prevent BKA accumulation in food matrices. The prevalence of the bon gene cluster, which is the determining factor distinguishing B. gladioli pv. cocovenenans from non-pathogenic B. gladioli strains, has been identified in 15% of documented B. gladioli genomes worldwide. This finding suggests that BKA poisoning has the potential to evolve into a more prevalent threat. Although limited, previous research has proved that B. gladioli pv. cocovenenans is capable of producing BKA in diverse environments, emphasizing the possible food safety hazards associated with BKA poisoning. Also, advancements in detection methods of both BKA and B. gladioli pv. cocovenenans hold great promise for mitigating the impact of this foodborne disease. Future studies focusing on reducing the threat raised by this vicious foe is of paramount importance to public health.
Collapse
Affiliation(s)
- Dong Han
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (D.H.)
| | - Jian Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Wei Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (D.H.)
| | - Yanbo Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (D.H.)
| |
Collapse
|
6
|
Li H, Liang Z, Li Y, Wen J, Zhang R. Molecular docking and molecular dynamics simulation study on the toxicity mechanism of bongkrekic acid. Toxicon 2023; 223:107021. [PMID: 36621683 DOI: 10.1016/j.toxicon.2023.107021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
BKA belongs to gram-negative brevibacterium. It can cause poisoning in humans or animals and can be fatal in severe cases. There are few investigations on toxic mechanisms of BKA because of foodborne factors. MD simulations were used to study the stability and intermolecular interactions of BKA and ANT complexes to reveal the mechanism of BKA in this paper. BKA blocked ANT protein translocation mainly through Van der Waals force, hydrophobic and hydrogen bonding interactions by the MD simulations. The conformational flexibility of the complex system during different simulation times indicated that BKA affected the conformational changes of ANT through strong interactions of hydrogen bonds with active domain residues Gln-93, Tyr-196, Arg-287 and Arg-245. The results of binding free energy, principal component analysis, hydrophobic interactions and root-mean-square fluctuation showed that the prominent binding force of Tyr-196 with C26 of BKA was significant to the toxicity. The active site interactions analysis indicated that the essential positively charged polar amino acids which play a crucial role within the active site of the ANT protein undergo conformational changes with BKA as the branch point.
Collapse
Affiliation(s)
- Hongmei Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhen Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ying Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiazhen Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Rong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Mitra S, Rauf A, Sutradhar H, Sadaf S, Hossain MJ, Soma MA, Emran TB, Ahmad B, Aljohani ASM, Al Abdulmonem W, Thiruvengadam M. Potential candidates from marine and terrestrial resources targeting mitochondrial inhibition: Insights from the molecular approach. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109509. [PMID: 36368509 DOI: 10.1016/j.cbpc.2022.109509] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Mitochondria are the target sites for multiple disease manifestations, for which it is appealing to researchers' attention for advanced pharmacological interventions. Mitochondrial inhibitors from natural sources are of therapeutic interest due to their promising benefits on physiological complications. Mitochondrial complexes I, II, III, IV, and V are the most common sites for the induction of inhibition by drug candidates, henceforth alleviating the manifestations, prevalence, as well as severity of diseases. Though there are few therapeutic options currently available on the market. However, it is crucial to develop new candidates from natural resources, as mitochondria-targeting abnormalities are rising to a greater extent. Marine and terrestrial sources possess plenty of bioactive compounds that are appeared to be effective in this regard. Ample research investigations have been performed to appraise the potentiality of these compounds in terms of mitochondrial disorders. So, this review outlines the role of terrestrial and marine-derived compounds in mitochondrial inhibition as well as their clinical status too. Additionally, mitochondrial regulation and, therefore, the significance of mitochondrial inhibition by terrestrial and marine-derived compounds in drug discovery are also discussed.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Swabi 23430, Khyber Pakhtunkhwa (KP), Pakistan.
| | - Hriday Sutradhar
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Samia Sadaf
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road Dhanmondi, Dhaka 1205, Bangladesh
| | - Mahfuza Afroz Soma
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road Dhanmondi, Dhaka 1205, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Bashir Ahmad
- Institute of Biotechnology & Microbiology, Bacha Khan University, Charsadda, KP, Pakistan
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 05029, Republic of Korea; Saveetha Dental College and Hospital, Saveetha Institute of Medical Technical Sciences, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
8
|
Wang Y, Wang Y, Yue G, Zhao Y. Energy metabolism disturbance in migraine: From a mitochondrial point of view. Front Physiol 2023; 14:1133528. [PMID: 37123270 PMCID: PMC10133718 DOI: 10.3389/fphys.2023.1133528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
Migraine is a serious central nervous system disease with a high incidence rate. Its pathogenesis is very complex, which brings great difficulties for clinical treatment. Recently, many studies have revealed that mitochondrial dysfunction may play a key role in migraine, which affects the hyperosmotic of Ca2+, the excessive production of free radicals, the decrease of mitochondrial membrane potential, the imbalance of mPTP opening and closing, and the decrease of oxidative phosphorylation level, which leads to neuronal energy exhaustion and apoptosis, and finally lessens the pain threshold and migraine attack. This article mainly introduces cortical spreading depression, a pathogenesis of migraine, and then damages the related function of mitochondria, which leads to migraine. Oxidative phosphorylation and the tricarboxylic acid cycle are the main ways to provide energy for the body. 95 percent of the energy needed for cell survival is provided by the mitochondrial respiratory chain. At the same time, hypoxia can lead to cell death and migraine. The pathological opening of the mitochondrial permeability transition pore can promote the interaction between pro-apoptotic protein and mitochondrial, destroy the structure of mPTP, and further lead to cell death. The increase of mPTP permeability can promote the accumulation of reactive oxygen species, which leads to a series of changes in the expression of proteins related to energy metabolism. Both Nitric oxide and Calcitonin gene-related peptide are closely related to the attack of migraine. Recent studies have shown that changes in their contents can also affect the energy metabolism of the body, so this paper reviews the above mechanisms and discusses the mechanism of brain energy metabolism of migraine, to provide new strategies for the prevention and treatment of migraine and promote the development of individualized and accurate treatment of migraine.
Collapse
Affiliation(s)
- Yicheng Wang
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yongli Wang
- Department of Neurology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Guangxin Yue
- Institute of Basic Theory for Chinese Medicine, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yonglie Zhao
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yonglie Zhao,
| |
Collapse
|
9
|
Shindo M, Iwata T, Kano A, Shinohara Y. Synthesis and Conversion of Bongkrekic Acid and its Bioactivity. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.1136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mitsuru Shindo
- Institute for Materials Chemistry and Engineering, Kyushu University
| | - Takayuki Iwata
- Institute for Materials Chemistry and Engineering, Kyushu University
| | - Arihiro Kano
- Institute for Materials Chemistry and Engineering, Kyushu University
| | - Yasuo Shinohara
- Institute for Advanced Medical Sciences, Tokushima University
| |
Collapse
|
10
|
Beerkens BL, Koç Ç, Liu R, Florea BI, Le Dévédec SE, Heitman LH, IJzerman AP, van der Es D. A Chemical Biological Approach to Study G Protein-Coupled Receptors: Labeling the Adenosine A 1 Receptor Using an Electrophilic Covalent Probe. ACS Chem Biol 2022; 17:3131-3139. [PMID: 36279267 PMCID: PMC9679998 DOI: 10.1021/acschembio.2c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
G protein-coupled receptors (GPCRs) have been known for decades as attractive drug targets. This has led to the development and approval of many ligands targeting GPCRs. Although ligand binding effects have been studied thoroughly for many GPCRs, there are multiple aspects of GPCR signaling that remain poorly understood. The reasons for this are the difficulties that are encountered upon studying GPCRs, for example, a poor solubility and low expression levels. In this work, we have managed to overcome some of these issues by developing an affinity-based probe for a prototypic GPCR, the adenosine A1 receptor (A1AR). Here, we show the design, synthesis, and biological evaluation of this probe in various biochemical assays, such as SDS-PAGE, confocal microscopy, and chemical proteomics.
Collapse
Affiliation(s)
- Bert L.
H. Beerkens
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Çağla Koç
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Rongfang Liu
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Bogdan I. Florea
- Department
of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Sylvia E. Le Dévédec
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Laura H. Heitman
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands,Oncode
Institute, 2333 CC Leiden, The Netherlands
| | - Adriaan P. IJzerman
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Daan van der Es
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands,
| |
Collapse
|
11
|
Bernardi P, Carraro M, Lippe G. The mitochondrial permeability transition: Recent progress and open questions. FEBS J 2022; 289:7051-7074. [PMID: 34710270 PMCID: PMC9787756 DOI: 10.1111/febs.16254] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 01/13/2023]
Abstract
Major progress has been made in defining the basis of the mitochondrial permeability transition, a Ca2+ -dependent permeability increase of the inner membrane that has puzzled mitochondrial research for almost 70 years. Initially considered an artefact of limited biological interest by most, over the years the permeability transition has raised to the status of regulator of mitochondrial ion homeostasis and of druggable effector mechanism of cell death. The permeability transition is mediated by opening of channel(s) modulated by matrix cyclophilin D, the permeability transition pore(s) (PTP). The field has received new impulse (a) from the hypothesis that the PTP may originate from a Ca2+ -dependent conformational change of F-ATP synthase and (b) from the reevaluation of the long-standing hypothesis that it originates from the adenine nucleotide translocator (ANT). Here, we provide a synthetic account of the structure of ANT and F-ATP synthase to discuss potential and controversial mechanisms through which they may form high-conductance channels; and review some intriguing findings from the wealth of early studies of PTP modulation that still await an explanation. We hope that this review will stimulate new experiments addressing the many outstanding problems, and thus contribute to the eventual solution of the puzzle of the permeability transition.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences and CNR Neuroscience InstituteUniversity of PadovaItaly
| | - Michela Carraro
- Department of Biomedical Sciences and CNR Neuroscience InstituteUniversity of PadovaItaly
| | | |
Collapse
|
12
|
Gottschalk B, Koshenov Z, Bachkoenig OA, Rost R, Malli R, Graier WF. MFN2 mediates ER-mitochondrial coupling during ER stress through specialized stable contact sites. Front Cell Dev Biol 2022; 10:918691. [PMID: 36158213 PMCID: PMC9493370 DOI: 10.3389/fcell.2022.918691] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Endoplasmic reticulum (ER) functions critically depend on a suitable ATP supply to fuel ER chaperons and protein trafficking. A disruption of the ability of the ER to traffic and fold proteins leads to ER stress and the unfolded protein response (UPR). Using structured illumination super-resolution microscopy, we revealed increased stability and lifetime of mitochondrial associated ER membranes (MAM) during ER stress. The consequent increase of basal mitochondrial Ca2+ leads to increased TCA cycle activity and enhanced mitochondrial membrane potential, OXPHOS, and ATP generation during ER stress. Subsequently, OXPHOS derived ATP trafficking towards the ER was increased. We found that the increased lifetime and stability of MAMs during ER stress depended on the mitochondrial fusion protein Mitofusin2 (MFN2). Knockdown of MFN2 blunted mitochondrial Ca2+ effect during ER stress, switched mitochondrial F1FO-ATPase activity into reverse mode, and strongly reduced the ATP supply for the ER during ER stress. These findings suggest a critical role of MFN2-dependent MAM stability and lifetime during ER stress to compensate UPR by strengthening ER ATP supply by the mitochondria.
Collapse
Affiliation(s)
- Benjamin Gottschalk
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Zhanat Koshenov
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Olaf A. Bachkoenig
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - René Rost
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Wolfgang F. Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- *Correspondence: Wolfgang F. Graier,
| |
Collapse
|
13
|
Quarato G, Llambi F, Guy CS, Min J, Actis M, Sun H, Narina S, Pruett-Miller SM, Peng J, Rankovic Z, Green DR. Ca 2+-mediated mitochondrial inner membrane permeabilization induces cell death independently of Bax and Bak. Cell Death Differ 2022; 29:1318-1334. [PMID: 35726022 DOI: 10.1038/s41418-022-01025-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 12/15/2022] Open
Abstract
The ability of mitochondria to buffer a rapid rise in cytosolic Ca2+ is a hallmark of proper cell homeostasis. Here, we employed m-3M3FBS, a putative phospholipase C (PLC) agonist, to explore the relationships between intracellular Ca2+ imbalance, mitochondrial physiology, and cell death. m-3M3FBS induced a potent dose-dependent Ca2+ release from the endoplasmic reticulum (ER), followed by a rise in intra-mitochondrial Ca2+. When the latter exceeded the organelle buffering capacity, an abrupt mitochondrial inner membrane permeabilization (MIMP) occurred, releasing matrix contents into the cytosol. MIMP was followed by cell death that was independent of Bcl-2 family members and inhibitable by the intracellular Ca2+ chelator BAPTA-AM. Cyclosporin A (CsA), capable of blocking the mitochondrial permeability transition (MPT), completely prevented cell death induced by m-3M3FBS. However, CsA acted upstream of mitochondria by preventing Ca2+ release from ER stores. Therefore, loss of Ca2+ intracellular balance and mitochondrial Ca2+ overload followed by MIMP induced a cell death process that is distinct from Bcl-2 family-regulated mitochondrial outer membrane permeabilization (MOMP). Further, the inhibition of cell death by CsA or its analogues can be independent of effects on the MPT.
Collapse
Affiliation(s)
- Giovanni Quarato
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Fabien Llambi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.,Relay Therapeutics, Cambridge, MA, 02139, USA
| | - Cliff S Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jaeki Min
- Department of Chemical Biology & Therapeutic, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.,Amgen Inc., Thousand Oaks, CA, 91320, USA
| | - Marisa Actis
- Department of Chemical Biology & Therapeutic, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Huan Sun
- Department of Structural Biology, Department of Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shilpa Narina
- Department of Cell and Molecular Biology and The Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology and The Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Junmin Peng
- Department of Structural Biology, Department of Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Zoran Rankovic
- Department of Chemical Biology & Therapeutic, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
14
|
Mavridou V, King MS, Tavoulari S, Ruprecht JJ, Palmer SM, Kunji ERS. Substrate binding in the mitochondrial ADP/ATP carrier is a step-wise process guiding the structural changes in the transport cycle. Nat Commun 2022; 13:3585. [PMID: 35739110 PMCID: PMC9226169 DOI: 10.1038/s41467-022-31366-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/14/2022] [Indexed: 02/02/2023] Open
Abstract
Mitochondrial ADP/ATP carriers import ADP into the mitochondrial matrix and export ATP to the cytosol to fuel cellular processes. Structures of the inhibited cytoplasmic- and matrix-open states have confirmed an alternating access transport mechanism, but the molecular details of substrate binding remain unresolved. Here, we evaluate the role of the solvent-exposed residues of the translocation pathway in the process of substrate binding. We identify the main binding site, comprising three positively charged and a set of aliphatic and aromatic residues, which bind ADP and ATP in both states. Additionally, there are two pairs of asparagine/arginine residues on opposite sides of this site that are involved in substrate binding in a state-dependent manner. Thus, the substrates are directed through a series of binding poses, inducing the conformational changes of the carrier that lead to their translocation. The properties of this site explain the electrogenic and reversible nature of adenine nucleotide transport.
Collapse
Affiliation(s)
- Vasiliki Mavridou
- grid.5335.00000000121885934Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, CB2 0XY UK
| | - Martin S. King
- grid.5335.00000000121885934Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, CB2 0XY UK
| | - Sotiria Tavoulari
- grid.5335.00000000121885934Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, CB2 0XY UK
| | - Jonathan J. Ruprecht
- grid.5335.00000000121885934Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, CB2 0XY UK
| | - Shane M. Palmer
- grid.5335.00000000121885934Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, CB2 0XY UK
| | - Edmund R. S. Kunji
- grid.5335.00000000121885934Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, CB2 0XY UK
| |
Collapse
|
15
|
Oliveira NF, Machuqueiro M. Novel US-CpHMD Protocol to Study the Protonation-Dependent Mechanism of the ATP/ADP Carrier. J Chem Inf Model 2022; 62:2550-2560. [PMID: 35442654 PMCID: PMC9775199 DOI: 10.1021/acs.jcim.2c00233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have designed a protocol combining constant-pH molecular dynamics (CpHMD) simulations with an umbrella sampling (US) scheme (US-CpHMD) to study the mechanism of ADP/ATP transport (import and export) by their inner mitochondrial membrane carrier protein [ADP/ATP carrier (AAC)]. The US scheme helped overcome the limitations of sampling the slow kinetics involved in these substrates' transport, while CpHMD simulations provided an unprecedented realism by correctly capturing the associated protonation changes. The import of anionic substrates along the mitochondrial membrane has a strong energetic disadvantage due to a smaller substrate concentration and an unfavorable membrane potential. These limitations may have created an evolutionary pressure on AAC to develop specific features benefiting the import of ADP. In our work, the potential of mean force profiles showed a clear selectivity in the import of ADP compared to ATP, while in the export, no selectivity was observed. We also observed that AAC sequestered both substrates at longer distances in the import compared to the export process. Furthermore, only in the import process do we observe transient protonation of both substrates when going through the AAC cavity, which is an important advantage to counteract the unfavorable mitochondrial membrane potential. Finally, we observed a substrate-induced disruption of the matrix salt-bridge network, which can promote the conformational transition (from the C- to M-state) required to complete the import process. This work unraveled several important structural features where the complex electrostatic interactions were pivotal to interpreting the protein function and illustrated the potential of applying the US-CpHMD protocol to other transport processes involving membrane proteins.
Collapse
|
16
|
Kim YH, Kim T, Ji KY, Shin IS, Lee JY, Song KH, Kim BY. A time-dependently regulated gene network reveals that Aspergillus protease affects mitochondrial metabolism and airway epithelial cell barrier function via mitochondrial oxidants. Free Radic Biol Med 2022; 185:76-89. [PMID: 35489562 DOI: 10.1016/j.freeradbiomed.2022.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
Abstract
The airway epithelium maintains tight barrier integrity to prevent penetration of pathogens; thus, impairment of the barrier function is an important and common histological feature in asthmatic patients. Proteolytic allergens from fungi, pollen, and house dust mites can disrupt epithelial barrier integrity, but the mechanism remains unclear. Aspergillus oryzae protease (AP)-induced mitochondrial reactive oxygen species (ROS) contribute to the epithelial inflammatory response. However, as mitochondrial ROS affect various cellular functions, such as metabolism, cell death, cell proliferation, and redox homeostasis through signal transduction, it is difficult to understand the detailed action mechanism of AP by measuring changes in a single gene or protein of a specific signaling pathway. Moreover, mitochondrial ROS can directly oxidize DNA to activate transcription, thereby affecting the expression of various genes at the transcriptional level. Therefore, we conducted whole-genome analysis and used a network-based approach to understand the effect of AP and AP-induced mitochondrial ROS in human primary airway epithelial cells and to evaluate the mechanistic basis for AP-mediated epithelial barrier dysfunction. Our results indicate that production of mitochondrial ROS following AP exposure induce mitochondrial dysfunction at an early stage. Over time, changes in genome expression were further expanded without remaining mitochondrial ROS. Specifically, genes involved in the apoptotic functions and intercellular junctions were affected, consequently impairing the cellular barrier integrity. This change was recovered by scavenging mitochondrial ROS at an early point after exposure to AP. In conclusion, our findings indicate that instantly increased mitochondrial ROS at the time of exposure to allergenic proteases consequently induces epithelial barrier dysfunction at a later time point, resulting in pathological changes. These data suggest that antioxidant therapy administered immediately after exposure to proteolytic antigens may be effective in maintaining epithelial barrier function.
Collapse
Affiliation(s)
- Yun Hee Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Kon-Young Ji
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Joo Young Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Kwang Hoon Song
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Bu-Yeo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| |
Collapse
|
17
|
Uncoupling Proteins and Regulated Proton Leak in Mitochondria. Int J Mol Sci 2022; 23:ijms23031528. [PMID: 35163451 PMCID: PMC8835771 DOI: 10.3390/ijms23031528] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/26/2022] [Indexed: 12/17/2022] Open
Abstract
Higher concentration of protons in the mitochondrial intermembrane space compared to the matrix results in an electrochemical potential causing the back flux of protons to the matrix. This proton transport can take place through ATP synthase complex (leading to formation of ATP) or can occur via proton transporters of the mitochondrial carrier superfamily and/or membrane lipids. Some mitochondrial proton transporters, such as uncoupling proteins (UCPs), transport protons as their general regulating function; while others are symporters or antiporters, which use the proton gradient as a driving force to co-transport other substrates across the mitochondrial inner membrane (such as phosphate carrier, a symporter; or aspartate/glutamate transporter, an antiporter). Passage (or leakage) of protons across the inner membrane to matrix from any route other than ATP synthase negatively impacts ATP synthesis. The focus of this review is on regulated proton transport by UCPs. Recent findings on the structure and function of UCPs, and the related research methodologies, are also critically reviewed. Due to structural similarity of members of the mitochondrial carrier superfamily, several of the known structural features are potentially expandable to all members. Overall, this report provides a brief, yet comprehensive, overview of the current knowledge in the field.
Collapse
|
18
|
Carrer A, Laquatra C, Tommasin L, Carraro M. Modulation and Pharmacology of the Mitochondrial Permeability Transition: A Journey from F-ATP Synthase to ANT. Molecules 2021; 26:molecules26216463. [PMID: 34770872 PMCID: PMC8587538 DOI: 10.3390/molecules26216463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/22/2022] Open
Abstract
The permeability transition (PT) is an increased permeation of the inner mitochondrial membrane due to the opening of the PT pore (PTP), a Ca2+-activated high conductance channel involved in Ca2+ homeostasis and cell death. Alterations of the PTP have been associated with many pathological conditions and its targeting represents an incessant challenge in the field. Although the modulation of the PTP has been extensively explored, the lack of a clear picture of its molecular nature increases the degree of complexity for any target-based approach. Recent advances suggest the existence of at least two mitochondrial permeability pathways mediated by the F-ATP synthase and the ANT, although the exact molecular mechanism leading to channel formation remains elusive for both. A full comprehension of this to-pore conversion will help to assist in drug design and to develop pharmacological treatments for a fine-tuned PT regulation. Here, we will focus on regulatory mechanisms that impinge on the PTP and discuss the relevant literature of PTP targeting compounds with particular attention to F-ATP synthase and ANT.
Collapse
|
19
|
Carrer A, Tommasin L, Šileikytė J, Ciscato F, Filadi R, Urbani A, Forte M, Rasola A, Szabò I, Carraro M, Bernardi P. Defining the molecular mechanisms of the mitochondrial permeability transition through genetic manipulation of F-ATP synthase. Nat Commun 2021; 12:4835. [PMID: 34376679 PMCID: PMC8355262 DOI: 10.1038/s41467-021-25161-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
F-ATP synthase is a leading candidate as the mitochondrial permeability transition pore (PTP) but the mechanism(s) leading to channel formation remain undefined. Here, to shed light on the structural requirements for PTP formation, we test cells ablated for g, OSCP and b subunits, and ρ0 cells lacking subunits a and A6L. Δg cells (that also lack subunit e) do not show PTP channel opening in intact cells or patch-clamped mitoplasts unless atractylate is added. Δb and ΔOSCP cells display currents insensitive to cyclosporin A but inhibited by bongkrekate, suggesting that the adenine nucleotide translocator (ANT) can contribute to channel formation in the absence of an assembled F-ATP synthase. Mitoplasts from ρ0 mitochondria display PTP currents indistinguishable from their wild-type counterparts. In this work, we show that peripheral stalk subunits are essential to turn the F-ATP synthase into the PTP and that the ANT provides mitochondria with a distinct permeability pathway.
Collapse
Affiliation(s)
- Andrea Carrer
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ludovica Tommasin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Justina Šileikytė
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Francesco Ciscato
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Consiglio Nazionale delle Ricerche Neuroscience Institute, Padova, Italy
| | - Andrea Urbani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Michael Forte
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Andrea Rasola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ildikò Szabò
- Consiglio Nazionale delle Ricerche Neuroscience Institute, Padova, Italy.,Department of Biology, University of Padova, Padova, Italy
| | - Michela Carraro
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy. .,Consiglio Nazionale delle Ricerche Neuroscience Institute, Padova, Italy.
| |
Collapse
|
20
|
Lemasters JJ. Metabolic implications of non-electrogenic ATP/ADP exchange in cancer cells: A mechanistic basis for the Warburg effect. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2021; 1862:148410. [PMID: 33722515 PMCID: PMC8096716 DOI: 10.1016/j.bbabio.2021.148410] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/07/2021] [Indexed: 12/20/2022]
Abstract
In post-mitotic cells, mitochondrial ATP/ADP exchange occurs by the adenine nucleotide translocator (ANT). Driven by membrane potential (ΔΨ), ANT catalyzes electrogenic exchange of ATP4- for ADP3-, leading to higher ATP/ADP ratios in the cytosol than mitochondria. In cancer cells, ATP/ADP exchange occurs not by ANT but likely via the non-electrogenic ATP-Mg/phosphate carrier. Consequences of non-electrogenic exchange are: 1) Cytosolic ATP/ADP decreases to stimulate aerobic glycolysis. 2) Without proton utilization for exchange, ATP/O increases by 35% for complete glucose oxidation. 3) Decreased cytosolic ATP/ADPPi increases NAD(P)H/NAD(P)+. Increased NADH increases lactate/pyruvate, and increased NADPH promotes anabolic metabolism. Fourth, increased mitochondrial NADH/NAD+ magnifies the redox span across Complexes I and III, which increases ΔΨ, reactive oxygen species generation, and susceptibility to ferroptosis. 5) Increased mitochondrial NADPH/NADP+ favors a reverse isocitrate dehydrogenase-2 reaction with citrate accumulation and export for biomass formation. Consequently, 2-oxoglutarate formation occurs largely via oxidation of glutamine, the preferred respiratory substrate of cancer cells. Overall, non-electrogenic ATP/ADP exchange promotes aerobic glycolysis (Warburg effect) and confers specific growth advantages to cancer cells.
Collapse
Affiliation(s)
- John J Lemasters
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC 29425, United States of America; Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States of America; Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, United States of America.
| |
Collapse
|
21
|
A Walk in the Memory, from the First Functional Approach up to Its Regulatory Role of Mitochondrial Bioenergetic Flow in Health and Disease: Focus on the Adenine Nucleotide Translocator. Int J Mol Sci 2021; 22:ijms22084164. [PMID: 33920595 PMCID: PMC8073645 DOI: 10.3390/ijms22084164] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022] Open
Abstract
The mitochondrial adenine nucleotide translocator (ANT) plays the fundamental role of gatekeeper of cellular energy flow, carrying out the reversible exchange of ADP for ATP across the inner mitochondrial membrane. ADP enters the mitochondria where, through the oxidative phosphorylation process, it is the substrate of Fo-F1 ATP synthase, producing ATP that is dispatched from the mitochondrion to the cytoplasm of the host cell, where it can be used as energy currency for the metabolic needs of the cell that require energy. Long ago, we performed a method that allowed us to monitor the activity of ANT by continuously detecting the ATP gradually produced inside the mitochondria and exported in the extramitochondrial phase in exchange with externally added ADP, under conditions quite close to a physiological state, i.e., when oxidative phosphorylation takes place. More than 30 years after the development of the method, here we aim to put the spotlight on it and to emphasize its versatile applicability in the most varied pathophysiological conditions, reviewing all the studies, in which we were able to observe what really happened in the cell thanks to the use of the "ATP detecting system" allowing the functional activity of the ANT-mediated ADP/ATP exchange to be measured.
Collapse
|
22
|
Abstract
Members of the mitochondrial carrier family [solute carrier family 25 (SLC25)] transport nucleotides, amino acids, carboxylic acids, fatty acids, inorganic ions, and vitamins across the mitochondrial inner membrane. They are important for many cellular processes, such as oxidative phosphorylation of lipids and sugars, amino acid metabolism, macromolecular synthesis, ion homeostasis, cellular regulation, and differentiation. Here, we describe the functional elements of the transport mechanism of mitochondrial carriers, consisting of one central substrate-binding site and two gates with salt-bridge networks on either side of the carrier. Binding of the substrate during import causes three gate elements to rotate inward, forming the cytoplasmic network and closing access to the substrate-binding site from the intermembrane space. Simultaneously, three core elements rock outward, disrupting the matrix network and opening the substrate-binding site to the matrix side of the membrane. During export, substrate binding triggers conformational changes involving the same elements but operating in reverse.
Collapse
Affiliation(s)
- J J Ruprecht
- Medical Research Council Mitochondrial Biology Unit, Keith Peters Building, University of Cambridge, Cambridge CB2 0XY, United Kingdom; ,
| | - E R S Kunji
- Medical Research Council Mitochondrial Biology Unit, Keith Peters Building, University of Cambridge, Cambridge CB2 0XY, United Kingdom; ,
| |
Collapse
|
23
|
Koushi M, Asakai R. Bisindolylpyrrole Induces a Cpr3- and Porin1/2-Dependent Transition in Yeast Mitochondrial Permeability in a Low Conductance State via the AACs-Associated Pore. Int J Mol Sci 2021; 22:ijms22031212. [PMID: 33530556 PMCID: PMC7865566 DOI: 10.3390/ijms22031212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Although the mitochondrial permeability transition pore (PTP) is presumably formed by either ATP synthase or the ATP/ADP carrier (AAC), little is known about their differential roles in PTP activation. We explored the role of AAC and ATP synthase in PTP formation in Saccharomyces cerevisiae using bisindolylpyrrole (BP), an activator of the mammalian PTP. The yeast mitochondrial membrane potential, as indicated by tetramethylrhodamine methyl ester signals, dissipated over 2–4 h after treatment of cells with 5 μM BP, which was sensitive to cyclosporin A (CsA) and Cpr3 deficiency and blocked by porin1/2 deficiency. The BP-induced depolarization was inhibited by a specific AAC inhibitor, bongkrekate, and consistently blocked in a yeast strain lacking all three AACs, while it was not affected in the strain with defective ATP synthase dimerization, suggesting the involvement of an AAC-associated pore. Upon BP treatment, isolated yeast mitochondria underwent CsA- and bongkrekate-sensitive depolarization without affecting the mitochondrial calcein signals, indicating the induction of a low conductance channel. These data suggest that, upon BP treatment, yeast can form a porin1/2- and Cpr3-regulated PTP, which is mediated by AACs but not by ATP synthase dimers. This implies that yeast may be an excellent tool for the screening of PTP modulators.
Collapse
Affiliation(s)
| | - Rei Asakai
- Correspondence: ; Tel.: +81-475-53-4588; Fax: +81-475-53-4556
| |
Collapse
|
24
|
Yin Z, Dickschat JS. Cis double bond formation in polyketide biosynthesis. Nat Prod Rep 2021; 38:1445-1468. [PMID: 33475122 DOI: 10.1039/d0np00091d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Covering: up to 2020Polyketides form a large group of bioactive secondary metabolites that usually contain one or more double bonds. Although most of the double bonds found in polyketides are trans or E-configured, several cases are known in which cis or Z-configurations are observed. Double bond formation by polyketide synthases (PKSs) is widely recognised to be catalysed by ketoreduction and subsequent dehydration of the acyl carrier protein (ACP)-tethered 3-ketoacyl intermediate in the PKS biosynthetic assembly line with a specific stereochemical course in which the ketoreduction step determines the usual trans or more rare cis double bond configuration. Occasionally, other mechanisms for the installation of cis double bonds such as double bond formation during chain release or post-PKS modifications including, amongst others, isomerisations or double bond installations by oxidation are observed. This review discusses the peculiar mechanisms of cis double bond formation in polyketide biosynthesis.
Collapse
Affiliation(s)
- Zhiyong Yin
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | | |
Collapse
|
25
|
Cui Y, Pan M, Ma J, Song X, Cao W, Zhang P. Recent progress in the use of mitochondrial membrane permeability transition pore in mitochondrial dysfunction-related disease therapies. Mol Cell Biochem 2021; 476:493-506. [PMID: 33000352 DOI: 10.1007/s11010-020-03926-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria have various cellular functions, including ATP synthesis, calcium homeostasis, cell senescence, and death. Mitochondrial dysfunction has been identified in a variety of disorders correlated with human health. Among the many underlying mechanisms of mitochondrial dysfunction, the opening up of the mitochondrial permeability transition pore (mPTP) is one that has drawn increasing interest in recent years. It plays an important role in apoptosis and necrosis; however, the molecular structure and function of the mPTP have still not been fully elucidated. In recent years, the abnormal opening up of the mPTP has been implicated in the development and pathogenesis of diverse diseases including ischemia/reperfusion injury (IRI), neurodegenerative disorders, tumors, and chronic obstructive pulmonary disease (COPD). This review provides a systematic introduction to the possible molecular makeup of the mPTP and summarizes the mitochondrial dysfunction-correlated diseases and highlights possible underlying mechanisms. Since the mPTP is an important target in mitochondrial dysfunction, this review also summarizes potential treatments, which may be used to inhibit pore opening up via the molecules composing mPTP complexes, thus suppressing the progression of mitochondrial dysfunction-related diseases.
Collapse
Affiliation(s)
- Yuting Cui
- School of Life Science, Shandong University of Technology, Zibo, Shandong Province, China
| | - Mingyue Pan
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong Province, China
| | - Jing Ma
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong Province, China
| | - Xinhua Song
- School of Life Science, Shandong University of Technology, Zibo, Shandong Province, China
| | - Weiling Cao
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong Province, China.
| | - Peng Zhang
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong Province, China.
| |
Collapse
|
26
|
Zhao L, Tang M, Bode AM, Liao W, Cao Y. ANTs and cancer: Emerging pathogenesis, mechanisms, and perspectives. Biochim Biophys Acta Rev Cancer 2020; 1875:188485. [PMID: 33309965 DOI: 10.1016/j.bbcan.2020.188485] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/03/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022]
Abstract
Adenine nucleotide translocases (ANTs) are a class of transporters located in the inner mitochondrial membrane that not only couple processes of cellular productivity and energy expenditure, but are also involved in the composition of the mitochondrial membrane permeability transition pore (mPTP). The function of ANTs has been found to be most closely related to their own conformational changes. Notably, as multifunctional proteins, ANTs play a key role in oncogenesis, which provides building blocks for tumor anabolism, control oxidative phosphorylation and glycolysis homeostasis, and govern cell death. Thus, ANTs constitute promising targets for the development of novel anticancer agents. Here, we review the recent findings regarding ANTs and their important mechanisms in cancer, with a focus on the therapeutic potential of targeting ANTs for cancer therapy.
Collapse
Affiliation(s)
- Lin Zhao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, China; Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, Changsha 410078, China; National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha 410078, China.
| |
Collapse
|
27
|
Carraro M, Jones K, Sartori G, Schiavone M, Antonucci S, Kucharczyk R, di Rago JP, Franchin C, Arrigoni G, Forte M, Bernardi P. The Unique Cysteine of F-ATP Synthase OSCP Subunit Participates in Modulation of the Permeability Transition Pore. Cell Rep 2020; 32:108095. [DOI: 10.1016/j.celrep.2020.108095] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/13/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022] Open
|
28
|
Bround MJ, Bers DM, Molkentin JD. A 20/20 view of ANT function in mitochondrial biology and necrotic cell death. J Mol Cell Cardiol 2020; 144:A3-A13. [PMID: 32454061 DOI: 10.1016/j.yjmcc.2020.05.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/16/2020] [Accepted: 05/20/2020] [Indexed: 12/25/2022]
Abstract
The adenosine nucleotide translocase (ANT) family of proteins are inner mitochondrial membrane proteins involved in energy homeostasis and cell death. The primary function of ANT proteins is to exchange cytosolic ADP with matrix ATP, facilitating the export of newly synthesized ATP to the cell while providing new ADP substrate to the mitochondria. As such, the ANT proteins are central to maintaining energy homeostasis in all eukaryotic cells. Evidence also suggests that the ANTs constitute a pore-forming component of the mitochondrial permeability transition pore (MPTP), a structure that forms in the inner mitochondrial membrane that is thought to underlie regulated necrotic cell death. Additionally, emerging studies suggest that ANT proteins are also critical for mitochondrial uncoupling and for promoting mitophagy. Thus, the ANTs are multifunctional proteins that are poised to participate in several aspects of mitochondrial biology and the greater regulation of cell death, which will be discussed here.
Collapse
Affiliation(s)
- Michael J Bround
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA; Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
29
|
The SLC25 Mitochondrial Carrier Family: Structure and Mechanism. Trends Biochem Sci 2019; 45:244-258. [PMID: 31787485 PMCID: PMC7611774 DOI: 10.1016/j.tibs.2019.11.001] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022]
Abstract
Members of the mitochondrial carrier family (SLC25) provide the transport steps for amino acids, carboxylic acids, fatty acids, cofactors, inorganic ions, and nucleotides across the mitochondrial inner membrane and are crucial for many cellular processes. Here, we use new insights into the transport mechanism of the mitochondrial ADP/ATP carrier to examine the structure and function of other mitochondrial carriers. They all have a single substrate-binding site and two gates, which are present on either side of the membrane and involve salt-bridge networks. Transport is likely to occur by a common mechanism, in which the coordinated movement of six structural elements leads to the alternating opening and closing of the matrix or cytoplasmic side of the carriers.
Collapse
|
30
|
Shi R, Long C, Dai Y, Huang Q, Gao Y, Zhang N, Chen Y, Liu S, Ma Q, Quan L, Zhang Y, Luo B. Bongkrekic acid poisoning: Severe liver function damage combined with multiple organ failure caused by eating spoiled food. Leg Med (Tokyo) 2019; 41:101622. [DOI: 10.1016/j.legalmed.2019.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/18/2019] [Accepted: 07/24/2019] [Indexed: 01/24/2023]
|
31
|
Purified F-ATP synthase forms a Ca 2+-dependent high-conductance channel matching the mitochondrial permeability transition pore. Nat Commun 2019; 10:4341. [PMID: 31554800 PMCID: PMC6761146 DOI: 10.1038/s41467-019-12331-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
The molecular identity of the mitochondrial megachannel (MMC)/permeability transition pore (PTP), a key effector of cell death, remains controversial. By combining highly purified, fully active bovine F-ATP synthase with preformed liposomes we show that Ca2+ dissipates the H+ gradient generated by ATP hydrolysis. After incorporation of the same preparation into planar lipid bilayers Ca2+ elicits currents matching those of the MMC/PTP. Currents were fully reversible, were stabilized by benzodiazepine 423, a ligand of the OSCP subunit of F-ATP synthase that activates the MMC/PTP, and were inhibited by Mg2+ and adenine nucleotides, which also inhibit the PTP. Channel activity was insensitive to inhibitors of the adenine nucleotide translocase (ANT) and of the voltage-dependent anion channel (VDAC). Native gel-purified oligomers and dimers, but not monomers, gave rise to channel activity. These findings resolve the long-standing mystery of the MMC/PTP and demonstrate that Ca2+ can transform the energy-conserving F-ATP synthase into an energy-dissipating device. The molecular identity of the mitochondrial megachannel (MMC)/permeability transition pore (PTP), a key effector of cell death, remains controversial. Here authors demonstrate that the membrane embedded bovine F-ATP synthase elicits Ca2 + -dependent currents matching those of the MMC/PTP.
Collapse
|
32
|
Kano A, Iwasaki T, Shindo M. Bongkrekic acid facilitates glycolysis in cultured cells and induces cell death under low glucose conditions. Biochem Biophys Rep 2019; 20:100683. [PMID: 31517068 PMCID: PMC6728793 DOI: 10.1016/j.bbrep.2019.100683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022] Open
Abstract
Bongkrekic acid (BKA) inhibits adenine nucleotide translocator (ANT) and suppresses ADP/ATP exchange in the mitochondrial inner membrane. Previously, we demonstrated that BKA exhibited cytotoxic effects on 4T1 tumor cells, depending on the cell number in the culture, but not on NIH3T3 cells. However, the cause of this differential sensitivity was unelucidated. Here we demonstrate that BKA reduced the O2 consumption in both cell lines and increased the mitochondrial membrane potential, thereby facilitating glucose consumption. BKA reduced cellular ATP in 4T1 cells in a dose-dependent manner but not in NIH3T3 cells. The cellular ATP of 4T1 cells was decreased with a reduced glucose concentration in the media, but that of NIH3T3 cells remained constant. We also demonstrated that BKA-induced cell death in both cell lines in low glucose media; however, the susceptibility to the reduced glucose concentration was slightly higher in 4T1 cells, which may be attributed to the difference in the dependency on glycolysis as their energy source. These results indicate that 4T1 tumor cells rely heavily on glucose for energy production. Our data demonstrate that BKA disturbs ATP production in mitochondria and increases the susceptibility to a low glucose condition. Bongkrekic acid decreases cellular ATP in cancer cells. Bongkrekic acid decreases mitochondrial OXPHOS and enhances glycolysis in cells. Bongkrekic acid induces cell death under low glucose conditions.
Collapse
Affiliation(s)
- Arihiro Kano
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 819-0395, Japan.,Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 819-0395, Japan
| | - Takuma Iwasaki
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 819-0395, Japan
| | - Mitsuru Shindo
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 819-0395, Japan.,Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 819-0395, Japan
| |
Collapse
|
33
|
Ruprecht JJ, Kunji ER. Structural changes in the transport cycle of the mitochondrial ADP/ATP carrier. Curr Opin Struct Biol 2019; 57:135-144. [PMID: 31039524 PMCID: PMC6700394 DOI: 10.1016/j.sbi.2019.03.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 11/27/2022]
Abstract
The mitochondrial ADP/ATP carrier, also called adenine nucleotide translocase, accomplishes one of the most important transport activities in eukaryotic cells, importing ADP into the mitochondrial matrix for ATP synthesis, and exporting ATP to fuel cellular activities. In the transport cycle, the carrier changes between a cytoplasmic and matrix state, in which the central substrate binding site is alternately accessible to these compartments. A structure of a cytoplasmic state was known, but recently, a structure of a matrix-state in complex with bongkrekic acid was solved. Comparison of the two states explains the function of highly conserved sequence features and reveals that the transport mechanism is unique, involving the coordinated movement of six dynamic elements around a central translocation pathway.
Collapse
Affiliation(s)
- Jonathan J Ruprecht
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
| | - Edmund Rs Kunji
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
| |
Collapse
|
34
|
Ruprecht JJ, King MS, Zögg T, Aleksandrova AA, Pardon E, Crichton PG, Steyaert J, Kunji ERS. The Molecular Mechanism of Transport by the Mitochondrial ADP/ATP Carrier. Cell 2019; 176:435-447.e15. [PMID: 30611538 PMCID: PMC6349463 DOI: 10.1016/j.cell.2018.11.025] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/25/2018] [Accepted: 11/16/2018] [Indexed: 11/30/2022]
Abstract
Mitochondrial ADP/ATP carriers transport ADP into the mitochondrial matrix for ATP synthesis, and ATP out to fuel the cell, by cycling between cytoplasmic-open and matrix-open states. The structure of the cytoplasmic-open state is known, but it has proved difficult to understand the transport mechanism in the absence of a structure in the matrix-open state. Here, we describe the structure of the matrix-open state locked by bongkrekic acid bound in the ADP/ATP-binding site at the bottom of the central cavity. The cytoplasmic side of the carrier is closed by conserved hydrophobic residues, and a salt bridge network, braced by tyrosines. Glycine and small amino acid residues allow close-packing of helices on the matrix side. Uniquely, the carrier switches between states by rotation of its three domains about a fulcrum provided by the substrate-binding site. Because these features are highly conserved, this mechanism is likely to apply to the whole mitochondrial carrier family. Video Abstract
Structure of the matrix-open state of the mitochondrial ADP/ATP carrier solved The inhibitor bongkrekic acid locks the state by occupying the substrate-binding site Conformational changes during transport are highly dynamic, using six mobile elements Roles of all conserved sequence features in mitochondrial carriers are now explained
Collapse
Affiliation(s)
- Jonathan J Ruprecht
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK.
| | - Martin S King
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Thomas Zögg
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Antoniya A Aleksandrova
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Paul G Crichton
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Edmund R S Kunji
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK.
| |
Collapse
|
35
|
O'Connor-Cox ESC, Lodolo EJ, Axcell BC. Role of Oxygen in High-Gravity Fermentations in the Absence of Unsaturated Lipid Biosynthesis. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-51-0097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- E. S. C. O'Connor-Cox
- South African Breweries, Research and Development Department, P.O. Box 782178, Sandton 2146, RSA
| | - E. J. Lodolo
- South African Breweries, Research and Development Department, P.O. Box 782178, Sandton 2146, RSA
| | - B. C. Axcell
- South African Breweries, Research and Development Department, P.O. Box 782178, Sandton 2146, RSA
| |
Collapse
|
36
|
Samp EJ. Possible Roles of the Mitochondria in Sulfur Dioxide Production by Lager Yeast. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2012-0828-01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Okazaki H, Takeda S, Ishii H, Takemoto Y, Fujita S, Suyama M, Matsumoto K, Shindo M, Aramaki H. A Novel Bongkrekic Acid Analog-Mediated Modulation of the Size of Lipid Droplets: Evidence for the Appearance of Smaller Adipocytes. Biol Pharm Bull 2017; 40:1192-1198. [PMID: 28769000 DOI: 10.1248/bpb.b16-00915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thiazolidinediones (TZDs) are known as peroxisome proliferator-activated receptor γ (PPARγ) activators, and are used in the treatment of diabetes. Although the usefulness of TZDs has been demonstrated, some of their side effects are becoming an obstacle to their clinical applicability; edema is known to be evoked by the "structural characteristics" of TZD, but not by the PPARγ activation. Thus, novel therapeutic modalities (i.e., non-TZD-type PPARγ activators) having different structures to those of TZDs are desired. We previously identified bongkrekic acid (BKA) as a PPARγ activator using the human breast cancer MCF-7 cell line as a model system. In the present study, we newly synthesized BKA analogs and examined the usefulness of BKA and its analogs as PPARγ activators in differentiated adipocyte cells. Among the chemicals investigated, one of the BKA analogs (BKA-#2) strongly stimulated PPARγ and the differentiation of 3T3-L1 cells similar to pioglitazone, a positive control. Furthermore, BKA-#2 reduced the size of lipid droplets in the mature adipocyte cells. The possible modulation mechanism by BKA-#2 is discussed.
Collapse
Affiliation(s)
| | - Shuso Takeda
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU)
| | - Hiroyuki Ishii
- Department of Molecular Biology, Daiichi University of Pharmacy
| | - Yukimi Takemoto
- Department of Molecular Biology, Daiichi University of Pharmacy
| | - Satoshi Fujita
- Institute for Materials Chemistry and Engineering, Kyushu University
| | - Masaki Suyama
- Institute for Materials Chemistry and Engineering, Kyushu University
| | - Kenji Matsumoto
- Institute for Materials Chemistry and Engineering, Kyushu University
| | - Mitsuru Shindo
- Institute for Materials Chemistry and Engineering, Kyushu University
| | | |
Collapse
|
38
|
Modelling the free energy profile of the mitochondrial ADP/ATP carrier. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:906-914. [PMID: 28554566 PMCID: PMC5604490 DOI: 10.1016/j.bbabio.2017.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 03/23/2017] [Accepted: 05/24/2017] [Indexed: 02/07/2023]
Abstract
The mitochondrial ADP/ATP carrier catalyses the equimolar exchange of adenosine di- and tri-phosphates. It operates by an alternating access mechanism in which a single substrate-binding site is made available either to the mitochondrial matrix or the intermembrane space through conformational changes. These changes are prevented in the absence of substrate by a large energy barrier due to the need for sequential disruption and formation of a matrix and cytoplasmic salt bridge network that are located on either side of the central cavity. In analogy to enzyme catalysis, substrate lowers the energy barrier by binding tighter in the intermediate state. Here we provide an in-silico kinetic model that captures the free energy profile of these conformational changes and treats the carrier as a nanomachine moving stochastically from the matrix to cytoplasmic conformation under the influence of thermal energy. The model reproduces the dependency of experimentally determined kcat and KM values on the cytoplasmic network strength with good quantitative accuracy, implying that it captures the transport mechanism and can provide a framework to understand the structure-function relationships of this class of transporter. The results show that maximum transport occurs when the interaction energies of the cytoplasmic network, matrix network and substrate binding are approximately equal such that the energy barrier is minimized. Consequently, the model predicts that there will be other interactions in addition to those of the cytoplasmic network that stabilise the matrix conformation of the ADP/ATP carrier.
Collapse
|
39
|
Lu YW, Acoba MG, Selvaraju K, Huang TC, Nirujogi RS, Sathe G, Pandey A, Claypool SM. Human adenine nucleotide translocases physically and functionally interact with respirasomes. Mol Biol Cell 2017; 28:1489-1506. [PMID: 28404750 PMCID: PMC5449148 DOI: 10.1091/mbc.e17-03-0195] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 03/30/2017] [Accepted: 04/04/2017] [Indexed: 11/11/2022] Open
Abstract
A network of interactions for human adenine nucleotide translocases, required for oxidative phosphorylation, is reported. Of particular interest is an evolutionarily conserved and functionally important association with respiratory supercomplexes, which is surprising because the respirasomes of yeast and mammals are different. Members of the adenine nucleotide translocase (ANT) family exchange ADP for ATP across the mitochondrial inner membrane, an activity that is essential for oxidative phosphorylation (OXPHOS). Mutations in or dysregulation of ANTs is associated with progressive external ophthalmoplegia, cardiomyopathy, nonsyndromic intellectual disability, apoptosis, and the Warburg effect. Binding partners of human ANTs have not been systematically identified. The absence of such information has prevented a detailed molecular understanding of the assorted ANT-associated diseases, including insight into their disparate phenotypic manifestations. To fill this void, in this study, we define the interactomes of two human ANT isoforms. Analogous to its yeast counterpart, human ANTs associate with heterologous partner proteins, including the respiratory supercomplex (RSC) and other solute carriers. The evolutionarily conserved ANT–RSC association is particularly noteworthy because the composition, and thereby organization, of RSCs in yeast and human is different. Surprisingly, absence of the major ANT isoform only modestly impairs OXPHOS in HEK293 cells, indicating that the low levels of other isoforms provide functional redundancy. In contrast, pharmacological inhibition of OXPHOS expression and function inhibits ANT-dependent ADP/ATP exchange. Thus ANTs and the OXPHOS machinery physically interact and functionally cooperate to enhance ANT transport capacity and mitochondrial respiration.
Collapse
Affiliation(s)
- Ya-Wen Lu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Michelle Grace Acoba
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Kandasamy Selvaraju
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Tai-Chung Huang
- McKusick-Nathans Institute of Genetic Medicine, Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185.,Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei 10051, Taiwan
| | - Raja S Nirujogi
- McKusick-Nathans Institute of Genetic Medicine, Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Gajanan Sathe
- McKusick-Nathans Institute of Genetic Medicine, Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| |
Collapse
|
40
|
Anwar M, Kasper A, Steck AR, Schier JG. Bongkrekic Acid-a Review of a Lesser-Known Mitochondrial Toxin. J Med Toxicol 2017; 13:173-179. [PMID: 28105575 DOI: 10.1007/s13181-016-0577-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/13/2016] [Accepted: 07/25/2016] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION Bongkrekic acid (BA) has a unique mechanism of toxicity among the mitochondrial toxins: it inhibits adenine nucleotide translocase (ANT) rather than the electron transport chain. Bongkrekic acid is produced by the bacterium Burkholderia gladioli pathovar cocovenenans (B. cocovenenans) which has been implicated in outbreaks of food-borne illness involving coconut- and corn-based products in Indonesia and China. Our objective was to summarize what is known about the epidemiology, exposure sources, toxicokinetics, pathophysiology, clinical presentation, and diagnosis and treatment of human BA poisoning. METHODS We searched MEDLINE (1946 to present), EMBASE (1947 to present), SCOPUS, The Indonesia Publication Index ( http://id.portalgaruda.org/ ), ToxNet, book chapters, Google searches, Pro-MED alerts, and references from previously published journal articles. We identified a total of 109 references which were reviewed. Of those, 29 (26 %) had relevant information and were included. Bongkrekic acid is a heat-stable, highly unsaturated tricarboxylic fatty acid with a molecular weight of 486 kDa. Outbreaks have been reported from Indonesia, China, and more recently in Mozambique. Very little is known about the toxicokinetics of BA. Bongkrekic acid produces its toxic effects by inhibiting mitochondrial (ANT). ANT can also alter cellular apoptosis. Signs and symptoms in humans are similar to the clinical findings from other mitochondrial poisons, but they vary in severity and time course. Management of patients is symptomatic and supportive. CONCLUSIONS Bongkrekic acid is a mitochondrial ANT toxin and is reported primarily in outbreaks of food-borne poisoning involving coconut and corn. It should be considered in outbreaks of food-borne illness when signs and symptoms manifest involving the liver, brain, and kidneys and when coconut- or corn-based foods are implicated.
Collapse
Affiliation(s)
- Mehruba Anwar
- Health Studies Branch, Division of Environmental Hazards and Health Effects, National Center for Environmental Health (NCEH), 4770 Buford Highway, Chamblee, GA, 30341, USA.
| | - Amelia Kasper
- Health Studies Branch, Division of Environmental Hazards and Health Effects, National Center for Environmental Health (NCEH), 4770 Buford Highway, Chamblee, GA, 30341, USA
| | - Alaina R Steck
- Agency for Toxic Substances and Disease Registry (ATSDR), 4770 Buford Highway, Atlanta, GA, 30341, USA
| | - Joshua G Schier
- Health Studies Branch, Division of Environmental Hazards and Health Effects, National Center for Environmental Health (NCEH), 4770 Buford Highway, Chamblee, GA, 30341, USA
| |
Collapse
|
41
|
Zhang Y, Avalos JL. Traditional and novel tools to probe the mitochondrial metabolism in health and disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28067471 DOI: 10.1002/wsbm.1373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023]
Abstract
Mitochondrial metabolism links energy production to other essential cellular processes such as signaling, cellular differentiation, and apoptosis. In addition to producing adenosine triphosphate (ATP) as an energy source, mitochondria are responsible for the synthesis of a myriad of important metabolites and cofactors such as tetrahydrofolate, α-ketoacids, steroids, aminolevulinic acid, biotin, lipoic acid, acetyl-CoA, iron-sulfur clusters, heme, and ubiquinone. Furthermore, mitochondria and their metabolism have been implicated in aging and several human diseases, including inherited mitochondrial disorders, cardiac dysfunction, heart failure, neurodegenerative diseases, diabetes, and cancer. Therefore, there is great interest in understanding mitochondrial metabolism and the complex relationship it has with other cellular processes. A large number of studies on mitochondrial metabolism have been conducted in the last 50 years, taking a broad range of approaches. In this review, we summarize and discuss the most commonly used tools that have been used to study different aspects of the metabolism of mitochondria: ranging from dyes that monitor changes in the mitochondrial membrane potential and pharmacological tools to study respiration or ATP synthesis, to more modern tools such as genetically encoded biosensors and trans-omic approaches enabled by recent advances in mass spectrometry, computation, and other technologies. These tools have allowed the large number of studies that have shaped our current understanding of mitochondrial metabolism. WIREs Syst Biol Med 2017, 9:e1373. doi: 10.1002/wsbm.1373 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Yanfei Zhang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.,Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
42
|
Kim T, Yang HY, Park BG, Jung SY, Park JH, Park KD, Min SJ, Tae J, Yang H, Cho S, Cho SJ, Song H, Mook-Jung I, Lee J, Pae AN. Discovery of benzimidazole derivatives as modulators of mitochondrial function: A potential treatment for Alzheimer's disease. Eur J Med Chem 2017; 125:1172-1192. [DOI: 10.1016/j.ejmech.2016.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/05/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023]
|
43
|
|
44
|
Lin-Hendel EG, McManus MJ, Wallace DC, Anderson SA, Golden JA. Differential Mitochondrial Requirements for Radially and Non-radially Migrating Cortical Neurons: Implications for Mitochondrial Disorders. Cell Rep 2016; 15:229-37. [PMID: 27050514 DOI: 10.1016/j.celrep.2016.03.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/08/2016] [Accepted: 03/04/2016] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction has been increasingly linked to neurodevelopmental disorders such as intellectual disability, childhood epilepsy, and autism spectrum disorder, conditions also associated with cortical GABAergic interneuron dysfunction. Although interneurons have some of the highest metabolic demands in the postnatal brain, the importance of mitochondria during interneuron development is unknown. We find that interneuron migration from the basal forebrain to the neocortex is highly sensitive to perturbations in oxidative phosphorylation. Both pharmacologic and genetic inhibition of adenine nucleotide transferase 1 (Ant1) disrupts the non-radial migration of interneurons, but not the radial migration of cortical projection neurons. The selective dependence of cortical interneuron migration on oxidative phosphorylation may be a mechanistic pathway upon which multiple developmental and metabolic pathologies converge.
Collapse
Affiliation(s)
- Erika G Lin-Hendel
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Developmental, Regenerative and Stem Cell Biology, Biomedical Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meagan J McManus
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stewart A Anderson
- Department of Psychiatry, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Jeffrey A Golden
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
45
|
The transport mechanism of the mitochondrial ADP/ATP carrier. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2379-93. [PMID: 27001633 DOI: 10.1016/j.bbamcr.2016.03.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 12/18/2022]
Abstract
The mitochondrial ADP/ATP carrier imports ADP from the cytosol and exports ATP from the mitochondrial matrix, which are key transport steps for oxidative phosphorylation in eukaryotic organisms. The transport protein belongs to the mitochondrial carrier family, a large transporter family in the inner membrane of mitochondria. It is one of the best studied members of the family and serves as a paradigm for the molecular mechanism of mitochondrial carriers. Structurally, the carrier consists of three homologous domains, each composed of two transmembrane α-helices linked with a loop and short α-helix on the matrix side. The transporter cycles between a cytoplasmic and matrix state in which a central substrate binding site is alternately accessible to these compartments for binding of ADP or ATP. On both the cytoplasmic and matrix side of the carrier are networks consisting of three salt bridges each. In the cytoplasmic state, the matrix salt bridge network is formed and the cytoplasmic network is disrupted, opening the central substrate binding site to the intermembrane space and cytosol, whereas the converse occurs in the matrix state. In the transport cycle, tighter substrate binding in the intermediate states allows the interconversion of conformations by lowering the energy barrier for disruption and formation of these networks, opening and closing the carrier to either side of the membrane in an alternating way. Conversion between cytoplasmic and matrix states might require the simultaneous rotation of three domains around a central translocation pathway, constituting a unique mechanism among transport proteins. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
|
46
|
Zhang Y, Tian D, Matsuyama H, Hamazaki T, Shiratsuchi T, Terada N, Hook DJ, Walters MA, Georg GI, Hawkinson JE. Human Adenine Nucleotide Translocase (ANT) Modulators Identified by High-Throughput Screening of Transgenic Yeast. ACTA ACUST UNITED AC 2016; 21:381-90. [PMID: 26746582 DOI: 10.1177/1087057115624637] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/04/2015] [Indexed: 11/15/2022]
Abstract
Transport of ADP and ATP across mitochondria is one of the primary points of regulation to maintain cellular energy homeostasis. This process is mainly mediated by adenine nucleotide translocase (ANT) located on the mitochondrial inner membrane. There are four human ANT isoforms, each having a unique tissue-specific expression pattern and biological function, highlighting their potential as drug targets for diverse clinical indications, including male contraception and cancer. In this study, we present a novel yeast-based high-throughput screening (HTS) strategy to identify compounds inhibiting the function of ANT. Yeast strains generated by deletion of endogenous proteins with ANT activity followed by insertion of individual human ANT isoforms are sensitive to cell-permeable ANT inhibitors, which reduce proliferation. Screening hits identified in the yeast proliferation assay were characterized in ADP/ATP exchange assays employing recombinant ANT isoforms expressed in isolated yeast mitochondria and Lactococcus lactis as well as by oxygen consumption rate in mammalian cells. Using this approach, closantel and CD437 were identified as broad-spectrum ANT inhibitors, whereas leelamine was found to be a modulator of ANT function. This yeast "knock-out/knock-in" screening strategy is applicable to a broad range of essential molecular targets that are required for yeast survival.
Collapse
Affiliation(s)
- Yujian Zhang
- Otsuka Maryland Medicinal Laboratories, Inc., Rockville, MD, USA
| | - Defeng Tian
- Institute for Therapeutics Discovery & Development, University of Minnesota, Minneapolis, MN, USA
| | | | - Takashi Hamazaki
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | | | - Naohiro Terada
- Department of Pathology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Derek J Hook
- Institute for Therapeutics Discovery & Development, University of Minnesota, Minneapolis, MN, USA
| | - Michael A Walters
- Institute for Therapeutics Discovery & Development, University of Minnesota, Minneapolis, MN, USA
| | - Gunda I Georg
- Institute for Therapeutics Discovery & Development, University of Minnesota, Minneapolis, MN, USA
| | - Jon E Hawkinson
- Institute for Therapeutics Discovery & Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
47
|
De Felice A, Silipo A, Scherlach K, Ross C, Hertweck C, Molinaro A. Structural and Conformational Study of the O-Antigenic Portion of the Lipopolysaccharide Isolated fromBurkholderia gladiolipv.cocovenenans. European J Org Chem 2016. [DOI: 10.1002/ejoc.201501308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Okazaki H, Takeda S, Ikeda E, Fukunishi Y, Ishii H, Taniguchi A, Tokuyasu M, Himeno T, Kakizoe K, Matsumoto K, Shindo M, Aramaki H. Bongkrekic acid as a selective activator of the peroxisome proliferator-activated receptor γ (PPARγ) isoform. J Toxicol Sci 2015; 40:223-33. [PMID: 25786526 DOI: 10.2131/jts.40.223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bongkrekic acid (BKA), an antibiotic isolated from Pseudomonas cocovenans, is an inhibitory molecule of adenine nucleotide translocase. Since this translocase is a core component of the mitochondrial permeability transition pore (MPTP) formed by apoptotic stimuli, BKA has been used as a tool to abrogate apoptosis. However, the other biochemical properties of BKA have not yet been resolved. Although the definition of a fatty acid is a carboxylic acid (-COOH) with a long hydrocarbon chain (tail), when focused on the chemical structure of BKA, the molecule was revealed to be a branched unsaturated tricarboxylic acid that resembled the structure of polyunsaturated fatty acids (PUFAs). Peroxisome proliferator-activated receptors (PPARs) consist of a subfamily of three isoforms: α, β, and γ, the ligands of which include PUFAs. Using completely synthesized BKA together with simplified BKA derivatives (purity: > 98%), we herein demonstrated the utility of BKA as a selective activator of the human PPARγ isoform, which may not be associated with the anti-apoptotic nature of BKA. We also discussed the possible usefulness of BKA.
Collapse
|
49
|
King MS, Kerr M, Crichton PG, Springett R, Kunji ERS. Formation of a cytoplasmic salt bridge network in the matrix state is a fundamental step in the transport mechanism of the mitochondrial ADP/ATP carrier. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:14-22. [PMID: 26453935 PMCID: PMC4674015 DOI: 10.1016/j.bbabio.2015.09.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 09/15/2015] [Accepted: 09/30/2015] [Indexed: 02/02/2023]
Abstract
Mitochondrial ADP/ATP carriers catalyze the equimolar exchange of ADP and ATP across the mitochondrial inner membrane. Structurally, they consist of three homologous domains with a single substrate binding site. They alternate between a cytoplasmic and matrix state in which the binding site is accessible to these compartments for binding of ADP or ATP. It has been proposed that cycling between states occurs by disruption and formation of a matrix and cytoplasmic salt bridge network in an alternating way, but formation of the latter has not been shown experimentally. Here, we show that state-dependent formation of the cytoplasmic salt bridge network can be demonstrated by measuring the effect of mutations on the thermal stability of detergent-solubilized carriers locked in a specific state. For this purpose, mutations were made to increase or decrease the overall interaction energy of the cytoplasmic network. When locked in the cytoplasmic state by the inhibitor carboxyatractyloside, the thermostabilities of the mutant and wild-type carriers were similar, but when locked in the matrix state by the inhibitor bongkrekic acid, they correlated with the predicted interaction energy of the cytoplasmic network, demonstrating its formation. Changing the interaction energy of the cytoplasmic network also had a profound effect on the kinetics of transport, indicating that formation of the network is a key step in the transport cycle. These results are consistent with a unique alternating access mechanism that involves the simultaneous rotation of the three domains around a central translocation pathway. Mitochondrial ADP/ATP carriers alternate between the matrix and cytoplasmic state. Matrix and cytoplasmic salt bridge networks regulate access to central binding site. Thermostability assays are used to probe state-dependent interactions in carriers. Cytoplasmic salt bridge network mutations only affect matrix state thermostability. Formation of the cytoplasmic network is a fundamental step in the transport cycle.
Collapse
Affiliation(s)
- Martin S King
- Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Matthew Kerr
- Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Paul G Crichton
- Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Roger Springett
- Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Edmund R S Kunji
- Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
50
|
Bernardi P, Rasola A, Forte M, Lippe G. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Physiol Rev 2015; 95:1111-55. [PMID: 26269524 DOI: 10.1152/physrev.00001.2015] [Citation(s) in RCA: 420] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mitochondrial permeability transition (PT) is a permeability increase of the inner mitochondrial membrane mediated by a channel, the permeability transition pore (PTP). After a brief historical introduction, we cover the key regulatory features of the PTP and provide a critical assessment of putative protein components that have been tested by genetic analysis. The discovery that under conditions of oxidative stress the F-ATP synthases of mammals, yeast, and Drosophila can be turned into Ca(2+)-dependent channels, whose electrophysiological properties match those of the corresponding PTPs, opens new perspectives to the field. We discuss structural and functional features of F-ATP synthases that may provide clues to its transition from an energy-conserving into an energy-dissipating device as well as recent advances on signal transduction to the PTP and on its role in cellular pathophysiology.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Michael Forte
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Giovanna Lippe
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| |
Collapse
|