1
|
Ortiz-Ramírez JA, Cuéllar-Cruz M, Villagómez-Castro JC, López-Romero E. Fungal Glycosidases in Sporothrix Species and Candida albicans. J Fungi (Basel) 2023; 9:919. [PMID: 37755027 PMCID: PMC10532485 DOI: 10.3390/jof9090919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Glycoside hydrolases (GHs) are enzymes that participate in many biological processes of fungi and other organisms by hydrolyzing glycosidic linkages in glycosides. They play fundamental roles in the degradation of carbohydrates and the assembly of glycoproteins and are important subjects of studies in molecular biology and biochemistry. Based on amino acid sequence similarities and 3-dimensional structures in the carbohydrate-active enzyme (CAZy), they have been classified in 171 families. Members of some of these families also exhibit the activity of trans-glycosydase or glycosyl transferase (GT), i.e., they create a new glycosidic bond in a substrate instead of breaking it. Fungal glycosidases are important for virulence by aiding tissue adhesion and colonization, nutrition, immune evasion, biofilm formation, toxin release, and antibiotic resistance. Here, we review fungal glycosidases with a particular emphasis on Sporothrix species and C. albicans, two well-recognized human pathogens. Covered issues include a brief account of Sporothrix, sporotrichosis, the different types of glycosidases, their substrates, and mechanism of action, recent advances in their identification and characterization, their potential biotechnological applications, and the limitations and challenges of their study given the rather poor available information.
Collapse
Affiliation(s)
| | | | | | - Everardo López-Romero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| |
Collapse
|
2
|
Ninagawa S. N-glycan Dependent Protein Quality Control System in the Endoplasmic Reticulum. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2108.2e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University
| |
Collapse
|
3
|
Ninagawa S. N-glycan Dependent Protein Quality Control System in the Endoplasmic Reticulum. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2108.2j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University
| |
Collapse
|
4
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
5
|
Ninagawa S, George G, Mori K. Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins. Biochim Biophys Acta Gen Subj 2020; 1865:129812. [PMID: 33316349 DOI: 10.1016/j.bbagen.2020.129812] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The quality of proteins destined for the secretory pathway is ensured by two distinct mechanisms in the endoplasmic reticulum (ER): productive folding of newly synthesized proteins, which is assisted by ER-localized molecular chaperones and in most cases also by disulfide bond formation and transfer of an oligosaccharide unit; and ER-associated degradation (ERAD), in which proteins unfolded or misfolded in the ER are recognized and processed for delivery to the ER membrane complex, retrotranslocated through the complex with simultaneous ubiquitination, extracted by AAA-ATPase to the cytosol, and finally degraded by the proteasome. SCOPE OF REVIEW We describe the mechanisms of productive folding and ERAD, with particular attention to glycoproteins versus non-glycoproteins, and to yeast versus mammalian systems. MAJOR CONCLUSION Molecular mechanisms of the productive folding of glycoproteins and non-glycoproteins mediated by molecular chaperones and protein disulfide isomerases are well conserved from yeast to mammals. Additionally, mammals have gained an oligosaccharide structure-dependent folding cycle for glycoproteins. The molecular mechanisms of ERAD are also well conserved from yeast to mammals, but redundant expression of yeast orthologues in mammals has been encountered, particularly for components involved in recognition and processing of glycoproteins and components of the ER membrane complex involved in retrotranslocation and simultaneous ubiquitination of glycoproteins and non-glycoproteins. This may reflect an evolutionary consequence of increasing quantity or quality needs toward mammals. GENERAL SIGNIFICANCE The introduction of innovative genome editing technology into analysis of the mechanisms of mammalian ERAD, as exemplified here, will provide new insights into the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Ginto George
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
6
|
Liu FF, Kulinich A, Du YM, Liu L, Voglmeir J. Sequential processing of mannose-containing glycans by two α-mannosidases from Solitalea canadensis. Glycoconj J 2016; 33:159-68. [PMID: 26864077 DOI: 10.1007/s10719-016-9651-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/17/2016] [Accepted: 01/19/2016] [Indexed: 11/29/2022]
Abstract
Two putative α-mannosidase genes isolated from the rather unexplored soil bacterium Solitalea canadensis were cloned and biochemically characterised. Both recombinant enzymes were highly selective in releasing α-linked mannose but no other sugars. The α-mannosidases were designated Sca2/3Man2693 and Sca6Man4191, and showed the following biochemical properties: the temperature optimum for both enzymes was 37 °C, and their pH optima lay at 5.0 and 5.5, respectively. The activity of Sca2/3Man2693 was found to be dependent on Ca(2+) ions, whereas Cu(2+) and Zn(2+) ions almost completely inhibited both α-mannosidases. Specificity screens with various substrates revealed that Sca2/3Man2693 could release both α1-2- and α1-3-linked mannose, whereas Sca6Man4191 only released α1-6-linked mannose. The combined enzymatic action of both recombinant α-mannosidases allowed the sequential degradation of high-mannose-type N-glycans. The facile expression and purification procedures in combination with strict substrate specificities make α-mannosidases from S. canadensis promising candidates for bioanalytical applications.
Collapse
Affiliation(s)
- Fang F Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Anna Kulinich
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Ya M Du
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China. .,Qlyco Ltd., Nanjing, People's Republic of China.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China.
| |
Collapse
|
7
|
Robledo-Ortiz CI, Flores-Carreón A, Hernández-Cervantes A, Álvarez-Vargas A, Lee KK, Díaz-Jiménez DF, Munro CA, Cano-Canchola C, Mora-Montes HM. Isolation and functional characterization of Sporothrix schenckii ROT2, the encoding gene for the endoplasmic reticulum glucosidase II. Fungal Biol 2012; 116:910-8. [DOI: 10.1016/j.funbio.2012.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 06/06/2012] [Accepted: 06/15/2012] [Indexed: 12/20/2022]
|
8
|
Wilson IBH. The class I α1,2-mannosidases of Caenorhabditis elegans. Glycoconj J 2012; 29:173-9. [PMID: 22535467 DOI: 10.1007/s10719-012-9378-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/07/2012] [Accepted: 04/10/2012] [Indexed: 11/26/2022]
Abstract
During the biosynthesis of N-glycans in multicellular eukaryotes, glycans with the compositions Man(5)GlcNAc(2-3) are key intermediates. However, to reach this 'decision point', these N-glycans are first processed from Glc(3)Man(9)GlcNAc(2) through to Man(5)GlcNAc(2) by a number of glycosidases, whereby up to four α1-2-linked mannose residues are removed by class I mannosidases (glycohydrolase family 47). Whereas in the yeast Saccharomyces cerevisiae there are maximally three members of this protein family, in higher organisms there are multiple class I mannosidases residing in the endoplasmic reticulum and Golgi apparatus. The genome of the model nematode Caenorhabditis elegans encodes seven members of this protein family, whereby four are predicted to be classical processing mannosidases and three are related proteins with roles in quality control. In this study, cDNAs encoding the four predicted mannosidases were cloned and expressed in Pichia pastoris and the activity of these enzymes, designated MANS-1, MANS-2, MANS-3 and MANS-4, was verified. The first two can, dependent on the incubation time, remove three to four residues from Man(9)GlcNAc(2), whereas the action of the other two results in the appearance of the B isomer of Man(8)GlcNAc(2); together the complementary activities of these enzymes result in processing to Man(5)GlcNAc(2). With these data, another gap is closed in our understanding of the N-glycan biosynthesis pathway of the nematode worm.
Collapse
Affiliation(s)
- Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190, Wien, Austria.
| |
Collapse
|
9
|
Kamiya Y, Satoh T, Kato K. Molecular and structural basis for N-glycan-dependent determination of glycoprotein fates in cells. Biochim Biophys Acta Gen Subj 2012; 1820:1327-37. [PMID: 22240168 DOI: 10.1016/j.bbagen.2011.12.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 12/27/2011] [Accepted: 12/27/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND N-linked oligosaccharides operate as tags for protein quality control, consigning glycoproteins to different fates, i.e. folding in the endoplasmic reticulum (ER), vesicular transport between the ER and the Golgi complex, and ER-associated degradation of glycoproteins, by interacting with a panel of intracellular lectins in the early secretory pathway. SCOPE OF REVIEW This review summarizes the current state of knowledge regarding the molecular and structural basis for glycoprotein-fate determination in cells that is achieved through the actions of the intracellular lectins and its partner proteins. MAJOR CONCLUSIONS Cumulative frontal affinity chromatography (FAC) data demonstrated that the intracellular lectins exhibit distinct sugar-binding specificity profiles. The glycotopes recognized by these lectins as fate determinants are embedded in the triantennary structures of the high-mannose-type oligosaccharides and are exposed upon trimming of the outer glucose and mannose residues during the N-glycan processing pathway. Furthermore, recently emerged 3D structural data offer mechanistic insights into functional interplay between an intracellular lectin and its binding partner in the early secretory pathway. GENERAL SIGNIFICANCE Structural biology approaches in conjunction with FAC methods provide atomic pictures of the mechanisms behind the glycoprotein-fate determination in cells. This article is a part of a Special issue entitled: Glycoproteomics.
Collapse
Affiliation(s)
- Yukiko Kamiya
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | | | | |
Collapse
|
10
|
Gauss R, Kanehara K, Carvalho P, Ng DTW, Aebi M. A complex of Pdi1p and the mannosidase Htm1p initiates clearance of unfolded glycoproteins from the endoplasmic reticulum. Mol Cell 2011; 42:782-93. [PMID: 21700223 DOI: 10.1016/j.molcel.2011.04.027] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/18/2011] [Accepted: 04/18/2011] [Indexed: 01/13/2023]
Abstract
Endoplasmic reticulum (ER)-resident mannosidases generate asparagine-linked oligosaccharide signals that trigger ER-associated protein degradation (ERAD) of unfolded glycoproteins. In this study, we provide in vitro evidence that a complex of the yeast protein disulfide isomerase Pdi1p and the mannosidase Htm1p processes Man(8)GlcNAc(2) carbohydrates bound to unfolded proteins, yielding Man(7)GlcNAc(2). This glycan serves as a signal for HRD ligase-mediated glycoprotein disposal. We identified a point mutation in PDI1 that prevents complex formation of the oxidoreductase with Htm1p, diminishes mannosidase activity, and delays degradation of unfolded glycoproteins in vivo. Our results show that Pdi1p is engaged in both recognition and glycan signal processing of ERAD substrates and suggest that protein folding and breakdown are not separated but interconnected processes. We propose a stochastic model for how a given glycoprotein is partitioned into folding or degradation pathways and how the flux through these pathways is adjusted to stress conditions.
Collapse
Affiliation(s)
- Robert Gauss
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
11
|
Miyamoto M, Furuichi Y, Komiyama T. Genome-wide screen of Saccharomyces cerevisiae for killer toxin HM-1 resistance. Yeast 2010; 28:27-41. [DOI: 10.1002/yea.1818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 07/17/2010] [Indexed: 11/08/2022] Open
|
12
|
Mora-Montes HM, Robledo-Ortiz CI, González-Sánchez LC, López-Esparza A, López-Romero E, Flores-Carreón A. Purification and biochemical characterisation of endoplasmic reticulum alpha1,2-mannosidase from Sporothrix schenckiil. Mem Inst Oswaldo Cruz 2010; 105:79-85. [PMID: 20209334 DOI: 10.1590/s0074-02762010000100012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 11/19/2009] [Indexed: 11/21/2022] Open
Abstract
Alpha 1,2-mannosidases from glycosyl hydrolase family 47 participate in N-glycan biosynthesis. In filamentous fungi and mammalian cells, alpha1,2-mannosidases are present in the endoplasmic reticulum (ER) and Golgi complex and are required to generate complex N-glycans. However, lower eukaryotes such Saccharomyces cerevisiae contain only one alpha1,2-mannosidase in the lumen of the ER and synthesise high-mannose N-glycans. Little is known about the N-glycan structure and the enzyme machinery involved in the synthesis of these oligosaccharides in the dimorphic fungus Sporothrix schenckii. Here, a membrane-bound alpha-mannosidase from S. schenckii was solubilised using a high-temperature procedure and purified by conventional methods of protein isolation. Analytical zymograms revealed a polypeptide of 75 kDa to be responsible for enzyme activity and this purified protein was recognised by anti-alpha1,2-mannosidase antibodies. The enzyme hydrolysed Man(9)GlcNAc(2) into Man(8)GlcNAc(2) isomer B and was inhibited preferentially by 1-deoxymannojirimycin. This alpha1,2-mannosidase was localised in the ER, with the catalytic domain within the lumen of this compartment. These properties are consistent with an ER-localised alpha1,2-mannosidase of glycosyl hydrolase family 47. Our results also suggested that in contrast to other filamentous fungi, S. schenckii lacks Golgi alpha1,2-mannosidases and therefore, the processing of N-glycans by alpha1,2-mannosidases is similar to that present in lower eukaryotes.
Collapse
Affiliation(s)
- Héctor M Mora-Montes
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Scotland, United Kingdom
| | | | | | | | | | | |
Collapse
|
13
|
Santacruz-Tinoco CE, Villagómez-Castro JC, López-Romero E. Entamoeba histolytica: Identification and partial characterization of α-mannosidase activity. Exp Parasitol 2010; 124:459-65. [DOI: 10.1016/j.exppara.2009.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 10/16/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
|
14
|
Mora-Montes HM, Ponce-Noyola P, Villagómez-Castro JC, Gow NA, Flores-Carreón A, López-Romero E. Protein glycosylation in Candida. Future Microbiol 2010; 4:1167-83. [PMID: 19895219 DOI: 10.2217/fmb.09.88] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Candidiasis is a significant cause of invasive human mycosis with associated mortality rates that are equivalent to, or worse than, those cited for most cases of bacterial septicemia. As a result, considerable efforts are being made to understand how the fungus invades host cells and to identify new targets for fungal chemotherapy. This has led to an increasing interest in Candida glycobiology, with an emphasis on the identification of enzymes essential for glycoprotein and adhesion metabolism, and the role of N- and O-linked glycans in host recognition and virulence. Here, we refer to studies dealing with the identification and characterization of enzymes such as dolichol phosphate mannose synthase, dolichol phosphate glucose synthase and processing glycosidases and synthesis, structure and recognition of mannans and discuss recent findings in the context of Candida albicans pathogenesis.
Collapse
|
15
|
Abstract
As proteins travel through the endoplasmic reticulum (ER), a quality-control system retains newly synthesized polypeptides and supports their maturation. Only properly folded proteins are released to their designated destinations. Proteins that cannot mature are left to accumulate, impairing the function of the ER. To maintain homeostasis, the protein-quality-control system singles out aberrant polypeptides and delivers them to the cytosol, where they are destroyed by the proteasome. The importance of this pathway is evident from the growing list of pathologies associated with quality-control defects in the ER.
Collapse
|
16
|
Mora-Montes HM, Bader O, López-Romero E, Zinker S, Ponce-Noyola P, Hube B, Gow NAR, Flores-Carreón A. Kex2 protease converts the endoplasmic reticulum alpha1,2-mannosidase of Candida albicans into a soluble cytosolic form. MICROBIOLOGY-SGM 2009; 154:3782-3794. [PMID: 19047746 PMCID: PMC2885623 DOI: 10.1099/mic.0.2008/019315-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cytosolic α-mannosidases are glycosyl hydrolases that participate in the catabolism of cytosolic free N-oligosaccharides. Two soluble α-mannosidases (E-I and E-II) belonging to glycosyl hydrolases family 47 have been described in Candida albicans. We demonstrate that addition of pepstatin A during the preparation of cell homogenates enriched α-mannosidase E-I at the expense of E-II, indicating that the latter is generated by proteolysis during cell disruption. E-I corresponded to a polypeptide of 52 kDa that was associated with mannosidase activity and was recognized by an anti-α1,2-mannosidase antibody. The N-mannan core trimming properties of the purified enzyme E-I were consistent with its classification as a family 47 α1,2-mannosidase. Differential density-gradient centrifugation of homogenates revealed that α1,2-mannosidase E-I was localized to the cytosolic fraction and Golgi-derived vesicles, and that a 65 kDa membrane-bound α1,2-mannosidase was present in endoplasmic reticulum and Golgi-derived vesicles. Distribution of α-mannosidase activity in a kex2Δ null mutant or in wild-type protoplasts treated with monensin demonstrated that the membrane-bound α1,2-mannosidase is processed by Kex2 protease into E-I, recognizing an atypical cleavage site of the precursor. Analysis of cytosolic free N-oligosaccharides revealed that cytosolic α1,2-mannosidase E-I trims free Man8GlcNAc2 isomer B into Man7GlcNAc2 isomer B. This is believed to be the first report demonstrating the presence of soluble α1,2-mannosidase from the glycosyl hydrolases family 47 in a cytosolic compartment of the cell.
Collapse
Affiliation(s)
- Héctor M Mora-Montes
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad de Guanajuato, Apartado Postal 187, Guanajuato Gto. CP 36000, Mexico
| | - Oliver Bader
- Robert Koch-Institut, FG16, Nordufer 20, D-13353 Berlin, Germany
| | - Everardo López-Romero
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad de Guanajuato, Apartado Postal 187, Guanajuato Gto. CP 36000, Mexico
| | - Samuel Zinker
- Departamento de Genética y Biología Molecular, CINVESTAV del IPN, Apartado Postal 14-740, México DF 07000, Mexico
| | - Patricia Ponce-Noyola
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad de Guanajuato, Apartado Postal 187, Guanajuato Gto. CP 36000, Mexico
| | - Bernhard Hube
- Robert Koch-Institut, FG16, Nordufer 20, D-13353 Berlin, Germany
| | - Neil A R Gow
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Arturo Flores-Carreón
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad de Guanajuato, Apartado Postal 187, Guanajuato Gto. CP 36000, Mexico
| |
Collapse
|
17
|
Endoplasmic reticulum alpha-glycosidases of Candida albicans are required for N glycosylation, cell wall integrity, and normal host-fungus interaction. EUKARYOTIC CELL 2007; 6:2184-93. [PMID: 17933909 PMCID: PMC2168260 DOI: 10.1128/ec.00350-07] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cell surface of Candida albicans is enriched in highly glycosylated mannoproteins that are involved in the interaction with the host tissues. N glycosylation is a posttranslational modification that is initiated in the endoplasmic reticulum (ER), where the Glc(3)Man(9)GlcNAc(2) N-glycan is processed by alpha-glucosidases I and II and alpha1,2-mannosidase to generate Man(8)GlcNAc(2). This N-oligosaccharide is then elaborated in the Golgi to form N-glycans with highly branched outer chains rich in mannose. In Saccharomyces cerevisiae, CWH41, ROT2, and MNS1 encode for alpha-glucosidase I, alpha-glucosidase II catalytic subunit, and alpha1,2-mannosidase, respectively. We disrupted the C. albicans CWH41, ROT2, and MNS1 homologs to determine the importance of N-oligosaccharide processing on the N-glycan outer-chain elongation and the host-fungus interaction. Yeast cells of Cacwh41Delta, Carot2Delta, and Camns1Delta null mutants tended to aggregate, displayed reduced growth rates, had a lower content of cell wall phosphomannan and other changes in cell wall composition, underglycosylated beta-N-acetylhexosaminidase, and had a constitutively activated PKC-Mkc1 cell wall integrity pathway. They were also attenuated in virulence in a murine model of systemic infection and stimulated an altered pro- and anti-inflammatory cytokine profile from human monocytes. Therefore, N-oligosaccharide processing by ER glycosidases is required for cell wall integrity and for host-fungus interactions.
Collapse
|
18
|
Shashidhara KS, Gaikwad SM. Fluorescence Quenching and Time-resolved Fluorescence studies of α-Mannosidase from Aspergillus fischeri (NCIM 508). J Fluoresc 2007; 17:599-605. [PMID: 17849180 DOI: 10.1007/s10895-007-0227-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 07/17/2007] [Indexed: 11/28/2022]
Abstract
Apart from the vital role in glycoprotein biosynthesis and degradation, alpha-mannosidase is currently an important therapeutic target for the development of anticancer agents. Fluorescence quenching and time-resolved fluorescence of alpha-mannosidase, a multitryptophan protein from Aspergillus fischeri were carried out to investigate the tryptophan environment. The tryptophans were found to be differentially exposed to the solvent and were not fully accessible to the neutral quencher indicating heterogeneity in the environment. Quenching of the fluorescence by acrylamide was collisional. Surface tryptophans were found to have predominantly positively charged amino acids around them and differentially accessible to the ionic quenchers. Denaturation led to more exposure of tryptophans to the solvent and consequently in the significant increase in quenching with all the quenchers. The native enzyme showed two different lifetimes, tau (1) (1.51 ns) and tau (2) (5.99 ns). The average lifetime of the native protein (tau) (3.187 ns) was not affected much after denaturation (tau) (3.219 ns), while average lifetime of the quenched protein samples was drastically reduced (1.995 ns for acrylamide and 1.537 ns for iodide). This is an attempt towards the conformational studies of alpha-mannosidase.
Collapse
Affiliation(s)
- K S Shashidhara
- Biochemical Sciences Division, National Chemical Laboratory, Pune, India
| | | |
Collapse
|
19
|
Mora-Montes HM, López-Romero E, Zinker S, Ponce-Noyola P, Flores-Carreón A. Conversion of α1,2-mannosidase E-I from Candida albicans to α1,2-mannosidase E-II by limited proteolysis. Antonie van Leeuwenhoek 2007; 93:61-9. [PMID: 17588125 DOI: 10.1007/s10482-007-9179-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 05/23/2007] [Indexed: 10/23/2022]
Abstract
Previous studies demonstrated the presence in Candida albicans ATCC 26555 of two soluble alpha1,2-mannosidases: E-I and E-II. In contrast, in the C. albicans CAI-4 mutant only E-I was detected and it could be processed by a membrane-bound proteolytic activity from the ATCC 26555 strain, generating an active 43 kDa polypeptide. Here, alpha1,2-mannosidase E-I from strain ATCC 26555 was purified by conventional methods of protein isolation and affinity chromatography in Concanavalin A-Sepharose 4B. Analytical electrophoresis of the purified enzyme revealed two polypeptides of 52 and 23 kDa, the former being responsible for enzyme activity as revealed by zymogram analysis. Time course proteolysis with an aspartyl protease from Aspergillus saitoi, converted alpha1,2-mannosidase E-I into an active polypeptide of 43 kDa which trimmed Man(9)GlcNAc(2), generating Man(8)GlcNAc(2) isomer B and mannose. Trimming was inhibited preferentially by 1-deoxymannojirimycin. Both, the molecular mass and the enzyme properties of the proteolytic product were identical to those described for alpha1,2-mannosidase E-II therefore supporting the notion that E-I is the precursor of E-II.
Collapse
Affiliation(s)
- Héctor Manuel Mora-Montes
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad de Guanajuato, Apartado postal 187, Guanajuato, Gto, CP 36000, Mexico
| | | | | | | | | |
Collapse
|
20
|
Comparative Genomic Analysis of Glycoylation Pathways in Yeast, Plants and Higher eukaryotes. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1874-5334(06)80013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
21
|
Tatara Y, Lee BR, Yoshida T, Takahashi K, Ichishima E. Identification of catalytic residues of Ca2+-independent 1,2-alpha-D-mannosidase from Aspergillus saitoi by site-directed mutagenesis. J Biol Chem 2003; 278:25289-94. [PMID: 12702721 DOI: 10.1074/jbc.m302621200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The roles of six conserved active carboxylic acids in the catalytic mechanism of Aspergillus saitoi 1,2-alpha-d-mannosidase were studied by site-directed mutagenesis and kinetic analyses. We estimate that Glu-124 is a catalytic residue based on the drastic decrease of kcat values of the E124Q and E124D mutant enzyme. Glu-124 may work as an acid catalyst, since the pH dependence of its mutants affected the basic limb. D269N and E411Q were catalytically inactive, while D269E and E411D showed considerable activity. This indicated that the negative charges at these points are essential for the enzymatic activity and that none of these residues can be a base catalyst in the normal sense. Km values of E273D, E414D, and E474D mutants were greatly increased to 17-31-fold wild type enzyme, and the kcat values were decreased, suggesting that each of them is a binding site of the substrate. Ca2+, essential for the mammalian and yeast enzymes, is not required for the enzymatic activity of A. saitoi 1,2-alpha-d-mannosidase. EDTA inhibits the Ca2+-free 1,2-alpha-d-mannosidase as a competitive inhibitor, not as a chelator. We deduce that the Glu-124 residue of A. saitoi 1,2-alpha-d-mannosidase is directly involved in the catalytic mechanism as an acid catalyst, whereas no usual catalytic base is directly involved. Ca2+ is not essential for the activity. The catalytic mechanism of 1,2-alpha-d-mannosidase may deviate from that typical glycosyl hydrolase.
Collapse
Affiliation(s)
- Yota Tatara
- Laboratory of Molecular Enzymology, Graduate School of Engineering, Soka University, Hachioji, Tokyo, 192-8577, Japan
| | | | | | | | | |
Collapse
|
22
|
Trombetta ES, Parodi AJ. N-glycan processing and glycoprotein folding. ADVANCES IN PROTEIN CHEMISTRY 2002; 59:303-44. [PMID: 11868276 DOI: 10.1016/s0065-3233(01)59010-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- E S Trombetta
- Instituto de Investigaciones Biotecnológicas, Universidad de San Martín, (1650) San Martin, Pcia. de Buenos Aires, Argentina
| | | |
Collapse
|
23
|
Song Y, Azakami H, Shamima B, He J, Kato A. Different effects of calnexin deletion in Saccharomyces cerevisiae on the secretion of two glycosylated amyloidogenic lysozymes. FEBS Lett 2002; 512:213-7. [PMID: 11852082 DOI: 10.1016/s0014-5793(02)02258-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Both glycosylated amyloidogenic lysozymes I55T/G49N and D66H/G49N were expressed in wild-type and calnexin-disrupted Saccharomyces cerevisiae. The secretion amounts of mutant I55T/G49N were almost similar in both wild-type and calnexin-disrupted S. cerevisiae. In contrast, the secretion of mutant D66H/G49N greatly increased in calnexin-disrupted S. cerevisiae, while the secretion was very low in the wild-type strain. In parallel, the induction level of the molecular chaperones BiP and PDI located in the endoplasmic reticulum (ER) was investigated when these glycosylated amyloidogenic lysozymes were expressed in wild-type and calnexin-disrupted S. cerevisiae. The mRNA concentrations of BiP and PDI were evidently increased when mutant lysozyme D66H/G49N was expressed in calnexin-disrupted S. cerevisiae, while they were not so increased when I55T/G49N mutant was expressed. This observation indicates that the conformation of mutant lysozyme D66H/G49N was less stable in the ER, thus leading to the higher-level expression of ER molecular chaperones via the unfolded protein response pathway. This suggests that glycosylated amyloidogenic lysozyme I55T/G49N may have a relatively stable conformation in the ER, thus releasing it from the quality control of calnexin compared with mutant lysozyme D66H/G49N.
Collapse
Affiliation(s)
- Youtao Song
- Department of Biological Chemistry, Yamaguchi University, 753-8515, Yamaguchi, Japan
| | | | | | | | | |
Collapse
|
24
|
Helenius J, Ng DTW, Marolda CL, Walter P, Valvano MA, Aebi M. Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein. Nature 2002; 415:447-50. [PMID: 11807558 DOI: 10.1038/415447a] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
N-linked glycosylation of proteins in eukaryotic cells follows a highly conserved pathway. The tetradecasaccharide substrate (Glc3Man9GlcNAc2) is first assembled at the membrane of the endoplasmic reticulum (ER) as a dolichylpyrophosphate (Dol-PP)-linked intermediate, and then transferred to nascent polypeptide chains in the lumen of the ER. The assembly of the oligosaccharide starts on the cytoplasmic side of the ER membrane with the synthesis of a Man5GlcNAc2-PP-Dol intermediate. This lipid-linked intermediate is then translocated across the membrane so that the oligosaccharides face the lumen of the ER, where the biosynthesis of Glc3Man9GlcNAc2-PP-Dol continues to completion. The fully assembled oligosaccharide is transferred to selected asparagine residues of target proteins. The transmembrane movement of lipid-linked Man5GlcNAc2 oligosaccharide is of fundamental importance in this biosynthetic pathway, and similar processes involving phospholipids and glycolipids are essential in all types of cells. The process is predicted to be catalysed by proteins, termed flippases, which to date have remained elusive. Here we provide evidence that yeast RFT1 encodes an evolutionarily conserved protein required for the translocation of Man5GlcNAc2-PP-Dol from the cytoplasmic to the lumenal leaflet of the ER membrane.
Collapse
Affiliation(s)
- Jonne Helenius
- Institute of Microbiology, Swiss Federal Institute of Technology, Zürich, CH-8092 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
25
|
Kawar Z, Romero PA, Herscovics A, Jarvis DL. N-Glycan processing by a lepidopteran insect alpha1,2-mannosidase. Glycobiology 2000; 10:347-55. [PMID: 10764822 DOI: 10.1093/glycob/10.4.347] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein glycosylation pathways are relatively poorly characterized in insect cells. As part of an overall effort to address this problem, we previously isolated a cDNA from Sf9 cells that encodes an insect alpha1,2-mannosidase (SfManI) which requires calcium and is inhibited by 1-deoxymannojirimycin. In the present study, we have characterized the substrate specificity of SfManI. A recombinant baculovirus was used to express a GST-tagged secreted form of SfManI which was purified from the medium using an immobilized glutathione column. The purified SfManI was then incubated with oligosaccharide substrates and the resulting products were analyzed by HPLC. These analyses showed that SfManI rapidly converts Man(9)GlcNAc(2)to Man(6)Glc-NAc(2)isomer C, then more slowly converts Man(6)GlcNAc(2)isomer C to Man(5)GlcNAc(2). The slow step in the processing of Man(9)GlcNAc(2)to Man(5)GlcNAc(2)by SfManI is removal of the alpha1,2-linked mannose on the middle arm of Man(9)GlcNAc(2). In this respect, SfManI is similar to mammalian alpha1,2-mannosidases IA and IB. However, additional HPLC and(1)H-NMR analyses demonstrated that SfManI converts Man(9)GlcNAc(2)to Man(5)GlcNAc(2)primarily through Man(7)GlcNAc(2)isomer C, the archetypal Man(9)GlcNAc(2)missing the lower arm alpha1,2-linked mannose residues. In this respect, SfManI differs from mammalian alpha1,2-mannosidases IA and IB, and is the first alpha1,2-mannosidase directly shown to produce Man(7)GlcNAc(2)isomer C as a major processing intermediate.
Collapse
Affiliation(s)
- Z Kawar
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071-3944, USA
| | | | | | | |
Collapse
|
26
|
Tessier DC, Dignard D, Zapun A, Radominska-Pandya A, Parodi AJ, Bergeron JJ, Thomas DY. Cloning and characterization of mammalian UDP-glucose glycoprotein: glucosyltransferase and the development of a specific substrate for this enzyme. Glycobiology 2000; 10:403-12. [PMID: 10764828 DOI: 10.1093/glycob/10.4.403] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The endoplasmic reticulum enzyme UDP-glucose glycoprotein:glucosyltransferase (UGGT) has the unique property of recognizing incompletely folded glycoproteins and, if they carry an N -linked Man(9)GlcNAc(2)oligosaccharide, of catalyzing the addition of a glucose residue from UDP-glucose. Using peptide sequence information, we have isolated the complete cDNA of rat liver UGGT and expressed it in insect cells. The cDNA specifies an open reading frame which codes for a protein of 1527 residues including an 18 amino acid signal peptide. The protein has a C-terminal tetrapeptide (HEEL) characteristic of endoplasmic reticulum luminal proteins. The purified recombinant enzyme shows the same preference for unfolded polypeptides with N -linked Man(9)GlcNAc(2)glycans as the enzyme purified from rat liver. A genetically engineered Saccharomyces cerevisiae strain capable of producing glyco-proteins with Man(9)GlcNAc(2)core oligosaccharides was constructed and secreted acid phosphatase (G0-AcP) was purified. G0-AcP was used as an acceptor glycoprotein for UGGT and found to be a better substrate than the previously used soybean agglutinin and thyroglobulin. Recombinant rat UGGT has a K (m) of 44 microM for UDP-glucose. A proteolytic fragment of UGGT was found to retain enzymatic activity thus localizing the catalytic site of the enzyme to the C-terminal 37 kDa of the protein. Using site-directed mutagenesis and photoaffinity labeling, we have identified residues D1334, D1336, Q1429, and N1433 to be necessary for the catalytic activity of the enzyme.
Collapse
Affiliation(s)
- D C Tessier
- Genetics Group, Biotechnology Research Institute, National Research Council of Canada, Montréal, Québec H4P 2R2, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Vázquez-Reyna AB, Balcázar-Orozco R, Calvo-Méndez C, López-Romero E, Flores-Carreón A. Processing of the Man(10)GlcNAc (M(10)) oligosaccharide by alpha-mannosidases from Candida albicans. FEMS Microbiol Lett 2000; 185:37-41. [PMID: 10731604 DOI: 10.1111/j.1574-6968.2000.tb09037.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The hydrolysis of Man(10)GlcNAc (M(10)) by purified alpha-mannosidases and its further processing by a mixed membrane preparation from Candida albicans were studied. Incubation of the oligosaccharide with purified alpha-mannosidases I (E-I) or II (E-II) from C. albicans released 1 and 2 mol of mannose per mol of M(10), respectively. This treatment converted M(10) into an acceptor substrate of further mannose residues from GDP-Man as catalyzed by membrane-bound mannosyltransferases. Elongation of E-I- or E-II-trimmed M(10) yielded a low molecular mass product (14-17 mannose residues added), and in the case of E-II, a minor amount of an additional product of a higher molecular mass. Our results indicate that purified alpha-mannosidases participate in N-glycan processing in C. albicans.
Collapse
Affiliation(s)
- A B Vázquez-Reyna
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad Autónoma de Guanajuato, Apartado postal 187, Guanajuato, Mexico
| | | | | | | | | |
Collapse
|
28
|
Vallée F, Lipari F, Yip P, Sleno B, Herscovics A, Howell PL. Crystal structure of a class I alpha1,2-mannosidase involved in N-glycan processing and endoplasmic reticulum quality control. EMBO J 2000; 19:581-8. [PMID: 10675327 PMCID: PMC305596 DOI: 10.1093/emboj/19.4.581] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mannose trimming is not only essential for N-glycan maturation in mammalian cells but also triggers degradation of misfolded glycoproteins. The crystal structure of the class I alpha1, 2-mannosidase that trims Man(9)GlcNAc(2) to Man(8)GlcNAc(2 )isomer B in the endoplasmic reticulum of Saccharomyces cerevisiae reveals a novel (alphaalpha)(7)-barrel in which an N-glycan from one molecule extends into the barrel of an adjacent molecule, interacting with the essential acidic residues and calcium ion. The observed protein-carbohydrate interactions provide the first insight into the catalytic mechanism and specificity of this eukaryotic enzyme family and may be used to design inhibitors that prevent degradation of misfolded glycoproteins in genetic diseases.
Collapse
Affiliation(s)
- F Vallée
- Structural Biology and Biochemistry, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Ontario
| | | | | | | | | | | |
Collapse
|
29
|
Tremblay LO, Herscovics A. Cloning and expression of a specific human alpha 1,2-mannosidase that trims Man9GlcNAc2 to Man8GlcNAc2 isomer B during N-glycan biosynthesis. Glycobiology 1999; 9:1073-8. [PMID: 10521544 DOI: 10.1093/glycob/9.10.1073] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We report the isolation of a novel human cDNA encoding a type II membrane protein of 79.5 kDa with amino acid sequence similarity to Class I alpha 1,2-mannosidases. The catalytic domain of the enzyme was expressed as a secreted protein in Pichia pastoris. The recombinant enzyme removes a single mannose residue from Man9GlcNAc and [1H]-NMR analysis indicates that the only product is Man8GlcNAc isomer B, the form lacking the middle-arm terminal alpha 1,2-mannose. Calcium is required for enzyme activity and both 1-deoxymannojirimycin and kifunensine inhibit the human alpha 1,2-mannosidase. The properties and specificity of this human alpha 1,2-mannosidase are identical to the endoplasmic reticulum alpha 1,2-mannosidase from Saccharomyces cerevisiae and differ from those of previously cloned Golgi alpha 1,2-mannosidases that remove up to four mannose residues from Man9GlcNAc2 during N-glycan maturation. Northern blot analysis showed that all human tissues examined express variable amounts of a 3 kb transcript. This highly specific alpha 1,2-mannosidase is likely to be involved in glycoprotein quality control since there is increasing evidence that trimming of Man9GlcNAc2 to Man8GlcNAc2 isomer B in yeast cells is important to target misfolded glycoproteins for degradation.
Collapse
|
30
|
Massaad MJ, Franzusoff A, Herscovics A. The processing alpha1,2-mannosidase of Saccharomyces cerevisiae depends on Rer1p for its localization in the endoplasmic reticulum. Eur J Cell Biol 1999; 78:435-40. [PMID: 10472796 DOI: 10.1016/s0171-9335(99)80070-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The yeast alpha1,2-mannosidase Mns1p is involved in N-linked oligosaccharide processing in Saccharomyces cerevisiae by converting Man9GlcNAc2 to a single isomer of Man8GlcNAc2. alpha1,2-Mannosidase is a 63 kDa type II resident membrane protein of the endoplasmic reticulum that has none of the known endoplasmic reticulum localization signals (HDEL/KDEL, KKXX, or RRXX). Using antibodies against recombinant alpha1,2-mannosidase, indirect immunofluorescence showed that alpha1,2-mannosidase localization is abnormal in rer1 cells and that the alpha1,2-mannosidase localizes in the vacuoles of rer1/deltapep4 cells whereas in wild-type and deltapep4 cells it is found in the endoplasmic reticulum. 35S-labeled cell extracts were subjected to double immunoprecipitation, first with antibodies to alpha1,2-mannosidase, then with either alpha1,2-mannosidase antibodies or antibodies to alpha1,6-mannose residues added in the Golgi. The labeled proteins were examined by autoradiography after sodium dodecyl sulfate polyacrylamide gel electrophoresis. A significant proportion of the labeled alpha1,2-mannosidase was immunoprecipitated by alpha1,6-mannose antibodies in wild-type, deltapep4 and rer1/deltapep4 cells with endogenous levels of alpha1,2-mannosidase, and in wild-type, deltapep4, rer1 and rer1/deltapep4 cells overexpressing alpha1,2-mannosidase. The alpha1,2-mannosidase of rer1/deltapep4 cells had a slower mobility on the gels than alpha1,2-mannosidase precipitated from wild-type or deltapep4 cells, indicating increased glycosylation due to transport through the Golgi to the vacuoles. It is concluded that the endoplasmic reticulum localization of alpha1,2-mannosidase in wild-type cells depends on Rer1p for retrieval from an early Golgi compartment.
Collapse
Affiliation(s)
- M J Massaad
- McGill Cancer Centre, McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
31
|
Vazquez-Reyna AB, Ponce-Noyola P, Calvo-Mendez C, Lopez-Romero E, Flores-Carreon A. Purification and biochemical characterization of two soluble -mannosidases from Candida albicans. Glycobiology 1999. [DOI: 10.1093/oxfordjournals.glycob.a018867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
32
|
Lipari F, Herscovics A. Calcium binding to the class I alpha-1,2-mannosidase from Saccharomyces cerevisiae occurs outside the EF hand motif. Biochemistry 1999; 38:1111-8. [PMID: 9894008 DOI: 10.1021/bi981643i] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Class I alpha-1,2-mannosidases are a family of Ca2+-dependent enzymes that have been conserved through eukaryotic evolution. These enzymes contain a conserved putative EF hand Ca2+-binding motif and nine invariant acidic residues. The catalytic domain of the alpha-1, 2-mannosidase from Saccharomyces cerevisiae was expressed in Pichia pastoris and was shown by atomic absorption and equilibrium dialysis to bind one Ca2+ ion with high affinity (KD = 4 x 10(-)7 M). Ca2+ protected the enzyme from thermal denaturation. Mutation of the 1st and 12th residues of the putative EF hand Ca2+ binding loop (D121N, D121A, E132Q, E132V, and D121A/E132V) had no effect on Ca2+ binding, demonstrating that the EF hand motif is not the site of Ca2+ binding. In contrast, three invariant acidic residue mutants (D275N, E279Q, and E438Q) lost the ability to bind 45Ca2+ following nondenaturing polyacrylamide gel electrophoresis whereas D86N, E132Q, E503Q, and E526Q mutants exhibited binding of 45Ca2+ similar to the wild-type enzyme. The wild-type enzyme had a Km and kcat of 0.5 mM and 12 s-1, respectively. The Km of E526Q was greatly increased to 4 mM with a small reduction in kcat to 5 s-1 whereas the kcat values of D86N and E132Q(V) were greatly reduced (0.005-0.007 s-1) with a decrease in Km (0.07-0.3 mM). The E503Q mutant is completely inactive. Asp275, Glu279, and Glu438 are therefore required for Ca2+ binding whereas Asp86, Glu132, and Glu503 are required for catalysis.
Collapse
Affiliation(s)
- F Lipari
- McGill Cancer Centre, McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
33
|
Abstract
The properties of the N-glycan processing glycosidases located in the endoplasmic reticulum of Saccharomyces cerevisiae are described. alpha-Glucosidase I encoded by CWH41 cleaves the terminal alpha1, 2-linked glucose and alpha-glucosidase II encoded by ROT2 removes the two alpha1,3-linked glucose residues from the Glc3Man9GlcNAc2 oligosaccharide precursor while the alpha1,2-mannosidase encoded by MNS1 removes one specific mannose to form a single isomer of Man8GlcNAc2. Although trimming by these glycosidases is not essential for the formation of N-glycan outer chains, recent studies on mutants lacking these enzymes indicate that alpha-glucosidases I and II play an indirect role in cell wall beta1,6-glucan formation and that the alpha1,2-mannosidase is involved in endoplasmic reticulum quality control. Detailed structure-function studies of recombinant yeast alpha1,2-mannosidase are described that serve as a model for other members of this enzyme family that has been conserved through eukaryotic evolution.
Collapse
Affiliation(s)
- A Herscovics
- McGill Cancer Centre, McGill University, 3655 Drummond Street, Montreal, Que. H3G 1Y6, Canada.
| |
Collapse
|
34
|
Parodi AJ. Reglucosylation of glycoproteins and quality control of glycoprotein folding in the endoplasmic reticulum of yeast cells. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1426:287-95. [PMID: 9878790 DOI: 10.1016/s0304-4165(98)00130-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins entering the secretory pathway may be glycosylated upon transfer of an oligosaccharide (Glc3Man9GlcNAc2) from a dolichol-P-P derivative to nascent polypeptide chains in the lumen of the endoplasmic reticulum (ER). Oligosaccharides are then deglucosylated by glucosidases I and II (GII). Also in the ER, glycoproteins acquire their final tertiary structures, and species that fail to fold properly are retained and eventually degraded in the proteasome. It has been proposed that in mammalian cells the monoglucosylated oligosaccharides generated either by partial deglucosylation of the transferred compound or by reglucosylation of glucose-free oligosaccharides by the UDP-Glc:glycoprotein glucosyltransferase (GT) are recognized by ER resident lectins (calnexin and/or calreticulin). GT is a sensor of glycoprotein conformation as it only glucosylates misfolded species. The lectin-monoglucosylated oligosaccharide interaction would retain glycoproteins in the ER until correctly folded, and also facilitate their acquisition of proper tertiary structures by preventing aggregation. GII would liberate glycoproteins from the calnexin/calreticulin anchor, but species not properly folded would be reglucosylated by GT, and so continue to be retained by the lectins. Only when the protein becomes properly folded would it cease to be retained by the lectins. This review presents evidence suggesting that a similar quality control mechanism of glycoprotein folding is operative in Schizosaccharomyces pombe and that the mechanism in Saccharomyces cerevisiae probably differs substantially from that occurring in mammalian and Sch. pombe cells.
Collapse
Affiliation(s)
- A J Parodi
- Instituto de Investigaciones Bioquímicas Fundación Campomar, Antonio Machado 151, 1405 Buenos Aires, Argentina.
| |
Collapse
|
35
|
Lal A, Pang P, Kalelkar S, Romero PA, Herscovics A, Moremen KW. Substrate specificities of recombinant murine Golgi alpha1, 2-mannosidases IA and IB and comparison with endoplasmic reticulum and Golgi processing alpha1,2-mannosidases. Glycobiology 1998; 8:981-95. [PMID: 9719679 DOI: 10.1093/glycob/8.10.981] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The catalytic domains of murine Golgi alpha1,2-mannosidases IA and IB that are involved in N-glycan processing were expressed as secreted proteins in P.pastoris . Recombinant mannosidases IA and IB both required divalent cations for activity, were inhibited by deoxymannojirimycin and kifunensine, and exhibited similar catalytic constants using Manalpha1,2Manalpha-O-CH3as substrate. Mannosidase IA was purified as a 50 kDa catalytically active soluble fragment and shown to be an inverting glycosidase. Recombinant mannosidases IA and IB were used to cleave Man9GlcNAc and the isomers produced were identified by high performance liquid chromatography and proton-nuclear magnetic resonance spectroscopy. Man9GlcNAc was rapidly cleaved by both enzymes to Man6GlcNAc, followed by a much slower conversion to Man5GlcNAc. The same isomers of Man7GlcNAc and Man6GlcNAc were produced by both enzymes but different isomers of Man8GlcNAc were formed. When Man8GlcNAc (Man8B isomer) was used as substrate, rapid conversion to Man5GlcNAc was observed, and the same oligosaccharide isomer intermediates were formed by both enzymes. These results combined with proton-nuclear magnetic resonance spectroscopy data demonstrate that it is the terminal alpha1, 2-mannose residue missing in the Man8B isomer that is cleaved from Man9GlcNAc at a much slower rate. When rat liver endoplasmic reticulum membrane extracts were incubated with Man9GlcNAc2, Man8GlcNAc2was the major product and Man8B was the major isomer. In contrast, rat liver Golgi membranes rapidly cleaved Man9GlcNAc2to Man6GlcNAc2and more slowly to Man5GlcNAc2. In this case all three isomers of Man8GlcNAc2were formed as intermediates, but a distinctive isomer, Man8A, was predominant. Antiserum to recombinant mannosidase IA immunoprecipitated an enzyme from Golgi extracts with the same specificity as recombinant mannosidase IA. These immunodepleted membranes were enriched in a Man9GlcNAc2to Man8GlcNAc2-cleaving activity forming predominantly the Man8B isomer. These results suggest that mannosidases IA and IB in Golgi membranes prefer the Man8B isomer generated by a complementary mannosidase that removes a single mannose from Man9GlcNAc2.
Collapse
Affiliation(s)
- A Lal
- Complex Carbohydrate Research Center and the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA and the McGill Cancer Centre, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Parodi AJ. The quality control of glycoprotein folding in the endoplasmic reticulum, a trip from trypanosomes to mammals. Braz J Med Biol Res 1998; 31:601-14. [PMID: 9698764 DOI: 10.1590/s0100-879x1998000500002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The present review deals with the stages of synthesis and processing of asparagine-linked oligosaccharides occurring in the lumen of the endoplasmic reticulum and their relationship to the acquisition by glycoproteins of their proper tertiary structures. Special emphasis is placed on reactions taking place in trypanosomatid protozoa since their study has allowed the detection of the transient glucosylation of glycoproteins catalyzed by UDP-Glc:glycoprotein glucosyltransferase and glucosidase II. The former enzyme has the unique property of covalently tagging improperly folded conformations by catalyzing the formation of protein-linked Glc1Man7GlcNAc2, Glc1Man8GlcNac2 and Glc1Man9GlcNAc2 from the unglucosylated proteins. Glucosyl-transferase is a soluble protein of the endoplasmic reticulum that recognizes protein domains exposed in denatured but not in native conformations (probably hydrophobic amino acids) and the innermost N-acetylglucosamine unit that is hidden from macromolecular probes in most native glycoproteins. In vivo, the glucose units are removed by glucosidase II. The influence of oligosaccharides in glycoprotein folding is reviewed as well as the participation of endoplasmic reticulum chaperones (calnexin and calreticulin) that recognize monoglucosylated species in the same process. A model for the quality control of glycoprotein folding in the endoplasmic reticulum, i.e., the mechanism by which cells recognize the tertiary structure of glycoproteins and only allow transit to the Golgi apparatus of properly folded species, is discussed. The main elements of this control are calnexin and calreticulin as retaining components, the UDP-Glc:glycoprotein glucosyltransferase as a sensor of tertiary structures and glucosidase II as the releasing agent.
Collapse
Affiliation(s)
- A J Parodi
- Instituto de Investigaciones Bioquímicas, Fundación Campomar, Buenos Aires, Argentina.
| |
Collapse
|
37
|
Eneyskaya EV, Kulminskaya AA, Savel'ev AN, Shabalin KA, Golubev AM, Neustroev KN. alpha-Mannosidase from Trichoderma reesei participates in the postsecretory deglycosylation of glycoproteins. Biochem Biophys Res Commun 1998; 245:43-9. [PMID: 9535780 DOI: 10.1006/bbrc.1998.8382] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 160 kDa alpha-mannosidase (E.C. 3.2.1.24) isolated from culture filtrate of Trichoderma reesei has wide aglycon specificity but cleaves the alpha1 --> 2 and alpha1 --> 3 mannosidic bonds with higher rate than alpha1 --> 6 bond and slowly hydrolyses yeast mannan and 1,6-alpha-mannan. The specific activity of the enzyme and rate constant in the reaction with p-nitrophenyl-alpha-D-mannopyranoside were 0.15 U/mg and 1.62 x 10(-4) microM/min/microg, respectively, at optimal pH 6.5. We have found that in vitro enzyme is able to cleave off 30% of total alpha-mannopyranosyl residues from N- and O-linked glycans of secreted glycoproteins. The activity of the alpha-mannosidase toward glycoproteins in vivo was studied comparing the structures of O- and N-linked glycans of glycoproteins isolated from the cultures growing with and without 1-deoxymannojirimycin, an inhibitor of alpha-mannosidases. Difference in structures of these glycans may be explained by postsecretory deglycosylation catalysed by the alpha-mannosidase.
Collapse
Affiliation(s)
- E V Eneyskaya
- Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg, 188350, Russia
| | | | | | | | | | | |
Collapse
|
38
|
Bagiyan FG, Eneyskaya EV, Kulminskaya AA, Savel'ev AN, Shabalin KA, Neustroev KN. The action of alpha-mannosidase from Oerskovia sp. on the mannose-rich O-linked sugar chains of glycoproteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:286-92. [PMID: 9363781 DOI: 10.1111/j.1432-1033.1997.t01-1-00286.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alpha-mannosidase was isolated from the culture liquid of Oerskovia sp. The purified enzyme had a molecular mass of 480 kDa and comprises four identical subunits. The enzyme cleaves bonds in side chains of yeast mannan (Km = 0.08 mM, k(cat) = 1.02 micromol x min(-1) x mg(-1)) and reveals a low activity towards p-nitrophenyl alpha-D-mannopyranoside. The alpha-mannosidase is a Ca2+-dependent enzyme and is inhibited by EDTA. The enzyme possess no endo-mannosidase activity releasing only mannose in the reaction with the inversion of anomeric configuration and could be classified as exo-alpha-mannanase. The enzyme revealed a high deglycosylating activity towards the short mannose-rich O-linked carbohydrate chains of glycoproteins.
Collapse
Affiliation(s)
- F G Bagiyan
- Petersburg Nuclear Physics Institute, Molecular and Radiation Biophysics Division, St Petersburg, Russia
| | | | | | | | | | | |
Collapse
|
39
|
Dole K, Lipari F, Herscovics A, Howell PL. Crystallization and preliminary X-ray analysis of the class 1 alpha 1,2-mannosidase from Saccharomyces cerevisiae. J Struct Biol 1997; 120:69-72. [PMID: 9356293 DOI: 10.1006/jsbi.1997.3903] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The alpha 1,2-mannosidase from Saccharomyces cerevisiae catalyzes the conversion of Man9GlcNAc2 to Man8GlcNAc2 during the formation of N-linked oligosaccharides and is a member of the Class 1 alpha 1,2-mannosidases conserved from yeast to mammals. The enzyme is a type II membrane protein and a recombinant form of the alpha 1,2-mannosidase from S. cerevisiae, lacking the transmembrane domain, has been expressed in Pichia pastoris and crystallized using the hanging drop vapor diffusion technique. The crystals grow as flat plates, with unit cell dimensions a = 57.5 A, b = 84.1 A, c = 107.1 A, alpha = beta = gamma = 90 degrees. The crystals exhibit the symmetry of space group P2(1)2(1)2(1) and diffract to a minimum d-spacing of 3.5 A resolution. On the basis of density calculations one monomer is estimated to be present in the asymmetric unit (Vm = 2.08 A3 Da-1). This is the first report of the crystallization of any glycosidase involved in N-glycan biosynthesis.
Collapse
Affiliation(s)
- K Dole
- Division of Biochemistry Research, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
40
|
Lipari F, Herscovics A. Role of the cysteine residues in the alpha1,2-mannosidase involved in N-glycan biosynthesis in Saccharomyces cerevisiae. The conserved Cys340 and Cys385 residues form an essential disulfide bond. J Biol Chem 1996; 271:27615-22. [PMID: 8910350 DOI: 10.1074/jbc.271.44.27615] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Saccharomyces cerevisiae alpha1,2-mannosidase, which removes one specific mannose residue from Man9GlcNAc2 to form Man8GlcNAc2, is a member of a family of alpha1,2-mannosidases with similar amino acid sequences. The yeast alpha1,2-mannosidase contains five cysteine residues, three of which are conserved. Recombinant yeast alpha1, 2-mannosidase, produced as the soluble catalytic domain, was shown to contain two disulfide bonds and one free thiol group using 2-nitro-5-thiosulfobenzoate and 5,5'-dithiobis(2-nitrobenzoate), respectively. Cys485 contains the free thiol group, as demonstrated by sequencing of labeled peptides following modification with [3H]ICH2COOH and by high performance liquid chromatography/mass spectrometry tryptic peptide mapping. A Cys340-Cys385 disulfide was demonstrated by sequencing a purified peptide containing this disulfide and by tryptic peptide mapping. Cys468 and Cys471 were not labeled with [3H]ICH2COOH and a peptide containing these two residues was identified in the tryptic peptide map, showing that Cys468 and Cys471 form the second disulfide bond. The alpha1, 2-mannosidase loses its activity in the presence of dithiothreitol with first order kinetics, suggesting that at least one disulfide bond is essential for activity. Mutagenesis of each cysteine residue to serine showed that Cys340 and Cys385 are essential for production of recombinant enzyme, whereas Cys468, Cys471, and Cys485 are not required for production and enzyme activity. These results indicate that the sensitivity to dithiothreitol is due to reduction of the Cys340-Cys385 disulfide. Since Cys340 and Cys385 are conserved residues, it is likely that this disulfide bond is important to maintain the correct structure in the other members of the alpha1, 2-mannosidase family.
Collapse
Affiliation(s)
- F Lipari
- McGill Cancer Centre, McGill University, Montréal, Québec, Canada H3G 1Y6.
| | | |
Collapse
|
41
|
Schneikert J, Herscovics A. Two naturally occurring mouse alpha-1,2-mannosidase IB cDNA clones differ in three point mutations. Mutation of Phe592 to Ser592 is sufficient to abolish enzyme activity. J Biol Chem 1995; 270:17736-40. [PMID: 7629073 DOI: 10.1074/jbc.270.30.17736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In mammalian cells, alpha-1,2-mannosidases play an essential role in the early steps of N-linked oligosaccharide maturation. We previously reported (Herscovics, A., Schneikert, J., Athanassiadis, A., and Moremen, K. W. (1994) J. Biol. Chem. 269, 9864-9871) the isolation of mouse alpha-mannosidase IB cDNA clones from a Balb/c 3T3 cDNA library. Clone 4 encodes a type II membrane protein of 641 amino acids with a cytoplasmic tail of 35 amino acids, followed by a transmembrane domain and a large C-terminal catalytic domain, whereas clone 16 encodes only the last 471 amino acids. Their overlapping sequences (from amino acid 152) are identical, except for three point mutations that result in three amino acid differences in the catalytic domain of the enzyme (Thr411, Leu468, and Ser592 in clone 4 to Met411, Phe468, and Phe592 in clone 16, respectively). Both sequences could be amplified by polymerase chain reaction using templates of cDNAs derived from colon and brain of CD1 mice and from L cells derived from the C3H/An mouse, indicating that both are natural isoforms found in two inbred and one outbred mouse strains. When expressed in COS7 cells as a secreted protein A fusion protein, the catalytic domain of clone 16 displays alpha-1,2-mannosidase activity using [3H]mannose-labeled Man9GlcNAc as substrate, but the corresponding region of clone 4 is poorly secreted under identical conditions. The contribution of each point mutation to this differential secretion and enzyme activity of the two fusion proteins was assessed by testing the six recombinants corresponding to all the possible sequence permutations. Mutation of Phe592 to Ser592, as found in clone 4, is sufficient to abolish alpha-1,2-mannosidase activity, whereas mutation of Met411 to Thr411 or of Phe468 to Leu468 affects secretion with relatively little effect on enzyme activity. Phe592 is part of a highly conserved region that seems important for enzyme activity of class 1 alpha-1,2-mannosidases.
Collapse
Affiliation(s)
- J Schneikert
- McGill Cancer Centre, McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
42
|
Chapter 7 Protein Glycosylation in Yeast. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s0167-7306(08)60601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
|
43
|
Isolation of a mouse Golgi mannosidase cDNA, a member of a gene family conserved from yeast to mammals. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36963-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
44
|
Lal A, Schutzbach J, Forsee W, Neame P, Moremen K. Isolation and expression of murine and rabbit cDNAs encoding an alpha 1,2-mannosidase involved in the processing of asparagine-linked oligosaccharides. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36964-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
45
|
Glycoprotein synthesis in yeast. Early events in N-linked oligosaccharide processing in Schizosaccharomyces pombe. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)99907-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
46
|
Maruyama Y, Nakajima T, Ichishima E. A 1,2-alpha-D-mannosidase from a Bacillus sp.: purification, characterization, and mode of action. Carbohydr Res 1994; 251:89-98. [PMID: 8149382 DOI: 10.1016/0008-6215(94)84278-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A 1,2-alpha-D-mannosidase was purified to homogeneity from the culture supernatant of Bacillus sp. M-90, which was isolated from soil by enrichment culture on baker's yeast mannan. The purified enzyme had M(r) 380,000 Da, and was comprised of two apparently identical 190,000 Da subunits. It had a neutral optimum pH (7.0) and an isoelectric point of 3.6. The enzyme was highly specific for alpha 1,2-linked D-mannose oligosaccharides. An N-linked high-mannose type oligosaccharide, Man9GlcNAc2, was a good substrate, yielding Man5GlcNAc2, and the alpha 1,2-linked side chains of Saccharomyces cerevisiae mannan were also specifically hydrolyzed by the enzyme. p-Nitrophenyl alpha-D-mannopyranoside and 1,2-alpha-D-mannobiitol were not hydrolyzed at all. Calcium ion, 1-deoxyman-nojirimycin, and swainsonine had no effect on the enzyme, but the activity was completely inhibited by EDTA. The mode of action on alpha 1,2-linked mannotetraose indicated that the enzyme is an exo-1,2-alpha-D-mannanase.
Collapse
Affiliation(s)
- Y Maruyama
- Department of Applied Biological Chemistry, Faculty of Agriculture, Tohoku University, Sendai-shi, Japan
| | | | | |
Collapse
|
47
|
Bendiak B, Ward LD, Simpson RJ. Proteins of the Golgi apparatus. Purification to homogeneity, N-terminal sequence, and unusually large Stokes radius of the membrane-bound form of UDP-galactose:N-acetylglucosamine beta 1-4galactosyltransferase from rat liver. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 216:405-17. [PMID: 8375379 DOI: 10.1111/j.1432-1033.1993.tb18158.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The Golgi marker enzyme, UDP-galactose:N-acetylglucosamine beta 1-4galactosyltransferase (beta 1-4GalT) was purified 44300-fold in its intact, membrane-bound form from rat liver membranes. The protein was isolated from detergent extracts as a high-M(r) form, having a Stokes radius approximating a globular protein of M(r) 440,000. It is comprised of a single protein component as observed on SDS/polyacrylamide gels, having an M(r) near 51,000, and does not have intermolecular disulfide cross-links. N-terminal sequencing of the enzyme demonstrated that it contains an N-terminal hydrophobic stretch deduced previously from cDNA encoding for the enzyme. Previous studies have indicated that the protein may be translated at either of two AUG sites near the 5' end of the mRNA [Russo, R. N., Shaper, N. L. & Shaper, J. H. (1990) J. Biol. Chem. 265, 3324-3331], giving rise to two polypeptides, one appended with 13 amino acids. In the work described here, evidence was only found for the sequence of the short form, missing a single methionine at the N-terminus. Mild proteolytic treatment cleaved the enzyme, giving rise to low-M(r) forms which were fully catalytically active and which, upon sequencing, were missing a 66-amino-acid stretch from the N-terminus (as compared to the mouse cDNA). Proteolytic treatment was accompanied by conversion of the form having a large Stokes radius to one approximating a globular protein with M(r) near 50,000. The N-terminal stretch appears to contribute to maintenance of the form having a large Stokes radius. This may be the result of interaction with a detergent micelle, dimerization or oligomerization, or interaction with some other large, non-protein molecule, although a detergent exchange still resulted in a form having a large Stokes radius.
Collapse
Affiliation(s)
- B Bendiak
- Department of Enzymology, University of Washington, Seattle
| | | | | |
Collapse
|
48
|
|
49
|
Vázquez-Reyna AB, Balcázar-Orozco R, Flores-Carreón A. Biosynthesis of glycoproteins in Candida albicans: biochemical characterization of a soluble alpha-mannosidase. FEMS Microbiol Lett 1993; 106:321-5. [PMID: 8454197 DOI: 10.1111/j.1574-6968.1993.tb05983.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Most alpha-mannosidase activity (80%) in C. albicans was found in a soluble form. Addition of protease inhibitors to explore proteolytic release from a particulate cell component during enzyme preparation did not change this distribution. Molecular mass, calculated from gel filtration chromatography, was 417 kDa. Optimum pH was 6.0 with 50 mM Mes-Tris when p-nitrophenyl-alpha-D-mannopyranoside was used as substrate. Optimum temperature was 42 degrees C with either 10 mM phosphate buffer (pH 6.8) or 50 mM Mes-Tris buffer (pH 6.0) and with 4-methylumbelliferyl-alpha-D-mannopyranoside as substrate. Apparent Km values for p-nitrophenyl-alpha-D-mannopyranoside and 4-methylumbelliferyl-alpha-D-mannopyranoside were 3.3 mM and 0.1 mM, respectively. 1 mM 1-deoxymannojirimycin and 0.3 mM swainsonine inhibited the hydrolysis of 4-methylumbelliferyl-alpha-D-mannopyranoside by 67% and 83%, respectively, whereas that of p-nitrophenyl-alpha-D-mannopyranoside was only slightly diminished (10-15%).
Collapse
Affiliation(s)
- A B Vázquez-Reyna
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad de Guanajuato, Mexico
| | | | | |
Collapse
|
50
|
Rowling PJ, Freedman RB. Folding, assembly, and posttranslational modification of proteins within the lumen of the endoplasmic reticulum. Subcell Biochem 1993; 21:41-80. [PMID: 8256274 DOI: 10.1007/978-1-4615-2912-5_3] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- P J Rowling
- Biological Laboratory, University of Kent, Canterbury, United Kingdom
| | | |
Collapse
|