1
|
Jayawardhane J, Wijesinghe MKPS, Bykova NV, Igamberdiev AU. Metabolic Changes in Seed Embryos of Hypoxia-Tolerant Rice and Hypoxia-Sensitive Barley at the Onset of Germination. PLANTS (BASEL, SWITZERLAND) 2021; 10:2456. [PMID: 34834819 PMCID: PMC8622212 DOI: 10.3390/plants10112456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 11/29/2022]
Abstract
Rice (Oryza sativa L.) and barley (Hordeum vulgare L.) are the cereal species differing in tolerance to oxygen deficiency. To understand metabolic differences determining the sensitivity to low oxygen, we germinated rice and barley seeds and studied changes in the levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS), activities of the enzymes involved in their scavenging, and measured cell damage parameters. The results show that alcohol dehydrogenase activity was higher in rice than in barley embryos providing efficient anaerobic fermentation. Nitric oxide (NO) levels were also higher in rice embryos indicating higher NO turnover. Both fermentation and NO turnover can explain higher ATP/ADP ratio values in rice embryos as compared to barley. Rice embryos were characterized by higher activity of S-nitrosoglutathione reductase than in barley and a higher level of free thiols in proteins. The activities of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase) in imbibed embryos were higher in rice than in barley, which corresponded to the reduced levels of ROS, malonic dialdehyde and electrolyte leakage. The observed differences in metabolic changes in embryos of the two cereal species differing in tolerance to hypoxia can partly explain the adaptation of rice to low oxygen environments.
Collapse
Affiliation(s)
- Jayamini Jayawardhane
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
- Department of Botany, Faculty of Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - M. K. Pabasari S. Wijesinghe
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada;
| | - Natalia V. Bykova
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada;
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
| |
Collapse
|
2
|
Structure of the γ-ε complex of cyanobacterial F 1-ATPase reveals a suppression mechanism of the γ subunit on ATP hydrolysis in phototrophs. Biochem J 2018; 475:2925-2939. [PMID: 30054433 DOI: 10.1042/bcj20180481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 11/17/2022]
Abstract
F1-ATPase forms the membrane-associated segment of F0F1-ATP synthase - the fundamental enzyme complex in cellular bioenergetics for ATP hydrolysis and synthesis. Here, we report a crystal structure of the central F1 subcomplex, consisting of the rotary shaft γ subunit and the inhibitory ε subunit, from the photosynthetic cyanobacterium Thermosynechococcus elongatus BP-1, at 1.98 Å resolution. In contrast with their homologous bacterial and mitochondrial counterparts, the γ subunits of photosynthetic organisms harbour a unique insertion of 35-40 amino acids. Our structural data reveal that this region forms a β-hairpin structure along the central stalk. We identified numerous critical hydrogen bonds and electrostatic interactions between residues in the hairpin and the rest of the γ subunit. To elaborate the critical function of this β-hairpin in inhibiting ATP hydrolysis, the corresponding domain was deleted in the cyanobacterial F1 subcomplex. Biochemical analyses of the corresponding α3β3γ complex confirm that the clinch of the hairpin structure plays a critical role and accounts for a significant interaction in the α3β3 complex to induce ADP inhibition during ATP hydrolysis. In addition, we found that truncating the β-hairpin insertion structure resulted in a marked impairment of the interaction with the ε subunit, which binds to the opposite side of the γ subunit from the β-hairpin structure. Combined with structural analyses, our work provides experimental evidence supporting the molecular principle of how the insertion region of the γ subunit suppresses F1 rotation during ATP hydrolysis.
Collapse
|
3
|
Kondo K, Takeyama Y, Sunamura EI, Madoka Y, Fukaya Y, Isu A, Hisabori T. Amputation of a C-terminal helix of the γ subunit increases ATP-hydrolysis activity of cyanobacterial F 1 ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:319-325. [PMID: 29470949 DOI: 10.1016/j.bbabio.2018.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 12/01/2022]
Abstract
F1 is a soluble part of FoF1-ATP synthase and performs a catalytic process of ATP hydrolysis and synthesis. The γ subunit, which is the rotary shaft of F1 motor, is composed of N-terminal and C-terminal helices domains, and a protruding Rossman-fold domain located between the two major helices parts. The N-terminal and C-terminal helices domains of γ assemble into an antiparallel coiled-coil structure, and are almost embedded into the stator ring composed of α3β3 hexamer of the F1 molecule. Cyanobacterial and chloroplast γ subunits harbor an inserted sequence of 30 or 39 amino acids length within the Rossman-fold domain in comparison with bacterial or mitochondrial γ. To understand the structure-function relationship of the γ subunit, we prepared a mutant F1-ATP synthase of a thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1, in which the γ subunit is split into N-terminal α-helix along with the inserted sequence and the remaining C-terminal part. The obtained mutant showed higher ATP-hydrolysis activities than those containing the wild-type γ. Contrary to our expectation, the complexes containing the split γ subunits were mostly devoid of the C-terminal helix. We further investigated the effect of post-assembly cleavage of the γ subunit. We demonstrate that insertion of the nick between two helices of the γ subunit imparts resistance to ADP inhibition, and the C-terminal α-helix is dispensable for ATP-hydrolysis activity and plays a crucial role in the assembly of F1-ATP synthase.
Collapse
Affiliation(s)
- Kumiko Kondo
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan
| | - Yu Takeyama
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan
| | - Ei-Ichiro Sunamura
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan
| | - Yuka Madoka
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan
| | - Yuki Fukaya
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan
| | - Atsuko Isu
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan.
| |
Collapse
|
4
|
Anaerobic Mycobacterium tuberculosis Cell Death Stems from Intracellular Acidification Mitigated by the DosR Regulon. J Bacteriol 2017; 199:JB.00320-17. [PMID: 28874407 DOI: 10.1128/jb.00320-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/23/2017] [Indexed: 01/28/2023] Open
Abstract
Mycobacterium tuberculosis is a strict aerobe capable of prolonged survival in the absence of oxygen. We investigated the ability of anaerobic M. tuberculosis to counter challenges to internal pH homeostasis in the absence of aerobic respiration, the primary mechanism of proton efflux for aerobic bacilli. Anaerobic M. tuberculosis populations were markedly impaired for survival under a mildly acidic pH relative to standard culture conditions. An acidic environmental pH greatly increased the susceptibilities of anaerobic bacilli to the collapse of the proton motive force by protonophores, to antimicrobial compounds that target entry into the electron transport system, and to small organic acids with uncoupling activity. However, anaerobic bacilli exhibited high tolerance against these challenges at a near-neutral pH. At a slightly alkaline pH, which was near the optimum intracellular pH, the addition of protonophores even improved the long-term survival of bacilli. Although anaerobic M. tuberculosis bacilli under acidic conditions maintained 40% lower ATP levels than those of bacilli under standard culture conditions, ATP loss alone could not explain the drop in viability. Protonophores decreased ATP levels by more than 90% regardless of the extracellular pH but were bactericidal only under acidic conditions, indicating that anaerobic bacilli could survive an extreme ATP loss provided that the external pH was within viable intracellular parameters. Acidic conditions drastically decreased the anaerobic survival of a DosR mutant, while an alkaline environment improved the survival of the DosR mutant. Together, these findings indicate that intracellular acidification is a primary challenge for the survival of anaerobic M. tuberculosis and that the DosR regulon plays a critical role in sustaining internal pH homeostasis.IMPORTANCE During infection, M. tuberculosis bacilli are prevalent in environments largely devoid of oxygen, yet the factors that influence the survival of these severely growth-limited and metabolically limited bacilli remain poorly understood. We determined how anaerobic bacilli respond to fluctuations in environmental pH and observed that these bacilli were highly susceptible to stresses that promoted internal acidic stress, whereas conditions that promoted an alkaline internal pH promoted long-term survival even during severe ATP depletion. The DosR regulon, a major regulator of general hypoxic stress, played an important role in maintaining internal pH homeostasis under anaerobic conditions. Together, these findings indicate that in the absence of aerobic respiration, protection from internal acidification is crucial for long-term M. tuberculosis survival.
Collapse
|
5
|
Ma Z, Marsolais F, Bykova NV, Igamberdiev AU. Nitric Oxide and Reactive Oxygen Species Mediate Metabolic Changes in Barley Seed Embryo during Germination. FRONTIERS IN PLANT SCIENCE 2016; 7:138. [PMID: 26909088 PMCID: PMC4754656 DOI: 10.3389/fpls.2016.00138] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/27/2016] [Indexed: 05/20/2023]
Abstract
The levels of nitric oxide (NO) and reactive oxygen species (ROS), ATP/ADP ratios, reduction levels of ascorbate and glutathione, expression of the genes encoding proteins involved in metabolism of NO and activities of the enzymes involved in fermentation and in metabolism of NO and ROS were studied in the embryos of germinating seeds of two barley (Hordeum vulgare L.) cultivars differing in dormancy level. The level of NO production continuously increased after imbibition while the level of nitrosylated SH-groups in proteins increased. This corresponded to the decrease of free SH-groups in proteins. At early stage of germination (0-48 h post imbibition) the genes encoding class 1 phytoglobin (the protein scavenging NO) and S-nitrosoglutathione reductase (scavenging S-nitrosoglutathione) were markedly expressed. More dormant cultivar exhibited lower ATP/ADP and ascorbate/dehydroascorbate ratios and lower lactate and alcohol dehydrogenase activities, while the production of NO and nitrosylation of proteins was higher as compared to the non-dormant cultivar. The obtained data indicate that at the onset of germination NO is actively generated causing nitrosylation of SH-groups and a switch from respiration to fermentation. After radicle protrusion the metabolism changes in a more reducing type as recorded by ratio of reduced and oxidized glutathione and ascorbate. The turnover of NO by the scavenging systems (phytoglobin, S-nitrosoglutathione reductase and interaction with ROS) might contribute to the maintenance of redox and energy balance of germinating seeds and lead to alleviation of dormancy.
Collapse
Affiliation(s)
- Zhenguo Ma
- Department of Biology, Memorial University of Newfoundland, St. John’sNL, Canada
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
- Department of Biology, University of Western OntarioLondon, ON, Canada
| | - Frédéric Marsolais
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
- Department of Biology, University of Western OntarioLondon, ON, Canada
| | - Natalia V. Bykova
- Morden Research and Development Centre, Agriculture and Agri-Food CanadaMorden, MB, Canada
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’sNL, Canada
- *Correspondence: Abir U. Igamberdiev,
| |
Collapse
|
6
|
Posttranslationally caused bioluminescence burst of the Escherichia coli luciferase reporter strain. Arch Microbiol 2015; 198:35-41. [DOI: 10.1007/s00203-015-1165-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
|
7
|
Masi E, Ciszak M, Santopolo L, Frascella A, Giovannetti L, Marchi E, Viti C, Mancuso S. Electrical spiking in bacterial biofilms. J R Soc Interface 2015; 12:20141036. [PMID: 25392401 DOI: 10.1098/rsif.2014.1036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In nature, biofilms are the most common form of bacterial growth. In biofilms, bacteria display coordinated behaviour to perform specific functions. Here, we investigated electrical signalling as a possible driver in biofilm sociobiology. Using a multi-electrode array system that enables high spatio-temporal resolution, we studied the electrical activity in two biofilm-forming strains and one non-biofilm-forming strain. The action potential rates monitored during biofilm-forming bacterial growth exhibited a one-peak maximum with a long tail, corresponding to the highest biofilm development. This peak was not observed for the non-biofilm-forming strain, demonstrating that the intensity of the electrical activity was not linearly related to the bacterial density, but was instead correlated with biofilm formation. Results obtained indicate that the analysis of the spatio-temporal electrical activity of bacteria during biofilm formation can open a new frontier in the study of the emergence of collective microbial behaviour.
Collapse
Affiliation(s)
- Elisa Masi
- DISPAA-Department of Agrifood and Environmental Science, University of Florence, Florence, Italy
| | - Marzena Ciszak
- DISPAA-Department of Agrifood and Environmental Science, University of Florence, Florence, Italy CNR-Istituto Nazionale di Ottica, Florence, Italy
| | - Luisa Santopolo
- DISPAA-Department of Agrifood and Environmental Science, University of Florence, Florence, Italy
| | - Arcangela Frascella
- DISPAA-Department of Agrifood and Environmental Science, University of Florence, Florence, Italy
| | - Luciana Giovannetti
- DISPAA-Department of Agrifood and Environmental Science, University of Florence, Florence, Italy
| | - Emmanuela Marchi
- DISPAA-Department of Agrifood and Environmental Science, University of Florence, Florence, Italy
| | - Carlo Viti
- DISPAA-Department of Agrifood and Environmental Science, University of Florence, Florence, Italy
| | - Stefano Mancuso
- DISPAA-Department of Agrifood and Environmental Science, University of Florence, Florence, Italy
| |
Collapse
|
8
|
mhpT encodes an active transporter involved in 3-(3-hydroxyphenyl)propionate catabolism by Escherichia coli K-12. Appl Environ Microbiol 2013; 79:6362-8. [PMID: 23934492 DOI: 10.1128/aem.02110-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli K-12 utilizes 3-(3-hydroxyphenyl)propionate (3HPP) as a sole carbon and energy source. Among the genes in its catabolic cluster in the genome, mhpT was proposed to encode a hypothetical transporter. Since no transporter for 3HPP uptake has been identified, we investigated whether MhpT is responsible for 3HPP uptake. MhpT fused with green fluorescent protein was found to be located at the periphery of cells by confocal microscopy, consistent with localization to the cytoplasmic membrane. Gene knockout and complementation studies clearly indicated that mhpT is essential for 3HPP catabolism in E. coli K-12 W3110 at pH 8.2. Uptake assays with (14)C-labeled substrates demonstrated that strain W3110 and strain W3110ΔmhpT containing recombinant MhpT specifically transported 3HPP but not benzoate, 3-hydroxybenzoate, or gentisate into cells. Energy dependence assays suggested that MhpT-mediated 3HPP transport was driven by the proton motive force. The change of Ala-272 of MhpT to a histidine, surprisingly, resulted in enhanced transport activity, and strain W3110ΔmhpT containing the MhpT A272H mutation had a slightly higher growth rate than the wild-type strain at pH 8.2. Hence, we demonstrated that MhpT is a specific 3HPP transporter and vital for E. coli K-12 W3110 growth on this substrate under basic conditions.
Collapse
|
9
|
Sunamura EI, Konno H, Imashimizu M, Mochimaru M, Hisabori T. A conformational change of the γ subunit indirectly regulates the activity of cyanobacterial F1-ATPase. J Biol Chem 2012; 287:38695-704. [PMID: 23012354 DOI: 10.1074/jbc.m112.395053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The central shaft of the catalytic core of ATP synthase, the γ subunit consists of a coiled-coil structure of N- and C-terminal α-helices, and a globular domain. The γ subunit of cyanobacterial and chloroplast ATP synthase has a unique 30-40-amino acid insertion within the globular domain. We recently prepared the insertion-removed α(3)β(3)γ complex of cyanobacterial ATP synthase (Sunamura, E., Konno, H., Imashimizu-Kobayashi, M., and Hisabori, T. (2010) Plant Cell Physiol. 51, 855-865). Although the insertion is thought to be located in the periphery of the complex and far from catalytic sites, the mutant complex shows a remarkable increase in ATP hydrolysis activity due to a reduced tendency to lapse into ADP inhibition. We postulated that removal of the insertion affects the activity via a conformational change of two central α-helices in γ. To examine this hypothesis, we prepared a mutant complex that can lock the relative position of two central α-helices to each other by way of a disulfide bond formation. The mutant obtained showed a significant change in ATP hydrolysis activity caused by this restriction. The highly active locked complex was insensitive to N-dimethyldodecylamine-N-oxide, suggesting that the complex is resistant to ADP inhibition. In addition, the lock affected ε inhibition. In contrast, the change in activity caused by removal of the γ insertion was independent from the conformational restriction of the central axis component. These results imply that the global conformational change of the γ subunit indirectly regulates complex activity by changing both ADP inhibition and ε inhibition.
Collapse
Affiliation(s)
- Ei-Ichiro Sunamura
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan
| | | | | | | | | |
Collapse
|
10
|
Kralj JM, Hochbaum DR, Douglass AD, Cohen AE. Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein. Science 2011; 333:345-8. [PMID: 21764748 DOI: 10.1126/science.1204763] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bacteria have many voltage- and ligand-gated ion channels, and population-level measurements indicate that membrane potential is important for bacterial survival. However, it has not been possible to probe voltage dynamics in an intact bacterium. Here we developed a method to reveal electrical spiking in Escherichia coli. To probe bacterial membrane potential, we engineered a voltage-sensitive fluorescent protein based on green-absorbing proteorhodopsin. Expression of the proteorhodopsin optical proton sensor (PROPS) in E. coli revealed electrical spiking at up to 1 hertz. Spiking was sensitive to chemical and physical perturbations and coincided with rapid efflux of a small-molecule fluorophore, suggesting that bacterial efflux machinery may be electrically regulated.
Collapse
Affiliation(s)
- Joel M Kralj
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
11
|
González D, Lokhande N, Vadde S, Zhao Q, Cassill A, Renthal R. Luminescence resonance energy transfer in the cytoplasm of live Escherichia coli cells. Biochemistry 2011; 50:6789-96. [PMID: 21739954 DOI: 10.1021/bi200779u] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Luminescence resonance energy transfer (LRET) offers many advantages for accurate measurements of distances between specific sites in living cells, but progress in developing a methodology for implementing this technique has been limited. We report here the design, expression, and characterization of a test protein for development of a LRET methodology. The protein, which we call DAL, contains the following domains (from the N-terminus): Escherichia coli dihydrofolate reductase (DHFR), the third and fourth ankyrin repeats of p16(INK4a), a lanthanide-binding tag (LBT), and a hexahistidine tag. LBT binds Tb(3+) with a submicromolar dissociation constant. LRET was measured from the Tb(3+) site on LBT to transition metals bound to the hexa-His tag and to fluorescein methotrexate bound to DHFR. The measured distances were consistent with a molecular model constructed from the known crystal structures of the constituent domains of DAL. The results indicate that the two C-terminal ankyrin domains of p16(INK4a) are stably folded when combined with other protein domains. We found that Tb(3+) binds to DAL in the cytoplasm of live E. coli cells, and thus, DAL is useful as an indicator for studies of metal transport. We also used DAL to measure LRET from Tb(3+) to Cu(2+) in the cytoplasm of live E. coli cells. The rates of Tb(3+) and Cu(2+) transport were not affected by a proton uncoupler or an ATP synthase inhibitor. Reversal of the membrane potential had a small inhibitory effect, and removal of lipopolysaccharide had a small accelerating effect on transport. Changing the external pH from 7 to 5 strongly inhibited the Tb(3+) signal, suggesting that the Tb(3+)-LBT interaction is useful as a cytoplasmic pH indicator in the range of approximately pH 5-6.
Collapse
Affiliation(s)
- Daniel González
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | | | | | | | | | | |
Collapse
|
12
|
Sunamura EI, Konno H, Imashimizu-Kobayashi M, Sugano Y, Hisabori T. Physiological impact of intrinsic ADP inhibition of cyanobacterial FoF1 conferred by the inherent sequence inserted into the gammasubunit. PLANT & CELL PHYSIOLOGY 2010; 51:855-65. [PMID: 20421199 DOI: 10.1093/pcp/pcq061] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The F(o)F(1)-ATPase, which synthesizes ATP with a rotary motion, is highly regulated in vivo in order to function efficiently, although there remains a limited understanding of the physiological significance of this regulation. Compared with its bacterial and mitochondrial counterparts, the gamma subunit of cyanobacterial F(1), which makes up the central shaft of the motor enzyme, contains an additional inserted region. Although deletion of this region results in the acceleration of the rate of ATP hydrolysis, the functional significance of the region has not yet been determined. By analysis of rotation, we successfully determined that this region confers the ability to shift frequently into an ADP inhibition state; this is a highly conserved regulatory mechanism which prevents ATP synthase from carrying out the reverse reaction. We believe that the physiological significance of this increased likelihood of shifting into the ADP inhibition state allows the intracellular ATP levels to be maintained, which is especially critical for photosynthetic organisms.
Collapse
Affiliation(s)
- Ei-Ichiro Sunamura
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan
| | | | | | | | | |
Collapse
|
13
|
Konno H, Murakami-Fuse T, Fujii F, Koyama F, Ueoka-Nakanishi H, Pack CG, Kinjo M, Hisabori T. The regulator of the F1 motor: inhibition of rotation of cyanobacterial F1-ATPase by the epsilon subunit. EMBO J 2006; 25:4596-604. [PMID: 16977308 PMCID: PMC1589999 DOI: 10.1038/sj.emboj.7601348] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 08/22/2006] [Indexed: 11/09/2022] Open
Abstract
The chloroplast-type F(1) ATPase is the key enzyme of energy conversion in chloroplasts, and is regulated by the endogenous inhibitor epsilon, tightly bound ADP, the membrane potential and the redox state of the gamma subunit. In order to understand the molecular mechanism of epsilon inhibition, we constructed an expression system for the alpha(3)beta(3)gamma subcomplex in thermophilic cyanobacteria allowing thorough investigation of epsilon inhibition. epsilon Inhibition was found to be ATP-independent, and different to that observed for bacterial F(1)-ATPase. The role of the additional region on the gamma subunit of chloroplast-type F(1)-ATPase in epsilon inhibition was also determined. By single molecule rotation analysis, we succeeded in assigning the pausing angular position of gamma in epsilon inhibition, which was found to be identical to that observed for ATP hydrolysis, product release and ADP inhibition, but distinctly different from the waiting position for ATP binding. These results suggest that the epsilon subunit of chloroplast-type ATP synthase plays an important regulator for the rotary motor enzyme, thus preventing wasteful ATP hydrolysis.
Collapse
Affiliation(s)
- Hiroki Konno
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
- ATP System Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation (JST), Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Tomoe Murakami-Fuse
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
- ATP System Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation (JST), Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Fumihiko Fujii
- Laboratory of Supramolecular Biophysics, Research Institute for Electronic Science, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Fumie Koyama
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
- ATP System Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation (JST), Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Hanayo Ueoka-Nakanishi
- ATP System Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation (JST), Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Chan-Gi Pack
- Laboratory of Supramolecular Biophysics, Research Institute for Electronic Science, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Masataka Kinjo
- Laboratory of Supramolecular Biophysics, Research Institute for Electronic Science, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Toru Hisabori
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
- ATP System Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation (JST), Nagatsuta-cho, Midori-ku, Yokohama, Japan
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama, Kanagawa 226-8503, Japan. Tel.: +81 45 924 5234; Fax: +81 45 924 5277; E-mail:
| |
Collapse
|
14
|
Yuroff AS, Sabat G, Hickey WJ. Transporter-mediated uptake of 2-chloro- and 2-hydroxybenzoate by Pseudomonas huttiensis strain D1. Appl Environ Microbiol 2004; 69:7401-8. [PMID: 14660391 PMCID: PMC309881 DOI: 10.1128/aem.69.12.7401-7408.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the mechanisms of uptake of 2-chlorobenzoate (2-CBa) and 2-hydroxybenzoate (2-HBa) by Pseudomonas huttiensis strain D1. Uptake was monitored by assaying intracellular accumulation of 2-[UL-ring-14C]CBa and 2-[UL-ring-14C]HBa. Uptake of 2-CBa showed substrate saturation kinetics with an apparent Km of 12.7 +/- 2.6 micromoles and a maximum velocity (Vmax) of 9.76 +/- 0.78 nmol min-1 mg of protein-1. Enhanced rates of uptake were induced by growth on 2-CBa and 2-HBa, but not by growth on benzoate or 2,5-di-CBa. Intracellular accumulations of 2-CBa and 2-HBa were 109- and 42-fold greater, respectively, than the extracellular concentrations of these substrates and were indicative of uptake mediated by a transporter rather than driven by substrate catabolism ("metabolic drag"). Results of competitor screening tests indicated that the substrate range of the transporter did not include other o-halobenzoates that serve as growth substrates for strain D1 and for which the metabolism was initiated by the same dioxygenase as 2-CBa and 2-HBa. This suggested that multiple mechanisms for substrate uptake were coupled to the same catabolic enzyme. The preponderance of evidence from tests with metabolic inhibitors and artificial electrochemical gradients suggested that 2-CBa uptake was driven by ATP hydrolysis. If so, the 2-CBa transporter would be the first of the ATP binding cassette type implicated in uptake of haloaromatic acids.
Collapse
Affiliation(s)
- A S Yuroff
- Center for Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | |
Collapse
|
15
|
Lépine G, Ellen RP. MglA and mglB of Treponema denticola; similarity to ABC transport and spa genes. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2001; 11:419-31. [PMID: 11328650 DOI: 10.3109/10425170009033992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mglA and mglB genes (td-mglA and td-mglB) of the oral spirochete Treponema denticola were sequenced. These two T. denticola genes are highly homologous to the E. coli and Treponema pallidum mglA and mglB genes which are part of the three gene beta-methylgalactoside transport operon, mglBAC. Both Td-mglA and td-mglB are also homologous to the high affinity ABC-type transporters for ribose and arabinose, and surface presentation antigens (spa) locus, part of the type III secretion systems in enteropathogens. Td-mglB and td-mglA are co-transcribed as a single mRNA in T. denticola as well as in E. coli cells as determined by reverse transcription PCR (RT-PCR). Homology to td-mglB and its expressed protein was found in other oral spirochetes as determined by Southern and western blot analysis.
Collapse
Affiliation(s)
- G Lépine
- University of Toronto, Faculty of Dentistry, Toronto, Ontario M5G 1G6, Canada.
| | | |
Collapse
|
16
|
Mattick KL, Jorgensen F, Legan JD, Lappin-Scott HM, Humphrey TJ. Habituation of Salmonella spp. at reduced water activity and its effect on heat tolerance. Appl Environ Microbiol 2000; 66:4921-5. [PMID: 11055944 PMCID: PMC92400 DOI: 10.1128/aem.66.11.4921-4925.2000] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2000] [Accepted: 08/14/2000] [Indexed: 11/20/2022] Open
Abstract
The effect of habituation at reduced water activity (a(w)) on heat tolerance of Salmonella spp. was investigated. Stationary-phase cells were exposed to a(w) 0.95 in broths containing glucose-fructose, sodium chloride, or glycerol at 21 degrees C for up to a week prior to heat challenge at 54 degrees C. In addition, the effects of different a(w)s and heat challenge temperatures were investigated. Habituation at a(w) 0.95 resulted in increased heat tolerance at 54 degrees C with all solutes tested. The extent of the increase and the optimal habituation time depended on the solute used. Exposure to broths containing glucose-fructose (a(w) 0.95) for 12 h resulted in maximal heat tolerance, with more than a fourfold increase in D(54) values. Cells held for more than 72 h in these conditions, however, became as heat sensitive as nonhabituated populations. Habituation in the presence of sodium chloride or glycerol gave rise to less pronounced but still significant increases in heat tolerance at 54 degrees C, and a shorter incubation time was required to maximize tolerance. The increase in heat tolerance following habituation in broths containing glucose-fructose (a(w) 0.95) was RpoS independent. The presence of chloramphenicol or rifampin during habituation and inactivation did not affect the extent of heat tolerance achieved, suggesting that de novo protein synthesis was probably not necessary. These data highlight the importance of cell prehistory prior to heat inactivation and may have implications for food manufacturers using low-a(w) ingredients.
Collapse
Affiliation(s)
- K L Mattick
- Public Health Laboratory Service, Food Microbiology Research Unit, Heavitree, Exeter EX2 5AD, United Kingdom.
| | | | | | | | | |
Collapse
|
17
|
Botero LM, Al-Niemi TS, McDermott TR. Characterization of two inducible phosphate transport systems in Rhizobium tropici. Appl Environ Microbiol 2000; 66:15-22. [PMID: 10618197 PMCID: PMC91779 DOI: 10.1128/aem.66.1.15-22.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium tropici forms nitrogen-fixing nodules on the roots of the common bean (Phaseolus vulgaris). Like other legume-Rhizobium symbioses, the bean-R. tropici association is sensitive to the availability of phosphate (P(i)). To better understand phosphorus movement between the bacteroid and the host plant, P(i) transport was characterized in R. tropici. We observed two P(i) transport systems, a high-affinity system and a low-affinity system. To facilitate the study of these transport systems, a Tn5B22 transposon mutant lacking expression of the high-affinity transport system was isolated and used to characterize the low-affinity transport system in the absence of the high-affinity system. The K(m) and V(max) values for the low-affinity system were estimated to be 34 +/- 3 microM P(i) and 118 +/- 8 nmol of P(i) x min(-1) x mg (dry weight) of cells(-1), respectively, and the K(m) and V(max) values for the high-affinity system were 0.45 +/- 0.01 microM P(i) and 86 +/- 5 nmol of P(i) x min(-1) x mg (dry weight) of cells(-1), respectively. Both systems were inducible by P(i) starvation and were also shock sensitive, which indicated that there was a periplasmic binding-protein component. Neither transport system appeared to be sensitive to the proton motive force dissipator carbonyl cyanide m-chlorophenylhydrazone, but P(i) transport through both systems was eliminated by the ATPase inhibitor N,N'-dicyclohexylcarbodiimide; the P(i) transport rate was correlated with the intracellular ATP concentration. Also, P(i) movement through both systems appeared to be unidirectional, as no efflux or exchange was observed with either the wild-type strain or the mutant. These properties suggest that both P(i) transport systems are ABC type systems. Analysis of the transposon insertion site revealed that the interrupted gene exhibited a high level of homology with kdpE, which in several bacteria encodes a cytoplasmic response regulator that governs responses to low potassium contents and/or changes in medium osmolarity.
Collapse
Affiliation(s)
- L M Botero
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana 59717, USA
| | | | | |
Collapse
|
18
|
Nikaido K, Ames GF. One intact ATP-binding subunit is sufficient to support ATP hydrolysis and translocation in an ABC transporter, the histidine permease. J Biol Chem 1999; 274:26727-35. [PMID: 10480876 DOI: 10.1074/jbc.274.38.26727] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane-bound complex of the Salmonella typhimurium histidine permease, a member of the ABC transporters (or traffic ATPases) superfamily, is composed of two integral membrane proteins, HisQ and HisM, and two copies of an ATP-binding subunit, HisP, which hydrolyze ATP, thus supplying the energy for translocation. The three-dimensional structure of HisP has been resolved. Extensive evidence indicates that the HisP subunits form a dimer. We investigated the mechanism of action of such a dimer, both within the complex and in soluble form, by creating heterodimers between the wild type and mutant HisP proteins. The data strongly suggest that within the complex both subunits hydrolyze ATP and that one subunit is activated by the other. In a heterodimer containing one wild type and one hydrolysis defective subunit both hydrolysis and ligand translocation occur at half the rate of the wild type. Soluble HisP also hydrolyzes ATP if one subunit is inactive; its specific activity is identical to that of the wild type, indicating that only one of the subunits in a soluble dimer is involved in hydrolysis. We show that the activating ability varies depending on the nature of the substitution of a well conserved residue, His-211.
Collapse
Affiliation(s)
- K Nikaido
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, California 94720-3202, USA
| | | |
Collapse
|
19
|
Liu CE, Liu PQ, Ames GF. Characterization of the adenosine triphosphatase activity of the periplasmic histidine permease, a traffic ATPase (ABC transporter). J Biol Chem 1997; 272:21883-91. [PMID: 9268321 DOI: 10.1074/jbc.272.35.21883] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The superfamily of traffic ATPases (ABC transporters) includes bacterial periplasmic transport systems (permeases) and eukaryotic transporters. The histidine permease of Salmonella typhimurium is composed of a membrane-bound complex (HisQMP2) containing four subunits, and of a soluble receptor, the histidine-binding protein (HisJ). Transport is energized by ATP. In this article the ATPase activity of HisQMP2 has been characterized, using a novel assay that is independent of transport. The assay uses Mg2+ ions to permeabilize membrane vesicles or proteoliposomes, thus allowing access of ATP to both sides of the bilayer. HisQMP2 displays a low level of intrinsic ATPase activity in the absence of HisJ; unliganded HisJ stimulates the activity and liganded HisJ stimulates to an even higher level. All three levels of activity display positive cooperativity for ATP with a Hill coefficient of 2 and a K0. 5 value of 0.6 mM. The activity has been characterized with respect to pH, salt, phospholipids, substrate, and inhibitor specificity. Free histidine has no effect. The activity is inhibited by orthovanadate, but not by N-ethylmaleimide, bafilomycin A1, or ouabain. Several nucleotide analogs, ADP, 5'-adenylyl-beta, gamma-imidodiphosphate, adenosine 5'-(beta,gammaimino)triphosphate, and adenosine 5'-O-(3-thio)triphosphate, inhibit the activity. Unliganded HisJ does not compete with liganded HisJ for the stimulation of the ATPase activity of HisQMP2.
Collapse
Affiliation(s)
- C E Liu
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
20
|
Nichols NN, Harwood CS. PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida. J Bacteriol 1997; 179:5056-61. [PMID: 9260946 PMCID: PMC179362 DOI: 10.1128/jb.179.16.5056-5061.1997] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PcaK is a transporter and chemoreceptor protein from Pseudomonas putida that is encoded as part of the beta-ketoadipate pathway regulon for aromatic acid degradation. When expressed in Escherichia coli, PcaK was localized to the membrane and catalyzed the accumulation of two aromatic substrates, 4-hydroxybenzoate and protocatechuate, against a concentration gradient. Benzoate inhibited 4-hydroxybenzoate uptake but was not a substrate for PcaK-catalyzed transport. A P. putida pcaK mutant was defective in its ability to accumulate micromolar amounts of 4-hydroxybenzoate and protocatechuate. The mutant was also impaired in growth on millimolar concentrations of these aromatic acids. In contrast, the pcaK mutant grew at wild-type rates on benzoate. The Vmax for uptake of 4-hydroxybenzoate was at least 25 nmol/min/mg of protein, and the Km was 6 microM. PcaK-mediated transport is energized by the proton motive force. These results show that although aromatic acids in the undissociated (uncharged) form can diffuse across bacterial membranes, high-specificity active transport systems probably also contribute to the ability of bacteria to grow on the micromolar concentrations of these compounds that are typically present in soil. A variety of aromatic molecules, including naturally occurring lignin derivatives and xenobiotics, are metabolized by bacteria and may be substrates for transport proteins. The characterization of PcaK provides a foundation for understanding active transport as a critical step in the metabolism of aromatic carbon sources.
Collapse
Affiliation(s)
- N N Nichols
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
21
|
Kashiwagi K, Shibuya S, Tomitori H, Kuraishi A, Igarashi K. Excretion and uptake of putrescine by the PotE protein in Escherichia coli. J Biol Chem 1997; 272:6318-23. [PMID: 9045651 DOI: 10.1074/jbc.272.10.6318] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The structure and function of the polyamine transport protein PotE was studied. Uptake of putrescine by PotE was dependent on the membrane potential. In contrast, the putrescine-ornithine antiporter activity of PotE studied with inside-out membrane vesicles was not dependent on the membrane potential (Kashiwagi, K., Miyamoto, S., Suzuki, F., Kobayashi, H., and Igarashi, K. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 4529-4533). The Km values for putrescine uptake and for putrescine-ornithine antiporter activity were 1.8 and 73 microM, respectively. Uptake of putrescine was inhibited by high concentrations of ornithine. This effect of ornithine appears to be due to putrescine-ornithine antiporter activity because it occurs only after accumulation of putrescine within cells and because ornithine causes excretion of putrescine. Thus, PotE can function not only as a putrescine-ornithine antiporter to excrete putrescine but also as a putrescine uptake protein. Both the NH2 and COOH termini of PotE were located in the cytoplasm, as determined by the activation of alkaline phosphatase and beta-galactosidase by various PotE-fusion proteins. The activities of putrescine uptake and excretion were studied using mutated PotE proteins. It was found that glutamic acid 207 was essential for both the uptake and excretion of putrescine by the PotE protein and that glutamic acids 77 and 433 were also involved in both activities. These three glutamic acids are located on the cytoplasmic side of PotE, and the function of these three residues could not be replaced by other amino acids. Putrescine transport activities did not change significantly with mutations at the other 13 glutamic acid or aspartic acid residues in PotE.
Collapse
Affiliation(s)
- K Kashiwagi
- Faculty of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263, Japan
| | | | | | | | | |
Collapse
|
22
|
Meyer D, Schneider-Fresenius C, Horlacher R, Peist R, Boos W. Molecular characterization of glucokinase from Escherichia coli K-12. J Bacteriol 1997; 179:1298-306. [PMID: 9023215 PMCID: PMC178829 DOI: 10.1128/jb.179.4.1298-1306.1997] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
glk, the structural gene for glucokinase of Escherichia coli, was cloned and sequenced. Overexpression of glk resulted in the synthesis of a cytoplasmic protein with a molecular weight of 35,000. The enzyme was purified, and its kinetic parameters were determined. Its Km values for glucose and ATP were 0.78 and 3.76 mM, respectively. Its Vmax was 158 U/mg of protein. A chromosomal glk-lacZ fusion was constructed and used to monitor glk expression. Under all conditions tested, only growth on glucose reduced the expression of glk by about 50%. A fruR mutation slightly increased the expression of glk-lacZ, whereas the overexpression of plasmid-encoded fruR+ weakly decreased expression. A FruR consensus binding motif was found 123 bp upstream of the potential transcriptional start site of glk. Overexpression of glk interfered with the expression of the maltose system. Repression was strongest in strains that exhibited constitutive mal gene expression due to endogenous induction and, in the absence of a functional MalK protein, the ATP-hydrolyzing subunit of the maltose transport system. It was least effective in wild-type strains growing on maltose or in strains constitutive for the maltose system due to a mutation in malT rendering the mal gene expression independent of inducer. This demonstrates that free internal glucose plays an essential role in the formation of the endogenous inducer of the maltose system.
Collapse
Affiliation(s)
- D Meyer
- Department of Biology, University of Konstanz, Germany
| | | | | | | | | |
Collapse
|
23
|
Liu CE, Ames GF. Characterization of transport through the periplasmic histidine permease using proteoliposomes reconstituted by dialysis. J Biol Chem 1997; 272:859-66. [PMID: 8995374 DOI: 10.1074/jbc.272.2.859] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The superfamily of traffic ATPases (ABC transporters) includes bacterial periplasmic transport systems (permeases) and various eukaryotic transporters. The histidine permease of Salmonella typhimurium and Escherichia coli is composed of a membrane-bound complex containing four subunits and of a soluble receptor, the substrate-binding protein (HisJ), and is energized by ATP. The permease was previously reconstituted into proteoliposomes by a detergent dilution method (1). Here we extensively characterize the properties of this permease after reconstitution into proteoliposomes by dialysis and encapsulation of ATP or other reagents by freeze-thawing. We show that histidine transport depends entirely on both ATP and liganded HisJ, with apparent Km values of 8 mM and 8 microM, respectively, and is affected by pH, temperature, and salt concentration. Transport is irreversible and accumulation reaches a plateau at which point transport ceases. The permease is inhibited by ADP and by high concentrations of internal histidine. The inhibition by histidine implies that the membrane-bound complex HisQ/M/P carries a substrate-binding site. The reconstituted permease activity corresponds to about 40-70% turnover rate of the in vivo rate of transport.
Collapse
Affiliation(s)
- C E Liu
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | |
Collapse
|
24
|
Welch M, Margolin Y, Caplan SR, Eisenbach M. Rotational asymmetry of Escherichia coli flagellar motor in the presence of arsenate. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1268:81-7. [PMID: 7626666 DOI: 10.1016/0167-4889(95)00054-v] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The flagellar motor of Escherichia coli (E. coli) is driven by a proton-motive force (PMF), hence it was of interest to determine whether the motor is symmetrical in the sense that it can be rotated by any polarity of PMF. For this purpose the cells had to be deenergized first. Conventional deenergization procedures caused irreversible loss of motility, presumably due to ATP-dependent degradative processes. However, E. coli cells deenergized by incubation with arsenate manifested a slow, reversible depletion of PMF. In this procedure there was a sufficiently long time window, during which a considerable proportion of the cells lost their motility and could be made to rotate again by an artificially-imposed PMF. The motors of these cells rotated in response to any PMF polarity, but positive and negative polarities rotated different sub-populations of cells and the direction was almost exclusively counterclockwise. The reason for the unidirectionality of the rotation was not the intervention of the chemotaxis system. A number of potential reasons are suggested. One is the arsenate effect on the motor function found previously [Margolin, Y., Barak, R. and Eisenbach, M. (1994) J. Bacteriol. 176, 5547-5549]. A possible interaction between arsenate and the motor is discussed.
Collapse
Affiliation(s)
- M Welch
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
25
|
Wolf A, Shaw EW, Oh BH, De Bondt H, Joshi AK, Ames GF. Structure/function analysis of the periplasmic histidine-binding protein. Mutations decreasing ligand binding alter the properties of the conformational change and of the closed form. J Biol Chem 1995; 270:16097-106. [PMID: 7608172 DOI: 10.1074/jbc.270.27.16097] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The periplasmic histidine-binding protein, HisJ, is a receptor for the histidine permease of Salmonella typhimurium. Receptors of this type are composed of two lobes that are far apart in the unliganded structure (open conformation) and drawn close together in the liganded structure (closed conformation). The binding of the ligand, in a cleft between the lobes, stabilizes the closed conformation. Such receptors have several functions in transport: interaction with the membrane-bound complex, transmission of a transmembrane signal to hydrolyze ATP, and receiving a signal to open the lobes and release the ligand. In this study the mechanism of action of HisJ was further investigated using mutant proteins defective in ligand binding activity and closed form-specific monoclonal antibodies (Wolf, A., Shaw, E. W., Nikaido, K., and Ames G. F.-L. (1994) J. Biol. Chem. 269, 23051-23058). Y14H is defective in stabilization of the closed form, does not assume the closed empty form, and assumes an altered closed liganded form. T121A and G119R are similar to Y14H, but assume a normal closed liganded form. S72P binds the ligand to the open form, but does not assume a recognizable closed form. S92F is defective in the ability to undergo conformational change and to stabilize the closed form. All other mutant proteins appear to fall within one of these four categories. The biochemical characterization of these mutant proteins agrees with the structural analysis of the protein. We suggest that mutant proteins that do not assume the normal closed form, in addition to their defect in ligand binding, fail to interact with the membrane-bound complex and/or to transmit transmembrane signals.
Collapse
Affiliation(s)
- A Wolf
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | | | | | |
Collapse
|
26
|
Verheul A, Rombouts FM, Beumer RR, Abee T. An ATP-dependent L-carnitine transporter in Listeria monocytogenes Scott A is involved in osmoprotection. J Bacteriol 1995; 177:3205-12. [PMID: 7768820 PMCID: PMC177012 DOI: 10.1128/jb.177.11.3205-3212.1995] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Listeria monocytogenes is a gram-positive, psychotrophic, food-borne pathogen which is able to grow in osmotically stressful environments. Carnitine (beta-hydroxy-L-tau-N-trimethyl aminobutyrate) can contribute significantly to growth of L. monocytogenes at high osmolarity (R. R. Beumer, M. C. te Giffel, L. J. Cox, F. M. Rombouts, and T. Abee, Appl. Environ. Microbiol. 60:1359-1363, 1994). Transport of L-[N-methyl-14C]carnitine in L. monocytogenes was shown to be energy dependent. Analysis of cell extracts revealed that L-carnitine was not further metabolized, which supplies evidence for its role as an osmoprotectant in L. monocytogenes. Uptake of L-carnitine proceeds in the absence of a proton motive force and is strongly inhibited in the presence of the phosphate analogs vanadate and arsenate. The L-carnitine permease is therefore most likely driven by ATP. Kinetic analysis of L-carnitine transport in glucose-energized cells revealed the presence of a high-affinity uptake system with a Km of 10 microM and a maximum rate of transport (Vmax) of 48 nmol min-1 mg of protein-1. L-[14C]carnitine transport in L. monocytogenes is significantly inhibited by a 10-fold excess of unlabelled L-carnitine, acetylcarnitine, and tau-butyrobetaine, whereas L-proline and betaine display, even at a 100-fold excess, only a weak inhibitory effect. In conclusion, an ATP-dependent L-carnitine transport system in L. monocytogenes is described, and its possible roles in cold adaptation and intracellular growth in mammalian cells are discussed.
Collapse
Affiliation(s)
- A Verheul
- Department of Food Science, Agricultural University Wageningen, The Netherlands
| | | | | | | |
Collapse
|
27
|
Harel-Bronstein M, Dibrov P, Olami Y, Pinner E, Schuldiner S, Padan E. MH1, a second-site revertant of an Escherichia coli mutant lacking Na+/H+ antiporters (delta nhaA delta nhaB), regains Na+ resistance and a capacity to excrete Na+ in a delta microH(+)-independent fashion. J Biol Chem 1995; 270:3816-22. [PMID: 7876124 DOI: 10.1074/jbc.270.8.3816] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Escherichia coli mutant delta nhaA delta nhaB (EP432), which lacks the two specific Na+/H+ antiporter genes, is incapable of efficiently excreting Na+. Accordingly at low K+ (6 mM) medium, its intracellular Na+ concentration is only slightly lower (1.5-2x) than the extracellular concentration (50 mM), explaining the high sensitivity to Na+ (> or = 30 mM) of the mutant. This Na+ sensitivity is shown to be a powerful selection for spontaneous second-site suppressor mutations that allow growth on high Na+ (< or = 0.6 M) with a rate similar to that of the wild type. One such mutation, MH1, maps at 25.7 min on the E. coli chromosome. It confers Na+ but not Li+ resistance upon delta nhaA delta nhaB cells and exposes a Na(+)-excreting capacity, maintaining a Na+ gradient of about 8-10 (at 50 mM extracellular Na+), which is similar to that of the wild type. Although lower, Na+ excretion capacity is also observed in the delta nhaA delta nhaB mutant when grown in medium containing higher K+ (70 mM). This capacity is accompanied with a shift in the sensitivity of the mutant to higher Na+ concentrations (> or = 300 mM). Whereas Na+ excretion by a wild type carrying delta unc is uncoupler sensitive, that of MH1 delta unc is dependent on respiration in an uncoupler-insensitive fashion. It is concluded that under some conditions (high K+ in the medium or in MH1-like mutants), a primary pump driven by respiration is responsible for Na+ extrusion when the Na+/H+ antiporters are not active.
Collapse
Affiliation(s)
- M Harel-Bronstein
- Division of Microbial and Molecular Ecology, Hebrew University of Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
28
|
Versantvoort CH, Broxterman HJ, Lankelma J, Feller N, Pinedo HM. Competitive inhibition by genistein and ATP dependence of daunorubicin transport in intact MRP overexpressing human small cell lung cancer cells. Biochem Pharmacol 1994; 48:1129-36. [PMID: 7945406 DOI: 10.1016/0006-2952(94)90149-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In several multidrug resistant tumor cell lines without overexpression of P-glycoprotein (non-Pgp MDR), a decreased accumulation of drugs has been shown to contribute to resistance. We have recently reported that daunorubicin (DNR) accumulation was decreased in the multidrug resistance-associated protein overexpressing GLC4/ADR non-Pgp MDR small cell lung cancer cell line due to an enhanced energy-dependent efflux which could be inhibited by the isoflavonoid genistein. The purpose of this work was 2-fold: (i) to investigate the mechanism by which genistein inhibits the DNR efflux in the GLC4/ADR cells; and (ii) to characterize the dependence of DNR transport on ATP concentration in intact GLC4/ADR cells. The active transport of DNR in GLC4/ADR cells appeared to be a saturable process with an apparent Km of DNR of 1.4 +/- 0.4 microM. Genistein increased the apparent Km value of DNR, suggesting that this agent is a competitive inhibitor of DNR transport. These data provide additional evidence that energy-dependent DNR transport in GLC4/ADR cells is a protein-mediated process. In addition, genistein decreased cellular ATP concentration in a dose-dependent manner in sensitive as well as in resistant cells. Marked inhibition of DNR transport activity in intact GLC4/ADR cells was found when cellular ATP concentration was decreased below 2 mM by sodium azide or 2-deoxy-D-glucose. Thus, since DNR transport in intact GLC4/ADR is already inhibited at modest cellular ATP depletion, a limitation in ATP supply might open ways to make MDR cells more susceptible to drug toxicity.
Collapse
Affiliation(s)
- C H Versantvoort
- Department of Medical Oncology, Free University Hospital, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
Krämer R. Functional principles of solute transport systems: concepts and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1185:1-34. [PMID: 7511415 DOI: 10.1016/0005-2728(94)90189-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- R Krämer
- Institut für Biotechnologie 1, Forschungszentrum Jülich, Germany
| |
Collapse
|
30
|
Kashiwagi K, Miyamoto S, Nukui E, Kobayashi H, Igarashi K. Functions of potA and potD proteins in spermidine-preferential uptake system in Escherichia coli. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36522-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
31
|
Guihard G, Bénédetti H, Besnard M, Letellier L. Phosphate efflux through the channels formed by colicins and phage T5 in Escherichia coli cells is responsible for the fall in cytoplasmic ATP. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46772-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
32
|
Kerppola RE, Ames GF. Topology of the hydrophobic membrane-bound components of the histidine periplasmic permease. Comparison with other members of the family. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)45882-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
33
|
Ames GF. Bacterial periplasmic permeases as model systems for the superfamily of traffic ATPases, including the multidrug resistance protein and the cystic fibrosis transmembrane conductance regulator. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 137:1-35. [PMID: 1385348 DOI: 10.1016/s0074-7696(08)62672-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- G F Ames
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| |
Collapse
|
34
|
Hogg RW, Voelker C, Von Carlowitz I. Nucleotide sequence and analysis of the mgl operon of Escherichia coli K12. MOLECULAR & GENERAL GENETICS : MGG 1991; 229:453-9. [PMID: 1719366 DOI: 10.1007/bf00267469] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nucleotide sequence of the Escherichia coli K12 beta-methylgalactoside transport operon, mgl, was determined. Primer extension analysis indicated that the synthesis of mRNA initiates at guanine residue 145 of the determined sequence. The operon contains three open reading frames (ORF). The operator proximal ORF, mglB, encodes the galactose binding protein, a periplasmic protein of 332 amino acids including the 23 residue amino-terminal signal peptide. Following a 62 nucleotide spacer, the second ORF, mglA, is capable of encoding a protein of 506 amino acids. The amino-terminal and carboxyl-terminal halves of this protein are homologous to each other and each half contains a putative nucleotide binding site. The third ORF, mglC, is capable of encoding a hydrophobic protein of 336 amino acids which is thought to generate the transmembrane pore. The overall organization of the mglBAC operon and its potential to encode three proteins is similar to that of the ara FGH high affinity transport operon, located approximately 1 min away on the E. coli K12 chromosome.
Collapse
Affiliation(s)
- R W Hogg
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106
| | | | | |
Collapse
|
35
|
Valdivia RH, Wang L, Winans SC. Characterization of a putative periplasmic transport system for octopine accumulation encoded by Agrobacterium tumefaciens Ti plasmid pTiA6. J Bacteriol 1991; 173:6398-405. [PMID: 1655707 PMCID: PMC208972 DOI: 10.1128/jb.173.20.6398-6405.1991] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neoplastic crown gall tumors incited by Agrobacterium tumefaciens release novel amino acid or sugar derivatives known as opines, whose synthesis is directed by genes transferred to plant cells. Agrobacterium cells can transport and catabolize these compounds as sources of carbon and nitrogen. This article describes a region of the pTiA6 plasmid which is required for catabolism of the opine octopine and whose transcription is induced by octopine. This region of the plasmid contains four open reading frames, occQ, occM, occP, and occJ, which show homology to the family of so-called shock-sensitive permeases. TnphoA mutagenesis demonstrated that the OccJ and OccM proteins lie fully or partly in the periplasmic space. The OccJ protein was identified by electrophoresis and found to be fully localized in the periplasmic space. When these proteins were expressed in Escherichia coli, radiolabeled octopine became cell-associated.
Collapse
Affiliation(s)
- R H Valdivia
- Section of Microbiology, Cornell University, Ithaca, New York 14853
| | | | | |
Collapse
|
36
|
Schneider E, Walter C. A chimeric nucleotide-binding protein, encoded by a hisP-malK hybrid gene, is functional in maltose transport in Salmonella typhimurium. Mol Microbiol 1991; 5:1375-83. [PMID: 1787792 DOI: 10.1111/j.1365-2958.1991.tb00784.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have isolated a hybrid gene, composed of the first 455 nucleotides of hisP and nucleotides 275-1107 of malK, the genes coding for the nucleotide-binding components of the high-affinity transport systems for histidine and maltose in Salmonella typhimurium, respectively. The fusion had occurred by recombination within 11 homologous base pairs located between the two DNA fragments. In the chimeric protein peptidic motifs A and B, proposed to be part of the nucleotide-binding fold, originate from HisP and MalK, respectively. Plasmid pES42-39, harbouring the hybrid gene, was shown to complement only a malK mutation but failed to complement a hisP deletion mutation. The chimeric protein was identified by immunoblotting as a protein with an apparent molecular mass of 49kDa. Removal of the C-terminal 77 amino acid residues from the chimeric protein resulted in the loss of function in transport. In contrast, 51 amino acid residues could be removed from the C-terminus of wild-type MalK without any effect. Upon overproduction the chimeric protein, as wild-type MalK, inhibited expression of the malB regulon. However, both truncated proteins, when overproduced, did not exhibit this activity. Based on these results, a tentative model of the functional domains of MalK is presented.
Collapse
Affiliation(s)
- E Schneider
- Abteilung Mikrobiologie, Universität Osnabrück, Germany
| | | |
Collapse
|
37
|
Salmonella typhimurium histidine periplasmic permease mutations that allow transport in the absence of histidine-binding proteins. J Bacteriol 1991; 173:1444-51. [PMID: 1995591 PMCID: PMC207281 DOI: 10.1128/jb.173.4.1444-1451.1991] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Periplasmic transport systems consist of a membrane-bound complex and a periplasmic substrate-binding protein and are postulated to function by translocating the substrate either through a nonspecific pore or through specific binding sites located in the membrane complex. We have isolated mutants carrying mutations in one of the membrane-bound components of the histidine permease of Salmonella typhimurium that allow transport in the absence of both histidine-binding proteins HisJ and LAO (lysine-, arginine-, ornithine-binding protein). All of the mutations are located in a limited region of the nucleotide-binding component of the histidine permease, HisP. The mutants transported substrate in the absence of binding proteins only when the membrane-bound complex was produced in large amounts. At low (chromosomal) levels, the mutant complex was unable to transport substrate in the absence of binding proteins but transported it efficiently in the presence of HisJ. The alterations responsible for the mutations were identified by DNA sequencing; they are closely related to a group of hisP mutations isolated as suppressors of HisJ interaction mutations (G. F.-L. Ames and E. N. Spudich, Proc. Natl. Acad. Sci. USA 73:1877-1881, 1976). The hisP suppressor mutations behaved similarly to these newly isolated mutations despite the entirely different selection procedure. The results are consistent with the HisP protein carrying or contributing to the existence of a substrate-binding site that can be mutated to function in the absence of a binding protein.
Collapse
|
38
|
Mimura CS, Admon A, Hurt KA, Ames GF. The nucleotide-binding site of HisP, a membrane protein of the histidine permease. Identification of amino acid residues photoaffinity labeled by 8-azido-ATP. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)45405-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
39
|
Hoshino T, Kose K. Genetic analysis of the Pseudomonas aeruginosa PAO high-affinity branched-chain amino acid transport system by use of plasmids carrying the bra genes. J Bacteriol 1990; 172:5540-3. [PMID: 2120184 PMCID: PMC526864 DOI: 10.1128/jb.172.10.5540-5543.1990] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
About 30 mutants of Pseudomonas aeruginosa PAO defective in the high-affinity branched-chain amino acid transport system (LIV-I) were isolated by the selection for resistance to 4-aza-DL-leucine, a toxic leucine analog for LIV-I. All of the mutants were complemented by plasmid pKTH24, harboring the braC gene, which encodes the branched-chain amino acid-binding protein, and the four open reading frames named braD, braE, braF, and braG (T. Hoshino and K. Kose, J. Bacteriol. 172:5531-5539, 1990). We identified five cistrons corresponding to these bra genes by complementation analysis with various derivatives of pKTH24, confirming that the braD, braE, braF, and braG genes are required for the LIV-I transport system. We also found mutations that seem likely to be mutations in a promoter region for the bra genes and those with polarity in the intercistronic region between braC and braD. Analysis with an omega interposon showed that the bra genes are organized as an operon and are cotranscribed in the order braC-braD-braE-braF-braG from a promoter located in the 5'-flanking region of the braC gene.
Collapse
Affiliation(s)
- T Hoshino
- Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| | | |
Collapse
|
40
|
Ames GF, Mimura CS, Shyamala V. Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to human: Traffic ATPases. FEMS Microbiol Rev 1990; 6:429-46. [PMID: 2147378 DOI: 10.1111/j.1574-6968.1990.tb04110.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bacterial periplasmic transport systems are complex permeases composed of a soluble substrate-binding receptor and a membrane-bound complex containing 2-4 proteins. Recent developments have clearly demonstrated that these permeases are energized by the hydrolysis of ATP. Several in vitro systems have allowed a detailed study of the essential parameters functioning in these permeases. Several of the component proteins have been shown to interact with each other and the actual substrate for the transport process has been shown to be the liganded soluble receptor. The affinity of this substrate for the membrane complex is approximately 10 microM. The involvement of ATP in energy coupling is mediated by one of the proteins in the membrane complex. For each specific permease, this protein is a member of a family of conserved proteins which bind ATP. The similarity between the members of this family is high and extends itself beyond the consensus motifs for ATP binding. Interestingly, over the last few years, several eukaryotic membrane-bound proteins have been discovered which bear a high level of homology to the family of the conserved components of bacterial periplasmic permeases. Most of these proteins are known to, or can be inferred to participate in a transport process, such as in the case of the multidrug resistance protein (MDR), the STE6 gene product of yeast, and possibly the cystic fibrosis protein. This homology suggests a similarity in the mechanism of action and possibly a common evolutionary origin. This exciting development will stimulate progress in both the prokaryotic and eukaryotic areas of research by the use of overlapping procedures and model building. We propose that this universal class of permeases be called 'Traffic ATPases' to distinguish them from other types of transport systems, and to highlight their involvement in the transport of a vast variety of substrates in either direction relative to the cell interior and their use of ATP as energy source.
Collapse
Affiliation(s)
- G F Ames
- Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|
41
|
Higgins CF, Hyde SC, Mimmack MM, Gileadi U, Gill DR, Gallagher MP. Binding protein-dependent transport systems. J Bioenerg Biomembr 1990; 22:571-92. [PMID: 2229036 DOI: 10.1007/bf00762962] [Citation(s) in RCA: 215] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacterial binding protein-dependent transport systems are the best characterized members of a superfamily of transporters which are structurally, functionally, and evolutionary related to each other. These transporters are not only found in bacteria but also in yeasts, plants, and animals including man, and include both import and export systems. Although any single system is relatively specific, different systems handle very different substrates which can be inorganic ions, amino acids, sugars, large polysaccharides, or even proteins. Some are of considerable medical importance, including Mdr, the protein responsible for multidrug resistance in human tumors, and the product of the cystic fibrosis locus. In this article we review the current state of knowledge on the structure and function of the protein components of these transporters, the mechanism by which transport is mediated, and the role of ATP in the transport process.
Collapse
Affiliation(s)
- C F Higgins
- ICRF Laboratories, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, England
| | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- G F Ames
- Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720
| | | |
Collapse
|
43
|
Abstract
Escherichia coli transports inorganic phosphate (Pi) by the low-affinity transport system, Pit. When the level of the external Pi is lower than 20 microM, another transport system, Pst, is induced with a Kt of 0.25 microM. An outer-membrane porin, PhoE, with a Km of about 1 microM is also induced. The outer membrane allows the intake of organic phosphates which are degraded to Pi by phosphatases in the periplasm. The Pi-binding protein will capture the free Pi produced in the periplasm and direct it to the transmembrane channel of the cytoplasmic membrane. The channel consists of two proteins, PstA and PstC, which have six and five transmembrane helices, respectively. On the cytoplasmic side of the membrane the channel is linked to the PstB protein, which carries a nucleotide (probably ATP)-binding site. PstB probably provides the energy required by the channel to free Pi. The Pst system has two functions in E. coli: (i) the transport of Pi, and (ii) the negative regulation of the phosphate regulon (a complex of 20 proteins mostly related to organic phosphate transport). It is remarkable that these two functions are not related, since the repressibility of the regulon depends on the integral structure of Pst (PiBP + PstA + PstC + PstB) and not on the Pi transported. Another gene of the pst operon, phoU, produces a protein involved in the negative regulation of the Pho regulon, but the mechanism of this function has not been explained. Thus the regulatory function of the Pst system remains obscure. Its basal level, present when Pi is abundant, is sufficient to repress the Pho regulon but the negative regulatory function is lost upon Pi starvation.
Collapse
Affiliation(s)
- N N Rao
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
44
|
Sirko A, Hryniewicz M, Hulanicka D, Böck A. Sulfate and thiosulfate transport in Escherichia coli K-12: nucleotide sequence and expression of the cysTWAM gene cluster. J Bacteriol 1990; 172:3351-7. [PMID: 2188958 PMCID: PMC209146 DOI: 10.1128/jb.172.6.3351-3357.1990] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The nucleotide sequence of the sulfate and thiosulfate transport gene cluster has been determined and located 3' to the gene (cysP) encoding the thiosulfate-binding protein. Four open reading frames, designated cysT, cysW, cysA, and cysM, have been identified. Similarities in primary structure were observed between (i) the deduced amino acid sequences of CysT and CysW with membrane-bound components of other binding protein-dependent transport systems, (ii) that of the CysA sequence with the "conserved" component of such systems, and (iii) that of the CysM sequence with O-acetylserine sulfhydrylase A (cysK gene product) and the beta-subunit of tryptophan synthase (coded by trpB). Expression of the four genes was analyzed in the T7 promoter-polymerase system.
Collapse
Affiliation(s)
- A Sirko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw
| | | | | | | |
Collapse
|
45
|
Lee TY, Makino K, Shinagawa H, Nakata A. Overproduction of acetate kinase activates the phosphate regulon in the absence of the phoR and phoM functions in Escherichia coli. J Bacteriol 1990; 172:2245-9. [PMID: 2158965 PMCID: PMC208855 DOI: 10.1128/jb.172.5.2245-2249.1990] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A DNA fragment of Escherichia coli cloned on pBR322 elevated the production of alkaline phosphatase and phosphate-binding protein in a phoR phoM strain. Nucleotide sequence analysis and enzyme assays revealed that the DNA fragment contained the ackA gene, which codes for acetate kinase. A high gene dosage of ackA was needed to induce the production of alkaline phosphatase and phosphate-binding protein in this strain. Overexpression of ackA elevated the intracellular ATP concentration, an effect that might be related to activation of the phosphate regulon in the phoR phoM strain.
Collapse
Affiliation(s)
- T Y Lee
- Department of Experimental Chemotherapy, Osaka University, Japan
| | | | | | | |
Collapse
|
46
|
Affiliation(s)
- G F Ames
- Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720
| |
Collapse
|
47
|
Affiliation(s)
- C F Higgins
- ICRF Laboratories, University of Oxford, John Radcliffe Hospital, UK
| |
Collapse
|
48
|
Celis RT. Mutant of Escherichia coli K-12 with defective phosphorylation of two periplasmic transport proteins. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40086-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
Schneider E, Bishop L, Schneider E, Alfandary V, Ames GF. Fine-structure genetic map of the maltose transport operon of Salmonella typhimurium. J Bacteriol 1989; 171:5860-5. [PMID: 2553663 PMCID: PMC210446 DOI: 10.1128/jb.171.11.5860-5865.1989] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have constructed a fine-structure genetic map of the maltose transport operon in Salmonella typhimurium. We have isolated mal mutants by using indicator plates, penicillin selection, or a proton suicide technique. Mutants were obtained as spontaneous events or were induced by chemical mutagenesis and transposon insertion. Tn10 and Mu d(lac Ap)1 insertion mutations were used to create deletions. Mutations were also obtained in a gene that is equivalent to lamB in Escherichia coli, which codes for the lambda bacteriophage receptor. The gene products in the mutants were characterized by sodium dodecyl sulfate-polyacrylamide-gel electrophoresis and immunoblotting. Our data indicate that the location of this operon on the Salmonella chromosome as well as the gene order and its orientation are the same as those in E. coli. This map will be useful in studying the mechanism of periplasmic transport in S. typhimurium.
Collapse
Affiliation(s)
- E Schneider
- Department of Biochemistry, University of California, Berkeley 94720
| | | | | | | | | |
Collapse
|
50
|
Hoshino T, Kose K. Cloning and nucleotide sequence of braC, the structural gene for the leucine-, isoleucine-, and valine-binding protein of Pseudomonas aeruginosa PAO. J Bacteriol 1989; 171:6300-6. [PMID: 2509433 PMCID: PMC210503 DOI: 10.1128/jb.171.11.6300-6306.1989] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The gene for the leucine-, isoleucine-, and valine-binding protein (LIVAT-BP) in Pseudomonas aeruginosa PAO was isolated, and its nucleotide sequence was determined. The gene consisted of 1,119 nucleotides specifying a protein of 373 amino acid residues. Determination of the N-terminal amino acid sequence of the LIVAT-BP purified from P. aeruginosa shock fluid suggested that the N-terminal 26 residues of the gene product are cleaved off posttranslationally, showing the characteristic features of procaryotic signal peptides. The amino acid composition of the mature product predicted from the nucleotide sequence was in good agreement with that of the purified LIVAT-BP. The plasmid carrying the LIVAT-BP gene restored the activity of the high-affinity branched-chain amino acid transport system (the leucine, isoleucine, valine [LIV-I] transport system) in the braC310 mutant of P. aeruginosa, confirming that braC is the structural gene for LIVAT-BP. The mutant LIVAT-BP lacking a 16-amino-acid peptide in the middle was found to be functional in the LIV-I transport system. LIVAT-BP showed extensive homology (51% identical) to the LIV- and leucine-specific-binding proteins of Escherichia coli K-12, which are coded for by the livJ and livK genes, respectively, suggesting that the role of the proteins in the LIV-I transport systems is analogous in both organisms.
Collapse
Affiliation(s)
- T Hoshino
- Laboratory of Molecular Cellular Biology, Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| | | |
Collapse
|