1
|
Pan K, Zhu Y, Chen P, Yang K, Chen Y, Wang Y, Dai Z, Huang Z, Zhong P, Zhao X, Fan S, Ning L, Zhang J, Chen P. Biological functions and biomedical applications of extracellular vesicles derived from blood cells. Free Radic Biol Med 2024; 222:43-61. [PMID: 38848784 DOI: 10.1016/j.freeradbiomed.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
There is a growing interest in using extracellular vesicles (EVs) for therapeutic applications. EVs are composed of cytoplasmic proteins and nucleic acids and an external lipid bilayer containing transmembrane proteins on their surfaces. EVs can alter the state of the target cells by interacting with the receptor ligand of the target cell or by being internalised by the target cell. Blood cells are the primary source of EVs, and 1 μL of plasma contains approximately 1.5 × 107 EVs. Owing to their easy acquisition and the avoidance of cell amplification in vitro, using blood cells as a source of therapeutic EVs has promising clinical application prospects. This review summarises the characteristics and biological functions of EVs derived from different blood cell types (platelets, erythrocytes, and leukocytes) and analyses the prospects and challenges of using them for clinical therapeutic applications. In summary, blood cell-derived EVs can regulate different cell types such as immune cells (macrophages, T cells, and dendritic cells), stem cells, and somatic cells, and play a role in intercellular communication, immune regulation, and cell proliferation. Overall, blood cell-derived EVs have the potential for use in vascular diseases, inflammatory diseases, degenerative diseases, and injuries. To promote the clinical translation of blood cell-derived EVs, researchers need to perform further studies on EVs in terms of scalable and reproducible isolation technology, quality control, safety, stability and storage, regulatory issues, cost-effectiveness, and long-term efficacy.
Collapse
Affiliation(s)
- Kaifeng Pan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Yiwei Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Pengyu Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Ke Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Yiyu Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Yongcheng Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Zhanqiu Dai
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325088, China
| | - Zhenxiang Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Peiyu Zhong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Xing Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Lei Ning
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Jianfeng Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
2
|
Gutmann C, Mayr M. Differential effects of physiological agonists on the proteome of platelet-derived extracellular vesicles. Proteomics 2024; 24:e2400090. [PMID: 39148210 DOI: 10.1002/pmic.202400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 08/17/2024]
Abstract
Arterial thrombosis contributes to some of the most frequent causes of mortality globally, such as myocardial infarction and stroke. Platelets are essential mediators of physiological haemostasis and pathological thrombosis. Platelet activation is controlled by a multitude of signalling pathways. Upon activation, platelets shed platelet-derived extracellular vesicles (pEVs). In this Special Issue: Extracellular Vesicles, Moon et al. investigate the impact of various platelet agonists (thrombin, ADP, collagen) on the proteome of pEVs. The study demonstrates that pEVs exhibit an agonist-dependent altered proteome compared to their parent cells, with significant variations in proteins related to coagulation, complement, and platelet activation. The study observes the rapid generation of pEVs following agonist stimulation with specific proteome alterations that underscore an active packaging process. This commentary highlights the implications of their findings and discusses the role of pEV cargo in cardiovascular disease with potential novel therapeutic and diagnostic opportunities.
Collapse
Affiliation(s)
- Clemens Gutmann
- Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Manuel Mayr
- Division of Cardiology, Medical University of Vienna, Vienna, Austria
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
3
|
Montague SJ, Price J, Pennycott K, Pavey NJ, Martin EM, Thirlwell I, Kemble S, Monteiro C, Redmond-Motteram L, Lawson N, Reynolds K, Fratter C, Bignell P, Groenheide A, Huskens D, de Laat B, Pike JA, Poulter NS, Thomas SG, Lowe GC, Lancashire J, Harrison P, Morgan NV. Comprehensive functional characterization of a novel ANO6 variant in a new patient with Scott syndrome. J Thromb Haemost 2024; 22:2281-2293. [PMID: 38492852 DOI: 10.1016/j.jtha.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/09/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Scott syndrome is a mild platelet-type bleeding disorder, first described in 1979, with only 3 unrelated families identified through defective phosphatidylserine (PS) exposure and confirmed by sequencing. The syndrome is distinguished by impaired surface exposure of procoagulant PS on platelets after stimulation. To date, platelet function and thrombin generation in this condition have not been extensively characterized. OBJECTIVES Genetic and functional studies were undertaken in a consanguineous family with a history of excessive bleeding of unknown cause. METHODS A targeted gene panel of known bleeding and platelet genes was used to identify possible genetic variants. Platelet phenotyping, flow adhesion, flow cytometry, whole blood and platelet-rich plasma thrombin generation, and specialized extracellular vesicle measurements were performed. RESULTS We detected a novel homozygous frameshift variant, c.1943del (p.Arg648Hisfs∗23), in ANO6 encoding Anoctamin 6, in a patient with a bleeding history but interestingly with normal ANO6 expression. Phenotyping of the patient's platelets confirmed the absence of PS expression and procoagulant activity but also revealed other defects including reduced platelet δ granules, reduced ristocetin-mediated aggregation and secretion, and reduced P-selectin expression after stimulation. PS was absent on spread platelets, and thrombi formed over collagen at 1500/s. Reduced thrombin generation was observed in platelet-rich plasma and confirmed in whole blood using a new thrombin generation assay. CONCLUSION We present a comprehensive report of a patient with Scott syndrome with a novel frameshift variant in AN06, which is associated with no platelet PS exposure and markedly reduced thrombin generation in whole blood, explaining the significant bleeding phenotype observed.
Collapse
Affiliation(s)
- Samantha J Montague
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Joshua Price
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Katherine Pennycott
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Natasha J Pavey
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Eleyna M Martin
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Isaac Thirlwell
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Samuel Kemble
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Catarina Monteiro
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Lily Redmond-Motteram
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Natalie Lawson
- Haemophilia Unit, Birmingham Children's Hospital, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom
| | - Katherine Reynolds
- Haemophilia Unit, Birmingham Children's Hospital, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom
| | - Carl Fratter
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Patricia Bignell
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | | | - Dana Huskens
- Synapse Research Institute, Maastricht, the Netherlands
| | - Bas de Laat
- Synapse Research Institute, Maastricht, the Netherlands
| | - Jeremy A Pike
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, the Midlands, United Kingdom
| | - Natalie S Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, the Midlands, United Kingdom
| | - Steven G Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, the Midlands, United Kingdom
| | - Gillian C Lowe
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; Comprehensive Care Haemophilia Centre, University Hospital Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Jonathan Lancashire
- Haemophilia Unit, Birmingham Children's Hospital, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom
| | - Paul Harrison
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
4
|
Wardhani K, Levina A, Grau GER, Lay PA. Fluorescent, phosphorescent, magnetic resonance contrast and radioactive tracer labelling of extracellular vesicles. Chem Soc Rev 2024; 53:6779-6829. [PMID: 38828885 DOI: 10.1039/d2cs00238h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This review focusses on the significance of fluorescent, phosphorescent labelling and tracking of extracellular vesicles (EVs) for unravelling their biology, pathophysiology, and potential diagnostic and therapeutic uses. Various labeling strategies, such as lipid membrane, surface protein, luminal, nucleic acid, radionuclide, quantum dot labels, and metal complex-based stains, are evaluated for visualizing and characterizing EVs. Direct labelling with fluorescent lipophilic dyes is simple but generally lacks specificity, while surface protein labelling offers selectivity but may affect EV-cell interactions. Luminal and nucleic acid labelling strategies have their own advantages and challenges. Each labelling approach has strengths and weaknesses, which require a suitable probe and technique based on research goals, but new tetranuclear polypyridylruthenium(II) complexes as phosphorescent probes have strong phosphorescence, selective staining, and stability. Future research should prioritize the design of novel fluorescent probes and labelling platforms that can significantly enhance the efficiency, accuracy, and specificity of EV labeling, while preserving their composition and functionality. It is crucial to reduce false positive signals and explore the potential of multimodal imaging techniques to gain comprehensive insights into EVs.
Collapse
Affiliation(s)
- Kartika Wardhani
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Biochemistry and Biotechnology (B-TEK) Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Georges E R Grau
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
5
|
Abstract
This article represents a republication of an article originally published in STH in 2005. This republication is to help celebrate 50 years of publishing for STH. The original abstract follows.Platelets are specialized blood cells that play central roles in physiologic and pathologic processes of hemostasis, inflammation, tumor metastasis, wound healing, and host defense. Activation of platelets is crucial for platelet function that includes a complex interplay of adhesion and signaling molecules. This article gives an overview of the activation processes involved in primary and secondary hemostasis, for example, platelet adhesion, platelet secretion, platelet aggregation, microvesicle formation, and clot retraction/stabilization. In addition, activated platelets are predominantly involved in cross-talk to other blood and vascular cells. Stimulated "sticky" platelets enable recruitment of leukocytes at sites of vascular injury under high shear conditions. Platelet-derived microparticles as well as soluble adhesion molecules, sP-selectin and sCD40L, shed from the surface of activated platelets, are capable of activating, in turn, leukocytes and endothelial cells. This article focuses further on the new view of receptor-mediated thrombin generation of human platelets, necessary for the formation of a stable platelet-fibrin clot during secondary hemostasis. Finally, special emphasis is placed on important stimulatory and inhibitory signaling pathways that modulate platelet function.
Collapse
Affiliation(s)
- Kerstin Jurk
- Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis, University-Hospital Munster, Munster, Germany
| | - Beate E Kehrel
- Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis, University-Hospital Munster, Munster, Germany
| |
Collapse
|
6
|
Guerreiro EM, Kruglik SG, Swamy S, Latysheva N, Østerud B, Guigner JM, Sureau F, Bonneau S, Kuzmin AN, Prasad PN, Hansen JB, Hellesø OG, Snir O. Extracellular vesicles from activated platelets possess a phospholipid-rich biomolecular profile and enhance prothrombinase activity. J Thromb Haemost 2024; 22:1463-1474. [PMID: 38266680 DOI: 10.1016/j.jtha.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/12/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Extracellular vesicles (EVs), in particular those derived from activated platelets, are associated with a risk of future venous thromboembolism. OBJECTIVES To study the biomolecular profile and function characteristics of EVs from control (unstimulated) and activated platelets. METHODS Biomolecular profiling of single or very few (1-4) platelet-EVs (control/stimulated) was performed by Raman tweezers microspectroscopy. The effects of such EVs on the coagulation system were comprehensively studied. RESULTS Raman tweezers microspectroscopy of platelet-EVs followed by biomolecular component analysis revealed for the first time 3 subsets of EVs: (i) protein rich, (ii) protein/lipid rich, and (iii) lipid rich. EVs from control platelets presented a heterogeneous biomolecular profile, with protein-rich EVs being the main subset (58.7% ± 3.5%). Notably, the protein-rich subset may contain a minor contribution from other extracellular particles, including protein aggregates. In contrast, EVs from activated platelets were more homogeneous, dominated by the protein/lipid-rich subset (>85%), and enriched in phospholipids. Functionally, EVs from activated platelets increased thrombin generation by 52.4% and shortened plasma coagulation time by 34.6% ± 10.0% compared with 18.6% ± 13.9% mediated by EVs from control platelets (P = .015). The increased procoagulant activity was predominantly mediated by phosphatidylserine. Detailed investigation showed that EVs from activated platelets increased the activity of the prothrombinase complex (factor Va:FXa:FII) by more than 6-fold. CONCLUSION Our study reports a novel quantitative biomolecular characterization of platelet-EVs possessing a homogenous and phospholipid-enriched profile in response to platelet activation. Such characteristics are accompanied with an increased phosphatidylserine-dependent procoagulant activity. Further investigation of a possible role of platelet-EVs in the pathogenesis of venous thromboembolism is warranted.
Collapse
Affiliation(s)
- Eduarda M Guerreiro
- Thrombosis Research Group, Institute of Clinical Medicine, Univesitet i Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Sergei G Kruglik
- Laboratoire Jean Perrin, Institut de Biologie Paris-Seine, Sorbonne Université, Centre National de la Recherche Scientifique, Paris, France.
| | - Samantha Swamy
- Thrombosis Research Group, Institute of Clinical Medicine, Univesitet i Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Nadezhda Latysheva
- Thrombosis Research Group, Institute of Clinical Medicine, Univesitet i Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Bjarne Østerud
- Thrombosis Research Group, Institute of Clinical Medicine, Univesitet i Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Jean-Michel Guigner
- L'Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Muséum National d'Histoire Naturelle, Paris, France
| | - Franck Sureau
- Laboratoire Jean Perrin, Institut de Biologie Paris-Seine, Sorbonne Université, Centre National de la Recherche Scientifique, Paris, France
| | - Stephanie Bonneau
- Laboratoire Jean Perrin, Institut de Biologie Paris-Seine, Sorbonne Université, Centre National de la Recherche Scientifique, Paris, France
| | - Andrey N Kuzmin
- Institute for Lasers, Photonics and Biophotonics and the Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Paras N Prasad
- Institute for Lasers, Photonics and Biophotonics and the Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - John-Bjarne Hansen
- Thrombosis Research Group, Institute of Clinical Medicine, Univesitet i Tromsø - The Arctic University of Norway, Tromsø, Norway; Thrombosis Research Center, Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Olav Gaute Hellesø
- Department of Physics and Technology, Univesitet i Tromsø- The Arctic University of Norway, Tromsø, Norway
| | - Omri Snir
- Thrombosis Research Group, Institute of Clinical Medicine, Univesitet i Tromsø - The Arctic University of Norway, Tromsø, Norway; Thrombosis Research Center, Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway.
| |
Collapse
|
7
|
Zhang QD, Duan QY, Tu J, Wu FG. Thrombin and Thrombin-Incorporated Biomaterials for Disease Treatments. Adv Healthc Mater 2024; 13:e2302209. [PMID: 37897228 DOI: 10.1002/adhm.202302209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Thrombin, a coagulation-inducing protease, has long been used in the hemostatic field. During the past decades, many other therapeutic uses of thrombin have been developed. For instance, burn treatment, pseudoaneurysm therapy, wound management, and tumor vascular infarction (or tumor vasculature blockade therapy) can all utilize the unique and powerful function of thrombin. Based on their therapeutic effects, many thrombin-associated products have been certificated by the Food and Drug Administration, including bovine thrombin, human thrombin, recombinant thrombin, fibrin glue, etc. Besides, several thrombin-based drugs are currently undergoing clinical trials. In this article, the therapeutic uses of thrombin (from the initial hemostasis to the latest cancer therapy), the commercially available drugs associated with thrombin, and the pros and cons of thrombin-based therapeutics (e.g., adverse immune responses related to bovine thrombin, thromboinflammation, and vasculogenic "rebounds") are summarized. Further, the current challenges and possible future research directions of thrombin-incorporated biomaterials and therapies are discussed. It is hoped that this review may provide a valuable reference for researchers in this field and help them to design safer and more effective thrombin-based drugs for fighting against various intractable diseases.
Collapse
Affiliation(s)
- Qiong-Dan Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, Jiangsu, 211189, P. R. China
| | - Qiu-Yi Duan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, Jiangsu, 211189, P. R. China
| | - Jing Tu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, Jiangsu, 211189, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, Jiangsu, 211189, P. R. China
| |
Collapse
|
8
|
Abdolalian M, Khalaf-Adeli E, Yari F, Hosseini S, Kiaeefar P. Presurgical circulating platelet-derived microparticles level as a risk factor of blood transfusion in patients with valve heart disease undergoing cardiac surgery. Transfus Clin Biol 2024; 31:19-25. [PMID: 38029957 DOI: 10.1016/j.tracli.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Cell-derived microparticles (MPs) are membrane vesicles that have emerged as a potential biomarker for various diseases and their clinical complications. This study investigates the role of MPs as a risk factor for blood transfusion in patients with valve heart disease undergoing cardiac surgery. METHODS Forty adult patients undergoing heart valve surgery with cardiopulmonary bypass (CPB) were enrolled, and venous blood samples were collected prior to surgical incision. Plasma rich in MPs was prepared by double centrifugation, and the concentration of MPs was determined using the Bradford method. Flow cytometry analysis was performed to determine MPs count and phenotype. Patients were divided into "with transfusion" (n = 18) and "without transfusion" (n = 22) groups based on red blood cell (RBC) transfusion. RESULTS There was no significant difference in MPs concentration between the "with transfusion" and "without transfusion" groups. Although the count of preoperative platelet-derived MPs (PMPs), monocyte-derived MPs (MMPs), and red cell-derived MPs (RMPs) was higher in "without transfusion" group, these differences were not statistically significant. The preoperative PMPs count was negatively correlated with RBC transfusion (P = 0.005, r = -0.65). Multivariate logistic regression analysis revealed that the count of CD41+ PMPs, Hemoglobin (Hb), and RBC count were risk factors for RBC transfusion. CONCLUSION This study suggests that the presurgical levels of PMPs, Hb, and RBC count can serve as risk factors of RBC transfusion in patients with valve heart disease undergoing cardiac surgery. The findings provide insights into the potential use of MPs as biomarkers for blood transfusion prediction in cardiac surgery.
Collapse
Affiliation(s)
- Mehrnaz Abdolalian
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Elham Khalaf-Adeli
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran; Department of Hematology, Faculty of Paramedical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Fatemeh Yari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Saeid Hosseini
- Heart Valve Disease Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
9
|
Hajeyah AA, Protty MB, Paul D, Costa D, Omidvar N, Morgan B, Iwasaki Y, McGill B, Jenkins PV, Yousef Z, Allen-Redpath K, Soyama S, Choudhury A, Mitra R, Yaqoob P, Morrissey JH, Collins PW, O'Donnell VB. Phosphatidylthreonine is a procoagulant lipid detected in human blood and elevated in coronary artery disease. J Lipid Res 2024; 65:100484. [PMID: 38103786 PMCID: PMC10809103 DOI: 10.1016/j.jlr.2023.100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Aminophospholipids (aPL) such as phosphatidylserine are essential for supporting the activity of coagulation factors, circulating platelets, and blood cells. Phosphatidylthreonine (PT) is an aminophospholipid previously reported in eukaryotic parasites and animal cell cultures, but not yet in human tissues. Here, we evaluated whether PT is present in blood cells and characterized its ability to support coagulation. Several PT molecular species were detected in human blood, washed platelets, extracellular vesicles, and isolated leukocytes from healthy volunteers using liquid chromatography-tandem mass spectrometry. The ability of PT to support coagulation was demonstrated in vitro using biochemical and biophysical assays. In liposomes, PT supported prothrombinase activity in the presence and absence of phosphatidylserine. PT nanodiscs strongly bound FVa and lactadherin (nM affinity) but poorly bound prothrombin and FX, suggesting that PT supports prothrombinase through recruitment of FVa. PT liposomes bearing tissue factor poorly generated thrombin in platelet poor plasma, indicating that PT poorly supports extrinsic tenase activity. On platelet activation, PT is externalized and partially metabolized. Last, PT was significantly higher in platelets and extracellular vesicle from patients with coronary artery disease than in healthy controls. In summary, PT is present in human blood, binds FVa and lactadherin, supports coagulation in vitro through FVa binding, and is elevated in atherosclerotic vascular disease. Our studies reveal a new phospholipid subclass, that contributes to the procoagulant membrane, and may support thrombosis in patients at elevated risk.
Collapse
Affiliation(s)
- Ali A Hajeyah
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom; Department of Biological Sciences, Kuwait University, Safat, Kuwait.
| | - Majd B Protty
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Divyani Paul
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Daniela Costa
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Nader Omidvar
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Bethan Morgan
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Yugo Iwasaki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Beth McGill
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | | | - Zaheer Yousef
- University Hospital of Wales, Cardiff, United Kingdom
| | - Keith Allen-Redpath
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Shin Soyama
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | | | - Rito Mitra
- University Hospital of Wales, Cardiff, United Kingdom
| | - Parveen Yaqoob
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - James H Morrissey
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Peter W Collins
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom; University Hospital of Wales, Cardiff, United Kingdom
| | - Valerie B O'Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
10
|
Schmaier AA, Anderson PF, Chen SM, El-Darzi E, Aivasovsky I, Kaushik MP, Sack KD, Hartzell HC, Parikh SM, Flaumenhaft R, Schulman S. TMEM16E regulates endothelial cell procoagulant activity and thrombosis. J Clin Invest 2023; 133:e163808. [PMID: 36951953 PMCID: PMC10231993 DOI: 10.1172/jci163808] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/22/2023] [Indexed: 03/24/2023] Open
Abstract
Endothelial cells (ECs) normally form an anticoagulant surface under physiological conditions, but switch to support coagulation following pathogenic stimuli. This switch promotes thrombotic cardiovascular disease. To generate thrombin at physiologic rates, coagulation proteins assemble on a membrane containing anionic phospholipid, most notably phosphatidylserine (PS). PS can be rapidly externalized to the outer cell membrane leaflet by phospholipid "scramblases," such as TMEM16F. TMEM16F-dependent PS externalization is well characterized in platelets. In contrast, how ECs externalize phospholipids to support coagulation is not understood. We employed a focused genetic screen to evaluate the contribution of transmembrane phospholipid transport on EC procoagulant activity. We identified 2 TMEM16 family members, TMEM16F and its closest paralog, TMEM16E, which were both required to support coagulation on ECs via PS externalization. Applying an intravital laser-injury model of thrombosis, we observed, unexpectedly, that PS externalization was concentrated at the vessel wall, not on platelets. TMEM16E-null mice demonstrated reduced vessel-wall-dependent fibrin formation. The TMEM16 inhibitor benzbromarone prevented PS externalization and EC procoagulant activity and protected mice from thrombosis without increasing bleeding following tail transection. These findings indicate the activated endothelial surface is a source of procoagulant phospholipid contributing to thrombus formation. TMEM16 phospholipid scramblases may be a therapeutic target for thrombotic cardiovascular disease.
Collapse
Affiliation(s)
- Alec A. Schmaier
- Division of Cardiovascular Medicine and
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Emale El-Darzi
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Kelsey D. Sack
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - H. Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Samir M. Parikh
- Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Division of Nephrology and Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Division of Hematology and Hematologic Malignancies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Sol Schulman
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Division of Hematology and Hematologic Malignancies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Sakuragi T, Nagata S. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases. Nat Rev Mol Cell Biol 2023:10.1038/s41580-023-00604-z. [PMID: 37106071 PMCID: PMC10134735 DOI: 10.1038/s41580-023-00604-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/29/2023]
Abstract
Cellular membranes function as permeability barriers that separate cells from the external environment or partition cells into distinct compartments. These membranes are lipid bilayers composed of glycerophospholipids, sphingolipids and cholesterol, in which proteins are embedded. Glycerophospholipids and sphingolipids freely move laterally, whereas transverse movement between lipid bilayers is limited. Phospholipids are asymmetrically distributed between membrane leaflets but change their location in biological processes, serving as signalling molecules or enzyme activators. Designated proteins - flippases and scramblases - mediate this lipid movement between the bilayers. Flippases mediate the confined localization of specific phospholipids (phosphatidylserine (PtdSer) and phosphatidylethanolamine) to the cytoplasmic leaflet. Scramblases randomly scramble phospholipids between leaflets and facilitate the exposure of PtdSer on the cell surface, which serves as an important signalling molecule and as an 'eat me' signal for phagocytes. Defects in flippases and scramblases cause various human diseases. We herein review the recent research on the structure of flippases and scramblases and their physiological roles. Although still poorly understood, we address the mechanisms by which they translocate phospholipids between lipid bilayers and how defects cause human diseases.
Collapse
Affiliation(s)
- Takaharu Sakuragi
- Biochemistry & Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shigekazu Nagata
- Biochemistry & Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| |
Collapse
|
12
|
Mabrouk M, Guessous F, Naya A, Merhi Y, Zaid Y. The Pathophysiological Role of Platelet-Derived Extracellular Vesicles. Semin Thromb Hemost 2023; 49:279-283. [PMID: 36174608 DOI: 10.1055/s-0042-1756705] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Platelets are very abundant in the blood, where they play a role in hemostasis, inflammation, and immunity. When activated, platelets undergo a conformational change that allows the release of numerous effector molecules as well as the production of extracellular vesicles, which are circulating submicron vesicles (10 to 1,000 nm in diameter) released into the extracellular space. Extracellular vesicles are formed by the budding of platelet and they carry some of its contents, including nucleic acids, surface proteins, and organelles. While platelets cannot cross tissue barriers, platelet-derived extracellular vesicles can enter the lymph, bone marrow, and synovial fluid. This allows the transfer of diverse contents carried by these platelet-derived vesicles to cell recipients and organs inaccessible to platelets where they can perform many functions. This review highlights the importance of these platelet-derived extracellular vesicles under different physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Meryem Mabrouk
- Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.,Department of Biology, Faculty of Sciences, Immunology and Biodiversity Laboratory, Hassan II University, Casablanca, Morocco
| | - Fadila Guessous
- Research of Center, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Abdallah Naya
- Department of Biology, Faculty of Sciences, Immunology and Biodiversity Laboratory, Hassan II University, Casablanca, Morocco
| | - Yahye Merhi
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Center, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Younes Zaid
- Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.,Department of Biology, Faculty of Sciences, Immunology and Biodiversity Laboratory, Hassan II University, Casablanca, Morocco
| |
Collapse
|
13
|
Shivaiah A, Srinivsa C, Hanumegowda SM, Kengaiah J, Nandish SKM, Ramachandraiah C, M SS, Thippande Gowda T, R R, Shinde M, Sannaningaiah D. Pennisetum glaucum Protein Extract Protects RBC, Liver, Kidney, Small Intestine from Oxidative Damage and Exhibits Anticoagulant, Antiplatelet Activity. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:211-223. [PMID: 36484782 DOI: 10.1080/07315724.2020.1865217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/21/2020] [Accepted: 12/12/2020] [Indexed: 06/17/2023]
Abstract
UNLABELLED High level of exogenous ROS in the circulation affects RBC membrane integrity which facilitates the generation of endogenous RBC ROS, implicated in series of physiological changes primarily associated with thrombosis and vital tissue damage. Although, Pennisetum glaucum (pearl millet) stores abundance of proteins, their therapeutic potential is least explored. Thus, the purpose of this study is to examine the role of Pennisetum Glaucum Protein Extract (PGE) on oxidative stress induced cell/tissue damage and thrombosis. In this investigation, protein characterization was done by using SDS-PAGE, Native-PAGE, PAS-staining and HPLC. In-vitro oxidative stress was induced in RBC using sodium nitrite. While, in-vivo oxidative stress was induced in experimental rats using diclofenac. Stress markers and biochemical parameters were evaluated. Role of PGE on thrombosis was assessed by using, in-vitro plasma recalcification time, activated partial thromboplastin time, prothrombin time, mouse tail bleeding time (In-vivo) and platelet aggregation. PGE revealed varied range of molecular weight proteins on SDS-PAGE. PGE normalized the sodium nitrite induced oxidative damage of RBC and diclofenac induced oxidative damage in liver, kidney and small intestine. PGE exhibited anticoagulant effect by increasing the coagulation time of both PRP and PPP and mouse tail bleeding time. Furthermore, PGE prolonged the clotting time of only APTT but did not affect PT. PGE inhibited agonists ADP and epinephrine induced platelet aggregation. Our findings suggest, PGE could be a better contender in the management of oxidative stress and its associated diseases. ABBREVIATIONS PGEPennisetum Glaucum protein ExtractAPPTActivated Partial Thromboplastin TimePTProthrombin TimeROSReactive Oxygen SpeciesPRPPlatelet Rich PlasmaPPPPlatelet Poor PlasmaSDS-PAGESodium Dodecyl Sulfate-Polyacrylamide Gel ElectrophoresisPASPeriodic Acid-schiff StainingODOptical DensityINRInternational Normalized RatioPBSPhosphate Buffered SalineSODSuperoxide DismutaseTCATrichloro Acetatic AcidDTNBDi-Thio-bis-NitroBenzoic acidSGOTSerum Glutamate Oxaloacetate TransaminaseSGPTSerum Glutamate Pyruvate TransaminaseALPAlkaline PhosphataseDFCDiclofenacSylSilymarinMEDMinimum Edema DoseMHDMinimum Hemorrhagic Dose.
Collapse
Affiliation(s)
- Ashwini Shivaiah
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, India
| | - Chandramma Srinivsa
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, India
| | - Sujatha M Hanumegowda
- Department of Biochemistry Jnansahydri, Kuvempu University, Shankarghatta, Shivamogga, India
| | - Jayanna Kengaiah
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, India
| | - Sharath Kumar M Nandish
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, India
| | - Chethana Ramachandraiah
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, India
| | - Sebastin Santosh M
- Department of Medicinal Biochemistry and Microbiology (IMBM), Uppsala Biomedical Centre, Uppsala, Sweden
| | - Thippeswamy Thippande Gowda
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, India
| | - Rajesh R
- Liveon Biolabs Private Limited, Tumkur, India
| | - Manohar Shinde
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, India
| | - Devaraja Sannaningaiah
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, India
| |
Collapse
|
14
|
Li T, Han X, Chen S, Wang B, Teng Y, Cheng W, Lu Z, Li Y, Wu X, Jiang Y, Wang L, Liu L, Zhao M. Effects of Exercise on Extracellular Vesicles in Patients with Metabolic Dysfunction: a Systematic Review. J Cardiovasc Transl Res 2023; 16:97-111. [PMID: 35655108 DOI: 10.1007/s12265-022-10282-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate the effect of exercise on extracellular vesicles (EVs) in patients with metabolic dysfunction. The literatures were searched until Apr 28, 2022, and 16 studies that met inclusion criteria were included in this review. The results showed that the concentrations of platelet-derived extracellular vesicles (PEVs) and endothelial cell-derived extracellular vesicles (EEVs) decreased after long-term exercise, especially for CD62E+ EEVs and CD105+ EEVs. Simultaneously, exercise improved the concentration of clinical evaluation indicators of metabolic diseases, and the changes in these indicators were positively correlated with the changes of EEVs and PEVs. The concentration of skeletal muscle-derived extracellular vesicles (SkEVs) increased after a single bout of exercise. The aforementioned results indicated that long-term exercise might improve endothelial function and hypercoagulability in patients with metabolic dysfunction. The changes in concentrations of EVs could assist in assessing effect of exercise on patients with metabolic dysfunction.
Collapse
Affiliation(s)
- Tong Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Xiaowan Han
- Department of Cardiac Rehabilitation, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Shiqi Chen
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Baofu Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Yu Teng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Weiting Cheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Ziwen Lu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Yang Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Xiaoxiao Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Yangyang Jiang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Lei Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Lisong Liu
- Department of Cardiac Rehabilitation, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China.
| | - Mingjing Zhao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China.
| |
Collapse
|
15
|
Eustes AS, Dayal S. The Role of Platelet-Derived Extracellular Vesicles in Immune-Mediated Thrombosis. Int J Mol Sci 2022; 23:7837. [PMID: 35887184 PMCID: PMC9320310 DOI: 10.3390/ijms23147837] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Platelet-derived extracellular vesicles (PEVs) play important roles in hemostasis and thrombosis. There are three major types of PEVs described based on their size and characteristics, but newer types may continue to emerge owing to the ongoing improvement in the methodologies and terms used to define various types of EVs. As the literature on EVs is growing, there are continuing attempts to standardize protocols for EV isolation and reach consensus in the field. This review provides information on mechanisms of PEV production, characteristics, cellular interaction, and their pathological role, especially in autoimmune and infectious diseases. We also highlight the mechanisms through which PEVs can activate parent cells in a feedback loop.
Collapse
Affiliation(s)
- Alicia S. Eustes
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Sanjana Dayal
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Iowa City VA Healthcare System, Iowa City, IA 52246, USA
| |
Collapse
|
16
|
Stone AP, Nikols E, Freire D, Machlus KR. The pathobiology of platelet and megakaryocyte extracellular vesicles: A (c)lot has changed. J Thromb Haemost 2022; 20:1550-1558. [PMID: 35506218 DOI: 10.1111/jth.15750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022]
Abstract
Platelet-derived extracellular vesicles (PEVs) were originally studied for their potential as regulators of coagulation, a function redundant with that of their parent cells. However, as the understanding of the diverse roles of platelets in hemostasis and disease has developed, so has the understanding of PEVs. In addition, the more recent revelation of constitutively released megakaryocyte-derived extracellular vesicles (MKEVs) in circulation provides an interesting counterpoint and avenue for investigation. In this review, we highlight the historical link of PEVs to thrombosis and hemostasis and provide critical updates. We also expand our discussion to encompass the roles that distinguish PEVs and MKEVs from their parent cells. Furthermore, the role of extracellular vesicles in disease pathology, both as biomarkers and as exacerbators, has been of great interest in recent years. We highlight some of the key roles that PEVs and MKEVs play in autoimmune blood cell disorders, liver pathology, and cardiovascular disease. We then look at the future of PEVs and MKEVs as candidates for novel therapeutics.
Collapse
Affiliation(s)
- Andrew P Stone
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Emma Nikols
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Daniela Freire
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Kellie R Machlus
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Georgatzakou HT, Fortis SP, Papageorgiou EG, Antonelou MH, Kriebardis AG. Blood Cell-Derived Microvesicles in Hematological Diseases and beyond. Biomolecules 2022; 12:803. [PMID: 35740926 PMCID: PMC9220817 DOI: 10.3390/biom12060803] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Microvesicles or ectosomes represent a major type of extracellular vesicles that are formed by outward budding of the plasma membrane. Typically, they are bigger than exosomes but smaller than apoptotic vesicles, although they may overlap with both in size and content. Their release by cells is a means to dispose redundant, damaged, or dangerous material; to repair membrane lesions; and, primarily, to mediate intercellular communication. By participating in these vital activities, microvesicles may impact a wide array of cell processes and, consequently, changes in their concentration or components have been associated with several pathologies. Of note, microvesicles released by leukocytes, red blood cells, and platelets, which constitute the vast majority of plasma microvesicles, change under a plethora of diseases affecting not only the hematological, but also the nervous, cardiovascular, and urinary systems, among others. In fact, there is evidence that microvesicles released by blood cells are significant contributors towards pathophysiological states, having inflammatory and/or coagulation and/or immunomodulatory arms, by either promoting or inhibiting the relative disease phenotypes. Consequently, even though microvesicles are typically considered to have adverse links with disease prognosis, progression, or outcomes, not infrequently, they exert protective roles in the affected cells. Based on these functional relations, microvesicles might represent promising disease biomarkers with diagnostic, monitoring, and therapeutic applications, equally to the more thoroughly studied exosomes. In the current review, we provide a summary of the features of microvesicles released by blood cells and their potential implication in hematological and non-hematological diseases.
Collapse
Affiliation(s)
- Hara T. Georgatzakou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| | - Marianna H. Antonelou
- Department of Biology, Section of Cell Biology and Biophysics, National & Kapodistrian University of Athens (NKUA), 15784 Athens, Greece
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| |
Collapse
|
18
|
Beck S, Hochreiter B, Schmid JA. Extracellular Vesicles Linking Inflammation, Cancer and Thrombotic Risks. Front Cell Dev Biol 2022; 10:859863. [PMID: 35372327 PMCID: PMC8970602 DOI: 10.3389/fcell.2022.859863] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) being defined as lipid-bilayer encircled particles are released by almost all known mammalian cell types and represent a heterogenous set of cell fragments that are found in the blood circulation and all other known body fluids. The current nomenclature distinguishes mainly three forms: microvesicles, which are formed by budding from the plasma membrane; exosomes, which are released, when endosomes with intraluminal vesicles fuse with the plasma membrane; and apoptotic bodies representing fragments of apoptotic cells. Their importance for a great variety of biological processes became increasingly evident in the last decade when it was discovered that they contribute to intercellular communication by transferring nucleotides and proteins to recipient cells. In this review, we delineate several aspects of their isolation, purification, and analysis; and discuss some pitfalls that have to be considered therein. Further on, we describe various cellular sources of EVs and explain with different examples, how they link cancer and inflammatory conditions with thrombotic processes. In particular, we elaborate on the roles of EVs in cancer-associated thrombosis and COVID-19, representing two important paradigms, where local pathological processes have systemic effects in the whole organism at least in part via EVs. Finally, we also discuss possible developments of the field in the future and how EVs might be used as biomarkers for diagnosis, and as vehicles for therapeutics.
Collapse
Affiliation(s)
- Sarah Beck
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
- *Correspondence: Sarah Beck, ; Johannes A. Schmid,
| | - Bernhard Hochreiter
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Johannes A. Schmid
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Sarah Beck, ; Johannes A. Schmid,
| |
Collapse
|
19
|
Wong J, Gu BJ, Teoh H, Krupa M, Monif M, Slee M, Wiley JS. Flow Cytometry Identifies an Early Stage of Platelet Apoptosis Produced by Agonists of the P2X1 and P2X7 Receptors. Platelets 2022; 33:621-631. [PMID: 35042433 DOI: 10.1080/09537104.2021.1981844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Platelets express P2X1 receptors and our data also show the expression of P2X7 receptors. We studied the role of both receptors in platelet apoptosis by incubation of PRP with P2X agonists, then centrifuged to remove viable platelets, and analyzed the supernatant by flow cytometry to identify a sparse platelet-derived population that stained with MitoTracker dyes and CD41. BzATP, a potent agonist of P2X receptors, and ABT737, an activator of intrinsic apoptosis, produced altered platelets that stained moderately for annexin V and corresponded to an early stage apoptotic platelet (ESAP). Over a range of BzATP concentrations, we observed a dose-dependent formation of ESAPs between 5 and 500 uM BzATP, together with a variable formation of ESAPs at nanomolar ATP or BzATP (50-200 nM). Production of ESAPs occurred with αβ-meATP, while responses with either BzATP or αβ-meATP showed desensitization at a higher agonist concentration. Formation of ESAPs by either 100 nM or 0.5 mM BzATP was inhibited by preincubation of platelets with latrunculin A, an inhibitor of the actin cytoskeleton that prevents apoptosis. ESAP production was totally inhibited by preincubation of platelets with methyl-beta-cyclodextrin, which removes cholesterol from lipid rafts. Our data show that both P2X1 and P2X7 receptors are localized in platelet lipid rafts where P2X-agonists act to produce early stage apoptotic platelets.
Collapse
Affiliation(s)
- Joelyn Wong
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ben J Gu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Harry Teoh
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, Australia
| | - Malgorzata Krupa
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, Australia
| | - Mastura Monif
- Department of Neurology, Royal Melbourne Hospital, Parkville, Australia.,Department of Neuroscience, Monash University, Clayton, Australia
| | - Mark Slee
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, Australia
| | - James S Wiley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,Haematology Department, Box Hill Hospital, Australia
| |
Collapse
|
20
|
Coenen DM, Heinzmann ACA, Oggero S, Albers HJ, Nagy M, Hagué P, Kuijpers MJE, Vanderwinden JM, van der Meer AD, Perretti M, Koenen RR, Cosemans JMEM. Inhibition of Phosphodiesterase 3A by Cilostazol Dampens Proinflammatory Platelet Functions. Cells 2021; 10:1998. [PMID: 34440764 PMCID: PMC8392606 DOI: 10.3390/cells10081998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE platelets possess not only haemostatic but also inflammatory properties, which combined are thought to play a detrimental role in thromboinflammatory diseases such as acute coronary syndromes and stroke. Phosphodiesterase (PDE) 3 and -5 inhibitors have demonstrated efficacy in secondary prevention of arterial thrombosis, partially mediated by their antiplatelet action. Yet it is unclear whether such inhibitors also affect platelets' inflammatory functions. Here, we aimed to examine the effect of the PDE3A inhibitor cilostazol and the PDE5 inhibitor tadalafil on platelet function in various aspects of thromboinflammation. Approach and results: cilostazol, but not tadalafil, delayed ex vivo platelet-dependent fibrin formation under whole blood flow over type I collagen at 1000 s-1. Similar results were obtained with blood from Pde3a deficient mice, indicating that cilostazol effects are mediated via PDE3A. Interestingly, cilostazol specifically reduced the release of phosphatidylserine-positive extracellular vesicles (EVs) from human platelets while not affecting total EV release. Both cilostazol and tadalafil reduced the interaction of human platelets with inflamed endothelium under arterial flow and the release of the chemokines CCL5 and CXCL4 from platelets. Moreover, cilostazol, but not tadalafil, reduced monocyte recruitment and platelet-monocyte interaction in vitro. CONCLUSIONS this study demonstrated yet unrecognised roles for platelet PDE3A and platelet PDE5 in platelet procoagulant and proinflammatory responses.
Collapse
Affiliation(s)
- Daniëlle M. Coenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands; (D.M.C.); (A.C.A.H.); (M.N.); (M.J.E.K.); (R.R.K.)
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Alexandra C. A. Heinzmann
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands; (D.M.C.); (A.C.A.H.); (M.N.); (M.J.E.K.); (R.R.K.)
| | - Silvia Oggero
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK; (S.O.); (M.P.)
| | - Hugo J. Albers
- BIOS Lab-on-a-Chip Group, Technical Medical Centre, MESA+ Institute for Nanotechnology, University of Twente, 7522 NB Enschede, The Netherlands;
- Applied Stem Cell Technologies Group, Technical Medical Centre, University of Twente, 7522 NB Enschede, The Netherlands;
| | - Magdolna Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands; (D.M.C.); (A.C.A.H.); (M.N.); (M.J.E.K.); (R.R.K.)
| | - Perrine Hagué
- Laboratory of Neurophysiology, Faculty of Medicine, Université Libre de Bruxelles, B-1070 Brussels, Belgium; (P.H.); (J.-M.V.)
| | - Marijke J. E. Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands; (D.M.C.); (A.C.A.H.); (M.N.); (M.J.E.K.); (R.R.K.)
| | - Jean-Marie Vanderwinden
- Laboratory of Neurophysiology, Faculty of Medicine, Université Libre de Bruxelles, B-1070 Brussels, Belgium; (P.H.); (J.-M.V.)
| | - Andries D. van der Meer
- Applied Stem Cell Technologies Group, Technical Medical Centre, University of Twente, 7522 NB Enschede, The Netherlands;
| | - Mauro Perretti
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK; (S.O.); (M.P.)
| | - Rory R. Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands; (D.M.C.); (A.C.A.H.); (M.N.); (M.J.E.K.); (R.R.K.)
| | - Judith M. E. M. Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands; (D.M.C.); (A.C.A.H.); (M.N.); (M.J.E.K.); (R.R.K.)
| |
Collapse
|
21
|
Alfeky M, Abdelmaksoud M, Abdelmaksoud S, Abdelsamee H, Ezzelregal H. Platelets derived microparticles in COVID-19: Correlation to inflammatory and coagulation State. JOURNAL OF APPLIED HEMATOLOGY 2021. [DOI: 10.4103/joah.joah_102_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
22
|
Abstract
Extracellular vesicles (EVs) are a means of cell-to-cell communication and can facilitate the exchange of a broad array of molecules between adjacent or distant cells. Platelets are anucleate cells derived from megakaryocytes and are primarily known for their role in maintaining hemostasis and vascular integrity. Upon activation by a variety of agonists, platelets readily generate EVs, which were initially identified as procoagulant particles. However, as both platelets and their EVs are abundant in blood, the role of platelet EVs in hemostasis may be redundant. Moreover, findings have challenged the significance of platelet-derived EVs in coagulation. Looking beyond hemostasis, platelet EV cargo is incredibly diverse and can include lipids, proteins, nucleic acids, and organelles involved in numerous other biological processes. Furthermore, while platelets cannot cross tissue barriers, their EVs can enter lymph, bone marrow, and synovial fluid. This allows for the transfer of platelet-derived content to cellular recipients and organs inaccessible to platelets. This review highlights the importance of platelet-derived EVs in physiological and pathological conditions beyond hemostasis.
Collapse
Affiliation(s)
- Florian Puhm
- Centre de recherche du CHU de Québec, Department of infectious diseases and immunity, Québec, QC, Canada
- Université Laval and Centre de recherche ARThrite, Québec, QC, Canada
| | - Eric Boilard
- Centre de recherche du CHU de Québec, Department of infectious diseases and immunity, Québec, QC, Canada
- Université Laval and Centre de recherche ARThrite, Québec, QC, Canada
| | - Kellie R Machlus
- Division of Hematology, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Nandish SKM, Kengaiah J, Ramachandraiah C, Chandramma, Shivaiah A, Santhosh SM, Thirunavukkarasu, Sannaningaiah D. Flaxseed Cysteine Protease Exhibits Strong Anticoagulant, Antiplatelet, and Clot-Dissolving Properties. BIOCHEMISTRY (MOSCOW) 2020; 85:1113-1126. [PMID: 33050855 DOI: 10.1134/s0006297920090102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, we purified and characterized flaxseed cysteine protease (FSCP) with strong anticoagulant, antiplatelet, and clot-dissolving properties. The enzyme was purified to homogeneity by a combination of gel permeation and ion-exchange column chromatography techniques. The purity of the enzyme was evaluated by SDS-PAGE, RP-HPLC, and MALDI-TOF. FSCP was observed as a single band of approximately 160 kDa in SDS-PAGE under reducing and non-reducing conditions. The exact molecular mass of FSCP was found to be 168 kDa by MALDI-TOF spectrometry. The CD spectra of FSCP revealed the presence of 25.6% helices, 25.8% turns, and 48% random coils with no beta-sheet structures. FSCP hydrolyzed both casein and gelatin with a specific activity of 3.5 and 4.2 unit/mg min respectively. The proteolytic activity of FSCP was completely abolished by iodoacetic acid (IAA), suggesting FSCP is a cysteine protease. The pH optimum for the proteolytic activity of FSCP was pH 6.0; the temperature optimum was 30°C. FSCP exhibited strong anticoagulant effect in both platelet-rich plasma (PRP) and platelet-poor plasma (PPP) by extending the clotting time from 222 to 1100 s and from 256 to 1210 s, respectively. FSCP degraded human fibrinogen and fibrin clots. The products of fibrinogen degradation by thrombin and FSCP were different. Furthermore, FSCP inhibited aggregation of washed platelets triggered by ADP, epinephrine, thrombin, collagen, arachidonic acid, and platelet activating factor (PAF). FSCP was found to be nontoxic as it did not damage the membrane of red blood cells (RBCs) and did not induce hemorrhage and edema in experimental mice.
Collapse
Affiliation(s)
- S K M Nandish
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, 572103, India
| | - J Kengaiah
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, 572103, India
| | - Ch Ramachandraiah
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, 572103, India
| | - Chandramma
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, 572103, India
| | - A Shivaiah
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, 572103, India
| | - S M Santhosh
- Department of Medicinal Biochemistry and Microbiology (IMBM), Uppsala Biomedical Centre, Uppsala, 75237, Sweden
| | - Thirunavukkarasu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, Tamil Nadu, 605014, India
| | - D Sannaningaiah
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, 572103, India.
| |
Collapse
|
24
|
Millington-Burgess SL, Harper MT. Gene of the issue: ANO6 and Scott Syndrome. Platelets 2020; 31:964-967. [PMID: 31746257 DOI: 10.1080/09537104.2019.1693039] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 01/08/2023]
Affiliation(s)
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge , Cambridge, UK
| |
Collapse
|
25
|
Feng S, Dang S, Han TW, Ye W, Jin P, Cheng T, Li J, Jan YN, Jan LY, Cheng Y. Cryo-EM Studies of TMEM16F Calcium-Activated Ion Channel Suggest Features Important for Lipid Scrambling. Cell Rep 2020; 28:567-579.e4. [PMID: 31291589 PMCID: PMC6684876 DOI: 10.1016/j.celrep.2019.06.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/03/2019] [Accepted: 06/05/2019] [Indexed: 12/25/2022] Open
Abstract
As a Ca2+-activated lipid scramblase and ion channel that mediates Ca2+ influx, TMEM16F relies on both functions to facilitate extracellular vesicle generation, blood coagulation, and bone formation. How a bona fide ion channel scrambles lipids remains elusive. Our structural analyses revealed the coexistence of an intact channel pore and PIP2-dependent protein conformation changes leading to membrane distortion. Correlated to the extent of membrane distortion, many tightly bound lipids are slanted. Structure-based mutagenesis studies further reveal that neutralization of some lipid-binding residues or those near membrane distortion specifically alters the onset of lipid scrambling, but not Ca2+ influx, thus identifying features outside of channel pore that are important for lipid scrambling. Together, our studies demonstrate that membrane distortion does not require open hydrophilic grooves facing the membrane interior and provide further evidence to suggest separate pathways for lipid scrambling and ion permeation. TMEM16F is a calcium-activated ion channel and lipid scramblase linked to the bleeding disorder Scott syndrome. Feng et al. examine cryo-EM structures of TMEM16F with or without Ca2+ ions and PIP2 nanodisc supplementation and identify structural features for lipid binding and membrane distortion critical for lipid scrambling activity.
Collapse
Affiliation(s)
- Shengjie Feng
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shangyu Dang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tina Wei Han
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Wenlei Ye
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Peng Jin
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tong Cheng
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Junrui Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuh Nung Jan
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lily Yeh Jan
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
26
|
Ibrahim-Kosta M, Alessi MC, Hezard N. Laboratory Techniques Used to Diagnose Constitutional Platelet Dysfunction. Hamostaseologie 2020; 40:444-459. [PMID: 32932546 DOI: 10.1055/a-1223-3306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Platelets play a major role in primary hemostasis, where activated platelets form plugs to stop hemorrhaging in response to vessel injuries. Defects in any step of the platelet activation process can cause a variety of platelet dysfunction conditions associated with bleeding. To make an accurate diagnosis, constitutional platelet dysfunction (CPDF) should be considered once von Willebrand disease and drug intake are ruled out. CPDF may be associated with thrombocytopenia or a genetic syndrome. CPDF diagnosis is complex, as no single test enables the analysis of all aspects of platelet function. Furthermore, the available tests lack standardization, and repeat tests must be performed in specialized laboratories especially for mild and moderate forms of the disease. In this review, we provide an overview of the laboratory tests used to diagnose CPDF, with a focus on light transmission platelet aggregation (LTA), flow cytometry (FC), and granules assessment. Global tests, mainly represented by LTA, are often initially performed to investigate the consequences of platelet activation on platelet aggregation in a single step. Global test results should be confirmed by additional analytical tests. FC represents an accurate, simple, and reliable test to analyze abnormalities in platelet receptors, and granule content and release. This technique may also be used to investigate platelet function by comparing resting- and activated-state platelet populations. Assessment of granule content and release also requires additional specialized analytical tests. High-throughput sequencing has become increasingly useful to diagnose CPDF. Advanced tests or external research laboratory techniques may also be beneficial in some cases.
Collapse
Affiliation(s)
- Manal Ibrahim-Kosta
- Aix Marseille University, INSERM, INRAE, Marseille Cedex 05, France.,Laboratory of Hematology, CHU Timone, Marseille Cedex 05, France
| | - Marie-Christine Alessi
- Aix Marseille University, INSERM, INRAE, Marseille Cedex 05, France.,Laboratory of Hematology, CHU Timone, Marseille Cedex 05, France
| | - Nathalie Hezard
- Laboratory of Hematology, CHU Timone, Marseille Cedex 05, France
| |
Collapse
|
27
|
Yoshiko Y, Minamizaki T. Emerging roles of microRNAs as extracellular vesicle cargo secreted from osteoblasts. J Oral Biosci 2020; 62:228-234. [PMID: 32535286 DOI: 10.1016/j.job.2020.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Extracellular vesicles (EVs) have come into the spotlight as messengers, delivering cargo for cell-cell communication. Concomitantly, increasing attention has been focused on microRNAs (miRNAs) as EV cargo. Besides their well-known role in extracellular matrix mineralization, whether matrix vesicles (MVs) - which are in a broad sense a class of EV - also deliver miRNAs to regulate the function of recipient cells remains unclear. HIGHLIGHT We recently found that MVs budding from osteoblasts contain many miRNAs that can be transferred to the bone matrix. Of these, miR-125b was released into the bone marrow microenvironment during bone resorption, where it targeted the transcriptional repressor Prdm1 in osteoclast precursors, resulting in increased expression of anti-osteoclastogenic factors and suppression of osteoclastogenesis, thereby increasing bone mass in mice. CONCLUSION Beyond their well-established action in bone mineralization, MVs play a role in the transport of miRNAs from osteoblasts into the bone matrix. Similar to the miR-125b axis in osteoclastogenesis, it seems likely that other miRNAs that accumulate in bone via MV transport may also act as mediators of cell-cell communication in the skeletal system.
Collapse
Affiliation(s)
- Yuji Yoshiko
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Tomoko Minamizaki
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
28
|
Fouassier M, Babuty A, Debord C, Béné MC. Platelet immunophenotyping in health and inherited bleeding disorders, a review and practical hints. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 98:464-475. [PMID: 32516490 DOI: 10.1002/cyto.b.21892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/16/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022]
Abstract
Inherited platelet function disorders are rare hemorrhagic diseases. The gold standard for their exploration is optical aggregometry; however, investigations by flow cytometry (FCM) are being increasingly used. In this review, the physiology of platelets is first recalled, setting the stage for the compartments of platelets that can be apprehended by specific and appropriate labeling. As this requires some pre-analytical precautions and specific analytical settings, a second part focuses on these characteristic aspects, based on literature and on the authors' experience in the field, for qualitative or quantitative explorations. Membrane labeling with antibodies to CD42a or CD41, respectively, useful to assess the genetic-related defects of Glanzmann thrombocytopenia and Bernard Soulier syndrome are then described. Platelet degranulation disorders are detailed in the next section, as they can be explored, upon platelet activation, by measuring the expression of surface P-Selectin (CD62P) or CD63. Mepacrin uptake and release after activation is another test allowing to explore the function of dense granules. Finally, the flip-flop anomaly related to Scott syndrome is depicted. Tables summarizing possible FCM assays, and characteristic histograms are provided as reference for flow laboratories interested in developing platelet exploration.
Collapse
Affiliation(s)
- Marc Fouassier
- Hematology Biology Department, Nantes University Hospital and CRCINA, Nantes, France
| | - Antoine Babuty
- Hematology Biology Department, Nantes University Hospital and CRCINA, Nantes, France
| | - Camille Debord
- Hematology Biology Department, Nantes University Hospital and CRCINA, Nantes, France
| | - Marie C Béné
- Hematology Biology Department, Nantes University Hospital and CRCINA, Nantes, France
| |
Collapse
|
29
|
Samii A, Razmkhah F. Transformation of Hematopoietic Stem and Progenitor Cells by Leukemia Extracellular Vesicles: A Step Toward Leukemogenesis. Stem Cell Rev Rep 2020; 16:1081-1091. [DOI: 10.1007/s12015-020-09975-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
30
|
Affiliation(s)
- Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
31
|
microRNAs as promising biomarkers of platelet activity in antiplatelet therapy monitoring. Int J Mol Sci 2020; 21:ijms21103477. [PMID: 32423125 PMCID: PMC7278969 DOI: 10.3390/ijms21103477] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Given the high morbidity and mortality of cardiovascular diseases (CVDs), novel biomarkers for platelet reactivity are urgently needed. Ischemic events in CVDs are causally linked to platelets, small anucleate cells important for hemostasis. The major side-effect of antiplatelet therapy are life-threatening bleeding events. Current platelet function tests are not sufficient in guiding treatment decisions. Platelets host a broad spectrum of microRNAs (miRNAs) and are a major source of cell-free miRNAs in the blood stream. Platelet-related miRNAs have been suggested as biomarkers of platelet activation and assessment of antiplatelet therapy responsiveness. Platelets release miRNAs upon activation, possibly leading to alterations of plasma miRNA levels in conjunction with CVD or inadequate platelet inhibition. Unlike current platelet function tests, which measure platelet activation ex vivo, signatures of platelet-related miRNAs potentially enable the assessment of in vivo platelet reactivity. Evidence suggests that some miRNAs are responsive to platelet inhibition, making them promising biomarker candidates. In this review, we explain the secretion of miRNAs upon platelet activation and discuss the potential use of platelet-related miRNAs as biomarkers for CVD and antiplatelet therapy monitoring, but also highlight remaining gaps in our knowledge and uncertainties regarding clinical utility. We also elaborate on technical issues and limitations concerning plasma miRNA quantification.
Collapse
|
32
|
Munemasa T, Gao X, Melvin JE, Mukaibo T. Ano6 disruption impairs acinar cell regulatory volume decrease and protein secretion in murine submandibular salivary glands. J Cell Physiol 2020; 235:8533-8545. [PMID: 32329061 DOI: 10.1002/jcp.29697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/24/2020] [Accepted: 03/29/2020] [Indexed: 11/09/2022]
Abstract
The widely expressed Anoctamin 6 (Ano6) supports different Ca2+ -dependent functions, but little is known about its role in salivary glands. Mouse submandibular gland (SMG) acinar cells exhibited a robust regulatory volume decrease (RVD) following cell swelling that was reduced approximately 70% in Ano6-/- mice. Ca2+ -free conditions nearly eliminated the RVD response suggesting that Ano6 is an obligatory component of the cell volume-activated, Ca2+ -dependent RVD pathway in salivary gland acinar cells. Ex vivo agonist-stimulated secretion of water and ions was unaffected by Ano6 disruption under both isotonic and hypotonic conditions suggesting that Ano6 does not play a major role in fluid and electrolyte secretion. In contrast, the total amount of β-adrenergic-dependent protein secretion by the SMG was significantly reduced in Ano6-/- mice. Closer inspection of these latter results revealed that protein secretion was affected only in the female SMG by Ano6 disruption. These results indicate that Ano6 modulates the RVD response and protein secretion by salivary gland acinar cells.
Collapse
Affiliation(s)
- Takashi Munemasa
- Secretory Mechanisms and Dysfunctions Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland.,Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Xin Gao
- Secretory Mechanisms and Dysfunctions Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - James E Melvin
- Secretory Mechanisms and Dysfunctions Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Taro Mukaibo
- Secretory Mechanisms and Dysfunctions Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland.,Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
33
|
Reddy EC, Rand ML. Procoagulant Phosphatidylserine-Exposing Platelets in vitro and in vivo. Front Cardiovasc Med 2020; 7:15. [PMID: 32195268 PMCID: PMC7062866 DOI: 10.3389/fcvm.2020.00015] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
The physiological heterogeneity of platelets leads to diverse responses and the formation of discrete subpopulations upon platelet stimulation. Procoagulant platelets are an example of such subpopulations, a key characteristic of which is exposure either of the anionic aminophospholipid phosphatidylserine (PS) or of tissue factor on the activated platelet surface. This review focuses on the former, in which PS exposure on a subpopulation of platelets facilitates assembly of the intrinsic tenase and prothrombinase complexes, thereby accelerating thrombin generation on the activated platelet surface, contributing importantly to the hemostatic process. Mechanisms involved in platelet PS exposure, and accompanying events, induced by physiologically relevant agonists are considered then contrasted with PS exposure resulting from intrinsic pathway-mediated apoptosis in platelets. Pathologies of PS exposure, both inherited and acquired, are described. A consideration of platelet PS exposure as an antithrombotic target concludes the review.
Collapse
Affiliation(s)
- Emily C Reddy
- Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Margaret L Rand
- Division of Haematology/Oncology, Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Departments of Laboratory Medicine & Pathobiology, Biochemistry, and Paediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Wei H, Davies JE, Harper MT. 2-Aminoethoxydiphenylborate (2-APB) inhibits release of phosphatidylserine-exposing extracellular vesicles from platelets. Cell Death Discov 2020; 6:10. [PMID: 32140260 PMCID: PMC7051957 DOI: 10.1038/s41420-020-0244-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Activated, procoagulant platelets shed phosphatidylserine (PS)-exposing extracellular vesicles (EVs) from their surface in a Ca2+- and calpain-dependent manner. These PS-exposing EVs are prothrombotic and proinflammatory and are found at elevated levels in many cardiovascular and metabolic diseases. How PS-exposing EVs are shed is not fully understood. A clearer understanding of this process may aid the development of drugs to selectively block their release. In this study we report that 2-aminoethoxydiphenylborate (2-APB) significantly inhibits the release of PS-exposing EVs from platelets stimulated with the Ca2+ ionophore, A23187, or the pore-forming toxin, streptolysin-O. Two analogues of 2-APB, diphenylboronic anhydride (DPBA) and 3-(diphenylphosphino)-1-propylamine (DP3A), inhibited PS-exposing EV release with similar potency. Although 2-APB and DPBA weakly inhibited platelet PS exposure and calpain activity, this was not seen with DP3A despite inhibiting PS-exposing EV release. These data suggest that there is a further target of 2-APB, independent of cytosolic Ca2+ signalling, PS exposure and calpain activity, that is required for PS-exposing EV release. DP3A is likely to inhibit the same target, without these other effects. Identifying the target of 2-APB, DPBA and DP3A may provide a new way to inhibit PS-exposing EV release from activated platelets and inhibit their contribution to thrombosis and inflammation.
Collapse
Affiliation(s)
- Hao Wei
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
35
|
Lundström A, Mobarrez F, Rooth E, Thålin C, von Arbin M, Henriksson P, Gigante B, Laska AC, Wallén H. Prognostic Value of Circulating Microvesicle Subpopulations in Ischemic Stroke and TIA. Transl Stroke Res 2020; 11:708-719. [PMID: 31983048 PMCID: PMC7340656 DOI: 10.1007/s12975-019-00777-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/03/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022]
Abstract
Platelet microvesicles (PMV) have previously been found elevated in acute ischemic stroke (IS) and could be biomarkers for risk of recurrence. PMV surface antigens such as P-selectin and phosphatidylserine (PS) reflect platelet activation and procoagulance. Tissue factor-positive microvesicles (TF+MV) are considered procoagulant, in particular if co-expressing PS. We enumerated MV subpopulations with these surface antigens in a cohort of 211 patients with primarily non-cardioembolic IS or transient ischemic attack (TIA) and investigated their association with long-term outcome. MV concentrations were determined by flow cytometry in the acute and convalescent phase. Primary outcome was a composite of fatal and non-fatal recurrent IS or myocardial infarction. Secondary outcomes were recurrent IS and all-cause mortality. Outcome events were obtained from Swedish registers during a follow-up of 1100 patient years. Concentrations of PS-positive and PS-negative MV populations were elevated in patients compared with healthy controls in both the acute and convalescent phase. PS+TF+PMV displayed pronounced elevations, median fold change 77 in the acute phase (p < 0.0001) but were not associated with outcome, neither were PS+P-selectin+PMV. The only subpopulation positively associated with primary outcome was PS-TF+PMV, with adjusted hazard ratio of 1.86 (1.04-3.31, p = 0.036) by Cox regression. Unexpectedly, several MV subpopulations tended to be associated with reduced risk of poor long-term outcome. Our results suggest that PS+TF+PMV may be a promising marker for cerebral ischemia, and that the in vivo generation of PS-MV after IS/TIA warrants further study. Future MV studies should ideally enumerate PS+ and PS-MV subpopulations separately.
Collapse
Affiliation(s)
- Annika Lundström
- Division of Internal Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, SE-182 88, Stockholm, Sweden.
| | - Fariborz Mobarrez
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Elisabeth Rooth
- Division of Internal Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, SE-182 88, Stockholm, Sweden
| | - Charlotte Thålin
- Division of Internal Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, SE-182 88, Stockholm, Sweden
| | - Magnus von Arbin
- Division of Internal Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, SE-182 88, Stockholm, Sweden
| | - Peter Henriksson
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden
| | - Bruna Gigante
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden.,Division of Cardiovascular Medicine, Department Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ann-Charlotte Laska
- Division of Internal Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, SE-182 88, Stockholm, Sweden
| | - Håkan Wallén
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden
| |
Collapse
|
36
|
Deb S, Boknäs N, Sjöström C, Tharmakulanathan A, Lotfi K, Ramström S. Varying effects of tyrosine kinase inhibitors on platelet function-A need for individualized CML treatment to minimize the risk for hemostatic and thrombotic complications? Cancer Med 2020; 9:313-323. [PMID: 31714021 PMCID: PMC6943147 DOI: 10.1002/cam4.2687] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/19/2019] [Accepted: 10/02/2019] [Indexed: 01/02/2023] Open
Abstract
Since their introduction, tyrosine kinase inhibitors (TKIs, eg, imatinib, nilotinib, dasatinib, bosutinib, ponatinib) have revolutionized the treatment of chronic myeloid leukemia (CML). However, long-term treatment with TKIs is associated with serious adverse events including both bleeding and thromboembolism. Experimental studies have shown that TKIs can cause platelet dysfunction. Herein, we present the first side-by-side investigation comparing the effects of currently used TKIs on platelet function and thrombin generation when used in clinically relevant concentrations. A flow cytometry multiparameter protocol was used to study a range of significant platelet activation events (fibrinogen receptor activation, alpha granule, and lysosomal exocytosis, procoagulant membrane exposure, and mitochondrial permeability changes). In addition, thrombin generation was measured in the presence of TKIs to assess the effects on global hemostasis. Results show that dasatinib generally inhibited platelet function, while bosutinib, nilotinib, and ponatinib showed less consistent effects. In addition to these general trends for each TKI, we observed a large degree of interindividual variability in the effects of the different TKIs. Interindividual variation was also observed when blood from CML patients was studied ex vivo with whole blood platelet aggregometry, free oscillation rheometry (FOR), and flow cytometry. Based on the donor responses in the side-by-side TKI study, a TKI sensitivity map was developed. We propose that such a sensitivity map could potentially become a valuable tool to help in decision-making regarding the choice of suitable TKIs for a CML patient with a history of bleeding or atherothrombotic disease.
Collapse
Affiliation(s)
- Suryyani Deb
- Department of BiotechnologyMaulana Abul Kazam Azad University of TechnologyWest BengalIndia
| | - Niklas Boknäs
- Department of Clinical Chemistry and Department of Clinical and Experimental MedicineLinköping UniversityLinköpingSweden
- Department of Haematology and Department of Clinical and Experimental MedicineLinköping UniversityLinköpingSweden
| | - Clara Sjöström
- Department of Clinical Chemistry and Department of Clinical and Experimental MedicineLinköping UniversityLinköpingSweden
| | - Anjana Tharmakulanathan
- Department of Clinical Chemistry and Department of Clinical and Experimental MedicineLinköping UniversityLinköpingSweden
| | - Kourosh Lotfi
- Department of Haematology and Department of Clinical and Experimental MedicineLinköping UniversityLinköpingSweden
| | - Sofia Ramström
- Department of Clinical Chemistry and Department of Clinical and Experimental MedicineLinköping UniversityLinköpingSweden
- School of Medical SciencesÖrebro UniversityÖrebroSweden
| |
Collapse
|
37
|
Synthesis, characterisation, crystal structures, anticoagulant and antiplatelet activity studies of new 2,6-dipyrazinylpyridines with pendant trimethoxyphenyl. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Ryoden Y, Fujii T, Segawa K, Nagata S. Functional Expression of the P2X7 ATP Receptor Requires Eros. THE JOURNAL OF IMMUNOLOGY 2019; 204:559-568. [PMID: 31862710 DOI: 10.4049/jimmunol.1900448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/20/2019] [Indexed: 02/04/2023]
Abstract
In response to extracellular ATP, the purinergic receptor P2X7 mediates various biological processes, including phosphatidylserine (PtdSer) exposure, phospholipid scrambling, dye uptake, ion transport, and IL-1β production. A genome-wide CRISPR screen for molecules responsible for ATP-induced PtdSer exposure identified a transmembrane protein, essential for reactive oxygen species (Eros), as a necessary component for P2X7 expression. An Eros-null mouse T cell line lost the ability to expose PtdSer, to scramble phospholipids, and to internalize a dye YO-PRO-1 and Ca2+ ions. Eros-null mutation abolished the ability of an LPS-primed human THP-1 macrophage cell line and mouse bone marrow-derived macrophages to secrete IL-1β in response to ATP. Eros is localized to the endoplasmic reticulum and functions as a chaperone for NADPH oxidase components. Similarly, Eros at the endoplasmic reticulum transiently associated with P2X7 to promote the formation of a stable homotrimeric complex of P2X7. These results indicated that Eros acts as a chaperone not only for NADPH oxidase, but also for P2X7, and contributes to the innate immune reaction.
Collapse
Affiliation(s)
- Yuta Ryoden
- Laboratory of Biochemistry and Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toshihiro Fujii
- Laboratory of Biochemistry and Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Katsumori Segawa
- Laboratory of Biochemistry and Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
39
|
Taus F, Meneguzzi A, Castelli M, Minuz P. Platelet-Derived Extracellular Vesicles as Target of Antiplatelet Agents. What Is the Evidence? Front Pharmacol 2019; 10:1256. [PMID: 31780927 PMCID: PMC6857039 DOI: 10.3389/fphar.2019.01256] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022] Open
Abstract
Platelet-derived large extracellular vesicles (often referred to as microparticles in the field of cardiovascular disease) have been identified as effector in the atherothrombotic process, therefore representing a target of pharmacological intervention of potential interest. Despite that, limited evidence is so far available concerning the effects of antiplatelet agents on the release of platelet-derived extracellular vesicles. In the present narrative review, the mechanisms leading to vesiculation in platelets and the pathophysiological processes implicated will be discussed. This will be followed by a summary of the present evidence concerning the effects of antiplatelet agents under experimental conditions and in clinical settings.
Collapse
Affiliation(s)
- Francesco Taus
- Department of Medicine, Section of Internal Medicine C, University of Verona, Verona, Italy
| | - Alessandra Meneguzzi
- Department of Medicine, Section of Internal Medicine C, University of Verona, Verona, Italy
| | - Marco Castelli
- Department of Medicine, Section of Internal Medicine C, University of Verona, Verona, Italy
| | - Pietro Minuz
- Department of Medicine, Section of Internal Medicine C, University of Verona, Verona, Italy
| |
Collapse
|
40
|
Caccioppo A, Franchin L, Grosso A, Angelini F, D'Ascenzo F, Brizzi MF. Ischemia Reperfusion Injury: Mechanisms of Damage/Protection and Novel Strategies for Cardiac Recovery/Regeneration. Int J Mol Sci 2019; 20:E5024. [PMID: 31614414 PMCID: PMC6834134 DOI: 10.3390/ijms20205024] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022] Open
Abstract
Ischemic diseases in an aging population pose a heavy social encumbrance. Moreover, current therapeutic approaches, which aimed to prevent or minimize ischemia-induced damage, are associated with relevant costs for healthcare systems. Early reperfusion by primary percutaneous coronary intervention (PPCI) has undoubtedly improved patient's outcomes; however, the prevention of long-term complications is still an unmet need. To face these hurdles and improve patient's outcomes, novel pharmacological and interventional approaches, alone or in combination, reducing myocardium oxygen consumption or supplying blood flow via collateral vessels have been proposed. A number of clinical trials are ongoing to validate their efficacy on patient's outcomes. Alternative options, including stem cell-based therapies, have been evaluated to improve cardiac regeneration and prevent scar formation. However, due to the lack of long-term engraftment, more recently, great attention has been devoted to their paracrine mediators, including exosomes (Exo) and microvesicles (MV). Indeed, Exo and MV are both currently considered to be one of the most promising therapeutic strategies in regenerative medicine. As a matter of fact, MV and Exo that are released from stem cells of different origin have been evaluated for their healing properties in ischemia reperfusion (I/R) settings. Therefore, this review will first summarize mechanisms of cardiac damage and protection after I/R damage to track the paths through which more appropriate interventional and/or molecular-based targeted therapies should be addressed. Moreover, it will provide insights on novel non-invasive/invasive interventional strategies and on Exo-based therapies as a challenge for improving patient's long-term complications. Finally, approaches for improving Exo healing properties, and topics still unsolved to move towards Exo clinical application will be discussed.
Collapse
Affiliation(s)
- Andrea Caccioppo
- Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Luca Franchin
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Alberto Grosso
- Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Filippo Angelini
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Fabrizio D'Ascenzo
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | | |
Collapse
|
41
|
Zhang C, Wang K, Yang L, Liu R, Chu Y, Qin X, Yang P, Yu H. Lipid metabolism in inflammation-related diseases. Analyst 2019; 143:4526-4536. [PMID: 30128447 DOI: 10.1039/c8an01046c] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There are thousands of lipid species existing in cells, which belong to eight different categories. Lipids are the essential building blocks of cells. Recent studies have started to unveil the important functions of lipids in regulating cell metabolism. However, we are still at a very early stage in fully understanding the physiological and pathological functions of lipids. The application of lipidomics for studying lipid metabolism can provide a direct readout of the cellular status and broadens our understanding of the mechanisms that underpin metabolic disease states. This review provides an introduction to lipid metabolism and its role in modulating homeostasis and immunity. We also describe representative applications of lipidomics for studying lipid metabolism in inflammation-related diseases.
Collapse
Affiliation(s)
- Cuiping Zhang
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Han TW, Ye W, Bethel NP, Zubia M, Kim A, Li KH, Burlingame AL, Grabe M, Jan YN, Jan LY. Chemically induced vesiculation as a platform for studying TMEM16F activity. Proc Natl Acad Sci U S A 2019; 116:1309-1318. [PMID: 30622179 PMCID: PMC6347726 DOI: 10.1073/pnas.1817498116] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Calcium-activated phospholipid scramblase mediates the energy-independent bidirectional translocation of lipids across the bilayer, leading to transient or, in the case of apoptotic scrambling, sustained collapse of membrane asymmetry. Cells lacking TMEM16F-dependent lipid scrambling activity are deficient in generation of extracellular vesicles (EVs) that shed from the plasma membrane in a Ca2+-dependent manner, namely microvesicles. We have adapted chemical induction of giant plasma membrane vesicles (GPMVs), which require both TMEM16F-dependent phospholipid scrambling and calcium influx, as a kinetic assay to investigate the mechanism of TMEM16F activity. Using the GPMV assay, we identify and characterize both inactivating and activating mutants that elucidate the mechanism for TMEM16F activation and facilitate further investigation of TMEM16F-mediated lipid translocation and its role in extracellular vesiculation.
Collapse
Affiliation(s)
- Tina W Han
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
- Department of Physiology, University of California, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Wenlei Ye
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
- Department of Physiology, University of California, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Neville P Bethel
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, CA 94143
| | - Mario Zubia
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
- Department of Physiology, University of California, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Andrew Kim
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
- Department of Physiology, University of California, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Kathy H Li
- Mass Spectrometry Facility, University of California, San Francisco, CA 94143
| | - Alma L Burlingame
- Mass Spectrometry Facility, University of California, San Francisco, CA 94143
| | - Michael Grabe
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, CA 94143
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
- Department of Physiology, University of California, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Lily Y Jan
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94143;
- Department of Physiology, University of California, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| |
Collapse
|
43
|
|
44
|
Rank A, Nieuwland R, Köhler A, Franz C, Waidhauser J, Toth B. Human bone marrow contains high levels of extracellular vesicles with a tissue-specific subtype distribution. PLoS One 2018; 13:e0207950. [PMID: 30521543 PMCID: PMC6283575 DOI: 10.1371/journal.pone.0207950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/08/2018] [Indexed: 11/24/2022] Open
Abstract
Introduction Extracellular vesicles (EV) are shed from a broad variety of cells and play an important role in activation of coagulation, cell to cell interaction and transport of membrane components. They are usually measured as circulating EV in peripheral blood (PB) and other body fluids. However, little is known about the distribution, presence and impact of EV and their subpopulations in bone marrow (BM). In our study, we focused on the analysis of different EV subtypes in human BM as compared to EV subsets in PB. Methods EV in BM and PB from 12 healthy stem cell donors were measured by flow-cytometry using Annexin V and cell-specific antibodies for hematopoietic stem cells, leucocytes, platelets, red blood cells, and endothelial cells. Additionally, concentrations of tissue factor-bearing EV were evaluated. Results High numbers of total EV were present in BM (median value [25–75 percentile]: 14.8 x109/l [8.5–19.3]). Non-significantly lower numbers of total EV were measured in PB (9.2 x109/l [3.8–14.5]). However, distribuation of EV subtypes showed substantial differences between BM and PB: In PB, distribution of EV fractions was similar as previously described. Most EV originated from platelets (93.9%), and only few EV were derived from leucocytes (4.5%), erythrocytes (1.8%), endothelial cells (1.0%), and hematopoietic stem cells (0.7%). In contrast, major fractions of BM-EV were derived from red blood cells or erythropoietic cells (43.2%), followed by megacaryocytes / platelets (27.6%), and by leucocytes as well as their progenitor cells (25,7%); only low EV proportions originated from endothelial cells and hematopoietic stem cells (2.0% and 1.5%, respectively). Similar fractions of tissue factor—bearing EV were found in BM and PB (1.3% and 0.9%). Conculsion Taken together, we describe EV numbers and their subtype distribution in the BM compartment for the first time. The tissue specific EV distribution reflects BM cell composition and favours the idea of a BM–PB barrier existing not only for cells, but also for EV.
Collapse
Affiliation(s)
- Andreas Rank
- 2. Medizinische Klinik, Klinikum Augsburg, Augsburg, Germany
- * E-mail:
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, and Vesicle Observation Centre, Academic Medical Center, Amsterdam, The Netherlands
| | - Anton Köhler
- Medizinische Klinik und Poliklinik I, Ludwig Maximilians-Universität München, München, Germany
| | - Cordula Franz
- Department of Obstetrics and Gynecology, University of Aachen, Aachen, Germany
| | | | - Bettina Toth
- Gynecological Endocrinology and Reproductive Medicine, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
45
|
Bharadwaj SS, Poojary B, Nandish SKM, Kengaiah J, Kirana MP, Shankar MK, Das AJ, Kulal A, Sannaningaiah D. Efficient Synthesis and in Silico Studies of the Benzimidazole Hybrid Scaffold with the Quinolinyloxadiazole Skeleton with Potential α-Glucosidase Inhibitory, Anticoagulant, and Antiplatelet Activities for Type-II Diabetes Mellitus Management and Treating Thrombotic Disorders. ACS OMEGA 2018; 3:12562-12574. [PMID: 30411010 PMCID: PMC6217529 DOI: 10.1021/acsomega.8b01476] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/17/2018] [Indexed: 06/03/2023]
Abstract
The current study evaluates antidiabetic, anticoagulant, and antiplatelet activity of novel benzimidazole-containing quinolinyl oxadiazoles. These derivatives are synthesized and characterized using spectroscopy (FT-IR, 1H NMR, and mass spectroscopy) and single-crystal X-ray diffraction methods. The inhibitory effects of these compounds were evaluated by the α-glucosidase inhibitory assay and shows the activity in the range of IC50 = 0.66 ± 0.05 to 3.79 ± 0.46 μg/mL. In addition, molecular docking studies revealed that benzimidazole-containing quinolinyl oxadiazoles can correctly dock into the target receptor protein of the human intestinal α-glucosidase, while their bioavailability/drug-likeness was predicted to be acceptable but requires further optimization. On the other hand, compound 8a and 8d showed anticoagulant activity as they enhanced the clotting time from control 180-410 and 180-390 s, respectively, in platelet rich plasma and 230-460 and 230-545 s in platelet poor plasma. Furthermore, only 8a showed antiplatelet activity by inhibiting epinephrine-induced platelet aggregation, and the observed aggregation inhibition was found to be 93.4%. Compounds 8a-f show nontoxic properties because of the non-hydrolyzing properties in the RBC cells. In addition, 8a and 8d show anti-edema and anti-hemorrhagic properties in the experimental mice. These findings reveal that benzimidazole-containing quinolinyl oxadiazoles act as α-glucosidase inhibitors to develop novel therapeutics for treating type-II diabetes mellitus and can act as lead molecules in drug discovery as potential antidiabetic and antithrombotic agents.
Collapse
Affiliation(s)
- S. Shashidhar Bharadwaj
- Department
of Studies in Chemistry and PURSE Lab, Mangalore University, Mangalagangotri 574 199, India
| | - Boja Poojary
- Department
of Studies in Chemistry and PURSE Lab, Mangalore University, Mangalagangotri 574 199, India
| | - Sharath Kumar M. Nandish
- Department
of Studies and Research in Biochemistry and Centre for Bioscience
and Innovation, Tumkur University, Tumkur 572103, India
| | - Jayanna Kengaiah
- Department
of Studies and Research in Biochemistry and Centre for Bioscience
and Innovation, Tumkur University, Tumkur 572103, India
| | - Mugaranja P. Kirana
- Department
of Biological Sciences, Poornaprajna Institute
of Scientific Research, Bengaluru 560080, India
| | - Madan Kumar Shankar
- Department
of Studies in Chemistry and PURSE Lab, Mangalore University, Mangalagangotri 574 199, India
| | - Anupam J. Das
- Department
of Biotechnology, School of Chemical and Biological Sciences, REVA University, Kattigenahalli Campus, Bangalore 560064, Karnataka, India
| | - Ananda Kulal
- Department
of Biological Sciences, Poornaprajna Institute
of Scientific Research, Bengaluru 560080, India
| | - Devaraja Sannaningaiah
- Department
of Studies and Research in Biochemistry and Centre for Bioscience
and Innovation, Tumkur University, Tumkur 572103, India
| |
Collapse
|
46
|
Codispoti B, Marrelli M, Paduano F, Tatullo M. NANOmetric BIO-Banked MSC-Derived Exosome (NANOBIOME) as a Novel Approach to Regenerative Medicine. J Clin Med 2018; 7:jcm7100357. [PMID: 30326618 PMCID: PMC6210357 DOI: 10.3390/jcm7100357] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/28/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are well known for their great potential in clinical applications. In fact, MSCs can differentiate into several cell lineages and show paracrine behavior by releasing endogenous factors that stimulate tissue repair and modulate local immune response. Each MSC type is affected by specific biobanking issues-technical issues as well as regulatory and ethical concerns-thus making it quite tricky to safely and commonly use MSC banking for swift regenerative applications. Extracellular vesicles (EVs) include a group of 150⁻1000 nm vesicles that are released by budding from the plasma membrane into biological fluids and/or in the culture medium from varied and heterogenic cell types. EVs consist of various vesicle types that are defined with different nomenclature such as exosomes, shedding vesicles, nanoparticles, microvesicles and apoptotic bodies. Ectosomes, micro- and nanoparticles generally refer to the direct release of single vesicles from the plasma membrane. While many studies describe exosomes as deriving from multivesicular bodies, solid evidence about the origin of EVs is often lacking. Extracellular vesicles represent an important portion of the cell secretome. Their numerous properties can be used for diagnostic, prognostic, and therapeutic uses, so EVs are considered to be innovative and smart theranostic tools. The aim of this review is to investigate the usefulness of exosomes as carriers of the whole information panel characterizing the use of MSCs in regenerative medicine. Our purpose is to make a step forward in the development of the NANOmetric BIO-banked MSC-derived Exosome (NANOBIOME).
Collapse
Affiliation(s)
| | | | | | - Marco Tatullo
- Tecnologica Research Institute, 88900 Crotone, Italy.
| |
Collapse
|
47
|
Whitlock JM, Yu K, Cui YY, Hartzell HC. Anoctamin 5/TMEM16E facilitates muscle precursor cell fusion. J Gen Physiol 2018; 150:1498-1509. [PMID: 30257928 PMCID: PMC6219693 DOI: 10.1085/jgp.201812097] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/12/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
Limb-girdle muscular dystrophy type 2L arises from mutations in the anoctamin ANO5, whose role in muscle physiology is unknown. Whitlock et al. show that loss of ANO5 perturbs phosphatidylserine exposure and cell–cell fusion in muscle precursor cells, which is an essential step in muscle repair. Limb-girdle muscular dystrophy type 2L (LGMD2L) is a myopathy arising from mutations in ANO5; however, information about the contribution of ANO5 to muscle physiology is lacking. To explain the role of ANO5 in LGMD2L, we previously hypothesized that ANO5-mediated phospholipid scrambling facilitates cell–cell fusion of mononucleated muscle progenitor cells (MPCs), which is required for muscle repair. Here, we show that heterologous overexpression of ANO5 confers Ca2+-dependent phospholipid scrambling to HEK-293 cells and that scrambling is associated with the simultaneous development of a nonselective ionic current. MPCs isolated from adult Ano5−/− mice exhibit defective cell fusion in culture and produce muscle fibers with significantly fewer nuclei compared with controls. This defective fusion is associated with a decrease of Ca2+-dependent phosphatidylserine exposure on the surface of Ano5−/− MPCs and a decrease in the amplitude of Ca2+-dependent outwardly rectifying ionic currents. Viral introduction of ANO5 in Ano5−/− MPCs restores MPC fusion competence, ANO5-dependent phospholipid scrambling, and Ca2+-dependent outwardly rectifying ionic currents. ANO5-rescued MPCs produce myotubes having numbers of nuclei similar to wild-type controls. These data suggest that ANO5-mediated phospholipid scrambling or ionic currents play an important role in muscle repair.
Collapse
Affiliation(s)
- Jarred M Whitlock
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - Kuai Yu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - Yuan Yuan Cui
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - H Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
48
|
Buzás EI, Tóth EÁ, Sódar BW, Szabó-Taylor KÉ. Molecular interactions at the surface of extracellular vesicles. Semin Immunopathol 2018; 40:453-464. [PMID: 29663027 PMCID: PMC6208672 DOI: 10.1007/s00281-018-0682-0] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 03/26/2018] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles such as exosomes, microvesicles, apoptotic bodies, and large oncosomes have been shown to participate in a wide variety of biological processes and are currently under intense investigation in many different fields of biomedicine. One of the key features of extracellular vesicles is that they have relatively large surface compared to their volume. Some extracellular vesicle surface molecules are shared with those of the plasma membrane of the releasing cell, while other molecules are characteristic for extracellular vesicular surfaces. Besides proteins, lipids, glycans, and nucleic acids are also players of extracellular vesicle surface interactions. Being secreted and present in high number in biological samples, collectively extracellular vesicles represent a uniquely large interactive surface area which can establish contacts both with cells and with molecules in the extracellular microenvironment. Here, we provide a brief overview of known components of the extracellular vesicle surface interactome and highlight some already established roles of the extracellular vesicle surface interactions in different biological processes in health and disease.
Collapse
Affiliation(s)
- Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.
- MTA-SE Immune-Proteogenomics Research Group, Budapest, Hungary.
| | - Eszter Á Tóth
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Barbara W Sódar
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Katalin É Szabó-Taylor
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
49
|
Wei H, Malcor JDM, Harper MT. Lipid rafts are essential for release of phosphatidylserine-exposing extracellular vesicles from platelets. Sci Rep 2018; 8:9987. [PMID: 29968812 PMCID: PMC6030044 DOI: 10.1038/s41598-018-28363-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022] Open
Abstract
Platelets protect the vascular system during damage or inflammation, but platelet activation can result in pathological thrombosis. Activated platelets release a variety of extracellular vesicles (EVs). EVs shed from the plasma membrane often expose phosphatidylserine (PS). These EVs are pro-thrombotic and increased in number in many cardiovascular and metabolic diseases. The mechanisms by which PS-exposing EVs are shed from activated platelets are not well characterised. Cholesterol-rich lipid rafts provide a platform for coordinating signalling through receptors and Ca2+ channels in platelets. We show that cholesterol depletion with methyl-β-cyclodextrin or sequestration with filipin prevented the Ca2+-triggered release of PS-exposing EVs. Although calpain activity was required for release of PS-exposing, calpain-dependent cleavage of talin was not affected by cholesterol depletion. P2Y12 and TPα, receptors for ADP and thromboxane A2, respectively, have been reported to be in platelet lipid rafts. However, the P2Y12 antagonist, AR-C69931MX, or the cyclooxygenase inhibitor, aspirin, had no effect on A23187-induced release of PS-exposing EVs. Together, these data show that lipid rafts are required for release of PS-exposing EVs from platelets.
Collapse
Affiliation(s)
- Hao Wei
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | | | - Matthew T Harper
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
50
|
Abstract
Mucocutaneous bleeding symptoms and/or persistent thrombocytopenia occur in individuals with congenital disorders of platelet function and number. Apart from bleeding, these disorders are often associated with additional hematologic and clinical manifestations, including auditory, immunologic, and oncologic disease. Autosomal recessive, dominant, and X-linked inheritance patterns have been demonstrated. Precise delineation of the molecular cause of the platelet disorder can aid the pediatrician in the detection and prevention of specific disorder-associated manifestations and guide appropriate treatment and anticipatory care for the patient and family.
Collapse
Affiliation(s)
- Ruchika Sharma
- BloodCenter of Wisconsin, Medical College of Wisconsin, 8733 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | - Shawn M Jobe
- Blood Center of Wisconsin, Blood Research Institute, Medical College of Wisconsin, 8733 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|