1
|
Heng J, Hu Y, Pérez-Hernández G, Inoue A, Zhao J, Ma X, Sun X, Kawakami K, Ikuta T, Ding J, Yang Y, Zhang L, Peng S, Niu X, Li H, Guixà-González R, Jin C, Hildebrand PW, Chen C, Kobilka BK. Function and dynamics of the intrinsically disordered carboxyl terminus of β2 adrenergic receptor. Nat Commun 2023; 14:2005. [PMID: 37037825 PMCID: PMC10085991 DOI: 10.1038/s41467-023-37233-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/07/2023] [Indexed: 04/12/2023] Open
Abstract
Advances in structural biology have provided important mechanistic insights into signaling by the transmembrane core of G-protein coupled receptors (GPCRs); however, much less is known about intrinsically disordered regions such as the carboxyl terminus (CT), which is highly flexible and not visible in GPCR structures. The β2 adrenergic receptor's (β2AR) 71 amino acid CT is a substrate for GPCR kinases and binds β-arrestins to regulate signaling. Here we show that the β2AR CT directly inhibits basal and agonist-stimulated signaling in cell lines lacking β-arrestins. Combining single-molecule fluorescence resonance energy transfer (FRET), NMR spectroscopy, and molecular dynamics simulations, we reveal that the negatively charged β2AR-CT serves as an autoinhibitory factor via interacting with the positively charged cytoplasmic surface of the receptor to limit access to G-proteins. The stability of this interaction is influenced by agonists and allosteric modulators, emphasizing that the CT plays important role in allosterically regulating GPCR activation.
Collapse
Affiliation(s)
- Jie Heng
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yunfei Hu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan, 430071, China
| | - Guillermo Pérez-Hernández
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Charitéplatz 1, 10117, Berlin, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Jiawei Zhao
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiuyan Ma
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xiaoou Sun
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Tatsuya Ikuta
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Jienv Ding
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yujie Yang
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Lujia Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sijia Peng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaogang Niu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hongwei Li
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ramon Guixà-González
- Condensed Matter Theory Group, Paul Scherrer Institute, CH-5232, Villigen, PSI, Switzerland
| | - Changwen Jin
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peter W Hildebrand
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Medical Physics and Biophysics, University Leipzig, 04107, Leipzig, Germany
- Berlin Institute of Health, 10178, Berlin, Germany
| | - Chunlai Chen
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
2
|
Rodriguez-Contreras D, Condon AF, Buck DC, Asad N, Dore TM, Verbeek DS, Tijssen MAJ, Shinde U, Williams JT, Neve KA. Signaling-Biased and Constitutively Active Dopamine D2 Receptor Variant. ACS Chem Neurosci 2021; 12:1873-1884. [PMID: 33974399 DOI: 10.1021/acschemneuro.0c00712] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A dopamine D2 receptor mutation was recently identified in a family with a novel hyperkinetic movement disorder. Compared to the wild type D2 receptor, the novel allelic variant D2-I212F activates a Gαi1β1γ2 heterotrimer with higher potency and modestly enhanced basal activity in human embryonic kidney (HEK) 293 cells and has decreased capacity to recruit arrestin3. We now report that omitting overexpressed G protein-coupled receptor kinase-2 (GRK2) decreased the potency and efficacy of quinpirole for arrestin recruitment. The relative efficacy of quinpirole for arrestin recruitment to D2-I212F compared to D2-WT was considerably lower without overexpressed GRK2 than with added GRK2. D2-I212F exhibited higher basal activation of GαoA than Gαi1 but little or no increase in the potency of quinpirole relative to D2-WT. Other signs of D2-I212F constitutive activity for G protein-mediated signaling, in addition to basal activation of Gαi/o, were enhanced basal inhibition of forskolin-stimulated cyclic AMP accumulation that was reversed by the inverse agonists sulpiride and spiperone and a ∼4-fold increase in the apparent affinity of D2-I212F for quinpirole, determined from competition binding assays. In mouse midbrain slices, inhibition of tonic current by the inverse agonist sulpiride in dopamine neurons expressing D2-I212F was consistent with our hypothesis of enhanced constitutive activity and sensitivity to dopamine relative to D2-WT. Molecular dynamics simulations with D2 receptor models suggested that an ionic lock between the cytoplasmic ends of the third and sixth α-helices that constrains many G protein-coupled receptors in an inactive conformation spontaneously breaks in D2-I212F. Overall, these results confirm that D2-I212F is a constitutively active and signaling-biased D2 receptor mutant and also suggest that the effect of the likely pathogenic variant in a given brain region will depend on the nature of G protein and GRK expression.
Collapse
Affiliation(s)
- Dayana Rodriguez-Contreras
- Research Service, VA Portland Health Care System, and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Alec F. Condon
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - David C. Buck
- Research Service, VA Portland Health Care System, Portland, Oregon 97239, United States
| | - Naeem Asad
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Timothy M. Dore
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Dineke S. Verbeek
- Expertise Center Movement Disorders and Department of Genetics, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Marina A. J. Tijssen
- Expertise Center Movement Disorders and Department of Neurology, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Ujwal Shinde
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - John T. Williams
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Kim A. Neve
- Research Service, VA Portland Health Care System, and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, United States
| |
Collapse
|
3
|
GPCR Activation States Induced by Nanobodies and Mini-G Proteins Compared by NMR Spectroscopy. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25245984. [PMID: 33348734 PMCID: PMC7767065 DOI: 10.3390/molecules25245984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
In this work, we examine methyl nuclear magnetic resonance (NMR) spectra of the methionine ε-[13CH3] labelled thermostabilized β1 adrenergic receptor from turkey in association with a variety of different effectors, including mini-Gs and nanobody 60 (Nb60), which have not been previously studied in complex with β1 adrenergic receptor (β1AR) by NMR. Complexes with pindolol and Nb60 induce highly similar inactive states of the receptor, closely resembling the resting state conformational ensemble. We show that, upon binding of mini-Gs or nanobody 80 (Nb80), large allosteric changes throughout the receptor take place. The conformation of tβ1AR stabilized by the native-like mini-Gs protein is highly similar to the conformation induced by the currently used surrogate Nb80. Interestingly, in both cases residual dynamics are present, which were not observed in the resting states. Finally, we reproduce a pharmaceutically relevant situation, where an antagonist abolishes the interaction of the receptor with the mini-G protein in a competitive manner, validating the functional integrity of our preparation. The presented system is therefore well suited for reproducing the individual steps of the activation cycle of a G protein-coupled receptor (GPCR) in vitro and serves as a basis for functional and pharmacological characterizations of more native-like systems in the future.
Collapse
|
4
|
Kouvatsos N, Niarchos A, Zisimopoulou P, Eliopoulos E, Poulas K, Tzartos S. Purification and functional characterization of a truncated human α4β2 nicotinic acetylcholine receptor. Int J Biol Macromol 2014; 70:320-6. [PMID: 25014634 DOI: 10.1016/j.ijbiomac.2014.06.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
Abstract
Nicotinic acetylcholine receptors (nAChR) are abundant in the brain and are essential in cognitive function, learning and memory. Previous efforts on α4β2 nAChR had been focused on functional and pharmacological characterization, where high expression yield is not essential. For structural studies though, large amounts of pure protein is important but heterologous overexpression of membrane proteins can be a burdensome task, especially if high amounts are required. In the current study, a truncated mutant of the human α4β2 nAChR was designed in order to improve expression and solubility and to obtain material suitable for high resolution structural studies. We showed that the wild type α4β2 nAChR presented low expression and solubilization yield both of which were improved with the truncated construct. The truncated nAChR showed similar binding profile to the wild type, was purified by a two-step chromatography and isolated in high purity and adequate quantity.
Collapse
Affiliation(s)
- Nikolaos Kouvatsos
- Department of Neurobiology, Hellenic Pasteur Institute, 127 Vass. Sofias Avenue, GR11521 Athens, Greece
| | | | - Paraskevi Zisimopoulou
- Department of Neurobiology, Hellenic Pasteur Institute, 127 Vass. Sofias Avenue, GR11521 Athens, Greece
| | - Elias Eliopoulos
- Department of Agricultural Biotechnology, Agricultural University of Athens, Holy Street 75, GR11855 Athens, Greece
| | | | - Socrates Tzartos
- Department of Neurobiology, Hellenic Pasteur Institute, 127 Vass. Sofias Avenue, GR11521 Athens, Greece; Department of Pharmacy, University of Patras, GR26500 Patras, Greece.
| |
Collapse
|
5
|
Bertheleme N, Chae PS, Singh S, Mossakowska D, Hann MM, Smith KJ, Hubbard JA, Dowell SJ, Byrne B. Unlocking the secrets of the gatekeeper: Methods for stabilizing and crystallizing GPCRs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2583-91. [DOI: 10.1016/j.bbamem.2013.07.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/01/2013] [Accepted: 07/08/2013] [Indexed: 02/07/2023]
|
6
|
Crystal structure of oligomeric β1-adrenergic G protein-coupled receptors in ligand-free basal state. Nat Struct Mol Biol 2013; 20:419-25. [PMID: 23435379 PMCID: PMC3618578 DOI: 10.1038/nsmb.2504] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 01/03/2013] [Indexed: 01/23/2023]
Abstract
G protein-coupled receptors (GPCRs) mediate transmembrane signaling. Before ligand binding, GPCRs exist in a basal state. Crystal structures of several GPCRs bound with antagonists or agonists have been solved. However, the crystal structure of the ligand-free basal state of a GPCR, the starting point of GPCR activation and function, has not been determined. Here we report the X-ray crystal structure of the first ligand-free basal state of a GPCR in a lipid membrane-like environment. Oligomeric turkey β1-adrenergic receptors display two alternating dimer interfaces. One interface involves the transmembrane domain (TM) 1, TM2, the C-terminal H8, and the extracellular loop 1. The other interface engages residues from TM4, TM5, the intracellular loop 2 and the extracellular loop 2. Structural comparisons show that this ligand-free state is in an inactive conformation. This provides the structural information regarding GPCR dimerization and oligomerization.
Collapse
|
7
|
Brueckner F, Piscitelli CL, Tsai CJ, Standfuss J, Deupi X, Schertler GFX. Structure of β-adrenergic receptors. Methods Enzymol 2013; 520:117-51. [PMID: 23332698 DOI: 10.1016/b978-0-12-391861-1.00006-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
β-Adrenergic receptors (βARs) control key physiological functions by transducing signals encoded in catecholamine hormones and neurotransmitters to activate intracellular signaling pathways. As members of the large family of G protein-coupled receptors (GPCRs), βARs have a seven-transmembrane helix topology and signal via G protein- and arrestin-dependent pathways. Until 2007, three-dimensional structural information of GPCRs activated by diffusible ligands, including βARs, was limited to homology models that used the related photoreceptor rhodopsin as a template. Over many years, several labs have developed strategies that have finally allowed the structures of the turkey β(1)AR and the human β(2)AR to be determined experimentally. The challenges to overcome included heterologous receptor overexpression, design of stabilized and crystallizable modified receptor constructs, ligand-affinity purification of active receptor and the development of novel techniques in crystallization and microcrystallography. The structures of βARs in complex with inverse agonists, antagonists, and agonists have revealed the binding mode of ligands with different efficacies, have allowed to obtain insights into ligand selectivity, and have provided better templates for drug design. Also, the structures of β(2)AR in complex with a G protein and a G protein-mimicking nanobody have provided important insights into the mechanism of receptor activation and G protein coupling. This chapter summarizes the strategies and methods that have been successfully applied to the structural studies of βARs. These are exemplified with detailed protocols toward the structure determination of stabilized turkey β(1)AR-ligand complexes. We also discuss the spectacular insights into adrenergic receptor function that were obtained from the structures.
Collapse
Affiliation(s)
- Florian Brueckner
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen PSI, Switzerland
| | | | | | | | | | | |
Collapse
|
8
|
Li G, Zhou Q, Yu Y, Chen L, Shi Y, Luo J, Benovic J, Lu J, Zhou N. Identification and characterization of distinct C-terminal domains of the human hydroxycarboxylic acid receptor-2 that are essential for receptor export, constitutive activity, desensitization, and internalization. Mol Pharmacol 2012; 82:1150-61. [PMID: 22962331 DOI: 10.1124/mol.112.081307] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The human hydroxycarboxylic acid receptor 2 (HCA₂), also known as GPR109A and HM74a, was first identified as a niacin receptor and has recently received significant attention because of its potential to clinically modify plasma lipids in a favorable manner. Our recent studies have demonstrated that the niacin-induced internalization of HCA₂ receptors is regulated by G protein-coupled receptor kinase (GRK) 2 and arrestin3 and that internalized receptors rapidly recycle back to the cell surface. The investigation presented here used a combination of amino acid deletion and site-directed mutagenesis to identify structural and functional domains within the HCA₂ C terminus and explore their potential roles in receptor phosphorylation, desensitization, and internalization. We first constructed four mutants with deletions of 10 to 15 amino acids each that were distinct from truncated mutants. We successfully identified different domains responsible for receptor export, constitutive activity, desensitization, phosphorylation, and internalization. We also generated a comprehensive series of alanine substitution mutants, replacing conserved serine and threonine residues in the C terminus with alanine residues to pinpoint the key residues that are essential for GRK2-mediated phosphorylation and arrestin3 association. Moreover, we found that a sequence from residues 329 to 343 in the C-terminal tail of HCA₂ plays a crucial role in keeping HCA₂ in an inactive conformation. These data demonstrate the importance of distinct domains within the C terminus of HCA₂ for receptor cell surface expression, desensitization, and internalization and phosphorylation and stabilization of an inactive receptor conformation.
Collapse
Affiliation(s)
- Guo Li
- College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou Zhejinag, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Stadel R, Ahn KH, Kendall DA. The cannabinoid type-1 receptor carboxyl-terminus, more than just a tail. J Neurochem 2011; 117:1-18. [PMID: 21244428 DOI: 10.1111/j.1471-4159.2011.07186.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cannabinoid type-1 (CB(1)) receptor is a G protein-coupled receptor that binds the main active ingredient of marijuana, Δ(9)-tetrahydrocannabinol, and has been implicated in several disease states, including drug addiction, anxiety, depression, obesity, and chronic pain. In the two decades since the discovery of CB(1), studies at the molecular level have centered on the transmembrane core. This interest has now expanded as we discover that other regions of CB(1), including the CB(1) carboxyl-terminus, have critical structures that are important for CB(1) activity and regulation. Following the recent description of the three dimensional structure of the full-length CB(1) carboxyl-terminal tail [Biopolymers (2009) vol. 91, pp. 565-573], several residues and structural motifs including two α-helices (termed H8 and H9) have been postulated to interact with common G protein-coupled receptor accessory proteins, such as G-proteins and β-arrestins. This discourse will focus on the CB(1) carboxyl-terminus; our current understanding of the structural features of this region, evidence for its interaction with proteins, and the impact of structure on the binding and regulatory function of CB(1) accessory proteins. The involvement of the carboxyl-terminus in the receptor life cycle including activation, desensitization, and internalization will be highlighted.
Collapse
Affiliation(s)
- Rebecca Stadel
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | | | | |
Collapse
|
10
|
Differential role of the carboxy-terminus of the A(2B) adenosine receptor in stimulation of adenylate cyclase, phospholipase Cbeta, and interleukin-8. Purinergic Signal 2009; 5:289-98. [PMID: 19125355 DOI: 10.1007/s11302-008-9129-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 12/10/2008] [Indexed: 10/21/2022] Open
Abstract
In human mast cells and microvascular endothelial cells, the A(2B) adenosine receptor controls at least three independent signaling pathways, i.e., Gs-mediated stimulation of adenylate cyclase, Gq-mediated stimulation of phospholipase Cbeta, and Gs/Gq-independent upregulation of IL-8. Functional analysis of cells transfected with full-length and truncated receptor constructs revealed that the A(2B) receptor C-terminus is important for coupling to Gs and Gq proteins. Removal of the entire cytoplasmic portion in the A(2B) receptor C-terminus rendered it incapable of stimulating adenylate cyclase and phospholipase Cbeta. Conversely, removal of the distal 16 amino acids facilitated signal transduction from the receptor to the downstream Gs but not Gq proteins. However, the A(2B) receptor C-terminus is not essential for upregulation of IL-8. Analysis of chimeric A(2A)/A(2B) receptors demonstrated that only chimeras containing the third intracellular loop of the A(2B) receptor mediated agonist-dependent IL-8 reporter stimulation, suggesting that this domain is important for upregulation of IL-8.
Collapse
|
11
|
Gao ZG, Ye K, Göblyös A, Ijzerman AP, Jacobson KA. Flexible modulation of agonist efficacy at the human A3 adenosine receptor by the imidazoquinoline allosteric enhancer LUF6000. BMC Pharmacol 2008; 8:20. [PMID: 19077268 PMCID: PMC2625337 DOI: 10.1186/1471-2210-8-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 12/12/2008] [Indexed: 02/08/2023] Open
Abstract
Background A series of 1H-imidazo- [4,5-c]quinolin-4-amine derivatives, represented by LUF6000 (N-(3,4-dichloro-phenyl)-2-cyclohexyl-1H-imidazo [4,5-c]quinolin-4-amine), are allosteric modulators of the human A3 adenosine receptor (AR). Here we studied the modulation by LUF6000 of the maximum effect (Emax) of structurally diverse agonists at the A3 AR stably expressed in CHO cells. Results In an assay of [35S]GTPγS binding, the Emax of the A3 AR agonist Cl-IB-MECA at the A3 AR was lower than that of the non-selective AR agonist NECA. LUF6000 exerted an Emax-enhancing effect at a concentration of 0.1 μM or higher, and was shown to increase the Emax of Cl-IB-MECA and other low-efficacy agonists to a larger extent than that of the high-efficacy agonist NECA. Interestingly, LUF6000 converted a nucleoside A3 AR antagonist MRS542, but not a non-nucleoside antagonist MRS1220, into an agonist. LUF6000 alone did not show any effect. Mathematical modeling was performed to explain the differential effects of LUF6000 on agonists with various Emax. A simple explanation for the observation that LUF6000 has a much stronger effect on Cl-IB-MECA than on NECA derived from the mathematical modeling is that NECA has relatively strong intrinsic efficacy, such that the response is already close to the maximum response. Therefore, LUF6000 cannot enhance Emax much further. Conclusion LUF6000 was found to be an allosteric enhancer of Emax of structurally diverse agonists at the A3 AR, being more effective for low-Emax agonists than for high-Emax agonists. LUF6000 was demonstrated to convert an antagonist into an agonist, which represents the first example in G protein-coupled receptors. The observations from the present study are consistent with that predicted by mathematical modeling.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, USA.
| | | | | | | | | |
Collapse
|
12
|
Conformational thermostabilization of the beta1-adrenergic receptor in a detergent-resistant form. Proc Natl Acad Sci U S A 2008; 105:877-82. [PMID: 18192400 DOI: 10.1073/pnas.0711253105] [Citation(s) in RCA: 353] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There are approximately 350 non-odorant G protein-coupled receptors (GPCRs) encoded by the human genome, many of which are predicted to be potential therapeutic targets, but there are only two structures available to represent the whole of the family. We hypothesized that improving the detergent stability of these receptors and simultaneously locking them into one preferred conformation will greatly improve the chances of crystallization. We developed a generic strategy for the isolation of detergent-solubilized thermostable mutants of a GPCR, the beta1-adrenergic receptor. The most stable mutant receptor, betaAR-m23, contained six point mutations that led to an apparent T(m) 21 degrees C higher than the native protein, and, in the presence of bound antagonist, betaAR-m23 was as stable as bovine rhodopsin. In addition, betaAR-m23 was significantly more stable in a wide range of detergents ideal for crystallization and was preferentially in an antagonist conformation in the absence of ligand.
Collapse
|
13
|
Vertongen P, Langlet C, Langer I, Gaspard N, Robberecht P. Ac His1 [D-Phe2, K15, R16, L27] VIP (3-7)/GRF (8-27)--a VPAC1 receptor antagonist--is an inverse agonist on two constitutively active truncated VPAC1 receptors. Peptides 2004; 25:1943-9. [PMID: 15501526 DOI: 10.1016/j.peptides.2004.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 06/04/2004] [Accepted: 06/04/2004] [Indexed: 10/26/2022]
Abstract
C-terminally truncated human VPAC(1) receptors were constructed and stably transfected in Chinese hamster ovary (CHO) cells. Selected clones expressing comparable receptor densities were studied for ligand's binding properties, basal and stimulated adenylate cyclase activity. The wild-type (1-457) receptor served as reference. The binding properties of all the constructions were preserved. As judged by the intrinsic activity of the partial agonist Q(3)-VIP, the shortest receptors have a moderate impairment of the coupling efficacy to G(alpha s) protein. Cells expressing the VPAC(1) (1-436) and (1-441) truncated receptors had a two- to three-fold higher basal adenylate cyclase activity than those expressing the wild-type or the VPAC(1) (1-444), (1-433), (1-429), (1-421) and (1-398) receptor. The stimulatory effect of VIP and other agonist was preserved. This suggested that VPAC(1) (1-436) and (1-441) receptors had a constitutive activity. The selective VPAC(1) receptor antagonist Ac His(1) [D-Phe(2), K(15), R(16), L(27)] VIP (3-7)/GRF (8-27) reduced by 60% the basal activity with an EC(50) value of 3 nM comparable to its IC(50) value for binding. This agonist behaved thus like an inverse agonist on the constitutively active VPAC(1) receptors generated by C-terminal truncation and expressed in CHO cells.
Collapse
Affiliation(s)
- Pascale Vertongen
- Department of Biochemistry and Nutrition, School of Medicine, Université Libre de Bruxelles, Bât G/E, CP 611, B-1070 Bruxelles, Belgium.
| | | | | | | | | |
Collapse
|
14
|
Liu C, Sandford G, Fei G, Nicholas J. Galpha protein selectivity determinant specified by a viral chemokine receptor-conserved region in the C tail of the human herpesvirus 8 g protein-coupled receptor. J Virol 2004; 78:2460-71. [PMID: 14963144 PMCID: PMC369212 DOI: 10.1128/jvi.78.5.2460-2471.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The viral G-protein coupled receptor (vGPCR) specified by human herpesvirus 8 (HHV-8) open reading frame 74 (ORF74) is a ligand-independent chemokine receptor that has structural and functional homologues among other characterized gammaherpesviruses and related receptors in the betaherpesviruses. Sequence comparisons of the gammaherpesvirus vGPCRs revealed a highly conserved region in the C tail, just distal to the seventh transmembrane domain. Mutagenesis of the corresponding codons of HHV-8 ORF74 was carried out to provide C-tail-altered proteins for functional analyses. By measuring receptor-activated vascular endothelial growth factor promoter induction and NF-kappaB, mitogen-activated protein kinase, and Ca(2+) signaling, we found that while some altered receptors showed general signaling deficiencies, others had distinguishable activation profiles, suggestive of selective Galpha protein coupling. This was supported by the finding that vGPCR and representative functionally altered variants, vGPCR.8 (R322W) and vGPCR.15 (M325S), were affected differently by inhibitors of Galpha(i) (pertussis toxin), protein kinase C (GF109203X), and phosphatidylinositol 3-kinase (wortmannin). Consistent with the signaling data, [(35)S]GTPgammaS incorporation assays revealed preferential coupling of vGPCR.15 to Galpha(q) and an inability of vGPCR.8 to couple functionally to Galpha(q). However, both variants, wild-type vGPCR, and a C-tail deletion version of the receptor were equally able to associate physically with Galpha(q). Combined, our data demonstrate that HHV-8 vGPCR contains discrete sites of Galpha interaction and that receptor residues in the proximal region of the cytoplasmic tail are determinants of Galpha protein coupling specificity.
Collapse
Affiliation(s)
- Chaoqi Liu
- Molecular Virology Laboratories, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland 21231, USA
| | | | | | | |
Collapse
|
15
|
Pankevych H, Korkhov V, Freissmuth M, Nanoff C. Truncation of the A1 adenosine receptor reveals distinct roles of the membrane-proximal carboxyl terminus in receptor folding and G protein coupling. J Biol Chem 2003; 278:30283-93. [PMID: 12764156 DOI: 10.1074/jbc.m212918200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The carboxyl terminus (C-tail) of G protein-coupled receptors is divergent in length and structure and may represent an individualized cytoplasmic domain. By progressively truncating the A1 adenosine receptor, a Gi/o-coupled receptor with short cytoplasmic stretches, we identify two inherent functions of the C-tail, namely a role in receptor export from the endoplasmic reticulum (ER) and a role in G protein coupling. Deletion of the last 22 and 26 amino acids (of 36) reduced and completely abolished surface expression of the receptor, respectively. The severely truncated receptors were retained in the ER and failed to bind ligands. If overexpressed, even a substantial portion of the full-length receptor was retained in the ER in a form that was not functional. These data indicate that folding is rate limiting in export from the ER and that the proximal segment of the carboxyl terminus provides a docking site for the machinery involved in folding and quality control. In addition, the proximal portion is also important in G protein coupling. This latter role was unmasked when the distal portion of the C-tail (the extreme 18 amino acids, including a palmitoylated cysteine) had been removed; the resulting receptor was functional and transferred the agonist-mediated signal more efficiently than the full-length receptor. Signaling was enhanced because the coupling affinity increased (by 3-fold), which translated into a higher agonist potency. Thus, the distal portion of the carboxyl terminus provides for an autoinhibitory restraint, presumably by folding back and preventing G protein access to the proximal part of the C-tail.
Collapse
Affiliation(s)
- Halyna Pankevych
- Institute of Pharmacology, University of Vienna, Währinger Strasse 13A, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
16
|
Warne T, Chirnside J, Schertler GFX. Expression and purification of truncated, non-glycosylated turkey beta-adrenergic receptors for crystallization. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1610:133-40. [PMID: 12586387 DOI: 10.1016/s0005-2736(02)00716-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In order to purify milligram quantities of turkey beta-adrenergic receptor (betaAR) for structural analysis, we have expressed mutant betaARs using the baculovirus system. The initial betaAR construct was truncated at both N- and C-termini thus removing an N-glycosylation site. Cys 116 was mutated to leucine and a histidine tag was added at the C-terminus resulting in the betaAR construct 20-424/His6. Expression of this construct in Sf9 cells produced 0.5 mg of unpurified receptor per liter of culture which necessitated the use of a fermenter for large-scale production. The yield was improved more than 2-fold to 1.2 mg/l culture by using Tni cells which facilitated the production of receptor on a 4 litre scale in shake cultures. The receptor was purified to homogeneity with 35% recovery giving a yield of 2 mg receptor. A further deletion at the N-terminus (betaAR 34-424/His6) eliminated proteolysis which had been observed with the original construct and also increased expression more than 5-fold to 360 pmol/mg solubilized membrane protein. This expression level is one of the highest reported for a G protein-coupled receptor (GPCR) and has enabled us to purify 10 mg betaAR for large-scale crystallization experiments.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Baculoviridae/genetics
- Cell Line
- Crystallization
- Culture Media
- Fermentation
- Gene Deletion
- Insecta
- Molecular Sequence Data
- Receptors, Adrenergic, beta/biosynthesis
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/isolation & purification
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/isolation & purification
- Receptors, G-Protein-Coupled
- Saccharomyces cerevisiae Proteins/biosynthesis
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/isolation & purification
- Turkeys
- Up-Regulation
Collapse
Affiliation(s)
- Tony Warne
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | |
Collapse
|
17
|
Bockaert J, Claeysen S, Bécamel C, Pinloche S, Dumuis A. G protein-coupled receptors: dominant players in cell-cell communication. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 212:63-132. [PMID: 11804040 DOI: 10.1016/s0074-7696(01)12004-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The G protein-coupled receptors (GPCRs) are the most numerous and the most diverse type of receptors (1-5% of the complete invertebrate and vertebrate genomes). They transduce messages as different as odorants, nucleotides, nucleosides, peptides, lipids, and proteins. There are at least eight families of GPCRs that show no sequence similarities and that use different domains to bind ligands and activate a similar set of G proteins. Homo- and heterodimerization of GPCRs seem to be the rule, and in some cases an absolute requirement, for activation. There are about 100 orphan GPCRs in the human genome which will be used to find new message molecules. Mutations of GPCRs are responsible for a wide range of genetic diseases. The importance of GPCRs in physiological processes is illustrated by the fact that they are the target of the majority of therapeutical drugs and drugs of abuse.
Collapse
|
18
|
Ango F, Prézeau L, Muller T, Tu JC, Xiao B, Worley PF, Pin JP, Bockaert J, Fagni L. Agonist-independent activation of metabotropic glutamate receptors by the intracellular protein Homer. Nature 2001; 411:962-5. [PMID: 11418862 DOI: 10.1038/35082096] [Citation(s) in RCA: 332] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
G-protein-coupled receptors (GPCRs) transduce signals from extracellular transmitters to the inside of the cell by activating G proteins. Mutation and overexpression of these receptors have revealed that they can reach their active state even in the absence of agonist, as a result of a natural shift in the equilibrium between their inactive and active conformations. Such agonist-independent (constitutive) activity has been observed for the glutamate GPCRs (the metabotropic glutamate receptors mGluR1a and mGluR5) when they are overexpressed in heterologous cells. Here we show that in neurons, the constitutive activity of these receptors is controlled by Homer proteins, which bind directly to the receptors' carboxy-terminal intracellular domains. Disruption of this interaction by mutagenesis or antisense strategies, or expression of endogenous Homer1a (H1a), induces constitutive activity in mGluR1a or mGluR5. Our results show that these glutamate GPCRs can be directly activated by intracellular proteins as well as by agonists.
Collapse
Affiliation(s)
- F Ango
- CNRS-UPR 9023, CCIPE, 141 Rue de la Cardonille, 34000 Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Broadley KJ, Nederkoorn PH, Timmerman H, Timms D, Davies RH. The ligand-receptor-G-protein ternary complex as a GTP-synthase. steady-state proton pumping and dose-response relationships for beta -adrenoceptors. J Theor Biol 2000; 205:297-320. [PMID: 10873440 DOI: 10.1006/jtbi.2000.2067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Steady-state solutions are developed for the rate of G alpha.GTP production in a synthase model of the ligand-receptor-G-protein ternary complex activated by a ligand-receptor proton pumping mechanism. The effective rate, k(31), defining the proton transfer, phosphorylation and G alpha.GTP release is a controlling rate of the synthase in the presence of a ligand with an efficient mode of signal activation, the ligand-receptor interaction taking place under effectively equilibrium conditions. The composite rate, however, becomes an amplifying factor in any dose-response relationship. The amplification is a triple product of the rate, k(31), the equilibrium constant associated with the activation of the proton signal, K(act)and the fraction of agonist conformer transmitting the signal, f(*). Where the rate of activation of the proton signal becomes critically inefficient, the rate of activation, k(act 1)replaces k(31)K(act). A correlation between beta(1)-adrenergic receptor-stimulated GDP release and adenylate cyclase activation shows that this correlation is not unique to an exchange reaction. Within the initiating Tyr-Arg-Tyr receptor proton shuttle mechanism, the position of Arg(r156) paralleldictates the high-(R(p)) and low-(R(u)) ligand-binding affinities. These states are close to R(*)and R(0)of the equilibrium model (De Lean et al., 1980, J. Biol. Chem.255, 7108-7117). An increased rate of hydrogen ion diffusion into a receptor mutant can give rise to constitutive activity while increased rates of G-protein release and changes in receptor state balance can contribute to the resultant level of action. Constitutive action will arise from a faster rate of G-protein release alone if proton diffusion in the wild-type receptor contributes to a basal level of G-protein activation. Competitive ligand-receptor occupancy for constitutive mutants shows that, where the rate of G-protein activation from the proportion of ligand-occupied receptors is less than the equivalent rate that would be generated from this fraction by proton diffusion, inverse agonism will occur. Rate-dependent dose-responses developed for the proposed synthase mechanism give explicit definition to the operational model for partial agonism (Black & Leff, 1983, Proc. Roy. Soc. Lond. B220, 141-162). When comparable ligands have effectively identical conformational states at the transition state for signal activation, the antagonist component of the binding "in vitro" can be derived by multiplying the apparent binding constant by (1-e) where e is the maximum stimulatory response. This component should be consistent throughout the tissues.
Collapse
Affiliation(s)
- K J Broadley
- Welsh School of Pharmacy, University of Wales at Cardiff, Redwood Building, King Edward VII Avenue, Cardiff, CF1 3XF, U.K
| | | | | | | | | |
Collapse
|
20
|
Jackson A, Iwasiow RM, Tiberi M. Distinct function of the cytoplasmic tail in human D1-like receptor ligand binding and coupling. FEBS Lett 2000; 470:183-8. [PMID: 10734231 DOI: 10.1016/s0014-5793(00)01315-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To delineate the role of the cytoplasmic tail in the distinct binding and coupling properties of human dopamine D1-like receptors, chimeric receptors were generated in which the entire tail region of wild-type human D1A (or D1) and D1B (or D5) receptors was exchanged. The hD1A-D1BT, but not hD1B-D1AT, receptor expression was dramatically reduced compared with wild-type receptor expression. Swapping the cytoplasmic tail resulted in a full switch of dopamine binding affinity and constitutive activity, while dopamine potency decreased and agonist-mediated maximal activation of adenylyl cyclase increased for both chimeras. Hence, the cytoplasmic tail plays a crucial role in D1-like receptor expression, agonist binding affinity and constitutive activation but regulates in a distinct fashion the formation of D1A and D1B receptor active states upon dopamine binding.
Collapse
Affiliation(s)
- A Jackson
- Neurosciences, Loeb Health Research Institute, Ottawa Hospital (Civic Campus) and Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
21
|
Abstract
The functional activity of two chimeric mouse prostacyclin/prostaglandin D(2) (IP/DP) receptors, in which the carboxyl-terminal region of the IP receptor was progressively replaced by that of the DP receptor, was examined in Chinese hamster ovary (CHO) cells. The order of potency of prostaglandin D(2), prostaglandin E(2) and the IP receptor agonists cicaprost, iloprost and BMY 45778 (3-[4-(4, 5-diphenyl-2-oxazolyl)-5-oxazolyl]phenoxy]acetic acid) to stimulate cyclic AMP production was identical for the IP(N-VII)/DP(C), IP(N-V)/DP(VI-C) and wild-type IP receptors. IP(N-VII)/DP(C) receptor-expressing cells showed increases in basal adenylate cyclase activity, agonist potency and coupling efficiency. In addition, the intrinsic activity of the partial IP receptor agonists BMY 45778 and PGE(2) was significantly increased in IP(N-VII)/DP(C) receptor-expressing cells. Therefore, substitution of just the carboxyl-terminal tail of the IP receptor by that of the DP receptor appears to result in a chimeric IP/DP receptor with all the properties of a constitutively-active receptor.
Collapse
Affiliation(s)
- H Wise
- Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China.
| |
Collapse
|
22
|
Iwasiow RM, Nantel MF, Tiberi M. Delineation of the structural basis for the activation properties of the dopamine D1 receptor subtypes. J Biol Chem 1999; 274:31882-90. [PMID: 10542214 DOI: 10.1074/jbc.274.45.31882] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To delineate the structural determinants involved in the constitutive activation of the D1 receptor subtypes, we have constructed chimeras between the D1A and D1B receptors. These chimeras harbored a cognate domain corresponding to transmembrane regions 6 and 7 as well as the third extracellular loop (EL3) and cytoplasmic tail, a domain referred herein to as the terminal receptor locus (TRL). A chimeric D1A receptor harboring the D1B-TRL (chimera 1) displays an increased affinity for dopamine that is indistinguishable from the wild-type D1B receptor. Likewise, a chimeric D1B receptor containing the D1A-TRL cassette (chimera 2) binds dopamine with a reduced affinity that is highly reminiscent of the dopamine affinity for the wild-type D1A receptor. Furthermore, we show that the agonist independent activity of chimera 1 is identical to the wild-type D1B receptor whereas the chimera 2 displays a low agonist independent activity that is indistinguishable from the wild-type D1A receptor. Dopamine potencies for the wild-type D1A and D1B receptor were recapitulated in cells expressing the chimera 2 or chimera 1, respectively. However, the differences observed in agonist-mediated maximal activation of adenylyl cyclase elicited by the D1A and D1B receptors remain unchanged in cells expressing the chimeric receptors. To gain further mechanistic insights into the structural determinants of the TRL involved in the activation properties of the D1 receptor subtypes, we have engineered two additional chimeric D1 receptors that contain the EL3 region of their respective cognate wild-type counterparts (hD1A-EL3B and hD1B-EL3A). In marked contrast to chimera 1 and 2, dopamine affinity and constitutive activation were partially modulated by the exchange of the EL3. Meanwhile, hD1A-EL3B and hD1B-EL3A mutant receptors display a full switch in the agonist-mediated maximal activation, which is reminiscent of their cognate wild-type counterparts. Overall, our studies suggest a fundamental role for the TRL in shaping the intramolecular interactions implicated in the constitutive activation and coupling properties of the dopamine D1 receptor subtypes.
Collapse
Affiliation(s)
- R M Iwasiow
- Loeb Health Research Institute, Ottawa Hospital, Department of Medicine, University of Ottawa, Ottawa, Ontario K1Y 4K9, Canada
| | | | | |
Collapse
|
23
|
Roka F, Brydon L, Waldhoer M, Strosberg AD, Freissmuth M, Jockers R, Nanoff C. Tight association of the human Mel(1a)-melatonin receptor and G(i): precoupling and constitutive activity. Mol Pharmacol 1999; 56:1014-24. [PMID: 10531408 DOI: 10.1124/mol.56.5.1014] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
If stably expressed in human embryonic kidney (HEK)293 cells, the human Mel(1a)-melatonin receptor activates G(i)-dependent, pertussis toxin-sensitive signaling pathways, i.e., inhibition of adenylyl cyclase and stimulation of phospholipase Cbeta; the latter on condition that G(q) is coactivated. The antagonist luzindole blocks the effects of melatonin and acts as an inverse agonist at the Mel(1a) receptor in both intact cells and isolated membranes. This suggests that the Mel(1a) receptor is endowed with constitutive activity, a finding confirmed on reconstitution of the Mel(1a) receptor with G(i). Because the receptor density is in the physiological range, constitutive activity is not an artifact arising from overexpression of the receptor. In addition, the following findings indicate that the Mel(1a) receptor forms a very tight complex with G(i) which can be observed both in the presence and absence of an agonist. 1) In intact cells and in membranes, high-affinity agonist binding is resistant to the destabilizing effect of guanine nucleotides. 2) The ability to bind an agonist with high affinity is preserved even after exposure of the cells to pertussis toxin, because a fraction of G(i) is inaccessible to the toxin in cells expressing Mel(1a) receptors (but not the A(1)-adenosine receptor, another G(i)-coupled receptor). 3) An antiserum directed against the Mel(1a) receptor coprecipitates G(i) even in the absence of an agonist. We therefore conclude that the Mel(1a) receptor is tightly precoupled and that its constitutive activity may play a role in pacing the biological clock, an action known to involve the melatonin receptors in the suprachiasmatic nucleus.
Collapse
Affiliation(s)
- F Roka
- Institute of Pharmacology, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
24
|
Wheeler MB, Gelling RW, Hinke SA, Tu B, Pederson RA, Lynn F, Ehses J, McIntosh CH. Characterization of the carboxyl-terminal domain of the rat glucose-dependent insulinotropic polypeptide (GIP) receptor. A role for serines 426 and 427 in regulating the rate of internalization. J Biol Chem 1999; 274:24593-601. [PMID: 10455124 DOI: 10.1074/jbc.274.35.24593] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone involved in the regulation of insulin secretion. In non-insulin-dependent diabetes mellitus insulin responses to GIP are blunted, possibly due to altered signal transduction or reduced receptor number. Site-directed mutagenesis was used to construct truncated GIP receptors to study the importance of the carboxyl-terminal tail (CT) in binding, signaling, and receptor internalization. Receptors truncated at amino acids 425, 418, and 405, expressed in COS-7 or CHO-K1 cells, exhibited similar binding to wild type receptors. GIP-dependent cAMP production with the 405 mutant was decreased in COS-7 cells. Maximal cAMP production in CHO-K1 cells was reduced with all truncated forms. Binding was undetectable with a receptor truncated at amino acid 400; increasing tail length by adding 5 alanines restored binding and signaling. Mutants produced by alanine scanning of residues 394-401, adjacent to transmembrane domain 7, were all functional. CT truncation by 30 or more amino acids, mutation of serines 426/427, singly or combined, or complete CT serine knockout all reduced receptor internalization rate. The majority of the GIP receptor CT is therefore not required for signaling, a minimum chain length of approximately 405 amino acids is needed for receptor expression, and serines 426 and 427 are important for regulating rate of receptor internalization.
Collapse
Affiliation(s)
- M B Wheeler
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Grimberg H, Zaltsman I, Lupu-Meiri M, Gershengorn MC, Oron Y. Inverse agonist abolishes desensitization of a constitutively active mutant of thyrotropin-releasing hormone receptor: role of cellular calcium and protein kinase C. Br J Pharmacol 1999; 126:1097-106. [PMID: 10204996 PMCID: PMC1565886 DOI: 10.1038/sj.bjp.0702415] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. C335Stop is a constitutively active mutant of the TRH receptor (TRH-R). To investigate the mechanism of the decreased responsiveness of C335Stop TRH-R, we studied cellular Ca2+ concentrations ([Ca2+]i) in AtT20 cells stably transfected with C335Stop TRH-R cDNA, or Ca2+-activated chloride currents in Xenopus laevis oocytes expressing this mutant receptor after injection of cRNA. The competitive TRH-R binding antagonist, chlorodiazepoxide (CDE), was used as an inverse agonist to study the contribution of constitutive activity to desensitization. 2. Acute treatment with CDE resulted in a rapid (within minutes) decrease in [Ca2+]i and an increase in the response amplitude to TRH with no measurable change in receptor density. Conversely, removal of chronically administered CDE caused a rapid increase in [Ca2+]i and a decrease in TRH response amplitude. 3. CDE abolished heterologous desensitization induced by C335Stop TRH-R on muscarinic m1-receptor (ml-R) co-expressed in Xenopus oocytes. 4. Chelation of extracellular calcium with EGTA caused a rapid decrease in [Ca2+]i and a concomitant increase in the response to TRH in AtT20 cells expressing C335Stop TRH-Rs. 5. Chelerythrine, a specific inhibitor of protein kinase C (PKC), reversed the heterologous desensitization of the response to acetylcholine (ACh). The phosphoserine/phosphothreonine phosphatase inhibitor, okadaic acid, abolished the effect of chelerythrine. 6. Down-regulation of PKC by chronic exposure to phorbol 12-myristate 13-acetate (PMA) or acute inhibition with chelerythrine caused a partial resensitization of the response to TRH. 7. Western analysis indicated that the alpha subtype of protein kinase C was down-regulated in cells expressing C335Stop TRH-Rs. Following a 5 min exposure to PMA, the residual alphaPKC translocated to the particular fraction. 8. We propose that cells expressing the constitutively active mutant TRH-R rapidly desensitize their response, utilizing a mechanism mediated by an increase in [Ca2+]i and PKC.
Collapse
Affiliation(s)
- H Grimberg
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | |
Collapse
|
26
|
Abstract
Molecular cloning studies have shown that G-protein-coupled receptors form one of the largest protein families found in nature, and it is estimated that approximately 1000 different such receptors exist in mammals. Characteristically, when activated by the appropriate ligand, an individual receptor can recognize and activate only a limited set of the many structurally closely related heterotrimeric G-proteins expressed within a cell. To understand how this selectivity is achieved at a molecular level has become the focus of an ever increasing number of laboratories. This review provides an overview of recent structural, molecular genetic, biochemical, and biophysical studies that have led to novel insights into the molecular mechanisms governing receptor-mediated G-protein activation and receptor/G-protein coupling selectivity.
Collapse
Affiliation(s)
- J Wess
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
27
|
Blahos J, Mary S, Perroy J, de Colle C, Brabet I, Bockaert J, Pin JP. Extreme C terminus of G protein alpha-subunits contains a site that discriminates between Gi-coupled metabotropic glutamate receptors. J Biol Chem 1998; 273:25765-9. [PMID: 9748247 DOI: 10.1074/jbc.273.40.25765] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metabotropic glutamate receptors (mGlu receptors), the Ca2+-sensing receptor, gamma-aminobutyric acid type B receptors, and one group of pheromone receptors constitute a unique family (also called family 3) of heptahelical receptors. This original family shares no sequence similarity with any other G protein-coupled receptors. The identification and comparison of the molecular determinants of receptor/G protein coupling within the different receptor families may help identify general rules involved in this protein/protein interaction. In order to detect possible contact sites important for coupling selectivity between family 3 receptors and the G protein alpha-subunits, we examined the coupling of the cyclase-inhibiting mGlu2 and mGlu4 receptors to chimeric alphaq-subunits bearing the 5 extreme C-terminal amino acid residues of either Galphai, Galphao, or Galphaz. Whereas mGlu4 receptor activated all three chimeric G proteins, mGlu2 receptor activated Galphaqi and Galphaqo but not Galphaqz. The mutation of isoleucine -4 of Galphaqz into cysteine was sufficient to recover coupling of the mutant G protein to mGlu2 receptor. Moreover, the mutation of cysteine -4 of Galphaqo into isoleucine was sufficient to suppress the coupling to mGlu2 receptor. Mutations at positions -5 and -1 had an effect on coupling efficiency, but not selectivity. Our results emphasize the importance of the residue -4 of the alpha-subunits in their specific interaction to heptahelical receptors by extending this finding on the third family of G protein-coupled receptors.
Collapse
Affiliation(s)
- J Blahos
- Mécanismes Moléculaires des Communications Cellulaires, CNRS-UPR9023, CCIPE, F-34094 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Mary S, Gomeza J, Prézeau L, Bockaert J, Pin JP. A cluster of basic residues in the carboxyl-terminal tail of the short metabotropic glutamate receptor 1 variants impairs their coupling to phospholipase C. J Biol Chem 1998; 273:425-32. [PMID: 9417099 DOI: 10.1074/jbc.273.1.425] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Among phospholipase C-coupled metabotropic glutamate receptors (mGluRs), some have a surprisingly long carboxyl-terminal intracellular domain (mGluR1a, -5a, and -5b), and others have a short one (mGluR1b, -1c, and -1d). All mGluR1 sequences are identical up to 46 residues following the 7th transmembrane domain, followed by 313, 20, 11, and 26 specific residues in mGluR1a, mGluR1b, mGluR1c, and mGluR1d, respectively. Several functional differences have been described between the long isoforms (mGluR1a, -5a, and -5b) and the short ones (mGluR1b, -1c, and -1d). Compared with the long receptors, the short ones induce slower increases in intracellular Ca2+, are activated by higher concentration of agonists, and do not exhibit constitutive, agonist-independent activity. To identify the residues responsible for these functional properties, a series of truncated, chimeric, and mutated receptors were constructed. We found that the deletion of the last 19 carboxyl-terminal residues in mGluR1c changed its properties into those of mGluR1a. Moreover, the exchange of the long carboxyl-terminal domain of mGluR5a with that of mGluR1c generated a chimeric receptor that possessed functional properties similar to those of mGluR1c. Mutagenesis of specific residues within the 19 carboxyl-terminal residues of mGluR1c revealed the importance of a cluster of 4 basic residues in defining the specific properties of this receptor. Since this cluster is part of the sequence common to all mGluR1 variants, we conclude that the long carboxyl-terminal domain of mGluR1a suppresses the inhibitory action of this sequence element.
Collapse
Affiliation(s)
- S Mary
- Mécanismes Moléculaires des Communications Cellulaires, Unité Propre de Recherche 9023-CNRS, Centre CNRS Inserm de Pharmacologie Endocrinologie, 141 rue de la Cardonille, 34094 Montpellier Cedex 05, France
| | | | | | | | | |
Collapse
|
29
|
Pierce KL, Bailey TJ, Hoyer PB, Gil DW, Woodward DF, Regan JW. Cloning of a carboxyl-terminal isoform of the prostanoid FP receptor. J Biol Chem 1997; 272:883-7. [PMID: 8995377 DOI: 10.1074/jbc.272.2.883] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
An FP prostanoid receptor isoform, which appears to arise from alternative mRNA splicing, has been cloned from a mid-cycle ovine large cell corpus luteum library. The isoform, named the FP(B) receptor, is identical to the original isoform, the FP(A), throughout the seven transmembrane domains, but diverges nine amino acids into the carboxyl terminus. In contrast to FP(A), whose carboxyl terminus continues for another 46 amino acids beyond the nine shared residues, the FP(B) terminates after only one amino acid. The FP(A) isoform appears to arise by the failure to utilize a potential splice site, while a 3.2-kilobase pair intron is spliced out from the FP gene to generate the FP(B) isoform mRNA. The two isoforms have indistinguishable radioligand binding properties, but seem to differ in functional coupling to phosphatidylinositol hydrolysis. Thus, in COS-7 cells transiently transfected with either the FP(A) or the FP(B) receptor cDNAs, prostaglandin F(2alpha) stimulates inositol phosphate accumulation to the same absolute maximum, but the basal level of inositol phosphate accumulation is approximately 1.3-fold higher in cells transfected with the FP(B) as compared with cells transfected with the FP(A) isoform. Using the polymerase chain reaction, mRNA encoding the FP(B) isoform was identified in the ovine corpus luteum.
Collapse
Affiliation(s)
- K L Pierce
- Department of Pharmacology and Toxicology, The University of Arizona, Tucson 85721, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Cvejic S, Trapaidze N, Cyr C, Devi LA. Thr353, located within the COOH-terminal tail of the delta opiate receptor, is involved in receptor down-regulation. J Biol Chem 1996; 271:4073-6. [PMID: 8626742 DOI: 10.1074/jbc.271.8.4073] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Prolonged exposure to abused drugs such as opiates causes decreased response to the drug; this reduced sensitivity is thought to be due to the loss of receptors, or down-regulation. The molecular mechanism of the opiate receptor down-regulation is not known. In order to address this, we generated a number of mutants of the delta opiate receptor COOH-terminal tail. When expressed in the Chinese hamster ovary cells, both the wild type and the receptor with a deletion of 37 COOH-terminal residues bind diprenorphine with comparable affinities and show similar decreases in cAMP levels in response to D-Ala2, D-Leu5, enkephalin (DADLE). However, the truncated receptor does not show down-regulation from the cell surface upon prolonged exposure (2-48 h) to DADLE. In contrast, both the wild type receptor and the receptor with the deletion of only 15 COOH-terminal residues show substantial down-regulation upon long term DADLE treatment. These results suggest that the region located between 15 and 37 residues from the COOH terminus is involved in the receptor down-regulation. In order to identify residues that play a key role in down-regulation, point mutations of residues within this region were examined for their ability to modulate receptor down-regulation. The receptor with a mutation of Thr353 to Ala does not down-regulate, whereas the receptor with a mutation of Ser344 to Gly down-regulates with a time course similar to that of the wild type receptor. Taken together, these results suggest that the COOH-terminal tail is not essential for functional coupling but is necessary for down-regulation and that Thr353 is critical for the agonist-mediated down-regulation of the delta opiate receptor.
Collapse
Affiliation(s)
- S Cvejic
- Department of Pharmacology, New York University Medical Center, New York, New York 10016, USA
| | | | | | | |
Collapse
|
31
|
Unson CG, Cypess AM, Kim HN, Goldsmith PK, Carruthers CJ, Merrifield RB, Sakmar TP. Characterization of deletion and truncation mutants of the rat glucagon receptor. Seven transmembrane segments are necessary for receptor transport to the plasma membrane and glucagon binding. J Biol Chem 1995; 270:27720-7. [PMID: 7499239 DOI: 10.1074/jbc.270.46.27720] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Glucagon receptor mutants were characterized with the aim of elucidating minimal structural requirements for proper biosynthesis, ligand binding, and adenylyl cyclase coupling. One N-terminal deletion mutant and five truncation mutants with progressively shorter C termini were expressed in transiently transfected monkey kidney (COS-1) cells. Each truncation mutant was designed so that the truncated C-terminal tail would remain on the cytoplasmic surface of the receptor. In order to characterize the cellular location of the expressed receptor mutants, a highly specific, high affinity antipeptide antibody was prepared against the extracellular, N-terminal tail of the receptor. Immunoblot analysis and immunofluorescence microscopy showed that the presence of all seven putative transmembrane segments, but not not an intact N-terminal tail, was required for cell surface expression of the receptor. Membranes from cells expressing receptor mutants lacking a large portion of the N-terminal tail or any of the seven putative transmembrane segments failed to bind glucagon. Membranes from cells expressing the C-terminal tail truncation mutants, which retained all seven transmembrane segments, bound glucagon with affinities similar to that of the native receptor and activated cellular adenylyl cyclase in response to glucagon. These results indicate that all seven helices are necessary for the proper folding and processing of the glucagon receptor. Glycosylation is not required for the receptor to reach the cell surface, and it may not be required for ligand binding. However, the N-terminal extracellular portion of the receptor is required for ligand binding. Most of the distal C-terminal tail is not necessary for ligand binding, and the absence of the tail may increase slightly the receptor binding affinity for glucagon. The C-terminal tail is also not necessary for adenylyl cyclase coupling and therefore does not play a direct role in G protein (GS) activation by the glucagon receptor.
Collapse
Affiliation(s)
- C G Unson
- Rockefeller University, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Hipkin RW, Liu X, Ascoli M. Truncation of the C-terminal tail of the follitropin receptor does not impair the agonist- or phorbol ester-induced receptor phosphorylation and uncoupling. J Biol Chem 1995; 270:26683-9. [PMID: 7592895 DOI: 10.1074/jbc.270.44.26683] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have recently shown that addition of follitropin (FSH) or a phorbol ester (phorbol 12-myristate 13-acetate (PMA)) to cells expressing the recombinant follitropin receptor (FSHR) results in both phosphorylation and uncoupling of the FSHR from adenylyl cyclase. In the light of findings reported with other G protein-coupled receptors we have proposed that phosphorylation of the FSHR mediates the uncoupling from adenylyl cyclase. The experiments described herein represent the first attempt to determine the location of the amino acid residues that become phosphorylated in FSHR and to test the hypothesis that phosphorylation is responsible for uncoupling of FSHR from adenylyl cyclase. As a first step in identifying which residues may be phosphorylated in response to hFSH and PMA, we constructed a mutant of the FSHR cDNA in which the C-terminal cytoplasmic tail was truncated at residue 635 (FSHR-t635), thus removing all but one of the potential phosphorylation sites present in the C-terminal tail. Cells expressing FSHR-t635 bind hFSH with the appropriate affinity and respond with increases in cAMP and inositol phosphate accumulation. The maximal cAMP and inositol phosphate responses of cells expressing FSHR-t635 are higher than those of cells expressing the wild type FSHR, but the concentration of hFSH required to elecit these responses is similar in both cell lines. Immunoprecipitation of FSHR-t635 shows that the truncated receptor is still effectively phosphorylated in response to hFSH or PMA. Phosphoamino acid analysis reveals that, like the wild-type FSHR, FSHR-t635 phosphorylation occurs on serine and threonine residues. Peptide mapping suggests that the phosphorylated residues in the FSHR and FSHR-t635 are located within the same areas of the intracellular regions of the receptors. In addition to stimulating phosphorylation of FSHR-t635, hFSH and PMA also effectively uncouple the truncated receptor from adenylyl cyclase. Taken together, these data show that hFSH and PMA can both phosphorylate and uncouple a FSH receptor species with a cytoplasmic tail truncated at residue 635.
Collapse
Affiliation(s)
- R W Hipkin
- Department of Pharmacology, University of Iowa College of Medicine, Iowa City 52242-1109, USA
| | | | | |
Collapse
|
33
|
Abstract
Determination of the structure of integral membrane proteins is a challenging task that is essential to understand how fundamental biological processes (such as photosynthesis, respiration and solute translocation) function at the atomic level. Crystallisation of membrane proteins in 3D has led to the determination of four atomic resolution structures [photosynthetic reaction centres (Allenet al. 1987; Changet al. 1991; Deisenhofer & Michel, 1989; Ermleret al. 1994); porins (Cowanet al. 1992; Schirmeret al. 1995; Weisset al. 1991); prostaglandin H2synthase (Picotet al. 1994); light harvesting complex (McDermottet al. 1995)], and crystals of membrane proteins formed in the plane of the lipid bilayer (2D crystals) have produced two more structures [bacteriorhodopsin (Hendersonet al. 1990); light harvesting complex (Kühlbrandtet al. 1994)].
Collapse
Affiliation(s)
- R Grisshammer
- Centre for Protein Engineering, MRC Centre, Cambridge, UK
| | | |
Collapse
|
34
|
Luxembourg A. Anti-peptide monoclonal antibodies to the beta-adrenergic receptor: use in purification of beta receptor. Hybridoma (Larchmt) 1995; 14:261-4. [PMID: 7590789 DOI: 10.1089/hyb.1995.14.261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This article describes a new immunopurification procedure based on monoclonal antibodies raised against peptides of the carboxy-terminal region of the turkey beta-adrenergic receptor. This procedure constitutes a significant purification step of recombinant beta-adrenergic receptors expressed in baculovirus-infected Sf9 cells, and allows the recovery of receptors able to activate Gs in phospholipid vesicles. Additionally, this procedure can be combined with affinity chromatography to yield nearly homogeneous receptor.
Collapse
Affiliation(s)
- A Luxembourg
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
35
|
Iida-Klein A, Guo J, Xie LY, Jüppner H, Potts JT, Kronenberg HM, Bringhurst FR, Abou-Samra AB, Segre GV. Truncation of the carboxyl-terminal region of the rat parathyroid hormone (PTH)/PTH-related peptide receptor enhances PTH stimulation of adenylyl cyclase but not phospholipase C. J Biol Chem 1995; 270:8458-65. [PMID: 7721741 DOI: 10.1074/jbc.270.15.8458] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The functional role of the rat parathyroid hormone(PTH)/PTH-related peptide (PTHrP) receptor's carboxyl-terminal region was characterized by comparing the binding and signaling properties of receptors that have 78 and 111 amino acid deletions (R513 and R480, respectively), with those of the 591-amino acid wild-type (WT) receptor. R480 and R513 have 4- and 1.5-fold lower apparent Kd values for rat PTH-(1-34) (rPTH), compared with the WT receptor (WT, 1.81 +/- 0.19 nM; R513, 1.24 +/- 0.12 nM; R480, 0.48 +/- 0.05 nM, mean +/- S.E.). PTH (100 nM)-stimulated cAMP accumulation and polyphosphoinositide hydrolysis both correlated positively with receptor expression. However, whereas PTH-stimulated polyphosphoinositide hydrolysis was indistinguishable among WT and either truncated mutant at comparable levels of expressed receptors, maximal PTH-stimulated cAMP accumulation was 4-6- and 2-3-fold higher in cells expressing R480 and R513, respectively. Furthermore, pretreatment of COS-7 cells with 100 ng/ml of pertussis toxin (PTX) enhanced PTH-stimulated cAMP accumulation in cells expressing the WT receptor, but failed to do so in cells expressing either R480 or R513. Thus, sequences in the PTH/PTHrP receptor's carboxyl-terminal tail lower the affinity of the WT receptor for agonist; directly interact with, or indirectly facilitate the interaction of the receptor with a PTX-sensitive G protein that inhibits adenylyl cyclase; and decrease the efficacy with which the receptor interacts with Gs.
Collapse
Affiliation(s)
- A Iida-Klein
- Endocrine Unit, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Parker EM, Swigart P, Nunnally MH, Perkins JP, Ross EM. Carboxyl-terminal domains in the avian beta 1-adrenergic receptor that regulate agonist-promoted endocytosis. J Biol Chem 1995; 270:6482-7. [PMID: 7896782 DOI: 10.1074/jbc.270.12.6482] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Most G protein-coupled receptors, including the mammalian beta 2-adrenergic receptor, are endocytosed to an intracellular, vesicular compartment upon continued exposure to agonist. The long form of the avian beta 1-adrenergic receptor, which contains a carboxyl-terminal 59-amino acid extension, does not undergo agonist-promoted endocytosis. We constructed and expressed turkey beta 1-adrenergic receptor cDNAs with regularly spaced carboxyl-terminal truncations and studied their agonist-promoted endocytosis. Removal of 34-86 amino acids from the carboxyl terminus of the turkey receptor allowed its efficient endocytosis, with optimal endocytosis observed upon removal of 59 residues. Removal of only 18 residues allowed some endocytosis. A receptor that lacks the entire carboxyl-terminal region (124 residues) was not endocytosed. We also constructed a chimeric hamster beta 2-adrenergic receptor with the added 59-residue carboxyl-terminal domain of the turkey receptor. The chimera was not significantly endocytosed. These data indicate that residues 450-465 in the carboxyl-terminal region of the beta 1-adrenergic receptor can act independently to block agonist-promoted endocytosis and that other carboxyl-terminal structures nearer to the seventh membrane span are required for endocytosis.
Collapse
Affiliation(s)
- E M Parker
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75235-9041
| | | | | | | | | |
Collapse
|
37
|
Wang J, Ross EM. The carboxyl-terminal anchorage domain of the turkey beta 1-adrenergic receptor is encoded by an alternatively spliced exon. J Biol Chem 1995; 270:6488-95. [PMID: 7896783 DOI: 10.1074/jbc.270.12.6488] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The originally described cDNA of the turkey beta 1-adrenergic receptor encodes a receptor with a carboxyl-terminal, 59-amino acid extension that was not found in several mammalian beta 1-adrenergic receptors. This extension blocks agonist-promoted endocytosis and down-regulation of the receptor. This carboxyl-terminal domain is encoded by an exon distinct from that which encodes the body of the receptor, and the originally described cDNA results from removal of an 849-nucleotide intron. Unspliced mRNA encodes a shorter open reading frame whose translated carboxyl terminus is identical with that of the mammalian beta 1-adrenergic receptors. There is no evidence for other introns in the coding region. Splicing of the intron to produce the non-endocytosing receptor is highest in fetal blood cells, is appreciable in adult brain and heart, and is detectable in other tissues. Thus, different tissues use alternative splicing to express beta-adrenergic receptors that either do or do not endocytose and down-regulate in response to agonist.
Collapse
Affiliation(s)
- J Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75235-9041
| | | |
Collapse
|
38
|
High agonist-independent activity is a distinguishing feature of the dopamine D1B receptor subtype. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46876-7] [Citation(s) in RCA: 191] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
39
|
Muntz KH, Zhao M, Miller JC. Downregulation of myocardial beta-adrenergic receptors. Receptor subtype selectivity. Circ Res 1994; 74:369-75. [PMID: 8118945 DOI: 10.1161/01.res.74.3.369] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- K H Muntz
- Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical Center at Dallas 75235
| | | | | |
Collapse
|
40
|
Ferrando-May E, Brustmann B, Oesterhelt D. A C-terminal truncation results in high-level expression of the functional photoreceptor sensory rhodopsin I in the archaeon Halobacterium salinarium. Mol Microbiol 1993; 9:943-53. [PMID: 7934922 DOI: 10.1111/j.1365-2958.1993.tb01224.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Expression of the gene encoding the halobacterial photoreceptor sensory rhodopsin I (SRI), sopI, was studied by means of homologous gene targeting. A sopI- Halobacterium salinarium mutant strain was constructed by homologous replacement of sopI with a novobiocin-resistant gyrB from Haloferax Aa 2.2. Cells bearing gyrB were resistant to novobiocin, indicating that the Haloferax gene is functional in H. salinarium. Complementation of this deletion strain with sopI fused to the bacterio-opsin promoter resulted in the recovery of all phenotypical attributes of SRI. This establishes the first direct correlation between sopI and the function of its gene product. In the complemented deletion strain, functional expression of sopI occurred from the bop locus, where sopI had integrated by homologous recombination. This shows that cotranscription of sopI and the gene encoding the SRI signal transducer, htrI, which is found in the wild type, is not a prerequisite for photosensory activity. Deletion of the last 43 bp at the 3' end of sopI resulted in a 10-fold increase in the amount of SRI, without affecting the activity of the pigment. The mRNA level of the truncated gene was not affected as compared to that of the wild type. We propose that regulation occurs at the protein level, probably through a negative determinant of protein stability located in the C-terminus of SRI. Replacement of the last 28 amino acids of bacteriorhodopsin by the last 29 amino acids of SRI results in a decrease of the bacteriorhodopsin, supporting our observations. The C-terminus of SRI is the first domain with a downregulating influence on protein levels thus far identified in H. salinarium. The system for SRI overexpression we present here greatly facilitates biochemical and biophysical studies on the photoreceptor and allows investigation of the molecular interactions underlying the signal transduction chain of halobacterial phototaxis.
Collapse
|
41
|
Lefkowitz RJ, Cotecchia S, Samama P, Costa T. Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol Sci 1993; 14:303-7. [PMID: 8249148 DOI: 10.1016/0165-6147(93)90048-o] [Citation(s) in RCA: 608] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Adrenoceptors are prototypic members of the superfamily of seven transmembrane domain, G protein-coupled receptors. Study of the properties of several mutationally activated adrenoceptors is deepening understanding of the normal functioning of this ubiquitous class of receptors. The new findings suggest an expansion of the classical ternary complex model of receptor action to include an explicit isomerization of the receptors from an inactive to an active state which couples to the G protein ('allosteric ternary complex model'). This isomerization involves conformational changes which may occur spontaneously, or be induced by agonists or appropriate mutations which abrogate the normal 'constraining' function of the receptor, allowing it to 'relax' into the active conformation. Robert Lefkowitz and colleagues discuss the physiological and pathophysiological implications of these new insights into regulation of receptor activity.
Collapse
Affiliation(s)
- R J Lefkowitz
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710
| | | | | | | |
Collapse
|
42
|
Kleymann G, Boege F, Hahn M, Hampe W, Vasudevan S, Reiländer H. Human beta 2-adrenergic receptor produced in stably transformed insect cells is functionally coupled via endogenous GTP-binding protein to adenylyl cyclase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:797-804. [PMID: 8386637 DOI: 10.1111/j.1432-1033.1993.tb17822.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Spodoptera frugiperda insect cells (Sf9) containing the stably integrated human beta 2-adrenergic receptor gene under the control of the baculovirus IE1 promoter expressed up to 350,000 human receptors/cell. The number of receptors did not change with cell density or age of culture. The adrenergic receptors overexpressed in the insect cells were functional with respect to their ligand binding and signalling properties. Coupling of the receptors to endogenous GTP-binding proteins is demonstrated by hormone-dependent stimulation of GTPase and adenylyl cyclase activity in the transformed insect cells. Western-blot analysis revealed that the endogenous GTP-binding protein appears to be of the heterotrimeric type. Antibodies raised against the mammalian alpha subunit of stimulatory GTP-binding proteins cross-react with the insect alpha subunit of GTP-binding proteins, which also exhibits the same apparent molecular mass as its mammalian counterpart. The beta subunit of GTP-binding proteins from insect cells reacts with anti-peptide serum directed against the C-terminal amino acids of the mammalian beta subunit of GTP-binding proteins, but is about approximately 2 kDa larger than that of the beta subunit of GTP-binding proteins from bovine brain. Exposure of the transformed insect cells to L-isoproterenol rapidly induces uncoupling and internalization of 30% of the heterologously expressed receptors. In contrast to the situation in mammalian cells, prolonged exposure of the agonist (24 h) does not result in down regulation of the remaining 70% of the receptors.
Collapse
Affiliation(s)
- G Kleymann
- Max-Planck-Institut für Biophysik, Abt. Molekulare Membranbiologie, Frankfurt/M, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Samama P, Cotecchia S, Costa T, Lefkowitz R. A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53442-6] [Citation(s) in RCA: 970] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
44
|
Nanoff C, Stiles GL. Solubilization and characterization of the A2-adenosine receptor. JOURNAL OF RECEPTOR RESEARCH 1993; 13:961-73. [PMID: 8510073 DOI: 10.3109/10799899309073703] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Binding of [3H]CGS 21680, an agonist radioligand selective for A2-adenosine receptors (A2AR), to membranes and solubilized preparations from bovine brain striatum revealed labelling of a single high affinity binding state. In membranes, guanine nucleotides per se were ineffective in modulating agonist binding whereas cations, Na+ and Mg++, had distinct effects. The addition of NaCl (200 mM) as well as the Mg(++)-free preparation of membranes led to a significant decrease in binding affinity and the number of binding sites. Moreover, the presence of Na+ was required for the demonstration of a guanine nucleotide effect, i.e. a decrease in maximal binding. Following solubilization, agonist-A2AR interactions were sensitive to guanine nucleotides even in the absence of Na+; guanine nucleotides and Na+ had additive effects in reducing the number of binding sites. Moreover, the effect of GTP was reversible, i.e. binding returned to control levels upon removal of the nucleotide. This suggests the A2AR and its G protein (presumably Gs) are solubilized as a functional unit and may not dissociate even in the presence of GTP following solubilization. We, therefore, believe that a "tight" association exists between receptor and G protein (Gs), and that guanine nucleotides and sodium act at different sites on the R-G complex. Drawing an analogy with similar observations on the avian beta-adrenergic receptor (Hertel et al, J. Biol. Chem. 265:17988-94, 1990; Parker & Ross, J. Biol. Chem. 266:9987-96, 1991) we postulate that the regulatory features of the A2AR can be attributed to a distinct receptor domain that interacts with cellular regulatory elements.
Collapse
Affiliation(s)
- C Nanoff
- Department of Medicine, Duke University Medical Center Durham, NC 27710
| | | |
Collapse
|
45
|
Tian WN, Deth RC. Precoupling of Gi/G(o)-linked receptors and its allosteric regulation by monovalent cations. Life Sci 1993; 52:1899-907. [PMID: 8389409 DOI: 10.1016/0024-3205(93)90630-l] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ability of receptors (R) to activate G-proteins (G) is promoted by the binding of agonists, reflecting their induction of a receptor conformation which facilitates both the formation of a RG complex and guanine nucleotide exchange. Recent evidence from isolated membrane studies has indicated, however, that some receptors have the inherent ability to form RG complexes and promote GDP/GTP exchange in their unoccupied state. These receptors preferentially activate pertussis toxin-sensitive G-proteins (i.e. Gi/G(o)) and the interactions of R and G are modulated by monovalent cations (most notably Na+) both in the unoccupied and agonist-occupied states. Basal G-protein activation by such receptors is reduced both by increasing levels of cation and by antagonists which may act by inducing receptor conformations which are less favorable for RG complexation. This behaviour conforms to the predictions of a ternary complex model of receptor function and can be considered in structural terms for those receptors such as the alpha-2 adrenergic receptor where ligand binding and G-protein activation regions have been proposed.
Collapse
Affiliation(s)
- W N Tian
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115
| | | |
Collapse
|
46
|
Vasudevan S, Premkumar L, Stowe S, Gage PW, Reiländer H, Chung SH. Muscarinic acetylcholine receptor produced in recombinant baculovirus infected Sf9 insect cells couples with endogenous G-proteins to activate ion channels. FEBS Lett 1992; 311:7-11. [PMID: 1397295 DOI: 10.1016/0014-5793(92)81354-o] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Following the infection of insect ovarian cells (Sf9) with recombinant bearing the cDNA coding for the rat muscarinic acetylcholine (ACh) receptor subtype m3, ionic flux across the membrane in response to the application of ACh was examined electrophysiologically. We show that ACh activates potassium currents. The response is abolished when cells are treated with pertussis toxin. No ACh-induced currents are observed from uninfected cells or cells infected with virus which do not contain the cDNA coding for ACh receptors in its genome. The characteristics of single channel currents show time-dependent changes following the application of ACh. Initially, ACh activates brief channel currents with a conductance of about 5 pS. The conductance level of channels gradually increases in steps to 10 pS and then to 20 pS and 40 pS. At the same time, channel open probability also increases. Thereafter, additional channels appear, opening and closing independently of, or at times in synchrony with, the original channel.
Collapse
Affiliation(s)
- S Vasudevan
- Department of Chemistry, Research School of Chemistry, Australian National University, Canberra
| | | | | | | | | | | |
Collapse
|
47
|
Absence of G(i) proteins in the Sf9 insect cell. Characterization of the uncoupled recombinant N-formyl peptide receptor. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)88616-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
48
|
|
49
|
Infrared evidence of azide binding to iron, copper, and non-metal sites in heart cytochrome c oxidase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50157-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
50
|
Ferreira G, Pedersen P. Overexpression of higher eukaryotic membrane proteins in bacteria. Novel insights obtained with the liver mitochondrial proton/phosphate symporter. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42788-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|