1
|
Jiang Y, Wang K, Xu L, Xu L, Xu Q, Mu Y, Hong Q, He J, Jiang J, Qiu J. DipR, a GntR/FadR-family transcriptional repressor: regulatory mechanism and widespread distribution of the dip cluster for dipicolinic acid catabolism in bacteria. Nucleic Acids Res 2024; 52:10951-10964. [PMID: 39180394 PMCID: PMC11472048 DOI: 10.1093/nar/gkae728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
Dipicolinic acid is an essential component of bacterial spores for stress resistance, which is released into the environment after spore germination. In a previous study, a dip gene cluster was found to be responsible for the catabolism of dipicolinic acid in Alcaligenes faecalis JQ135. However, the transcriptional regulatory mechanism remains unclear. The present study characterized the new GntR/FadR family transcriptional factor DipR, showing that the dip cluster is transcribed as the six transcriptional units, dipR, dipA, dipBC, dipDEFG, dipH and dipJKLM. The purified DipR protein has six binding sites sharing the 6-bp conserved motif sequence 5'-GWATAC-3'. Site-directed mutations indicated that these motif sequences are essential for DipR binding. Moreover, the four key amino acid residues R63, R67, H196 and H218 of DipR, examined by site-directed mutagenesis, played crucial roles in DipR regulation. Bioinformatics analysis showed that dip clusters including dipR genes are widely distributed in bacteria, are taxon-related, and co-evolved with their hosts. This paper provides new insights into the transcriptional regulatory mechanism of dipicolinic acid degradation by DipR in bacteria.
Collapse
Affiliation(s)
- Yinhu Jiang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kexin Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Xu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lanyi Xu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qimiao Xu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Mu
- Taizhou Center for Disease Prevention and Control, Taizhou 225300, China
| | - Qing Hong
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian He
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiandong Jiang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiguo Qiu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Spampinato A, Leone DL, Pohl R, Tarábek J, Šoltysová M, Polák M, Kádek A, Sýkorová V, Řezáčová P, Hocek M. ABNOH-Linked Nucleotides and DNA for Bioconjugation and Cross-linking with Tryptophan-Containing Peptides and Proteins. Chemistry 2024; 30:e202402151. [PMID: 38924659 DOI: 10.1002/chem.202402151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Reactive N-hydroxy-9-azabicyclo[3.3.1]nonane (ABNOH) linked 2'-deoxyuridine 5'-O-mono- and triphosphates were synthesized through a CuAAC reaction of ABNOH-PEG4-N3 with 5-ethynyl-dUMP or -dUTP. The modified triphosphate was used as substrate for enzymatic synthesis of modified DNA probes with KOD XL DNA polymerase. The keto-ABNO radical reacted with tryptophan (Trp) and Trp-containing peptides to form a stable tricyclic fused hexahydropyrrolo-indole conjugates. Similarly modified ABNOH-linked nucleotides reacted with Trp-containing peptides to form a stable conjugate in the presence but surprisingly even in the absence of NaNO2 (presumably through activation by O2). The reactive ABNOH-modified DNA probe was used for bioconjugations and crosslinking with Trp-containing peptides or proteins.
Collapse
Affiliation(s)
- Ambra Spampinato
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843, Prague 2, Czech Republic
| | - Denise-Liu' Leone
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Ján Tarábek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Markéta Šoltysová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Marek Polák
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Alan Kádek
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843, Prague 2, Czech Republic
| |
Collapse
|
3
|
Ni C, Prather KLJ. Consistent biosynthesis of D-glycerate from variable mixed substrates. Metab Eng 2024; 82:41-48. [PMID: 38185463 DOI: 10.1016/j.ymben.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
The use of waste streams and other renewable feedstocks in microbial biosynthesis has long been a goal for metabolic engineers. Microbes can utilize the substrate mixtures found in waste streams, though they are more technically challenging to convert to useful products compared to the single substrates of standard practice. It is difficult to achieve consistent biosynthesis in the face of the temporally changing nature of waste streams. Furthermore, the expression of all the enzymes necessary to convert mixed substrates into a product likely presents significant metabolic burden, which already plagues processes that utilize a single substrate. We developed an approach to utilize mixed feedstocks for production by activating expression of each biosynthetic pathway in the presence of its substrate. This expression control was used for two novel pathways that converted two substrates, galacturonate and gluconate, into a single product, D-glycerate. A production strain harboring both pathway plasmids produced 1.8 ± 0.3 and 1.64 ± 0.09 g L-1 of D-glycerate from galacturonate and gluconate alone, respectively. Fermentations that were fed a mixture of the two substrates, at different ratios, resulted in product titers between 1.48 ± 0.03 and 1.8 ± 0.1 g L-1. All fermentations were fed a total of 10 g L-1 substrate and there was no statistically significant difference in D-glycerate titer from the single or mixed substrate fermentations. We thus demonstrated consistent D-glycerate biosynthesis from single and mixed substrates as an example of robust conversion of complex feedstocks.
Collapse
Affiliation(s)
- Cynthia Ni
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
4
|
Deng W, Zheng Z, Chen Y, Yang M, Yan J, Li W, Zeng J, Xie J, Gong S, Zeng H. Deficiency of GntR Family Regulator MSMEG_5174 Promotes Mycobacterium smegmatis Resistance to Aminoglycosides via Manipulating Purine Metabolism. Front Microbiol 2022; 13:919538. [PMID: 35898907 PMCID: PMC9309504 DOI: 10.3389/fmicb.2022.919538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
The increasing incidence of drug-resistant tuberculosis is still an emergency for global public health and a major obstacle to tuberculosis treatment. Therefore, deciphering the novel mechanisms of mycobacterial antibiotic resistance is crucial for combatting the rapid emergence of drug-resistant strains. In this study, we identified an unexpected role of Mycobacterium smegmatis GntR family transcriptional regulator MSMEG_5174 and its homologous gene Mycobacterium tuberculosis Rv1152 in aminoglycoside antibiotic resistance. Deficiency of MSMEG_5174 rendered Mycobacterium smegmatis highly resistant to aminoglycoside antibiotic treatment, and ectopic expression of Rv1152 in MSMEG_5174 mutants restored antibiotic-induced bacterial killing. We further demonstrated that MSMEG_5174 negatively regulates the expression of purine metabolism-related genes and the accumulation of purine metabolites. Moreover, overexpression of xanthine dehydrogenase MSMEG_0871 or xanthine treatment elicited a significant decrease in aminoglycoside antibiotic lethality for Mycobacterium smegmatis. Together, our findings revealed MSMEG_5174 as a metabolic regulator and hint toward unexplored crosstalk between purine metabolism and antibiotic resistance.
Collapse
Affiliation(s)
- Wanyan Deng
- The Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Wanyan Deng,
| | - Zengzhang Zheng
- The Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yi Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Maoyi Yang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Yan
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wu Li
- The Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jie Zeng
- Department of Respiratory Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Sitang Gong
- The Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- Sitang Gong,
| | - Huasong Zeng
- The Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- Huasong Zeng,
| |
Collapse
|
5
|
Lemmens L, Tilleman L, De Koning E, Valegård K, Lindås AC, Van Nieuwerburgh F, Maes D, Peeters E. YtrA Sa, a GntR-Family Transcription Factor, Represses Two Genetic Loci Encoding Membrane Proteins in Sulfolobus acidocaldarius. Front Microbiol 2019; 10:2084. [PMID: 31552000 PMCID: PMC6746942 DOI: 10.3389/fmicb.2019.02084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/23/2019] [Indexed: 11/25/2022] Open
Abstract
In bacteria, the GntR family is a widespread family of transcription factors responsible for the regulation of a myriad of biological processes. In contrast, despite their occurrence in archaea only a little information is available on the function of GntR-like transcription factors in this domain of life. The thermoacidophilic crenarchaeon Sulfolobus acidocaldarius harbors a GntR-like regulator belonging to the YtrA subfamily, encoded as the first gene in an operon with a second gene encoding a putative membrane protein. Here, we present a detailed characterization of this regulator, named YtrASa, with a focus on regulon determination and mechanistic analysis with regards to DNA binding. Genome-wide chromatin immunoprecipitation and transcriptome experiments, the latter employing a ytrASa overexpression strain, demonstrate that the regulator acts as a repressor on a very restricted regulon, consisting of only two targets including the operon encoding its own gene and a distinct genetic locus encoding another putative membrane protein. For both targets, a conserved 14-bp semi-palindromic binding motif was delineated that covers the transcriptional start site and that is surrounded by additional half-site motifs. The crystallographic structure of YtrASa was determined, revealing a compact dimeric structure in which the DNA-binding motifs are oriented ideally to enable a specific high-affinity interaction with the core binding motif. This study provides new insights into the functioning of a YtrA-like regulator in the archaeal domain of life.
Collapse
Affiliation(s)
- Liesbeth Lemmens
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurentijn Tilleman
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Ezra De Koning
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Valegård
- Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Ann-Christin Lindås
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Filip Van Nieuwerburgh
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dominique Maes
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
6
|
Tramonti A, Nardella C, di Salvo ML, Pascarella S, Contestabile R. The MocR-like transcription factors: pyridoxal 5'-phosphate-dependent regulators of bacterial metabolism. FEBS J 2018; 285:3925-3944. [PMID: 29974999 DOI: 10.1111/febs.14599] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022]
Abstract
Many biological functions played by current proteins were not created by evolution from scratch, rather they were obtained combining already available protein scaffolds. This is the case of MocR-like bacterial transcription factors (MocR-TFs), a subclass of GntR transcription regulators, whose structure is the outcome of the fusion between DNA-binding proteins and pyridoxal 5'-phosphate (PLP)-dependent enzymes. The resultant chimeras can count on the properties of both protein classes, i.e. the capability to recognize specific DNA sequences and to bind PLP and amino-compounds; it is the modulation of such binding properties to confer to MocR-TFs chimeras the ability to interact with effector molecules and DNA so as to regulate transcription. MocR-TFs control different metabolic processes involving vitamin B6 and amino acids, which are canonical ligands of PLP-dependent enzymes. However, MocR-TFs are also implicated in the metabolism of compounds that are not substrates of PLP-dependent enzymes, such as rhizopine and ectoine. Genomic analyses show that MocR-TFs are widespread among eubacteria, implying an essential role in their metabolism and highlighting the scarcity of our knowledge on these important players in microbial metabolism. Although MocR-TFs have been discovered 15 years ago, the research activity on these transcriptional regulators has only recently intensified, producing a wealth of information that needs to be brought back to general principles. This is the main task of this review, which reports and analyses the available information concerning MocR-TFs functional role, structural features, interaction with effector molecules and the characteristics of DNA transcriptional factor-binding sites of MocR-based regulatory systems.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy.,Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| | - Caterina Nardella
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| | - Martino L di Salvo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| | - Stefano Pascarella
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| |
Collapse
|
7
|
Genetic and phenotypic analysis of carbohydrate metabolism and transport in Lactobacillus reuteri. Int J Food Microbiol 2018; 272:12-21. [DOI: 10.1016/j.ijfoodmicro.2018.02.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
|
8
|
Yeo HK, Park YW, Lee JY. Structural basis of operator sites recognition and effector binding in the TetR family transcription regulator FadR. Nucleic Acids Res 2017; 45:4244-4254. [PMID: 28160603 PMCID: PMC5397183 DOI: 10.1093/nar/gkx009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/05/2017] [Indexed: 12/01/2022] Open
Abstract
FadR is a fatty acyl-CoA dependent transcription factor that regulates genes encoding proteins involved in fatty-acid degradation and synthesis pathways. In this study, the crystal structures of Bacillus halodurans FadR, which belong to the TetR family, have been determined in three different forms: ligand-bound, ligand-free and DNA-bound at resolutions of 1.75, 2.05 and 2.80 Å, respectively. Structural and functional data showed that B. halodurans FadR was bound to its operator site without fatty acyl-CoAs. Structural comparisons among the three different forms of B. halodurans FadR revealed that the movement of DNA binding domains toward the operator DNA was blocked upon binding of ligand molecules. These findings suggest that the TetR family FadR negatively regulates the genes involved in fatty acid metabolism by binding cooperatively to the operator DNA as a dimer of dimers.
Collapse
Affiliation(s)
- Hyun Ku Yeo
- Department of Life Science, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Young Woo Park
- Department of Life Science, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Jae Young Lee
- Department of Life Science, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do 10326, Republic of Korea
| |
Collapse
|
9
|
Tanaka K, Iwasaki K, Morimoto T, Matsuse T, Hasunuma T, Takenaka S, Chumsakul O, Ishikawa S, Ogasawara N, Yoshida KI. Hyperphosphorylation of DegU cancels CcpA-dependent catabolite repression of rocG in Bacillus subtilis. BMC Microbiol 2015; 15:43. [PMID: 25880922 PMCID: PMC4348106 DOI: 10.1186/s12866-015-0373-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/04/2015] [Indexed: 11/18/2022] Open
Abstract
Background The two-component regulatory system, involving the histidine sensor kinase DegS and response regulator DegU, plays an important role to control various cell processes in the transition phase of Bacillus subtilis. The degU32 allele in strain 1A95 is characterized by the accumulation of phosphorylated form of DegU (DegU-P). Results Growing 1A95 cells elevated the pH of soytone-based medium more than the parental strain 168 after the onset of the transition phase. The rocG gene encodes a catabolic glutamate dehydrogenase that catalyzes one of the main ammonia-releasing reactions. Inactivation of rocG abolished 1A95-mediated increases in the pH of growth media. Thus, transcription of the rocG locus was examined, and a novel 3.7-kb transcript covering sivA, rocG, and rocA was found in 1A95 but not 168 cells. Increased intracellular fructose 1,6-bisphosphate (FBP) levels are known to activate the HPr kinase HPrK, and to induce formation of the P-Ser-HPr/CcpA complex, which binds to catabolite responsive elements (cre) and exerts CcpA-dependent catabolite repression. A putative cre found within the intergenic region between sivA and rocG, and inactivation of ccpA led to creation of the 3.7-kb transcript in 168 cells. Analyses of intermediates in central carbon metabolism revealed that intracellular FBP levels were lowered earlier in 1A95 than in 168 cells. A genome wide transcriptome analysis comparing 1A95 and 168 cells suggested similar events occurring in other catabolite repressive loci involving induction of lctE encoding lactate dehydrogenase. Conclusions Under physiological conditions the 3.7-kb rocG transcript may be tightly controlled by a roadblock mechanism involving P-Ser-HPr/CcpA in 168 cells, while in 1A95 cells abolished repression of the 3.7-kb transcript. Accumulation of DegU-P in 1A95 affects central carbon metabolism involving lctE enhanced by unknown mechanisms, downregulates FBP levels earlier, and inactivates HPrK to allow the 3.7-kb transcription, and thus similar events may occur in other catabolite repressive loci. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0373-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kosei Tanaka
- Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo, Japan.
| | - Kana Iwasaki
- Department of Agrobioscience, Kobe University, Kobe, Hyogo, Japan.
| | - Takuya Morimoto
- Biological Science Laboratories, Kao Corporation, Haga, Tochigi, Japan. .,Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
| | | | - Tomohisa Hasunuma
- Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo, Japan.
| | - Shinji Takenaka
- Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo, Japan. .,Department of Agrobioscience, Kobe University, Kobe, Hyogo, Japan.
| | - Onuma Chumsakul
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
| | - Shu Ishikawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
| | - Naotake Ogasawara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
| | - Ken-ichi Yoshida
- Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo, Japan. .,Department of Agrobioscience, Kobe University, Kobe, Hyogo, Japan.
| |
Collapse
|
10
|
Freyre-González JA, Manjarrez-Casas AM, Merino E, Martinez-Nuñez M, Perez-Rueda E, Gutiérrez-Ríos RM. Lessons from the modular organization of the transcriptional regulatory network of Bacillus subtilis. BMC SYSTEMS BIOLOGY 2013; 7:127. [PMID: 24237659 PMCID: PMC4225672 DOI: 10.1186/1752-0509-7-127] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 11/12/2013] [Indexed: 12/27/2022]
Abstract
Background The regulation of gene expression at the transcriptional level is a fundamental process in prokaryotes. Among the different kind of mechanisms modulating gene transcription, the one based on DNA binding transcription factors, is the most extensively studied and the results, for a great number of model organisms, have been compiled making it possible the in silico construction of their corresponding transcriptional regulatory networks and the analysis of the biological relationships of the components of these intricate networks, that allows to elucidate the significant aspects of their organization and evolution. Results We present a thorough review of each regulatory element that constitutes the transcriptional regulatory network of Bacillus subtilis. For facilitating the discussion, we organized the network in topological modules. Our study highlight the importance of σ factors, some of them acting as master regulators which characterize modules by inter- or intra-connecting them and play a key role in the cascades that define relevant cellular processes in this organism. We discussed that some particular functions were distributed in more than one module and that some modules contained more than one related function. We confirm that the presence of paralogous proteins confers advantages to B. subtilis to adapt and select strategies to successfully face the extreme and changing environmental conditions in which it lives. Conclusions The intricate organization is the product of a non-random network evolution that primarily follows a hierarchical organization based on the presence of transcription and σ factor, which is reflected in the connections that exist within and between modules.
Collapse
Affiliation(s)
- Julio A Freyre-González
- Departamentos de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Postal 510-3, Cuernavaca, Morelos 62250, México.
| | | | | | | | | | | |
Collapse
|
11
|
Tanabe T, Naka A, Aso H, Nakao H, Narimatsu S, Inoue Y, Ono T, Yamamoto S. A Novel Aerobactin Utilization Cluster inVibrio vulnificuswith a Gene Involved in the Transcription Regulation of theiutAHomologue. Microbiol Immunol 2013; 49:823-34. [PMID: 16172537 DOI: 10.1111/j.1348-0421.2005.tb03671.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We demonstrated that Vibrio vulnificus M2799 utilizes aerobactin for growth as an exogenous siderophore under iron-limiting conditions, concomitant with enhanced production of the 76-kDa iron-repressible outer membrane protein. Subsequently, by applying the Fur titration assay method to the M2799 genomic libraries followed by further cloning of the regions surrounding the candidate genes, we identified the 8.4-kb aerobactin utilization gene cluster which consists of five genes arranged in three distinct transcriptional units. It was confirmed by disruption of the corresponding genes that the first unit forming a three-gene operon (vatCDB) and the third unit of a single gene (iutA) encode an ATP-binding cassette transport component and the 76-kDa ferric aerobactin receptor, respectively. The second unit of another single gene (iutR), encodes a homologue of the GntR family of transcriptional repressors. Although transcription of the first and third units was iron-regulated, the iutR gene was transcribed regardless of iron status in the growth medium. Construction of an iutR disruptant coupled with genetic complementation experiments suggested that the gene encodes a transcriptional repressor for iutA. This is the first example of a regulator gene involved in aerobactin-enhanced production of IutA.
Collapse
Affiliation(s)
- Tomotaka Tanabe
- Department of Molecular Biopharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1 Tsushima-naka, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
An SQ, Lu GT, Su HZ, Li RF, He YQ, Jiang BL, Tang DJ, Tang JL. Systematic mutagenesis of all predicted gntR genes in Xanthomonas campestris pv. campestris reveals a GntR family transcriptional regulator controlling hypersensitive response and virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1027-1039. [PMID: 21615202 DOI: 10.1094/mpmi-08-10-0180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The GntR family is one of the most abundant and widely distributed groups of helix-turn-helix transcriptional regulators in bacteria. Six open reading frames in the genome of the plant pathogen Xanthomonas campestris pv. campestris were predicted to encode GntR regulators. All six of the predicted GntR-encoding genes were individually mutagenized and mutants from five of them were successfully obtained. Plant disease response assays revealed that one, whose product belongs to the YtrA subfamily and has been named HpaR1, is involved in the hypersensitive response (HR) and virulence. Electrophoretic mobility shift assays and in vitro transcription assays revealed that HpaR1 could repress its own transcription level through binding to its promoter sequence, indicating an autoregulatory feedback inhibition mechanism for HpaR1 expression. Promoter-gusA reporter and reverse-transcription polymerase chain reaction analyses revealed that HpaR1 positively and negatively affects the expression of HR and pathogenicity (hrp) genes in host plant and standard media, respectively. Constitutive expression of the key hrp regulator, hrpG, in the hpaR1 mutant could bypass the requirement of HpaR1 for the induction of wild-type HR, suggesting that HpaR1 regulates the expression of hrp genes that encode the type III secretion system via hrpG.
Collapse
|
13
|
Tan C, Fu S, Liu M, Jin M, Liu J, Bei W, Chen H. Cloning, expression and characterization of a cell wall surface protein, 6-phosphogluconate-dehydrogenase, of Streptococcus suis serotype 2. Vet Microbiol 2008; 130:363-70. [DOI: 10.1016/j.vetmic.2008.02.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/20/2008] [Accepted: 02/22/2008] [Indexed: 12/13/2022]
|
14
|
Harbitz I, Chowdhary B, Chowdhary R, Kran S, Frengen E, Gustavsson I, Davies W. Isolation, characterization and chromosomal assignment of a partial cDNA for porcine 6-phosphogluconate dehydrogenase. Hereditas 2008; 112:83-8. [PMID: 2361879 DOI: 10.1111/j.1601-5223.1990.tb00141.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A partial cDNA for 6-phosphogluconate dehydrogenase (PGD, EC 1.1.1.44) was isolated from a porcine liver cDNA library using a rat PGD cDNA. The identity of the PGD cDNA was confirmed by DNA sequencing and comparison of the amino acid sequence with the corresponding ovine sequence. The PGD cDNA was assigned to 6q2.5-2.7 by in situ hybridization.
Collapse
Affiliation(s)
- I Harbitz
- Department of Biochemistry, Norwegian College of Veterinary Medicine, Oslo
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
In Escherichia coli, the main player in transcription regulation of fatty acid metabolism is the FadR protein, which is involved in negative regulation of fatty acid degradation and in positive and negative regulation of the cellular processes related to it, as well as in positive regulation of the biosynthesis of unsaturated fatty acids in a concerted manner with negative regulation of FabR. On the other hand, Bacillus subtilis possesses two global transcriptional regulators, FadR (YsiA) and FapR. B. subtilis FadR represses fatty acid degradation, whereas FapR represses almost all the processes in the biosynthesis of saturated fatty acids and phospholipids. Furthermore, Streptococcus pneumoniae FabT represses the genes of fatty acid biosynthesis that are clustered in its genome. Long-chain acyl-CoAs appear to be metabolic signals for fatty acid degradation by bacteria in general, and antagonize the FadR protein from either E. coli or B. subtilis. However, malonyl-CoA is a metabolic signal for fatty acid and phospholipid biosynthesis by Gram-positive low-GC bacteria, and it antagonizes FapR. These would be the primary aspects for understanding the elaborate and complex regulation of fatty acid metabolism in bacteria to maintain membrane lipid homeostasis.
Collapse
Affiliation(s)
- Yasutaro Fujita
- Department of Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, Fukuyama 729-0292, Japan.
| | | | | |
Collapse
|
16
|
Zaharik ML, Lamb SS, Baker KE, Krogan NJ, Neuhard J, Kelln RA. Mutations in yhiT enable utilization of exogenous pyrimidine intermediates in Salmonella enterica serovar Typhimurium. Microbiology (Reading) 2007; 153:2472-2482. [PMID: 17660412 DOI: 10.1099/mic.0.2007/007583-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutants capable of utilizing the pyrimidine biosynthetic intermediates carbamoylaspartate and dihydroorotate for growth were derived from pyrimidine auxotrophs of Salmonella enterica serovar Typhimurium LT2. The gain-of-function phenotypes both resulted from mutations in a single gene, yhiT, the third gene of a putative four-gene operon, yhiVUTS, for which there is no homologous region in Escherichia coli. Notably, when a mutant yhiT allele was transferred to a pyrimidine-requiring E. coli strain, the transformant was then capable of using carbamoylaspartate or dihydrorotate as a pyrimidine source. The operon arrangement of the yhiVUTS genes was supported by genetic analyses and studies employing RT-PCR, coupled to the determination of the transcriptional start site using 5'-random amplification of cDNA ends (RACE). Computer-generated predictions indicated that YhiT is an integral membrane protein with 12 putative transmembrane domains typical of bacterial transport proteins. Competition experiments showed that mutant YhiT interacts with the C4-dicarboxylates succinate and malate, as well as the amino acids aspartate and asparagine. The native function of wild-type YhiT remains undetermined, but the collective results are consistent with a role as a general transporter of C4-dicarboxylates and other compounds with a similar basic structure.
Collapse
Affiliation(s)
- Michelle L Zaharik
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Sherry S Lamb
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Kristian E Baker
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Nevan J Krogan
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Jan Neuhard
- Department of Biological Chemistry, Institute of Molecular Biology, University of Copenhagen, DK1307, Denmark
| | - Rod A Kelln
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
17
|
Kristoffersen SM, Ravnum S, Tourasse NJ, Økstad OA, Kolstø AB, Davies W. Low concentrations of bile salts induce stress responses and reduce motility in Bacillus cereus ATCC 14579 [corrected]. J Bacteriol 2007; 189:5302-13. [PMID: 17496091 PMCID: PMC1951874 DOI: 10.1128/jb.00239-07] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 04/30/2007] [Indexed: 11/20/2022] Open
Abstract
Tolerance to bile salts was investigated in forty Bacillus cereus strains, including 17 environmental isolates, 11 dairy isolates, 3 isolates from food poisoning outbreaks, and 9 other clinical isolates. Growth of all strains was observed at low bile salt concentrations, but no growth was observed on LB agar plates containing more than 0.005% bile salts. Preincubation of the B. cereus type strain, ATCC 14579, in low levels of bile salts did not increase tolerance levels. B. cereus ATCC 14579 was grown to mid-exponential growth phase and shifted to medium containing bile salts (0.005%). Global expression patterns were determined by hybridization of total cDNA to a 70-mer oligonucleotide microarray. A general stress response and a specific response to bile salts were observed. The general response was similar to that observed in cultures grown in the absence of bile salts but at a higher (twofold) cell density. Up-regulation of several putative multidrug exporters and transcriptional regulators and down-regulation of most motility genes were observed as part of the specific response. Motility experiments in soft agar showed that motility decreased following bile salts exposure, in accordance with the transcriptional data. Genes encoding putative virulence factors were either unaffected or down-regulated.
Collapse
Affiliation(s)
- Simen M Kristoffersen
- Department of Molecular Biosciences, University of Oslo, PB1041 Blindern, 0316 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
18
|
In silico analysis and characterization of GntR family of regulators from Mycobacterium tuberculosis. Tuberculosis (Edinb) 2006; 87:242-7. [PMID: 17194626 DOI: 10.1016/j.tube.2006.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2006] [Revised: 11/03/2006] [Accepted: 11/03/2006] [Indexed: 10/23/2022]
Abstract
The genome of Mycobacterium tuberculosis contains a large number of hypothetical and poorly characterized proteins including the proteins belonging to the GntR family. The regulators of this family show a conserved N-terminal DNA-binding domain but have a highly diverse C-terminal domain involved in the effector-binding and/or oligomerization. This heterogeneity has led to a further classification of this family into various subfamilies. The sequence analysis of the M. tuberculosis genome revealed that five genes encode for FadR-like regulators, one gene for HutC-like regulator and one for YtrA-like regulator. This classification was also consistent with specific secondary structural features known to be associated with FadR, HutC and YtrA subfamilies. Out of the five FadR-like regulators three of the regulators were further subclassified into FadR group and two of them into the VanR group. Interestingly Rv3060c, a FadR-like regulator, was shown to have an unusual size which led us to demonstrate it as a product of a gene duplication and fusion event. Thus this study extends the genome annotation of M. tuberculosis and provides important leads for initiating experimental characterization of these proteins, which in turn will enrich our knowledge of their role in cellular physiology.
Collapse
|
19
|
Letek M, Valbuena N, Ramos A, Ordóñez E, Gil JA, Mateos LM. Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum. J Bacteriol 2006; 188:409-23. [PMID: 16385030 PMCID: PMC1347311 DOI: 10.1128/jb.188.2.409-423.2006] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes involved in gluconate catabolism (gntP and gntK) in Corynebacterium glutamicum are scattered in the chromosome, and no regulatory genes are apparently associated with them, in contrast with the organization of the gnt operon in Escherichia coli and Bacillus subtilis. In C. glutamicum, gntP and gntK are essential genes when gluconate is the only carbon and energy source. Both genes contain upstream regulatory regions consisting of a typical promoter and a hypothetical cyclic AMP (cAMP) receptor protein (CRP) binding region but lack the expected consensus operator region for binding of the GntR repressor protein. Expression analysis by Northern blotting showed monocistronic transcripts for both genes. The expression of gntP and gntK is not induced by gluconate, and the gnt genes are subject to catabolite repression by sugars, such as glucose, fructose, and sucrose, as was detected by quantitative reverse transcription-PCR (qRT-PCR). Specific analysis of the DNA promoter sequences (PgntK and PgntP) was performed using bifunctional promoter probe vectors containing mel (involved in melanin production) or egfp2 (encoding a green fluorescent protein derivative) as the reporter gene. Using this approach, we obtained results parallel to those from qRT-PCR. An applied example of in vivo gene expression modulation of the divIVA gene in C. glutamicum is shown, corroborating the possible use of the gnt promoters to control gene expression. glxR (which encodes GlxR, the hypothetical CRP protein) was subcloned from the C. glutamicum chromosomal DNA and overexpressed in corynebacteria; we found that the level of gnt expression was slightly decreased compared to that of the control strains. The purified GlxR protein was used in gel shift mobility assays, and a specific interaction of GlxR with sequences present on PgntP and PgntK fragments was detected only in the presence of cAMP.
Collapse
Affiliation(s)
- Michal Letek
- Area de Microbiología, Dpto. Ecología, Genética y Microbiología, Universidad de León, 24071 León, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Satomura T, Shimura D, Asai K, Sadaie Y, Hirooka K, Fujita Y. Enhancement of glutamine utilization in Bacillus subtilis through the GlnK-GlnL two-component regulatory system. J Bacteriol 2005; 187:4813-21. [PMID: 15995196 PMCID: PMC1169493 DOI: 10.1128/jb.187.14.4813-4821.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
During DNA microarray analysis, we discovered that the GlnK-GlnL (formerly YcbA-YcbB) two-component system positively regulates the expression of the glsA-glnT (formerly ybgJ-ybgH) operon in response to glutamine in the culture medium on Northern analysis. As a result of gel retardation and DNase I footprinting analyses, we found that the GlnL protein interacts with a region (bases -13 to -56; +1 is the transcription initiation base determined on primer extension analysis of glsA-glnT) in which a direct repeat, TTTTGTN4TTTTGT, is present. Furthermore, the glsA and glnT genes were biochemically verified to encode glutaminase and glutamine transporter, respectively.
Collapse
Affiliation(s)
- Takenori Satomura
- Department of Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, Higashimura-cho, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Cervellati C, Dallocchio F, Bergamini CM, Cook PF. Role of methionine-13 in the catalytic mechanism of 6-phosphogluconate dehydrogenase from sheep liver. Biochemistry 2005; 44:2432-40. [PMID: 15709755 DOI: 10.1021/bi0476679] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The crystal structure of sheep liver 6-phosphogluconate dehydrogenase (6PGDH) shows marked differences in the position of the nicotinamide mononucleotide (NMN) moiety of NADP(+) and NADPH (Adams, J. M., Grant, H. E., Gover, S., Naylor, C. E., and Phillips, C. (1994) Structure 2, 651-668). A methionine side chain (Met13) interacts with the si face of NADP(+) in the complex with the oxidized coenzyme, is likely to affect the binding mode of the nicotinamide ring of NADP(+), and may play a role in catalysis in the 6PGDH reaction. To check this possibility we performed site-directed mutagenesis, changing M13 to a number of residues including V, I, C, F, and Q. Mutant enzymes were characterized with respect to their kinetic parameters and primary deuterium isotope effects. All mutations resulted in a decrease in affinity of the enzyme for NADP(+), but not NADPH. In addition, the M13 to C (M13C), M13F, and M13Q mutant enzymes exhibited a decrease of at least an order of magnitude in V/E(t). The deuterium isotope effects on V and V/K(6PG) were decreased to about 1.2 for the M13F and M13C mutant enzymes, while they were increased to about 2.4 for the M13Q enzyme (a value of 1.8-1.9 is obtained for the wild-type enzyme). In at least three instances changes in the overall rate of the oxidative decarboxylation reaction relative to other steps along the reaction pathway were observed. Isotope effects indicate that the hydride transfer steps can become either more or less rate-determining dependent on the substitution. Data are consistent with a significant role of M13 in the orientation of the cofactor nicotinamide ring in the mechanism of 6PGDH, likely with respect to geometry and distance of the ring from C3 of 6PG.
Collapse
Affiliation(s)
- Carlo Cervellati
- Dipartimento di Biochimica e Biologia Molecolare, Università di Ferrara, via Borsari 46, 44100 Ferrara, Italy
| | | | | | | |
Collapse
|
22
|
Goulielmos GN, Eliopoulos E, Loukas M, Tsakas S. Functional constraints of 6-phosphogluconate dehydrogenase (6-PGD) based on sequence and structural information. J Mol Evol 2005; 59:358-71. [PMID: 15553090 DOI: 10.1007/s00239-004-2630-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The pentose phosphate cycle is considered as a major source of NADPH and pentose needed for nucleic acid biosynthesis. 6-Phosphogluconate dehydrogenase (6PGD), an enzyme participating in this cycle, catalyzes the oxidative decarboxylation of 6PGD to ribulose 5-phosphate with the subsequent release of CO2 and the reduction of NADP. We have determined the amino acid sequence of 6PGD of Bactrocera oleae and constructed a three-dimensional model based on the homologous known sheep structure. In a comparative study of 6PGD sequences from numerous species, all the conserved and variable regions of the enzyme were analyzed and the regions of functional importance were localized, in an attempt promoted also by the direct involvement of the enzyme in various human diseases. Thus, analysis of amino acid variability of 37 6PGD sequences revealed that all regions important for the catalytic activity, such as those forming the substrate and coenzyme binding sites, are highly conserved in all species examined. Moreover, several amino acid residues responsible for substrate and coenzyme specificity were also found to be identical in all species examined. The higher percentage of protein divergence is observed at two regions that accumulate mutations, located at the distant parts of the two domains of the enzyme with respect to their interface. These peripheral regions of non-functional importance are highly variable and are predicted as antigenic, thus reflecting possible regions for antibody recognition. Furthermore, locating the differences between diptera 6PGD sequences on the three-dimensional model suggests probable positions of different amino acid residues appearing at B. oleae fast, intermediate, and slow allozymic variants.
Collapse
Affiliation(s)
- George N Goulielmos
- Department of Genetics, Agricultural University of Athens, Iera Odos 75, Votanikos, 118 55 Athens, Greece.
| | | | | | | |
Collapse
|
23
|
Rigali S, Derouaux A, Giannotta F, Dusart J. Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J Biol Chem 2002; 277:12507-15. [PMID: 11756427 DOI: 10.1074/jbc.m110968200] [Citation(s) in RCA: 294] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Haydon and Guest (Haydon, D. J, and Guest, J. R. (1991) FEMS Microbiol. Lett. 63, 291-295) first described the helix-turn-helix GntR family of bacterial regulators. They presented them as transcription factors sharing a similar N-terminal DNA-binding (d-b) domain, but they observed near-maximal divergence in the C-terminal effector-binding and oligomerization (E-b/O) domain. To elucidate this C-terminal heterogeneity, structural, phylogenetic, and functional analyses were performed on a family that now comprises about 270 members. Our comparative study first focused on the C-terminal E-b/O domains and next on DNA-binding domains and palindromic operator sequences, has classified the GntR members into four subfamilies that we called FadR, HutC, MocR, and YtrA. Among these subfamilies a degree of similarity of about 55% was observed throughout the entire sequence. Structure/function associations were highlighted although they were not absolutely stringent. The consensus sequences deduced for the DNA-binding domain were slightly different for each subfamily, suggesting that fusion between the D-b and E-b/O domains have occurred separately, with each subfamily having its own D-b domain ancestor. Moreover, the compilation of the known or predicted palindromic cis-acting elements has highlighted different operator sequences according to our subfamily subdivision. The observed C-terminal E-b/O domain heterogeneity was therefore reflected on the DNA-binding domain and on the cis-acting elements, suggesting the existence of a tight link between the three regions involved in the regulating process.
Collapse
Affiliation(s)
- Sébastien Rigali
- Centre d'Ingénierie des Protéines, Université de Liège, Institut de Chimie B6, Sart-Tilman, B-4000 Liège, Belgium.
| | | | | | | |
Collapse
|
24
|
Dauner M, Sonderegger M, Hochuli M, Szyperski T, Wüthrich K, Hohmann HP, Sauer U, Bailey JE. Intracellular carbon fluxes in riboflavin-producing Bacillus subtilis during growth on two-carbon substrate mixtures. Appl Environ Microbiol 2002; 68:1760-71. [PMID: 11916694 PMCID: PMC123836 DOI: 10.1128/aem.68.4.1760-1771.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metabolic responses to cofeeding of different carbon substrates in carbon-limited chemostat cultures were investigated with riboflavin-producing Bacillus subtilis. Relative to the carbon content (or energy content) of the substrates, the biomass yield was lower in all cofeeding experiments than with glucose alone. The riboflavin yield, in contrast, was significantly increased in the acetoin- and gluconate-cofed cultures. In these two scenarios, unusually high intracellular ATP-to-ADP ratios correlated with improved riboflavin yields. Nuclear magnetic resonance spectra recorded with amino acids obtained from biosynthetically directed fractional (13)C labeling experiments were used in an isotope isomer balancing framework to estimate intracellular carbon fluxes. The glycolysis-to-pentose phosphate (PP) pathway split ratio was almost invariant at about 80% in all experiments, a result that was particularly surprising for the cosubstrate gluconate, which feeds directly into the PP pathway. The in vivo activities of the tricarboxylic acid cycle, in contrast, varied more than twofold. The malic enzyme was active with acetate, gluconate, or acetoin cofeeding but not with citrate cofeeding or with glucose alone. The in vivo activity of the gluconeogenic phosphoenolpyruvate carboxykinase was found to be relatively high in all experiments, with the sole exception of the gluconate-cofed culture.
Collapse
Affiliation(s)
- Michael Dauner
- Institute of Biotechnology, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Teramoto M, Harayama S, Watanabe K. PhcS represses gratuitous expression of phenol-metabolizing enzymes in Comamonas testosteroni R5. J Bacteriol 2001; 183:4227-34. [PMID: 11418563 PMCID: PMC95312 DOI: 10.1128/jb.183.14.4227-4234.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified an open reading frame, designated phcS, downstream of the transcriptional activator gene (phcR) for the expression of multicomponent phenol hydroxylase (mPH) in Comamonas testosteroni R5. The deduced product of phcS was homologous to AphS of C. testosteroni TA441, which belongs to the GntR family of transcriptional regulators. The transformation of Pseudomonas aeruginosa PAO1c (phenol negative, catechol positive) with pROR502 containing phcR and the mPH genes conferred the ability to grow on phenol, while transformation with pROR504 containing phcS, phcR, and mPH genes did not confer this ability. The disruption of phcS in strain R5 had no effect on its phenol-oxygenating activity in a chemostat culture with phenol. The phenol-oxygenating activity was not expressed in strain R5 grown in a chemostat with acetate. In contrast, the phenol-oxygenating activity in the strain with a knockout phcS gene when grown in a chemostat with acetate as the limiting growth factor was 66% of that obtained in phenol-grown cells of the strain with a knockout in the phcS gene. The disruption of phcS and/or phcR and the complementation in trans of these defects confirm that PhcS is a trans-acting repressor and that the unfavorable expression of mPH in the phcS knockout cells grown on acetate requires PhcR. These results show that the PhcS protein repressed the gratuitous expression of phenol-metabolizing enzymes in the absence of the genuine substrate and that strain R5 acted by an unknown mechanism in which the PhcS-mediated repression was overcome in the presence of the pathway substrate.
Collapse
Affiliation(s)
- M Teramoto
- Marine Biotechnology Institute, Kamaishi Laboratories, Kamaishi City, Iwate 026-0001, Japan
| | | | | |
Collapse
|
26
|
Abstract
The gram-positive bacterium Bacillus subtilisis capable of using numerous carbohydrates as single sources of carbon and energy. In this review, we discuss the mechanisms of carbon catabolism and its regulation. Like many other bacteria, B. subtilis uses glucose as the most preferred source of carbon and energy. Expression of genes involved in catabolism of many other substrates depends on their presence (induction) and the absence of carbon sources that can be well metabolized (catabolite repression). Induction is achieved by different mechanisms, with antitermination apparently more common in B. subtilis than in other bacteria. Catabolite repression is regulated in a completely different way than in enteric bacteria. The components mediating carbon catabolite repression in B. subtilis are also found in many other gram-positive bacteria of low GC content.
Collapse
Affiliation(s)
- J Stülke
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochemie und Genetik der Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
27
|
Lee HY, An JH, Kim YS. Identification and characterization of a novel transcriptional regulator, MatR, for malonate metabolism in Rhizobium leguminosarum bv. trifolii. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:7224-30. [PMID: 11106435 DOI: 10.1046/j.1432-1327.2000.01834.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel gene, matR, located upstream of matABC, transcribed in the opposite direction, and encoding a putative regulatory protein by sequence analysis was discovered from Rhizobium leguminosarum bv. trifolii. The matA, matB, and matC genes encode malonyl-CoA decarboxylase, malonyl-CoA synthetase, and a presumed malonate transporter, respectively. Together, these enzymes catalyze the uptake and conversion of malonate to acetyl-CoA. The deduced amino-acid sequence of matR showed sequence similarity with GntR from Bacillus subtilis in the N-terminal region encoding a helix-turn-helix domain. Electrophoretic mobility shift assay indicated that MatR bound to a fragment of DNA corresponding to the mat promoter region. The addition of malonate or methylmalonate increased the association of MatR and DNA fragment. DNase I footprinting assays identified a MatR binding site encompassing 66 nucleotides near the mat promoter. The mat operator region included an inverted repeat (TCTTGTA/TACACGA) centered -46.5 relative to the transcription start site. Transcriptional assays, using the luciferase gene, revealed that MatR represses transcription from the mat promoter and malonate alleviates MatR-mediated repression effect on the expression of Pmat-luc+ reporter fusion.
Collapse
Affiliation(s)
- H Y Lee
- Department of Biochemistry, College of Science, Protein Network Research Center, Yonsei University, Seoul 120-749, Korea
| | | | | |
Collapse
|
28
|
Ortuño-Olea L, Durán-Vargas S. The L-asparagine operon of Rhizobium etli contains a gene encoding an atypical asparaginase. FEMS Microbiol Lett 2000; 189:177-82. [PMID: 10930734 DOI: 10.1111/j.1574-6968.2000.tb09226.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The L-asparagine operon of Rhizobium etli was cloned and sequenced. Sequence analysis showed four adjacent open reading frames which were designated as ansR, ansP, ansA and ansB. The ansR and ansP genes encoded proteins similar to a transcriptional repressor and an L-asparagine permease, respectively. By Tn5 mutagenesis and complementation analysis we identified the ansA product as a thermolabile asparaginase, and the ansB product as an aspartase. An asparagine-inducible transcript covering ansP, ansA and ansB was detected by reverse transcription (RT)-PCR, indicating that these genes are organized in an operon. Introduction of the R. etli ans operon into Sinorhizobium meliloti induced growth with asparagine as the sole carbon and nitrogen source, suggesting that the ans operon plays the same physiological role in both bacteria. The product of the R. etli ansA gene showed no sequence similarity with previously reported microbial asparaginases, this protein seems to be an atypical asparaginase which evolved apart from bacterial and yeast asparaginases.
Collapse
Affiliation(s)
- L Ortuño-Olea
- Departamento de Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, Código Postal 04510, D.F., México, Mexico
| | | |
Collapse
|
29
|
Mendes MV, Aparicio JF, Martín JF. Complete nucleotide sequence and characterization of pSNA1 from pimaricin-producing Streptomyces natalensis that replicates by a rolling circle mechanism. Plasmid 2000; 43:159-65. [PMID: 10686136 DOI: 10.1006/plas.1999.1446] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A cryptic plasmid, pSNA1, has been identified in the pimaricin-producing Streptomyces natalensis strain ATCC 27448. pSNA1 has been mapped with restriction endonucleases and its complete nucleotide sequence was determined. The circular DNA molecule is 9367 bp in length and has a 71.3% G+C content. Its estimated copy number is 30. Analysis of the sequence and codon preferences indicated that pSNA1 contains seven open reading frames [encoding peptides larger than 90 amino acid (aa) residues], ORF 1 to ORF 7, located on both strands of pSNA1. ORF 3 codes for a protein (476 aa) that shows high sequence similarity to replication-associated proteins in Streptomyces plasmids known to replicate via the rolling circle mechanism. Accumulation of single-strand intermediates further indicates that pSNA1 replicates via the rolling circle replication model. ORF 1 encodes a polypeptide of 246 aa that shares homology with KorA proteins encoded by other streptomycete plasmids. ORF 4 (SpdA) codes for a protein (161 aa) possibly involved in intramycelial plasmid transfer. Protein encoded by ORF 2 (309 aa) shares homology with a Streptomyces protein (SpdB2) also involved in plasmid spreading.
Collapse
Affiliation(s)
- M V Mendes
- Institute of Biotechnology INBIOTEC, Science Park of León, Avenida del Real, No. 1, León, 24006, Spain
| | | | | |
Collapse
|
30
|
Yoshida KI, Ishio I, Nagakawa E, Yamamoto Y, Yamamoto M, Fujita Y. Systematic study of gene expression and transcription organization in the gntZ-ywaA region of the Bacillus subtilis genome. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 3):573-579. [PMID: 10746760 DOI: 10.1099/00221287-146-3-573] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Within the framework of the international project 'The functional analysis of the Bacillus subtilis genome' in Japan and Europe, the gene expression and transcription organization of the gntZ-ywaA region (160 kb) of the B. subtilis genome has been systematically analysed. First, all unanalysed genes comprising more than 80 amino acids (125 genes) in this region were inactivated through integration of plasmid pMUTIN. No essential gene was found which could not be inactivated. All the integrants grew normally in both nutrient sporulation medium and glucose minimal medium. But an integrant in the yxbG gene exhibited an oligosporogenic phenotype in the nutrient sporulation medium. The synthesis of beta-galactosidase was examined, as a reporter for expression of the inactivated genes, during growth and sporulation in the two media. The results indicated that 36% of the promoters were inactive when cells were grown in at least one of these two media. Furthermore, the transcription of the 119 genes in this region was analysed by Northern blotting, resulting in a transcription map. The results indicate that the gntZ-ywaA region contains at least 24 polycistronic operons, including several published ones. The operons newly found in this work are yxaAB, yxaGH, yxaJKL, yxbBA-yxnB-asnH-yxaM, yxbCD, yxcED, yxdJK, yxeFGH, yxeKLMNOPQ, yxeR-yxxB, hutPHUIGM, bgIPH-yxiE, wapA-yxxG, yxiM-deaD, katB-yxiS, yxjCDEF, yxjJI and yxkF-mmsX.
Collapse
Affiliation(s)
- Ken-Ichi Yoshida
- Department of Biotechnology, Faculty of Engineering, Fukuyama University, 985 Sanzo, Higashimura-cho, Fukuyama 729-0292, Japan1
| | - Izumi Ishio
- Department of Biotechnology, Faculty of Engineering, Fukuyama University, 985 Sanzo, Higashimura-cho, Fukuyama 729-0292, Japan1
| | - Eishi Nagakawa
- Department of Biotechnology, Faculty of Engineering, Fukuyama University, 985 Sanzo, Higashimura-cho, Fukuyama 729-0292, Japan1
| | - Yoshiyuki Yamamoto
- Department of Biotechnology, Faculty of Engineering, Fukuyama University, 985 Sanzo, Higashimura-cho, Fukuyama 729-0292, Japan1
| | - Mami Yamamoto
- Department of Biotechnology, Faculty of Engineering, Fukuyama University, 985 Sanzo, Higashimura-cho, Fukuyama 729-0292, Japan1
| | - Yasutaro Fujita
- Department of Biotechnology, Faculty of Engineering, Fukuyama University, 985 Sanzo, Higashimura-cho, Fukuyama 729-0292, Japan1
| |
Collapse
|
31
|
Hagege JM, Brasch MA, Cohen SN. Regulation of transfer functions by the imp locus of the Streptomyces coelicolor plasmidogenic element SLP1. J Bacteriol 1999; 181:5976-83. [PMID: 10498709 PMCID: PMC103624 DOI: 10.1128/jb.181.19.5976-5983.1999] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SLP1(int) is a 17.2-kb genetic element that normally is integrated site specifically into the chromosome of Streptomyces coelicolor A3(2). The imp operon within SLP1(int) represses replication of both chromosomally integrated and extrachromosomal SLP1. During mating with S. lividans, SLP1(int) can excise, delete part of imp, and form a family of autonomously replicating conjugative plasmids. Earlier work has shown that impA and impC gene products act in concert to control plasmid maintenance and regulate their own transcription. Here we report that these imp genes act also on a second promoter, P(opimp) (promoter opposite imp), located adjacent to, and initiating transcription divergent from, imp to regulate loci involved in the intramycelial transfer of SLP1 plasmids. spdB1 and spdB2, two overlapping genes immediately 3' to P(opimp) and directly regulated by imp, are shown by Tn5 mutagenesis to control transfer-associated growth inhibition (i.e., pocking). Additional genes resembling transfer genes of other Streptomyces spp. plasmids and required for SLP1 transfer and/or postconjugal intramycelial spread are located more distally to P(opimp). Expression of impA and impC in an otherwise competent recipient strain prevented SLP1-mediated gene transfer of chromosomal and plasmid genes but not plasmid-independent chromosome-mobilizing activity, suggesting that information transduced to recipients after the formation of mating pairs affects imp activity. Taken together with earlier evidence that the imp operon regulates SLP1 DNA replication, the results reported here implicate imp in the overall regulation of functions related to the extrachromosomal state of SLP1.
Collapse
Affiliation(s)
- J M Hagege
- Departments of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | | | | |
Collapse
|
32
|
Zhang L, Chooback L, Cook PF. Lysine 183 is the general base in the 6-phosphogluconate dehydrogenase-catalyzed reaction. Biochemistry 1999; 38:11231-8. [PMID: 10471272 DOI: 10.1021/bi990433i] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Site-directed mutagenesis was used to change K183 of sheep liver 6-phosphogluconate dehydrogenase to A, E, H, C, Q, R, and M to probe its possible role as a general base catalyst. Each of the mutant proteins was characterized with respect to its kinetic parameters at pH 7 and the pH dependence of kinetic parameters for the K183R mutant enzyme. The only mutant enzyme that gives a significant amount of catalysis is the K183R mutant, and the extent of catalysis is decreased by about 3 orders of magnitude; the general base pK is perturbed to a pH value of >9. All other mutant enzymes exhibit rates that are decreased by about 4 orders of magnitude compared to that of the wild-type enzyme. Data are consistent with the general base function of K183.
Collapse
Affiliation(s)
- L Zhang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman 73019, USA
| | | | | |
Collapse
|
33
|
Santiago B, Schübel U, Egelseer C, Meyer O. Sequence analysis, characterization and CO-specific transcription of the cox gene cluster on the megaplasmid pHCG3 of Oligotropha carboxidovorans. Gene 1999; 236:115-24. [PMID: 10433972 DOI: 10.1016/s0378-1119(99)00245-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sequence, transcriptional, mutational and physiological analyses indicate that the carbon monoxide (CO) dehydrogenase of Oligotropha carboxidovorans is an integral and unique part of an elaborate CO oxidizing system. It is encoded by the 14.5kb gene cluster coxBCMSLDEFGHIK residing on the 128kb megaplasmid pHCG3. The CO dehydrogenase structural genes coxMSL are flanked by nine accessory genes arranged as the cox gene cluster. The cox genes are specifically and coordinately transcribed under chemolithoautotrophic conditions in the presence of CO as carbon and energy source. With the exception of CoxB and CoxK, all deduced products of the cox genes of O. carboxidovorans have counterparts in so far uncharacterized gene clusters of Pseudomonas thermocarboxydovorans, Hydrogenophaga pseudoflava, Bradyrhizobium japonicum, and Mycobacterium tuberculosis. Transposon mutagenesis suggests a function of CoxH and CoxI in the interaction of CO dehydrogenase with the cytoplasmic membrane. The specific functions of the other accessory Cox proteins are difficult to envisage right now, as the polypeptides do not show significant homologies with functionally characterized proteins in the databases. In addition to the clustered cox genes, mutational analyses have identified the genes lon, cycH and orfX which reside on the plasmid pHCG3. The Lon protease, the CycH protein and the unknown orfX gene product have essential functions in the utilization of CO.
Collapse
Affiliation(s)
- B Santiago
- Lehrstuhl für Mikrobiologie, Universität Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | | | | | | |
Collapse
|
34
|
Karsten WE, Chooback L, Cook PF. Glutamate 190 is a general acid catalyst in the 6-phosphogluconate-dehydrogenase-catalyzed reaction. Biochemistry 1998; 37:15691-7. [PMID: 9843373 DOI: 10.1021/bi9812827] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Site-directed mutagenesis was used to change E190 of sheep liver 6-phosphogluconate dehydrogenase to A, D, H, K, Q, and R to probe its possible role as a general acid catalyst. Each of the mutant proteins was characterized with respect to the pH dependence of kinetic parameters. Mutations that eliminate a titrable group at position 190, result in pH-rate profiles with no observable pK on the basic side of the V/K6PG profile. Mutations that change the pK of the group at position 190 result in the expected pK perturbations in the V/K6PG profile. Kinetic parameters obtained at the pH optimum in the pH-rate profiles are consistent with a rate-limiting tautomerization of the 1,2-enediol of ribulose 5-phosphate consistent with the proposed role of E190. Data are also consistent with some participation of E190 in an isomerization required to form the active Michaelis complex.
Collapse
Affiliation(s)
- W E Karsten
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman 73019, USA
| | | | | |
Collapse
|
35
|
Lam KH, Chow KC, Wong WK. Construction of an efficient Bacillus subtilis system for extracellular production of heterologous proteins. J Biotechnol 1998; 63:167-77. [PMID: 9803531 DOI: 10.1016/s0168-1656(98)00041-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An efficient expression/secretion vector, designated pM2Veg, was constructed for extracellular production of heterologous proteins in Bacillus subtilis. To construct pM2Veg, a synthetic cassette, the Veg cassette carrying: (1) the strong vegetative vegI promoter from B. subtilis, (2) the Escherichia coli lac operator, (3) the B. subtilis consensus ribosome-binding site, (4) the Staphylococcal protein A leader sequence, (5) a cloning region for insertion of foreign genes, (6) translational stop codons in all three reading frames, and (7) the gnt transcriptional terminator, was cloned into a derivative of the stable pRB373 B. subtilis/E. coli shuttle plasmid, the pM2 vector. The application of pM2Veg to effect secretory production of heterologous proteins was illustrated using two widely different proteins: the endoglucanase (Eng) encoded by the cenA gene of Cellulomonas fimi and human epidermal growth factor (hEGF). Levels of Eng and hEGF measured in culture supernatant samples of B. subtilis transformants harboring recombinant constructs formed between pM2Veg and the cenA and hEGF genes were 8.3 U ml-1 and 7.0 mg l-1, respectively. The Eng activity is more than four times higher than the yield from the best cenA recombinant construct previously reported, and the hEGF data represents the first successful expression of the factor in B. subtilis.
Collapse
Affiliation(s)
- K H Lam
- Department of Biochemistry, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | | | | |
Collapse
|
36
|
Erbeznik M, Dawson KA, Strobel HJ. Cloning and characterization of transcription of the xylAB operon in Thermoanaerobacter ethanolicus. J Bacteriol 1998; 180:1103-9. [PMID: 9495747 PMCID: PMC106996 DOI: 10.1128/jb.180.5.1103-1109.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genes encoding xylose isomerase (xylA) and xylulose kinase (xylB) from the thermophilic anaerobe Thermoanaerobacter ethanolicus were found to constitute an operon with the transcription initiation site 169 nucleotides upstream from the previously assigned (K. Dekker, H. Yamagata, K. Sakaguchi, and S. Udaka, Agric. Biol. Chem. 55:221-227, 1991) promoter region. The bicistronic xylAB mRNA was processed by cleavage within the 5'-terminal portion of the XylB-coding sequence. Transcription of xylAB was induced in the presence of xylose, and, unlike in all other xylose-utilizing bacteria studied, was not repressed by glucose. The existence of putative xyl operator sequences suggested that xylose utilization is controlled by a repressor-operator mechanism. The T. ethanolicus xylB gene coded for a 500-amino-acid-residue protein with a deduced amino acid sequence highly homologous to those of other XylBs. This is the first report of an xylB nucleotide sequence and an xyLAB operon from a thermophilic anaerobic bacterium.
Collapse
MESH Headings
- Aldose-Ketose Isomerases/genetics
- Aldose-Ketose Isomerases/metabolism
- Amino Acid Sequence
- Bacteria, Anaerobic/enzymology
- Bacteria, Anaerobic/genetics
- Base Sequence
- Cloning, Molecular
- Gene Expression Regulation, Bacterial
- Gram-Positive Asporogenous Rods, Irregular/enzymology
- Gram-Positive Asporogenous Rods, Irregular/genetics
- Molecular Sequence Data
- Operator Regions, Genetic
- Operon
- Phosphotransferases (Alcohol Group Acceptor)/genetics
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Regulatory Sequences, Nucleic Acid
- Sequence Alignment
- Transcription, Genetic
- Xylose/metabolism
- Xylulose/metabolism
Collapse
Affiliation(s)
- M Erbeznik
- Department of Animal Sciences, University of Kentucky, Lexington 40546-0215, USA
| | | | | |
Collapse
|
37
|
Chauvaux S, Paulsen IT, Saier MH. CcpB, a novel transcription factor implicated in catabolite repression in Bacillus subtilis. J Bacteriol 1998; 180:491-7. [PMID: 9457849 PMCID: PMC106913 DOI: 10.1128/jb.180.3.491-497.1998] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/1997] [Accepted: 11/10/1997] [Indexed: 02/06/2023] Open
Abstract
Recent work has shown that in Bacillus subtilis catabolite repression of several operons is mediated by a mechanism dependent on DNA-binding protein CcpA complexed to a seryl-phosphorylated derivative of HPr [HPr(Ser-P)], the small phosphocarrier protein of the phosphoenolpyruvate-sugar phosphotransferase system. In this study, it was found that a transposon insertional mutation resulted in the partial loss of gluconate (gnt) and xylose (xyl) operon catabolite repression by glucose, mannitol, and sucrose. The transposon insertion was localized to a gene, designated ccpB, encoding a protein 30% identical to CcpA, and relief from catabolite repression was shown to be due to the absence of CcpB rather than to the absence of a protein encoded by a downstream gene within the same operon. The relative intensities of CcpA- and CcpB-mediated catabolite repression depended on growth conditions. On solid media, and when cells were grown in liquid media with little agitation, CcpB and CcpA both proved to function in catabolite repression. However, when cells were grown in liquid media with much agitation, CcpA alone mediated catabolite repression. Like CcpA, CcpB appears to exert its catabolite-repressing effect by a mechanism dependent on the presence of HPr(Ser-P).
Collapse
Affiliation(s)
- S Chauvaux
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| | | | | |
Collapse
|
38
|
Paulsen IT, Chauvaux S, Choi P, Saier MH. Characterization of glucose-specific catabolite repression-resistant mutants of Bacillus subtilis: identification of a novel hexose:H+ symporter. J Bacteriol 1998; 180:498-504. [PMID: 9457850 PMCID: PMC106914 DOI: 10.1128/jb.180.3.498-504.1998] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/1997] [Accepted: 11/10/1997] [Indexed: 02/06/2023] Open
Abstract
Insertional mutagenesis was conducted on Bacillus subtilis cells to screen for mutants resistant to catabolite repression. Three classes of mutants that were resistant to glucose-promoted but not mannitol-promoted catabolite repression were identified. Cloning and sequencing of the mutated genes revealed that the mutations occurred in the structural genes for (i) enzyme II of the phosphoenolpyruvate-glucose phosphotransferase (PtsG), (ii) antiterminator GlcT, which controls PtsG synthesis, and (iii) a previously uncharacterized carrier of the major facilitator superfamily, which we have designated GlcP. The last protein exhibits greatest sequence similarity to the fucose:H+ symporter of Escherichia coli and the glucose/galactose:H+ symporter of Brucella abortus. In a wild-type B. subtilis genetic background, the glcP::Tn10 mutation (i) partially but specifically relieved glucose- and sucrose-promoted catabolite repression, (ii) reduced the growth rate in minimal glucose medium, and (iii) reduced rates of [14C]glucose and [14C]methyl alpha-glucoside uptake. In a delta pts genetic background no phenotype was observed, suggesting that expression of the glcP gene required a functional phosphotransferase system. When overproduced in a delta pts mutant of E. coli, GlcP could be shown to specifically transport glucose, mannose, 2-deoxyglucose and methyl alpha-glucoside with low micromolar affinities. Accumulation of the nonmetabolizable glucose analogs was demonstrated, and inhibitor studies suggested a dependency on the proton motive force. We conclude that B. subtilis possesses at least two distinct routes of glucose entry, both of which contribute to the phenomenon of catabolite repression.
Collapse
Affiliation(s)
- I T Paulsen
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| | | | | | | |
Collapse
|
39
|
Izu H, Kawai T, Yamada Y, Aoshima H, Adachi O, Yamada M. Characterization of the gntT gene encoding a high-affinity gluconate permease in Escherichia coli. Gene 1997; 199:203-10. [PMID: 9358057 DOI: 10.1016/s0378-1119(97)00368-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We characterized the gntT gene encoding a high-affinity gluconate permease of Escherichia coli K-12. Primer extension and lacZ-operon fusion analyses revealed that gntT has one strong and two weak promoters, all of which are regulated positively by cAMP-CRP and negatively by GntR. The weak promoters became constitutive when separated from the upstream region including the strong promoter that overlaps a putative GntR-binding sequence. Gluconate-specific uptake activity was observed with cells harboring the gntT plasmid clone, which was enhanced by the presence of gntK encoding gluconate kinase.
Collapse
Affiliation(s)
- H Izu
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Yoshida KI, Aoyama D, Ishio I, Shibayama T, Fujita Y. Organization and transcription of the myo-inositol operon, iol, of Bacillus subtilis. J Bacteriol 1997; 179:4591-8. [PMID: 9226270 PMCID: PMC179296 DOI: 10.1128/jb.179.14.4591-4598.1997] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Previous determination of the nucleotide sequence of the iol region of the Bacillus subtilis genome allowed us to predict the structure of the iol operon for myo-inositol catabolism, consisting of 10 iol genes (iolA to iouJ); iolG corresponds to idh, encoding myo-inositol 2-dehydrogenase (Idh). Primer extension analysis suggested that an inositol-inducible promoter for the iol operon (iol promoter) might be a promoter-like sequence in the 5' region of iolA, which is probably recognized by sigmaA. S1 nuclease analysis implied that a rho-independent terminator-like structure in the 3' region of iolJ might be a terminator for iol transcription. Disruption of the iol promoter prevented synthesis of the iol transcript as well as that of Idh, implying that the iol operon is most probably transcribed as an 11.5-kb mRNA containing the 10 iol genes. Immediately upstream of the iol operon, two genes (iolR and iolS) with divergent orientations to the iol operon were found. Disruption of iolR (but not iolS) caused constitutive synthesis of the iol transcript and Idh, indicating that the iolR gene encodes a transcription-negative regulator (presumably a repressor) for the iol operon. Northern and S1 nuclease analyses revealed that the iolRS genes were cotranscribed from another inositol-inducible promoter, which is probably recognized by sigmaA. The promoter assignments of the iol and iolRS operons were confirmed in vivo with a lacZ fusion integrated into the amyE locus.
Collapse
Affiliation(s)
- K I Yoshida
- Department of Biotechnology, Faculty of Engineering, Fukuyama University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
41
|
Sadaie Y, Yata K, Fujita M, Sagai H, Itaya M, Kasahara Y, Ogasawara N. Nucleotide sequence and analysis of the phoB-rrnE-groESL region of the Bacillus subtilis chromosome. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 6):1861-1866. [PMID: 9202461 DOI: 10.1099/00221287-143-6-1861] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A 36 kb sequence of the phoB-rrnE-groESL region of the Bacillus subtilis chromosome at around 55 degrees has been determined. The sequenced region contains 36 ORFs including the phoB and groESL genes, and the whole rrnE operon. The phoB gene is transcribed in the direction opposite to that of chromosome replication, while most ORFs, including groESL and the rrnE operon, are transcribed in the same direction. Two newly identified tRNA genes upstream of the rrnE operon were those for Arg-tRNA and Gly-tRNA. The sequenced region contains an operon consisting of genes for degradation and uptake of mannan. The rrnE operon and its downstream ORFs are well conserved among Mycoplasma genitalium, Haemophilus influenzae, Synechocystis sp. and Methanococcus jannaschii. delta H consensus sequences are present in the promoter regions of three ORFs, including groESL.
Collapse
Affiliation(s)
- Yoshito Sadaie
- Radioisotope Center, National Institute of Genetics, Mishima 411, Japan
| | - Katsunori Yata
- Radioisotope Center, National Institute of Genetics, Mishima 411, Japan
| | - Masaya Fujita
- Radioisotope Center, National Institute of Genetics, Mishima 411, Japan
| | - Hitoshi Sagai
- Laboratory for Pharmacology, Asahi Chemical Industry Co. Ltd, Shizuoka, Ohito 410-23, Japan
| | - Mitsuhiro Itaya
- Mitsubishi-kasei Institute of Life Sciences, Minami-Oya 11, Machida-shi, Tokyo 194, Japan
| | - Yasuhiro Kasahara
- Advanced Institute of Science and Technology, Nara, Ikoma 630-01, Japan
| | - Naotake Ogasawara
- Advanced Institute of Science and Technology, Nara, Ikoma 630-01, Japan
| |
Collapse
|
42
|
Izu H, Adachi O, Yamada M. Gene organization and transcriptional regulation of the gntRKU operon involved in gluconate uptake and catabolism of Escherichia coli. J Mol Biol 1997; 267:778-93. [PMID: 9135111 DOI: 10.1006/jmbi.1996.0913] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We cloned and characterized the gntRKU operon encoding part of the GntI system involved in gluconate uptake and catabolism by Escherichia coli. The operon was shown to encode its repressor, a thermoresistant gluconate kinase, and a low affinity gluconate permease. CAT fusion analysis revealed that the operon has a promoter for gntR and another for gntKU, and that the gntR gene is constitutively expressed, while that of gntKU is regulated positively by the cAMP-CRP complex and negatively by GntR. Read-through transcription from the gntR promoter into gntK was decreased in the presence of GntR, although GntR did not repress its own promoter. In addition, transcriptional attenuation was observed after the gntK gene, so gntU expression is reduced presumably to modulate the production of the low affinity gluconate permease according to the available concentration of gluconate.
Collapse
Affiliation(s)
- H Izu
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Japan
| | | | | |
Collapse
|
43
|
Sá-Nogueira I, Mota LJ. Negative regulation of L-arabinose metabolism in Bacillus subtilis: characterization of the araR (araC) gene. J Bacteriol 1997; 179:1598-608. [PMID: 9045819 PMCID: PMC178872 DOI: 10.1128/jb.179.5.1598-1608.1997] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Bacillus subtilis araC locus, mapped at about 294 degrees on the genetic map, was defined by mutations conferring an Ara- phenotype to strains bearing the metabolic araA, araB, and araD wild-type alleles (located at about 256 degrees on the genetic map) and by mutants showing constitutive expression of the three genes. In previous work, it has been postulated that the gene in which these mutations lie exerts its effect on the ara metabolic operon in trans, and this locus was named araC by analogy to the Escherichia coli regulatory gene. Here, we report the cloning and sequencing of the araC locus. This region comprises two open reading frames with divergently arranged promoters, the regulatory gene, araC, encoding a 41-kDa polypeptide, and a partially cloned gene, termed araE, which most probably codes for a permease involved in the transport of L-arabinose. The DNA sequence of araC revealed that its putative product is very similar to a number of bacterial negative regulators (the GalR-LacI family). However, a helix-turn-helix motif was identified in the N-terminal region by its identity to the consensus signature sequence of another group of repressors, the GntR family. The lack of similarity between the predicted primary structure of the product encoded by the B. subtilis regulatory gene and the AraC regulator from E. coli and the apparently different modes of action of these two proteins lead us to propose a new name, araR, for this gene. The araR gene is monocistronic, and the promoter region contains -10 and -35 regions (as determined by primer extension analysis) similar to those recognized by RNA polymerase containing the major vegetative cell sigma factor sigmaA. An insertion-deletion mutation in the araR gene leads to constitutive expression of the L-arabinose metabolic operon. We demonstrate that the araR gene codes for a negative regulator of the ara operon and that the expression of araR is repressed by its own product.
Collapse
Affiliation(s)
- I Sá-Nogueira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
| | | |
Collapse
|
44
|
de Wulf P, Vandamme E. Microbial Synthesis of d-Ribose: Metabolic Deregulation and Fermentation Process. ADVANCES IN APPLIED MICROBIOLOGY 1997. [DOI: 10.1016/s0065-2164(08)70462-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Antelmann H, Engelmann S, Schmid R, Hecker M. General and oxidative stress responses in Bacillus subtilis: cloning, expression, and mutation of the alkyl hydroperoxide reductase operon. J Bacteriol 1996; 178:6571-8. [PMID: 8932314 PMCID: PMC178544 DOI: 10.1128/jb.178.22.6571-6578.1996] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The AhpC subunit of the Bacillus subtilis alkyl hydroperoxide reductase was identified as a general stress protein induced in response to heat or salt stress or after entry of the organism into the stationary phase. The ahp operon, encoding the two subunits AhpC and AhpF, was cloned and localized between the gntRKPZ operon and the bglA locus. Two-dimensional gel analyses revealed an especially strong induction of AhpC and AhpF in cells subjected to oxidative stress. Transcriptional studies showed a 3- to 4-fold induction of ahp mRNA after heat or salt stress or starvation for glucose and a 20-fold induction by oxidative stress, thus confirming the protein induction data for AhpC and AhpF. Stress induction occurred at a sigmaA-dependent promoter that overlaps with operator sites similar to the per box. Compared with the wild type, the ahpC mutant was resistant to hydrogen peroxide because of the derepression of the peroxide regulon (N. Bsat, L. Chen, and J. D. Helmann, J. Bacteriol. 178:6579-6586, 1996) but more sensitive to cumene hydroperoxide (CHP) during exponential growth. In contrast, stationary-phase wild-type and ahpC mutant cells displayed complete resistance to treatment with 1 mM CHP. Moreover, a sigmaB mutant was found to be extremely sensitive to CHP during vegetative growth and in stationary phase, which indicates that sigmaB-dependent general stress proteins are involved in the protection of cells against oxidative stress.
Collapse
Affiliation(s)
- H Antelmann
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | | | | | | |
Collapse
|
46
|
Bsat N, Chen L, Helmann JD. Mutation of the Bacillus subtilis alkyl hydroperoxide reductase (ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes. J Bacteriol 1996; 178:6579-86. [PMID: 8932315 PMCID: PMC178545 DOI: 10.1128/jb.178.22.6579-6586.1996] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In Bacillus subtilis, hydrogen peroxide induces the synthesis of catalase (KatA), alkyl hydroperoxide reductase (AhpCF), and a DNA-binding protein of the Dps family (MrgA). KatA, AhpCF, heme biosynthesis enzymes, and MrgA are also induced upon entry into stationary phase under conditions of iron and manganese limitation. In an effort to define the peroxide regulon repressor, PerR, we used mini-Tn10 mutagenesis to identify loci affecting the regulation of mrgA. From this screen, we isolated two mini-Tn10 insertions in ahpC, the gene encoding the small subunit of AhpCF, that increase the transcription of mrgA-lacZ even in iron-supplemented minimal medium. Indeed, these ahpC::Tn10 insertions lead to elevated expression from all peroxide regulon promoters, including those for mrgA, katA, hemAXCDBL, and ahpCF. As a result, the ahpC::Tn10 mutants display an increased resistance to H2O2. The ahpCF promoter region contains three sequences similar to the peroxide regulon consensus operator (per box). We demonstrate that the ability of ahpC::Tn10 mutations to derepress mrgA requires aerobic growth. In contrast, a second distinct trans-acting regulatory mutation bypasses this requirement for aerobic growth. Since the peroxide regulon is activated in the absence of AhpCF, which degrades alkyl hydroperoxides, we propose that organic hydroperoxides may be physiologically relevant inducers in vivo.
Collapse
Affiliation(s)
- N Bsat
- Section of Microbiology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
47
|
Mateos LM, Schäfer A, Kalinowski J, Martin JF, Pühler A. Integration of narrow-host-range vectors from Escherichia coli into the genomes of amino acid-producing corynebacteria after intergeneric conjugation. J Bacteriol 1996; 178:5768-75. [PMID: 8824624 PMCID: PMC178418 DOI: 10.1128/jb.178.19.5768-5775.1996] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Conjugative transfer of mobilizable derivatives of the Escherichia coli narrow-host-range plasmids pBR322, pBR325, pACYC177, and pACYC184 from E. coli to species of the gram-positive genera Corynebacterium and Brevibacterium resulted in the integration of the plasmids into the genomes of the recipient bacteria. Transconjugants appeared at low frequencies and reproducibly with a delay of 2 to 3 days compared with matings with replicative vectors. Southern analysis of corynebacterial transconjugants and nucleotide sequences from insertion sites revealed that integration occurs at different locations and that different parts of the vector are involved in the process. Integration is not dependent on indigenous insertion sequence elements but results from recombination between very short homologous DNA segments (8 to 12 bp) present in the vector and in the host DNA. In the majority of the cases (90%), integration led to cointegrate formation, and in some cases, deletions or rearrangements occurred during the recombination event. Insertions were found to be quite stable even in the absence of selective pressure.
Collapse
Affiliation(s)
- L M Mateos
- Area de Microbiología, Facultad de Biología, Universidad de León, Spain
| | | | | | | | | |
Collapse
|
48
|
REIZER JONATHAN, CHARBIT ALAIN, REIZER AIALA, SAIER MILTONH. Novel Phosphotransferase System Genes Revealed by Bacterial Genome Analysis: Operons Encoding Homologues of Sugar-Specific Permease Domains of the Phosphotransferase System and Pentose Catabolic Enzymes. ACTA ACUST UNITED AC 1996. [DOI: 10.1089/gst.1996.1.53] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Klemm P, Tong S, Nielsen H, Conway T. The gntP gene of Escherichia coli involved in gluconate uptake. J Bacteriol 1996; 178:61-7. [PMID: 8550444 PMCID: PMC177621 DOI: 10.1128/jb.178.1.61-67.1996] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The gntP gene, located between the fim and uxu loci in Escherichia coli K-12, has been cloned and characterized. Nucleotide sequencing of a region encompassing the gntP gene revealed an open reading frame of 447 codons with significant homology to the Bacillus subtilis gluconate permease. Northern (RNA) blotting indicated that the gntP gene was monocistronic and was transcribed as an mRNA with an apparent molecular size of 1.54 kb. The transcriptional start point was determined by primer extension analysis. The gntP gene was found to be under catabolite repression and was not induced by gluconate. Also, expression seemed to be stringently controlled. Several observations indicated that the GntP protein is an inner membrane protein; it contains characteristic membrane-spanning regions and was isolated predominantly from the inner-membrane fraction of fractionated host cells. A topology analysis predicted a protein with 14 membrane-spanning segments. The inability of a mutant strain to grow on gluconate minimal medium could be relieved by introduction of a plasmid encoding the gntP gene. Finally, the kinetics of GntP-mediated gluconate uptake were investigated, indicating an apparent Km for gluconate of 25 microM.
Collapse
Affiliation(s)
- P Klemm
- Department of Microbiology, Technical University of Denmark, Lyngby, Denmark
| | | | | | | |
Collapse
|
50
|
Nørregaard-Madsen M, McFall E, Valentin-Hansen P. Organization and transcriptional regulation of the Escherichia coli K-12 D-serine tolerance locus. J Bacteriol 1995; 177:6456-61. [PMID: 7592420 PMCID: PMC177495 DOI: 10.1128/jb.177.22.6456-6461.1995] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have reinvestigated the genetic organization and the transcription regulation of the dsd operon of Escherichia coli. By combining genetic and biochemical studies, it is demonstrated that the regulatory region of the operon and the gene encoding the specific regulator of D-serine tolerance (dsdC) had been misplaced in previous work on the dsd system. Also, the previous erroneous DNA sequence of the dsdC gene has been corrected. It turned out that an additional gene (dsdX) is present immediately upstream of dsdA (encoding D-serine deaminase) and that dsdC is located adjacent to dsdX. The dsdXA genes are cotranscribed from a common promoter region present in the dsdX-dsdC intercistronic region. The DsdC activator belongs to the LysR-type of transcriptional regulators and is absolutely required for dsdA expression. Additionally, the activity of the dsdXA promoter depends on the cyclic AMP receptor protein, and the two activators act in concert to synergistically activate transcription.
Collapse
|