1
|
Levic DS, Bagnat M. Self-organization of apical membrane protein sorting in epithelial cells. FEBS J 2022; 289:659-670. [PMID: 33864720 PMCID: PMC8522177 DOI: 10.1111/febs.15882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
Polarized epithelial cells are characterized by the asymmetric distribution of proteins between apical and basolateral domains of the plasma membrane. This asymmetry is highly conserved and is fundamental to epithelial cell physiology, development, and homeostasis. How proteins are segregated for apical or basolateral delivery, a process known as sorting, has been the subject of considerable investigation for decades. Despite these efforts, the rules guiding apical sorting are poorly understood and remain controversial. Here, we consider mechanisms of apical membrane protein sorting and argue that they are largely driven by self-organization and biophysical principles. The preponderance of data to date is consistent with the idea that apical sorting is not ruled by a dedicated protein-based sorting machinery and relies instead on the concerted effects of oligomerization, phase separation of lipids and proteins in membranes, and pH-dependent glycan interactions.
Collapse
Affiliation(s)
- Daniel S. Levic
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
2
|
Melano I, Kuo LL, Lo YC, Sung PW, Tien N, Su WC. Effects of Basic Amino Acids and Their Derivatives on SARS-CoV-2 and Influenza-A Virus Infection. Viruses 2021; 13:1301. [PMID: 34372507 PMCID: PMC8310019 DOI: 10.3390/v13071301] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 11/26/2022] Open
Abstract
Amino acids have been implicated with virus infection and replication. Here, we demonstrate the effects of two basic amino acids, arginine and lysine, and their ester derivatives on infection of two enveloped viruses, SARS-CoV-2, and influenza A virus. We found that lysine and its ester derivative can efficiently block infection of both viruses in vitro. Furthermore, the arginine ester derivative caused a significant boost in virus infection. Studies on their mechanism of action revealed that the compounds potentially disturb virus uncoating rather than virus attachment and endosomal acidification. Our findings suggest that lysine supplementation and the reduction of arginine-rich food intake can be considered as prophylactic and therapeutic regimens against these viruses while also providing a paradigm for the development of broad-spectrum antivirals.
Collapse
Affiliation(s)
- Ivonne Melano
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan;
| | - Li-Lan Kuo
- Research Center for Emerging Viruses, China Medical University Hospital, Taichung 40402, Taiwan;
| | - Yan-Chung Lo
- Sinphar Pharmaceutical Co., Ltd., Sinphar Group, Yilan 269, Taiwan;
| | - Po-Wei Sung
- School of Medicine, China Medical University, Taichung 40402, Taiwan;
| | - Ni Tien
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 40402, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan;
- Research Center for Emerging Viruses, China Medical University Hospital, Taichung 40402, Taiwan;
- International Master’s Program of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
3
|
Puhl AC, Fritch EJ, Lane TR, Tse LV, Yount BL, Sacramento CQ, Fintelman-Rodrigues N, Tavella TA, Maranhão Costa FT, Weston S, Logue J, Frieman M, Premkumar L, Pearce KH, Hurst BL, Andrade CH, Levi JA, Johnson NJ, Kisthardt SC, Scholle F, Souza TML, Moorman NJ, Baric RS, Madrid PB, Ekins S. Repurposing the Ebola and Marburg Virus Inhibitors Tilorone, Quinacrine, and Pyronaridine: In Vitro Activity against SARS-CoV-2 and Potential Mechanisms. ACS OMEGA 2021; 6:7454-7468. [PMID: 33778258 PMCID: PMC7992063 DOI: 10.1021/acsomega.0c05996] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/02/2021] [Indexed: 05/11/2023]
Abstract
Severe acute respiratory coronavirus 2 (SARS-CoV-2) is a newly identified virus that has resulted in over 2.5 million deaths globally and over 116 million cases globally in March, 2021. Small-molecule inhibitors that reverse disease severity have proven difficult to discover. One of the key approaches that has been widely applied in an effort to speed up the translation of drugs is drug repurposing. A few drugs have shown in vitro activity against Ebola viruses and demonstrated activity against SARS-CoV-2 in vivo. Most notably, the RNA polymerase targeting remdesivir demonstrated activity in vitro and efficacy in the early stage of the disease in humans. Testing other small-molecule drugs that are active against Ebola viruses (EBOVs) would appear a reasonable strategy to evaluate their potential for SARS-CoV-2. We have previously repurposed pyronaridine, tilorone, and quinacrine (from malaria, influenza, and antiprotozoal uses, respectively) as inhibitors of Ebola and Marburg viruses in vitro in HeLa cells and mouse-adapted EBOV in mice in vivo. We have now tested these three drugs in various cell lines (VeroE6, Vero76, Caco-2, Calu-3, A549-ACE2, HUH-7, and monocytes) infected with SARS-CoV-2 as well as other viruses (including MHV and HCoV 229E). The compilation of these results indicated considerable variability in antiviral activity observed across cell lines. We found that tilorone and pyronaridine inhibited the virus replication in A549-ACE2 cells with IC50 values of 180 nM and IC50 198 nM, respectively. We used microscale thermophoresis to test the binding of these molecules to the spike protein, and tilorone and pyronaridine bind to the spike receptor binding domain protein with K d values of 339 and 647 nM, respectively. Human Cmax for pyronaridine and quinacrine is greater than the IC50 observed in A549-ACE2 cells. We also provide novel insights into the mechanism of these compounds which is likely lysosomotropic.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Ethan J. Fritch
- Department
of Microbiology and Immunology, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Thomas R. Lane
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Longping V. Tse
- Department
of Epidemiology, University of North Carolina
School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Boyd L. Yount
- Department
of Epidemiology, University of North Carolina
School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Carolina Q. Sacramento
- Laboratório
de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
- Centro
De Desenvolvimento Tecnológico Em Saúde (CDTS), Fiocruz, Rio de
Janeiro 21040-900, Brazil
| | - Natalia Fintelman-Rodrigues
- Laboratório
de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
- Centro
De Desenvolvimento Tecnológico Em Saúde (CDTS), Fiocruz, Rio de
Janeiro 21040-900, Brazil
| | - Tatyana Almeida Tavella
- Laboratory
of Tropical Diseases—Prof. Dr. Luiz Jacinto da Silva, Department
of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo 13083-970, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratory
of Tropical Diseases—Prof. Dr. Luiz Jacinto da Silva, Department
of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo 13083-970, Brazil
| | - Stuart Weston
- Department
of Microbiology and Immunology, University
of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - James Logue
- Department
of Microbiology and Immunology, University
of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Matthew Frieman
- Department
of Microbiology and Immunology, University
of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Lakshmanane Premkumar
- Department
of Microbiology and Immunology, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Kenneth H. Pearce
- Center
for Integrative Chemical Biology and Drug Discovery, Chemical Biology
and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- UNC
Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599, United States
| | - Brett L. Hurst
- Institute
for Antiviral Research, Utah State University, Logan, Utah 84322, United States
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah 84322, United States
| | - Carolina Horta Andrade
- Laboratory
of Tropical Diseases—Prof. Dr. Luiz Jacinto da Silva, Department
of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo 13083-970, Brazil
- LabMol—Laboratory of Molecular Modeling
and Drug Design, Faculdade
de Farmácia, Universidade Federal
de Goiás, Goiânia,
GO 74605-170, Brazil
| | - James A. Levi
- Department of Biological Sciences, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nicole J. Johnson
- Department of Biological Sciences, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Samantha C. Kisthardt
- Department of Biological Sciences, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Frank Scholle
- Department of Biological Sciences, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Thiago Moreno L. Souza
- Laboratório
de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
- Centro
De Desenvolvimento Tecnológico Em Saúde (CDTS), Fiocruz, Rio de
Janeiro 21040-900, Brazil
| | - Nathaniel John Moorman
- Department
of Microbiology and Immunology, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
- Center
for Integrative Chemical Biology and Drug Discovery, Chemical Biology
and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Rapidly Emerging Antiviral Drug Discovery
Initiative, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Ralph S. Baric
- Department
of Microbiology and Immunology, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
- Department
of Epidemiology, University of North Carolina
School of Medicine, Chapel Hill, North Carolina 27599, United States
- Rapidly Emerging Antiviral Drug Discovery
Initiative, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Peter B. Madrid
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
4
|
Puhl AC, Fritch EJ, Lane TR, Tse LV, Yount BL, Sacramento CQ, Tavella TA, Costa FTM, Weston S, Logue J, Frieman M, Premkumar L, Pearce KH, Hurst BL, Andrade CH, Levi JA, Johnson NJ, Kisthardt SC, Scholle F, Souza TML, Moorman NJ, Baric RS, Madrid P, Ekins S. Repurposing the Ebola and Marburg Virus Inhibitors Tilorone, Quinacrine and Pyronaridine: In vitro Activity Against SARS-CoV-2 and Potential Mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.12.01.407361. [PMID: 33299990 PMCID: PMC7724658 DOI: 10.1101/2020.12.01.407361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SARS-CoV-2 is a newly identified virus that has resulted in over 1.3 M deaths globally and over 59 M cases globally to date. Small molecule inhibitors that reverse disease severity have proven difficult to discover. One of the key approaches that has been widely applied in an effort to speed up the translation of drugs is drug repurposing. A few drugs have shown in vitro activity against Ebola virus and demonstrated activity against SARS-CoV-2 in vivo . Most notably the RNA polymerase targeting remdesivir demonstrated activity in vitro and efficacy in the early stage of the disease in humans. Testing other small molecule drugs that are active against Ebola virus would seem a reasonable strategy to evaluate their potential for SARS-CoV-2. We have previously repurposed pyronaridine, tilorone and quinacrine (from malaria, influenza, and antiprotozoal uses, respectively) as inhibitors of Ebola and Marburg virus in vitro in HeLa cells and of mouse adapted Ebola virus in mouse in vivo . We have now tested these three drugs in various cell lines (VeroE6, Vero76, Caco-2, Calu-3, A549-ACE2, HUH-7 and monocytes) infected with SARS-CoV-2 as well as other viruses (including MHV and HCoV 229E). The compilation of these results indicated considerable variability in antiviral activity observed across cell lines. We found that tilorone and pyronaridine inhibited the virus replication in A549-ACE2 cells with IC 50 values of 180 nM and IC 50 198 nM, respectively. We have also tested them in a pseudovirus assay and used microscale thermophoresis to test the binding of these molecules to the spike protein. They bind to spike RBD protein with K d values of 339 nM and 647 nM, respectively. Human C max for pyronaridine and quinacrine is greater than the IC 50 hence justifying in vivo evaluation. We also provide novel insights into their mechanism which is likely lysosomotropic.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Ethan James Fritch
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Thomas R. Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Longping V. Tse
- Department of Epidemiology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Boyd L. Yount
- Department of Epidemiology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Carol Queiroz Sacramento
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- Centro De Desenvolvimento Tecnológico Em Saúde (CDTS), Fiocruz, Rio de Janeiro, Brasil
| | - Tatyana Almeida Tavella
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Stuart Weston
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - James Logue
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Kenneth H. Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599, USA
| | - Brett L. Hurst
- Institute for Antiviral Research, Utah State University, Logan, UT, USA
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Carolina Horta Andrade
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
- LabMol - Laboratory of Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
| | - James A. Levi
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Nicole J. Johnson
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Samantha C. Kisthardt
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Frank Scholle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Thiago Moreno L. Souza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- Centro De Desenvolvimento Tecnológico Em Saúde (CDTS), Fiocruz, Rio de Janeiro, Brasil
| | - Nathaniel John Moorman
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
- Department of Epidemiology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
- Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peter Madrid
- SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| |
Collapse
|
5
|
Martin BE, Harris JD, Sun J, Koelle K, Brooke CB. Cellular co-infection can modulate the efficiency of influenza A virus production and shape the interferon response. PLoS Pathog 2020; 16:e1008974. [PMID: 33064776 PMCID: PMC7592918 DOI: 10.1371/journal.ppat.1008974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/28/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
During viral infection, the numbers of virions infecting individual cells can vary significantly over time and space. The functional consequences of this variation in cellular multiplicity of infection (MOI) remain poorly understood. Here, we rigorously quantify the phenotypic consequences of cellular MOI during influenza A virus (IAV) infection over a single round of replication in terms of cell death rates, viral output kinetics, interferon and antiviral effector gene transcription, and superinfection potential. By statistically fitting mathematical models to our data, we precisely define specific functional forms that quantitatively describe the modulation of these phenotypes by MOI at the single cell level. To determine the generality of these functional forms, we compare two distinct cell lines (MDCK cells and A549 cells), both infected with the H1N1 strain A/Puerto Rico/8/1934 (PR8). We find that a model assuming that infected cell death rates are independent of cellular MOI best fits the experimental data in both cell lines. We further observe that a model in which the rate and efficiency of virus production increase with cellular co-infection best fits our observations in MDCK cells, but not in A549 cells. In A549 cells, we also find that induction of type III interferon, but not type I interferon, is highly dependent on cellular MOI, especially at early timepoints. This finding identifies a role for cellular co-infection in shaping the innate immune response to IAV infection. Finally, we show that higher cellular MOI is associated with more potent superinfection exclusion, thus limiting the total number of virions capable of infecting a cell. Overall, this study suggests that the extent of cellular co-infection by influenza viruses may be a critical determinant of both viral production kinetics and cellular infection outcomes in a host cell type-dependent manner. During influenza A virus (IAV) infection, the number of virions to enter individual cells can be highly variable. Cellular co-infection appears to be common and plays an essential role in facilitating reassortment for IAV, yet little is known about how cellular co-infection influences infection outcomes at the cellular level. Here, we combine quantitative in vitro infection experiments with statistical model fitting to precisely define the phenotypic consequences of cellular co-infection in two cell lines. We reveal that cellular co-infection can increase and accelerate the efficiency of IAV production in a cell line-dependent fashion, identifying it as a potential determinant of viral replication kinetics. We also show that induction of type III, but not type I, interferon is highly dependent upon the number of virions that infect a given cell, implicating cellular co-infection as an important determinant of the host innate immune response to infection. Altogether, our findings show that cellular co-infection plays a crucial role in determining infection outcome. The integration of experimental and statistical modeling approaches detailed here represents a significant advance in the quantitative study of influenza virus infection and should aid ongoing efforts focused on the construction of mathematical models of IAV infection.
Collapse
Affiliation(s)
- Brigitte E. Martin
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Jeremy D. Harris
- Department of Biology, Emory University, Atlanta, GA, United States of America
| | - Jiayi Sun
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA, United States of America
- * E-mail: (KK); (CB)
| | - Christopher B. Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- * E-mail: (KK); (CB)
| |
Collapse
|
6
|
Straube T, von Mach T, Hönig E, Greb C, Schneider D, Jacob R. pH-dependent recycling of galectin-3 at the apical membrane of epithelial cells. Traffic 2013; 14:1014-27. [PMID: 23710780 DOI: 10.1111/tra.12086] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/22/2013] [Accepted: 05/25/2013] [Indexed: 01/16/2023]
Abstract
The β-galactoside binding protein galectin-3 is highly expressed in a variety of epithelial cell lines. Polarized MDCK cells secrete this lectin predominantly into the apical medium by non-classical secretion. Once within the apical extracellular milieu, galectin-3 can re-enter the cell followed by passage through endosomal organelles and modulate apical protein sorting. Here, we could show that galectin-3 is internalized by non-clathrin mediated endocytosis. Within endosomal organelles this pool associates with newly synthesized neurotrophin receptor in the biosynthetic pathway and assists in its membrane targeting. This recycling process is accompanied by transient interaction of galectin-3 with detergent insoluble membrane microdomains in a lactose- and pH-dependent manner. Moreover, in the presence of lactose, apical sorting of the neurotrophin receptor is affected following endosomal deacidification. Taken together, our results suggest that internalized galectin-3 directs the subcellular targeting of apical glycoproteins by membrane recycling.
Collapse
Affiliation(s)
- Tamara Straube
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, D-35033, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Rejon CA, Ho CC, Wang Y, Zhou X, Bernard DJ, Hébert TE. Cycloheximide inhibits follicle-stimulating hormone β subunit transcription by blocking de novo synthesis of the labile activin type II receptor in gonadotrope cells. Cell Signal 2013; 25:1403-12. [PMID: 23499904 DOI: 10.1016/j.cellsig.2013.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/04/2013] [Indexed: 01/08/2023]
Abstract
The pituitary gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), play essential roles in the regulation of vertebrate reproduction. Activins and inhibins have opposing actions on FSH (but not LH) synthesis, either inducing or inhibiting transcription of the FSHβ subunit gene (Fshb). The translational inhibitor cycloheximide (CHX) produces inhibin-like effects in cultured pituitary cells, selectively suppressing FSH production. Using the murine gonadotrope-like cell line, LβT2, as a model, we tested the hypothesis that a component of the activin pathway is highly labile in gonadotrope cells and that its rapid loss following CHX treatment impairs activin-stimulated Fshb transcription. Treatment of cells with CHX for 6h, but not 1h, blocked activin A-stimulated Fshb transcription. Pre-treatment of LβT2 cells with CHX for as few as 2-3h inhibited activin A-stimulated SMAD2/3 phosphorylation without altering total SMAD2/3 protein levels. These data indicated that CHX affects activin signalling upstream of SMAD proteins, most likely at the receptor level. Indeed, CHX rapidly reduced activin A binding to LβT2 cells. We went on to show that activin A signals via the type II receptor ACVR2, rather than ACVR2B, to regulate Fshb transcription and that the receptor has a half life of ~2h in LβT2 cells. The mechanism of ACVR2 turnover remains undefined, but appears to be ligand-, proteasome-, and lysosome-independent. Collectively, these data indicate that CHX produces inhibin-like effects in gonadotropes by preventing de novo synthesis of the highly labile ACVR2, thereby blocking activin signaling to the Fshb promoter.
Collapse
Affiliation(s)
- Carlis A Rejon
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Assessment of heterologous membrane protein polarity in transiently transfected MDCK cells. Cytotechnology 2012; 17:71-82. [PMID: 22358463 DOI: 10.1007/bf00749394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/1995] [Accepted: 04/12/1995] [Indexed: 12/25/2022] Open
Abstract
We have evaluated transient transfection of MDCK cells by the DEAE-dextran/chloroquine method as a rapid method for study of heterologous plasma membrane protein polarity. Transiently transfected cells reseeded onto permeable supports formed confluent monolayers with normal tight junctions and normal distribution of endogenous apical and basolateral surface markers. Transfected monolayers reseeded onto opaque polycarbonate filters attained cell heights 3 times greater than on transparent filters. Conventional and confocal immunofluorescence microscopy were used to assess polarity of transient expression of heterologous proteins previously defined in stably transfected cell lines as apical (DAF-CD55), basolateral (VSV-G), and nonpolarized (CD7) in distribution. Through each transiently expressed protein exhibited a polarity phenotype in most cells which resembled the stable phenotype, consistency of polarized localization was less than in stably transfected cells. Similar results were obtained by lipofection. We conclude that transient transfection of MDCK cells may be useful as a rapid screen, but is not sufficiently reliable for definitive assessment of heterologous membrane proein polarity.
Collapse
|
9
|
Abstract
Most organelles within the exocytic and endocytic pathways typically acidify their interiors, a phenomenon that is known to be crucial for their optimal functioning in eukaryotic cells. This review highlights recent advances in our understanding of how Golgi acidity is maintained and regulated, and how its misregulation contributes to organelle dysfunction and disease. Both its biosynthetic products (glycans) and protein-sorting events are highly sensitive to changes in Golgi luminal pH and are affected in certain human disease states such as cancers and cutis laxa. Other potential disease states that are caused by, or are associated with, Golgi pH misregulation will also be discussed.
Collapse
Affiliation(s)
- Antti Rivinoja
- Department of Biochemistry, University of Oulu, Oulu, Finland
| | | | | | | |
Collapse
|
10
|
Chen A, Poh SL, Dietzsch C, Roethl E, Yan ML, Ng SK. Serum-free microcarrier based production of replication deficient influenza vaccine candidate virus lacking NS1 using Vero cells. BMC Biotechnol 2011; 11:81. [PMID: 21835017 PMCID: PMC3163541 DOI: 10.1186/1472-6750-11-81] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 08/11/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Influenza virus is a major health concern that has huge impacts on the human society, and vaccination remains as one of the most effective ways to mitigate this disease. Comparing the two types of commercially available Influenza vaccine, the live attenuated virus vaccine is more cross-reactive and easier to administer than the traditional inactivated vaccines. One promising live attenuated Influenza vaccine that has completed Phase I clinical trial is deltaFLU, a deletion mutant lacking the viral Nonstructural Protein 1 (NS1) gene. As a consequence of this gene deletion, this mutant virus can only propagate effectively in cells with a deficient interferon-mediated antiviral response. To demonstrate the manufacturability of this vaccine candidate, a batch bioreactor production process using adherent Vero cells on microcarriers in commercially available animal-component free, serum-free media is described. RESULTS Five commercially available animal-component free, serum-free media (SFM) were evaluated for growth of Vero cells in agitated Cytodex 1 spinner flask microcarrier cultures. EX-CELL Vero SFM achieved the highest cell concentration of 2.6 × 10^6 cells/ml, whereas other SFM achieved about 1.2 × 10^6 cells/ml. Time points for infection between the late exponential and stationary phases of cell growth had no significant effect in the final virus titres. A virus yield of 7.6 Log10 TCID50/ml was achieved using trypsin concentration of 10 μg/ml and MOI of 0.001. The Influenza vaccine production process was scaled up to a 3 liter controlled stirred tank bioreactor to achieve a cell density of 2.7 × 10^6 cells/ml and virus titre of 8.3 Log10 TCID50/ml. Finally, the bioreactor system was tested for the production of the corresponding wild type H1N1 Influenza virus, which is conventionally used in the production of inactivated vaccine. High virus titres of up to 10 Log10 TCID50/ml were achieved. CONCLUSIONS We describe for the first time the production of Influenza viruses using Vero cells in commercially available animal-component free, serum-free medium. This work can be used as a basis for efficient production of attenuated as well as wild type Influenza virus for research and vaccine production.
Collapse
Affiliation(s)
- Allen Chen
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros, Singapore
| | | | | | | | | | | |
Collapse
|
11
|
Rivinoja A, Hassinen A, Kokkonen N, Kauppila A, Kellokumpu S. Elevated Golgi pH impairs terminal N-glycosylation by inducing mislocalization of Golgi glycosyltransferases. J Cell Physiol 2009; 220:144-54. [PMID: 19277980 DOI: 10.1002/jcp.21744] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Acidic pH of the Golgi lumen is known to be crucial for correct glycosylation, transport and sorting of proteins and lipids during their transit through the organelle. To better understand why Golgi acidity is important for these processes, we have examined here the most pH sensitive events in N-glycosylation by sequentially raising Golgi luminal pH with chloroquine (CQ), a weak base. We show that only a 0.2 pH unit increase (20 microM CQ) is sufficient to markedly impair terminal alpha(2,3)-sialylation of an N-glycosylated reporter protein (CEA), and to induce selective mislocalization of the corresponding alpha(2,3)-sialyltransferase (ST3) into the endosomal compartments. Much higher pH increase was required to impair alpha(2,6)-sialylation, or the proximal glycosylation steps such as beta(1,4)-galactosylation or acquisition of Endo H resistance, and the steady-state localization of the key enzymes responsible for these modifications (ST6, GalT I, MANII). The overall Golgi morphology also remained unaltered, except when Golgi pH was raised close to neutral. By using transmembrane domain chimeras between the ST6 and ST3, we also show that the luminal domain of the ST6 is mainly responsible for its less pH sensitive localization in the Golgi. Collectively, these results emphasize that moderate Golgi pH alterations such as those detected in cancer cells can impair N-glycosylation by inducing selective mislocalization of only certain Golgi glycosyltransferases.
Collapse
Affiliation(s)
- Antti Rivinoja
- Department of Biochemistry and The Finnish Glycoscience Graduate School, University of Oulu, Oulu, Finland
| | | | | | | | | |
Collapse
|
12
|
Abstract
Acidification of some organelles, including the Golgi complex, lysosomes, secretory granules, and synaptic vesicles, is important for many of their biochemical functions. In addition, acidic pH in some compartments is also required for the efficient sorting and trafficking of proteins and lipids along the biosynthetic and endocytic pathways. Despite considerable study, however, our understanding of how pH modulates membrane traffic remains limited. In large part, this is due to the diversity of methods to perturb and monitor pH, as well as to the difficulties in isolating individual transport steps within the complex pathways of membrane traffic. This review summarizes old and recent evidence for the role of acidification at various steps of biosynthetic and endocytic transport in mammalian cells. We describe the mechanisms by which organelle pH is regulated and maintained, as well as how organelle pH is monitored and quantitated. General principles that emerge from these studies as well as future directions of interest are discussed.
Collapse
Affiliation(s)
- Ora A Weisz
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
13
|
Henkel JR, Gibson GA, Poland PA, Ellis MA, Hughey RP, Weisz OA. Influenza M2 proton channel activity selectively inhibits trans-Golgi network release of apical membrane and secreted proteins in polarized Madin-Darby canine kidney cells. J Cell Biol 2000; 148:495-504. [PMID: 10662775 PMCID: PMC2174804 DOI: 10.1083/jcb.148.3.495] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The function of acidification in protein sorting along the biosynthetic pathway has been difficult to elucidate, in part because reagents used to alter organelle pH affect all acidified compartments and are poorly reversible. We have used a novel approach to examine the role of acidification in protein sorting in polarized Madin-Darby canine kidney (MDCK) cells. We expressed the influenza virus M2 protein, an acid-activated ion channel that equilibrates lumenal and cytosolic pH, in polarized MDCK cells and examined the consequences on the targeting and delivery of apical and basolateral proteins. M2 activity affects the pH of only a subset of acidified organelles, and its activity can be rapidly reversed using ion channel blockers (Henkel, J.R., G. Apodaca, Y. Altschuler, S. Hardy, and O.A. Weisz. 1998. Mol. Biol. Cell. 8:2477-2490; Henkel, J.R., J.L. Popovich, G.A. Gibson, S.C. Watkins, and O.A. Weisz. 1999. J. Biol. Chem. 274:9854-9860). M2 expression significantly decreased the kinetics of cell surface delivery of the apical membrane protein influenza hemagglutinin, but not of the basolaterally delivered polymeric immunoglobulin receptor. Similarly, the kinetics of apical secretion of a soluble form of gamma-glutamyltranspeptidase were reduced with no effect on the basolaterally secreted fraction. Interestingly, M2 activity had no effect on the rate of secretion of a nonglycosylated protein (human growth hormone [hGH]) that was secreted equally from both surfaces. However, M2 slowed apical secretion of a glycosylated mutant of hGH that was secreted predominantly apically. Our results suggest a role for acidic trans-Golgi network pH in signal-mediated loading of apical cargo into forming vesicles.
Collapse
Affiliation(s)
- Jennifer R. Henkel
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Gregory A. Gibson
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Paul A. Poland
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Mark A. Ellis
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Rebecca P. Hughey
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Ora A. Weisz
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
14
|
Singh AK, Sidhu GS, Friedman RM, Maheshwari RK. Mechanism of enhancement of the antiviral action of interferon against herpes simplex virus-1 by chloroquine. J Interferon Cytokine Res 1996; 16:725-31. [PMID: 8887057 DOI: 10.1089/jir.1996.16.725] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Using double immunofluorescence, we have shown previously that interferon (IFN) treatment inhibits the transport of herpes simplex virus-1 (HSV-1) gD from the Golgi complex to the plasma membrane in the virus infected and gD cDNA transfected LMtk-cells. In the present study, we quantitated the gD protein on the cell surface and localized the gD protein in the trans-Golgi network (TGN). The results showed 10-fold less fluorescence for the gD protein on the cell surface in IFN-treated LMtk-cells. Subcellular fractionation studies demonstrated that gD was associated with TGN-enriched membranes. Gold labeling for DAMP distribution using electron microscopy showed that IFN raised the pH of TGN. IFNs induced alkalinization of TGN may be related to the block in the transport of HSV-1 gD. Earlier we reported that a subeffective dose of chloroquine (CHL) or IFN does not change the pHi. However, both CHL and IFN together raise the pHi significantly. To study the biologic significance of the finding, the effect of these subeffective doses of IFN and CHL on the antiviral activity and the transport of the gD protein was studied. Results suggested that CHL enhance the antiviral activity of IFN against HSV-1 and concomitantly increase the inhibition of HSV-1 gD transport. This IFN-induced increase in pHi of the TGN may also explain the inhibitory effect of IFN reported on the terminal steps of some of the enveloped viruses.
Collapse
Affiliation(s)
- A K Singh
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | | | |
Collapse
|
15
|
Zuk A, Hay ED. Expression of beta 1 integrins changes during transformation of avian lens epithelium to mesenchyme in collagen gels. Dev Dyn 1994; 201:378-93. [PMID: 7534501 DOI: 10.1002/aja.1002010409] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Remarkably, a number of definitive epithelia, such as that of the anterior lens, give rise when suspended within 3D gels of type I collagen, to elongate, bipolar shaped cells that exhibit the ultrastructure, polarity, and migratory ability of mesenchymal cells. They begin producing type I collagen and stop producing crystallins, type IV collagen, and laminin. Here, we investigated changes in beta 1 integrins and their extracellular matrix (ECM) ligands during this transdifferentiation. The former free surface of the lens epithelium that is now in contact with collagen begins within a day to stain intensely for beta 1 and it is this surface rather than the surface facing the basement membrane that gives rise to mesenchymal cells. Immunoprecipitation experiments reveal a large increase in the beta 1 integrin subunit on mesenchymal cells as compared to the epithelium of origin. The alpha 5 integrin subunit, which is barely detectable in the lens, increases in the mesenchymal cells and alpha 3 continues to be expressed at about the same level as in the epithelium. alpha 6, the epithelial integrin subunit, and laminin, its ECM ligand, are not detected immunohistochemically or biochemically in the mesenchyme. Rather, the mesenchymal cells secrete abundant fibronectin, the major ECM ligand for alpha 5 beta 1. RGD peptides do not inhibit the transformation but antibodies to beta 1 do perturb the emigration of mesenchymal cells from the lens apical surface. We conclude that the beta 1 integrins newly expressed on the apical epithelial surface interact with the surrounding 3D collagen gel to help bring about this unusual epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- A Zuk
- Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
16
|
Koyama AH, Uchida T. Inhibition by Brefeldin A of the envelopment of nucleocapsids in herpes simplex virus type 1-infected Vero cells. Arch Virol 1994; 135:305-17. [PMID: 7979969 DOI: 10.1007/bf01310016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Inhibition by Brefeldin A (BFA) of the multiplication of herpes simplex virus (HSV) type 1 in Vero cells was characterized quantitatively. The yield of infectious progeny virus decreased exponentially with increasing concentrations of BFA while the yield of enveloped virus particles decreased less steeply to the level of approximately one fifth of the yield in the untreated cells; the level then remained constant even at higher BFA concentrations. The yield of nucleocapsids was not markedly affected by the drug. These results suggest that there are two different (i.e., BFA-sensitive and -insensitive) pathways for the formation of enveloped particles in the HSV-1-infected cells and that the infectious progeny virus arises exclusively from the BFA-sensitive pathway. Addition of BFA at various times after infection showed that the agent inhibited the increase in the amount of enveloped particles and of infectious progeny virus immediately after the addition. Single-step growth experiments suggested that, even in the presence of mature viral envelope proteins and of nucleocapsids, the increase in the amount of enveloped particles was completely inhibited by the addition of BFA at a late stage of infection. These results are consistent with the concept that the Golgi complex, the most BFA-sensitive organelle, is the major envelopment site of HSV-1 nucleocapsids leading to the formation of the infectious progeny virus.
Collapse
Affiliation(s)
- A H Koyama
- Department of Virology, School of Medicine, University of Tokushima, Japan
| | | |
Collapse
|
17
|
Schoenenberger CA, Zuk A, Zinkl GM, Kendall D, Matlin KS. Integrin expression and localization in normal MDCK cells and transformed MDCK cells lacking apical polarity. J Cell Sci 1994; 107 ( Pt 2):527-41. [PMID: 7515897 DOI: 10.1242/jcs.107.2.527] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epithelial cells polarize in response to contacts with the extracellular matrix and with neighboring cells. Interactions of cells with the extracellular matrix are mediated mainly by the integrin family of receptors. To begin to understand the role of integrins in polarization, we have investigated the expression and localization of three integrin families in the polarized Madin-Darby canine kidney (MDCK) epithelial cell line and in transformed MDCK cells lacking apical polarity. We find that MDCK cells express several beta 1 integrins, including alpha 2 beta 1, alpha 3 beta 1, and an unidentified integrin designated alpha × beta 1. The beta 1 integrins are the major receptors for collagens I and IV and laminin in MDCK cells, since a blocking anti-beta 1 antibody almost totally abolishes adhesion to these proteins. They also express a vitronectin receptor tentatively identified as alpha v beta 3, and the epithelial-specific integrin alpha 6 beta 4. The latter is not a laminin receptor in MDCK cells because a function blocking anti-alpha 6 antibody has no effect on cell adhesion to laminin. All three integrin families are expressed exclusively on both the basal and lateral surfaces, as determined by immunofluorescence microscopy and surface biotinylation. Transformed MDCK cells express beta 1 integrins as well as alpha v beta 3 and alpha 6 beta 4, but show alterations in the beta 1 family. Expression of alpha × is lacking, and the relative amount of the beta 1 subunit is diminished, resulting in the accumulation of Endo-H-sensitive alpha 3. In addition, surface biotinylation and immunofluorescence indicate that significant amounts of both alpha 2 beta 1 and alpha 3 beta 1 appear on not only the basolateral but also the apical plasma membrane. These results indicate that integrins are the major receptors for the extracellular matrix in MDCK cells, and that they may affect epithelial cell polarization by mediating not only cell-substratum but also cell-cell contacts.
Collapse
Affiliation(s)
- C A Schoenenberger
- Maurice E. Müller Institute, Biocenter, University of Basel, Switzerland
| | | | | | | | | |
Collapse
|
18
|
Low SH, Wong SH, Tang BL, Hong W. Effects of NH4Cl and nocodazole on polarized fibronectin secretion vary amongst different epithelial cell types. Mol Membr Biol 1994; 11:45-54. [PMID: 8019601 DOI: 10.3109/09687689409161029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The extracellular matrix protein fibronectin was found to be secreted by three polarized epithelial cell lines Madin-Darby canine kidney (MDCK), Caco-2 and LLC-PK1. About 54 and 46% of fibronectin was secreted from the apical and basolateral cell surfaces, respectively, in MDCK cells. In Caco-2 and LLC-PK1 cells, the majority (about 92-93%) of fibronectin secretion occurs from the basolateral cell surface, with the remaining 7-8% from the apical surface. In all three cell types, NH4Cl was found to inhibit basolateral secretion (resulting in enhanced apical secretion), while total fibronectin secretion was not significantly affected (although a delay in secretion was observed). Nocodazole reduced total fibronectin secretion to about 70% of control levels in MDCK and Caco-2 cells, with significant inhibition on secretion from both surfaces. In contrast, total fibronectin secretion was enhanced by nocodazole in LLC-PK1 cells. Furthermore, the majority of fibronectin secretion was redirected to the apical cell surface in LLC-PK1 cells. These observations demonstrate that the nature as well as the extent of the effects of NH4-Cl and nocodazole on polarized fibronectin secretion varies amongst different epithelial cell types.
Collapse
Affiliation(s)
- S H Low
- Membrane Biology Laboratory, National University of Singapore, Kent Ridge Crescent
| | | | | | | |
Collapse
|
19
|
Abstract
This chapter focuses on the interaction of viruses with epithelial cells. The role of specific pathways of virus entry and release in the pathogenesis of viral infection is examined together with the mechanisms utilized by viruses to circumvent the epithelial barrier. Polarized epithelial cells in culture, which can be grown on permeable supports, provide excellent systems for investigating the events in virus entry and release at the cellular level, and much information is being obtained using such systems. Much remains to be learned about the precise routes by which many viruses traverse the epithelial barrier to initiate their natural infection processes, although important information has been obtained in some systems. Another area of great interest for future investigation is the process of virus entry and release from other polarized cell types, including neuronal cells.
Collapse
Affiliation(s)
- S P Tucker
- Department of Microbiology, University of Alabama, Birmingham 35294
| | | |
Collapse
|
20
|
Hughey PG, Compans RW, Zebedee SL, Lamb RA. Expression of the influenza A virus M2 protein is restricted to apical surfaces of polarized epithelial cells. J Virol 1992; 66:5542-52. [PMID: 1501289 PMCID: PMC289113 DOI: 10.1128/jvi.66.9.5542-5552.1992] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The M2 protein of influenza A virus is a small, nonglycosylated transmembrane protein that is expressed on surfaces of virus-infected cells. A monoclonal antibody specific for the M2 protein was used to investigate its expression in polarized epithelial cells infected with influenza virus or a recombinant vaccinia virus that expresses M2. The expression of M2 on the surfaces of influenza virus-infected cells was found to be restricted to the apical surface, closely paralleling that of the influenza virus hemagglutinin (HA). Membrane domain-specific immunoprecipitation indicated that the M2 protein was inserted directly into the apical membrane with transport kinetics similar to those of HA. In polarized cells infected with a recombinant vaccinia virus that expresses M2, we found that 86 to 93% of surface M2 was restricted to the apical domain compared with 88 to 90% of HA in a similar assay. These results indicate that the M2 protein undergoes directional transport in the absence of other influenza virus proteins and that M2 contains the structural features required for apical transport in polarized epithelial cells. The ultrastructural localization of the M2 protein in influenza virus-infected MDCK cells was investigated by immunoelectron microscopy using M2 antibody and a gold conjugate. In cells in which extensive virus budding was occurring, the apical cell membrane was labeled with gold particles evenly distributed between microvilli and the surrounding membrane. In addition, a significant fraction of the M2 label was apparently associated with virions. A monoclonal antibody specific for HA demonstrated a similar labeling pattern. These results indicate that M2 is localized in close proximity to budding and assembled virions.
Collapse
Affiliation(s)
- P G Hughey
- Department of Microbiology, University of Alabama, Birmingham 35294
| | | | | | | |
Collapse
|
21
|
Walker JA, Sakaguchi T, Matsuda Y, Yoshida T, Kawaoka Y. Location and character of the cellular enzyme that cleaves the hemagglutinin of a virulent avian influenza virus. Virology 1992; 190:278-87. [PMID: 1529533 DOI: 10.1016/0042-6822(92)91214-f] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
H.-D. Klenk, W. Garten, and R. Rott (1984, EMBO J. 3, 2911-2915) have reported that hemagglutinin (HA) cleavage of virulent avian influenza viruses occurs in later steps of its intracellular transport and that the cleavage enzyme is calcium dependent and has a neutral pH optimum. The precise intracellular location of the HA cleavage, however, has never been established. Furthermore, because Klenk et al. used the whole cell lysate to examine the cleavage activity and the amino acid sequencing of the cleaved product was not done, the identity of the cleavage enzyme remains to be established. We therefore attempted to systematically characterize the HA cleavage of the virulent avian virus A/tern/South Africa/61 (H5N3). Using an inhibitor of glycoprotein transport (Brefeldin A) and temporal markers of glycoprotein processing, we found that the endoprotease responsible for the HA cleavage acts after the acquisition of endo-N-acetylglucosaminidase H resistance but before the addition of galactose to the molecule, and thus is located in the medial and/or trans Golgi. This observation was directly confirmed by in vitro experiments using rat liver subcellular membrane fractions containing Golgi complex. A fraction rich in galactosyltransferase (a trans Golgi marker) demonstrated the highest HA cleavage activity. The endoprotease in this fraction cleaved only the HA of the virulent avian influenza virus but not that of an avirulent virus. Through amino-terminal sequencing of the HA2 produced by digestion with the endoprotease in the rat Golgi fraction, we established that HA cleavage by the protease occurs at the authentic site. Further studies using the rat Golgi fraction showed that the HA cleavage enzyme is calcium dependent and has a low pH (6.0) optimum. Thus, the pH optimum of the enzyme in the Golgi fraction differs from that in whole cell lysate reported previously.
Collapse
Affiliation(s)
- J A Walker
- Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101
| | | | | | | | | |
Collapse
|
22
|
Eskelinen S, Huotari V, Sormunen R, Palovuori R, Kok JW, Lehto VP. Low intracellular pH induces redistribution of fodrin and instabilization of lateral walls in MDCK cells. J Cell Physiol 1992; 150:122-33. [PMID: 1309822 DOI: 10.1002/jcp.1041500117] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have studied the effect of intracellular pH on the establishment and maintenance of the cellular polarity in MDCK cells by utilizing nigericin which causes lowering of the cytoplasmic pH. At pH below 6.5, MDCK cells lost their polarized morphology and became roundish, with an increased apical area and shortened and unstable lateral walls. The lateral wall marker proteins uvomorulin and Na,K-ATPase remained segregated to the lateral walls in the acidified cells, as shown by immunofluorescence microscopy. Fodrin, on the other hand, was released from its normal basolateral residence and was found in the cytoplasm. Actin, which normally co-localizes with fodrin along the basolateral walls, showed a dotty distribution in the cytoplasm of acidified cells, while stress fibers remained intact. Microtubular network appeared flattened, but the Golgi complex retained its apical position. The pH change-induced alterations were readily reversible, as the normal basal-apical polarity (columnar shape, distinct apical and lateral domains with apposing and stiff lateral membranes) was reformed within 10 minutes after restoring the normal pH gradient across the cell membrane. This coincided with the translocation of fodrin from the cytoplasm to the lateral walls. The results show that lowering of intracellular pH leads to temporary segregation of fodrin from the other components of the membrane skeleton assembly, and that association of fodrin with the lateral walls seems to be a prerequisite for their close apposition and for the maintenance of normal basal-axial polarity.
Collapse
|
23
|
Modulation of the carbohydrate moiety of thyroglobulin by thyrotropin and calcium in Fisher rat thyroid line-5 cells. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)46037-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Affiliation(s)
- R W Compans
- Department of Microbiology, University of Alabama, Birmingham 35294
| | | |
Collapse
|
25
|
Jans DA, Peters R, Jans P, Fahrenholz F. Ammonium chloride affects receptor number and lateral mobility of the vasopressin V2-type receptor in the plasma membrane of LLC-PK1 renal epithelial cells: role of the cytoskeleton. Exp Cell Res 1990; 191:121-8. [PMID: 2146138 DOI: 10.1016/0014-4827(90)90044-b] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The acidotropic agent ammonium chloride (NH4Cl) not only affects receptor metabolism by inhibiting lysosomal acidification, but can also affect the targeting of proteins to specific membranes in polarized cells, possibly through effects mediated by the cytoskeleton. The present study examines the effects of NH4Cl and perturbers of cytoskeleton structure on vasopressin V2 receptor expression in LLC-PK1 renal epithelial cells. Surprisingly, long-term pretreatment of cells with NH4Cl or short-term treatment with the actin perturber cytochalasin B resulted in an up to 70% increase in specific Arg-8-vasopressin binding compared to control cells, which was independent of the presence of NH4Cl in the binding test, and apparently the result of increased V2 receptor expression. Perturbers of microtubules such as colchicine and vinblastine had no such effect. A rhodamine-labeled analog of vasopressin was used to fluorescently label the V2 receptor of LLC-PK1 cells, and microscopic measurements of membrane-localized fluorescence confirmed the increased V2 receptor expression in the basal plasma membrane subsequent to NH4Cl pretreatment. Lateral mobility of the V2 receptor was measured in living cells using the technique of microphotolysis (photobleaching). The fraction of mobile receptors was 0.2 in cells pretreated with NH4Cl, markedly reduced compared to that of 0.9 in untreated cells. The apparent lateral diffusion coefficient D was about 3 x 10(-10) cm2/s in both pretreated and untreated cells. Results for fluorescence labeling of the actin cytoskeleton indicate that NH4Cl pretreatment of LLC-PK1 cells results in perturbation of microfilament structure. All results imply that the cytoskeleton plays a central role in V2 receptor expression and lateral mobility.
Collapse
Affiliation(s)
- D A Jans
- Max-Planck-Institut für Biophysik, Frankfurt, Germany
| | | | | | | |
Collapse
|
26
|
Isidoro C, Radons J, Baccino FM, Hasilik A. Suppression of the 'uncovering' of mannose-6-phosphate residues in lysosomal enzymes in the presence of NH4Cl. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 191:591-7. [PMID: 2167847 DOI: 10.1111/j.1432-1033.1990.tb19162.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The uncovering ratio of phosphate groups in lysosomal enzymes is defined as the percentage of phosphomonoester groups in the oligosaccharide side chains based on the sum of phosphomonoester and phosphodiester groups. Using a new procedure for the specific and complete hydrolysis of uncovered phosphomonoester groups in denatured immunoprecipitates of human cathepsin D, we show that the uncovering ratio varies between different forms of the enzyme and may be used as an indicator of the maturation of its carbohydrate side chains. The uncovering ratio in the total (cellular and secreted) cathepsin D from U937 promonocytes is greater than 95%. It is only slightly decreased in cells incubated in the presence of 1 alpha,25-dihydroxycholecalciferol, in which the rate of synthesis of cathepsin D is several times higher than in the control cells. In U937 cells and also in fibroblasts, the uncovering is nearly complete in intermediate and mature forms of the intracellular cathepsin D but less extensive in the intracellular and secreted precursor. In both cell types, incubation with 10 mM NH4Cl results in a decrease in the uncovering ratio of total cathepsin D. However, the activity of the uncovering enzyme, N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase, as determined with UDP-N-acetylglucosamine is not affected with up to 60 mM NH4Cl. Our results suggest that NH4Cl, in addition to its known effects on the acidic-pH-dependent functions of lysosomal compartments and of mannose-6-phosphate receptors, impairs the processing or transport of lysosomal enzyme precursors at, or proximally to, the site of the uncovering of their mannose-6-phosphate residues.
Collapse
Affiliation(s)
- C Isidoro
- Dipartimento di Medicina ed Oncologia Sperimentale, Università di Torino, Italy
| | | | | | | |
Collapse
|
27
|
Sabban EL, Schwartz J, McMahon A. Effect of compounds which disrupt proton gradients on secretion of neurosecretory proteins from PC12 pheochromocytoma cells. Neuroscience 1990; 38:561-70. [PMID: 2175857 DOI: 10.1016/0306-4522(90)90050-e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Treatment of PC12 cells with chroquine (10-50 microM) obliterated the low intragranular pH, as detected by Acridine Orange fluorescence, and depleted the cells of dopamine and norepinephrine. However, these concentrations of chloroquine did not prevent the release of the newly synthesized proteins which normally undergo stimulus-coupled secretion with the catecholamines. Higher concentrations of chloroquine (200 microM) and ammonium chloride (10 and 25 mM) inhibited the release of most of these proteins. This inhibition did not result from alterations in protein synthesis, since the profile of proteins synthesized was not substantially altered. Nor did the inhibition result from degradation of the neurosecretory proteins, since prelabeled proteins were capable of undergoing stimulated secretion from chloroquine-treated cells, as from normal cells. The findings indicated that the inhibition was at the step of packaging of the proteins into the neurosecretory granules. While release of the major secretory proteins, including chromogranin B, was inhibited with 200 microM chloroquine, chromogranin A was secreted upon stimulation of these cells. The results of this study indicate that an acidic intragranular pH is not a requirement for the packaging and secretion of neurosecretory proteins. Higher concentrations of chloroquine had a differential effect on the regulated secretion of different neurosecretory proteins.
Collapse
Affiliation(s)
- E L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla 10595
| | | | | |
Collapse
|
28
|
Chang A, Jamieson JD. Structural and Secretory Polarity in the Pancreatic Acinar Cell. Compr Physiol 1989. [DOI: 10.1002/cphy.cp060327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Abstract
Polarized epithelial cells play fundamental roles in the ontogeny and function of a variety of tissues and organs in mammals. The morphogenesis of a sheet of polarized epithelial cells (the trophectoderm) is the first overt sign of cellular differentiation in early embryonic development. In the adult, polarized epithelial cells line all body cavities and occur in tissues that carry out specialized vectorial transport functions of absorption and secretion. The generation of this phenotype is a multistage process requiring extracellular cues and the reorganization of proteins in the cytoplasm and on the plasma membrane; once established, the phenotype is maintained by the segregation and retention of specific proteins and lipids in distinct apical and basal-lateral plasma membrane domains.
Collapse
Affiliation(s)
- E Rodriguez-Boulan
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, NY 10021
| | | |
Collapse
|
30
|
Koyama AH, Uchida T. The effect of ammonium chloride on the multiplication of herpes simplex virus type 1 in Vero cells. Virus Res 1989; 13:271-81. [PMID: 2554609 DOI: 10.1016/0168-1702(89)90073-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The multiplication of herpes simplex virus type 1 (HSV-1) in Vero cells is inhibited by ammonium chloride. The formation of infectious virus was inhibited immediately after the addition of the agent into the culture fluid and was restored by removal of the agent. Although neither viral DNA replication nor nucleocapsid formation were affected by the addition of ammonium chloride at 4 h postinfection, the agent markedly inhibited the formation of enveloped particles and completely the formation of infectious progeny virus. These results indicate that one of the effects of ammonium chloride on the multiplication of HSV-1 is the inhibition of envelopment of viral nucleocapsids. In addition, the envelopment of HSV-1 nucleocapsids was inhibited immediately after the addition of monensin into the culture fluid. These findings suggest the importance of acidic pH of an intracellular compartment in the envelopment of HSV-1.
Collapse
Affiliation(s)
- A H Koyama
- Department of Virology, School of Medicine, University of Tokushima, Japan
| | | |
Collapse
|
31
|
Daniels-Holgate PU, Edwardson JM. Transport of influenza virus envelope proteins from the Golgi complex to the apical plasma membrane in MDCK cells: pH-controlled interaction with a cycling receptor is not involved. FEBS Lett 1989; 249:407-10. [PMID: 2737296 DOI: 10.1016/0014-5793(89)80668-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In influenza virus-infected monolayers of the epithelial cell line MDCK the viral envelope proteins, haemagglutinin and neuraminidase, are targetted specifically to the apical surface. In this study we have tested the hypothesis that the polarized delivery of these proteins to the plasma membrane involves the operation of a receptor that cycles between the trans Golgi network and the plasma membrane, binding the proteins at low pH in the former compartment and releasing them at normal extracellular pH in the latter. The hypothesis predicts that apical, but not basolateral, low pH would eventually delay or block delivery of the proteins to the plasma membrane. We found that basolateral low pH in fact had the more profound effect, in line with its greater effect on intracellular pH. We conclude that the hypothesis is not valid, and that low extracellular pH causes its effect on protein transport by changing intracellular pH.
Collapse
|
32
|
Yoshida T, Takao S, Kiyotani K, Sakaguchi T. Endoproteolytic activation of Newcastle disease virus fusion proteins requires an intracellular acidic environment. Virology 1989; 170:571-4. [PMID: 2728349 DOI: 10.1016/0042-6822(89)90449-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Effects of weak bases, chloroquine and ammonium chloride, on the intracellular cleavage of the fusion protein precursor (F0) were examined in BHK cells infected with a virulent strain of Newcastle disease virus (NDV). Most of F0 molecules synthesized during a 15-min pulse period were chased out because of cleavage into F1 and F2 within a 60-min chase period in the absence of the weak bases. In contrast, significant amounts of the precursor were found to remain uncleaved when chloroquine or ammonium chloride was present. The uncleaved fusion proteins were incorporated into progeny virions as efficiently as cleaved ones, and about the half of fusion proteins were present as F0 in the virion released by the cells treated with 0.3 mM chloroquine. Taken together with the finding that the trans cisternae of Golgi apparatus and forming secretory vesicles have an acidic pH (K. G. W. Anderson and R. K. Pathak, Cell, 40, 685-643, 1985), the present results suggest that an acidic environment in these compartments is required for intracellular proteolytic activation of NDV fusion proteins.
Collapse
Affiliation(s)
- T Yoshida
- Department of Bacteriology, Hiroshima University School of Medicine, Japan
| | | | | | | |
Collapse
|
33
|
von Zastrow M, Castle AM, Castle JD. Ammonium Chloride Alters Secretory Protein Sorting within the Maturing Exocrine Storage Compartment. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83385-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
34
|
Tris inhibits both proteolytic and oligosaccharide processing occurring in the Golgi complex in primary cultured rat hepatocytes. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37794-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
35
|
Matlin KS, Skibbens J, McNeil PL. Reduced extracellular pH reversibly inhibits oligomerization, intracellular transport, and processing of the influenza hemagglutinin in infected Madin-Darby canine kidney cells. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37982-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
Abstract
Methods for the establishment and growth of renal cell types in culture are reviewed, with emphasis on current trends. General techniques available for the isolation and culture of glomerular cells have progressed from explant to enzyme dissociation and cloning techniques. The growth characteristics and properties of cultured glomerular endothelial, epithelial, mesangial, and bone-marrow-derived cells are discussed. Studies are described in which cultures of contractile mesangial cells have led to an elucidation of their role both in normally functioning glomeruli and in disease states. Renal tubule culture techniques also have progressed from mixed tissue explants and cell isolates to fractionation of enriched tubule populations and growth of specific, individually microdissected proximal convoluted, proximal straight, thick ascending limb of Henle's loop, and collecting tubules. The differentiated tubule epithelial-specific properties of such primary cultures are discussed in relation to those of permanently growing cell lines such as MDCK and LLC-PK1. Renal tubule cultures will be invaluable for the study of the role of hormones and extracellular matrix in epithelial growth and polarity of normal structure and function. In addition, in vitro models of cultured renal tubules have been established to study the effects of age, nephrotoxins, and anoxic injury.
Collapse
Affiliation(s)
- J I Kreisberg
- Department of Pathology, University of Texas Health Science, San Antonio 78284
| | | |
Collapse
|
37
|
Mains RE, May V. The role of a low pH intracellular compartment in the processing, storage, and secretion of ACTH and endorphin. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68581-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Bartles JR, Hubbard AL. Plasma membrane protein sorting in epithelial cells: do secretory pathways hold the key? Trends Biochem Sci 1988; 13:181-4. [PMID: 3255200 DOI: 10.1016/0968-0004(88)90147-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
39
|
Hauri HP. Biogenesis and intracellular transport of intestinal brush border membrane hydrolases. Use of antibody probes and tissue culture. Subcell Biochem 1988; 12:155-219. [PMID: 3043766 DOI: 10.1007/978-1-4899-1681-5_5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Caplan MJ, Stow JL, Newman AP, Madri J, Anderson HC, Farquhar MG, Palade GE, Jamieson JD. Dependence on pH of polarized sorting of secreted proteins. Nature 1987; 329:632-5. [PMID: 2821405 DOI: 10.1038/329632a0] [Citation(s) in RCA: 167] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The plasma membranes of epithelial cells are divided into apical and basolateral domains. These two surfaces are characterized by markedly different protein compositions, reflecting the ability of the cell to target newly synthesized membrane proteins to specific regions of the cell surface. This targeting capability is also apparent in the polarized release of secretory products. Recent studies using canine renal tubule (MDCK) cells have suggested that distinct sets of secretory proteins are released from their apical and basolateral poles. We report experiments designed to examine secretory protein sorting by MDCK cells. We have shown that secretion of basement membrane components (laminin and heparan sulphate proteoglycan (HSPG] takes place from the basolateral cell surface and that this polarized release results from active sorting. The sorting process which mediates this polarized secretion requires an acidic intracellular compartment. MDCK cells treated with NH4Cl to raise the pH of their intracellular compartments, secrete laminin and HSPG by a default pathway which leads to their release in roughly equal quantities into the medium of both the apical and basolateral compartments.
Collapse
Affiliation(s)
- M J Caplan
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | | | | | | | | | |
Collapse
|