1
|
Mehrotra A, Trigun SK. Moderate grade hyperammonemia activates lactate dehydrogenase-4 and 6-phosphofructo-2-kinase to support increased lactate turnover in the brain slices. Mol Cell Biochem 2013; 381:157-61. [PMID: 23703029 DOI: 10.1007/s11010-013-1698-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 05/16/2013] [Indexed: 01/25/2023]
Abstract
Rapid metabolism of lactate is an important aspect of bioenergetic adaptation in the brain during non-physiological conditions. The low grade hyperammonemia (HA) is a common condition in the patients with chronic hepatic encephalopathy (HE); however, biochemistry of lactate turnover during low grade HA remains poorly defined. The present article describes profile of lactate dehydrogenase (LDH) isozymes vis-a-vis lactate level in the brain slices exposed with 0.1-0.5 mM ammonia, found to exist in the brain during chronic HE. A significant increment in LDH activity coincided with a similar increase in lactate level in the brain slices exposed with 0.5 mM ammonia. This was consistent with a selective increment of LDH-4 that synthesizes lactate from pyruvate with a concomitant decline in LDH-1 which catalyzes conversion of lactate to pyruvate; resulting into ~3-fold increase in LDH-4/LDH-1 ratio in those brain slices. The PFK2 domain of PFK2/FBPase2 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase) regulates glycolysis to maintain the pyruvate pool for lactate synthesis. The PFK2 expression was also observed to be increased ~2-fold (P < 0.001) in 0.5 mM ammonia treated brain slices. These findings provide enzymatic regulation of increased lactate turnover in the brain exposed with moderate HA.
Collapse
Affiliation(s)
- Aditi Mehrotra
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
2
|
Singh S, Trigun SK. Activation of neuronal nitric oxide synthase in cerebellum of chronic hepatic encephalopathy rats is associated with up-regulation of NADPH-producing pathway. THE CEREBELLUM 2011; 9:384-97. [PMID: 20405262 DOI: 10.1007/s12311-010-0172-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cerebellum-associated functions get affected during mild hepatic encephalopathy (MHE) in patients with chronic liver failure (CLF). Involvement of nitrosative and antioxidant factors in the pathogenesis of chronic hepatic encephalopathy is an evolving concept and needs to be defined in a true CLF animal model. This article describes profiles of NADPH-dependent neuronal nitric oxide synthase (nNOS) and those of glutathione peroxidase and glutathione reductase (GR) vis-a-vis regulation of NADPH-producing pathway in the cerebellum of CLF rats induced by administration of thioacetamide (100 mg kg⁻¹ b.w., i.p.) up to 10 days and confirming MHE on Morris water maze tests. Significant increases in the expression of nNOS protein and nitric oxide (NOx) level coincided with a similar increment in NADPH-diaphorase activity in the cerebellum of CLF rats. Glutathione peroxidase and GR utilize NADPH to regenerate reduced glutathione (GSH) in the cells. Both these enzymes and GSH level were found to be static and thus suggested efficient turnover of GSH in the cerebellum of MHE rats. Relative levels of glucose-6-phosphate dehydrogenase (G6PD) vs. phosphofructokinase 2 (PFK2) determine the rate of pentose phosphate pathway (PPP) responsible to synthesize NADPH. The cerebellum of CLF rats showed overactivation of G6PD with a significant decline in the expression of PFK2 and thus suggested activation of PPP in the cerebellum during MHE. It is concluded that concordant activations of PPP and nNOS in cerebellum of MHE rats could be associated with the implication of NOx in the pathogenesis of MHE.
Collapse
Affiliation(s)
- Santosh Singh
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Studies in Zoology, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
3
|
Kim SG, Cavalier M, El-Maghrabi MR, Lee YH. A direct substrate-substrate interaction found in the kinase domain of the bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. J Mol Biol 2007; 370:14-26. [PMID: 17499765 DOI: 10.1016/j.jmb.2007.03.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 03/13/2007] [Accepted: 03/14/2007] [Indexed: 11/24/2022]
Abstract
To understand the molecular basis of a phosphoryl transfer reaction catalyzed by the 6-phosphofructo-2-kinase domain of the hypoxia-inducible bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3), the crystal structures of PFKFB3AMPPCPfructose-6-phosphate and PFKFB3ADPphosphoenolpyruvate complexes were determined to 2.7 A and 2.25 A resolution, respectively. Kinetic studies on the wild-type and site-directed mutant proteins were carried out to confirm the structural observations. The experimentally varied liganding states in the active pocket cause no significant conformational changes. In the pseudo-substrate complex, a strong direct interaction between AMPPCP and fructose-6-phosphate (Fru-6-P) is found. By virtue of this direct substrate-substrate interaction, Fru-6-P is aligned with AMPPCP in an orientation and proximity most suitable for a direct transfer of the gamma-phosphate moiety to 2-OH of Fru-6-P. The three key atoms involved in the phosphoryl transfer, the beta,gamma-phosphate bridge oxygen atom, the gamma-phosphorus atom, and the 2-OH group are positioned in a single line, suggesting a direct phosphoryl transfer without formation of a phosphoenzyme intermediate. In addition, the distance between 2-OH and gamma-phosphorus allows the gamma-phosphate oxygen atoms to serve as a general base catalyst to induce an "associative" phosphoryl transfer mechanism. The site-directed mutant study and inhibition kinetics suggest that this reaction will be catalyzed most efficiently by the protein when the substrates bind to the active pocket in an ordered manner in which ATP binds first.
Collapse
Affiliation(s)
- Song-Gun Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | |
Collapse
|
4
|
Manes NP, El-Maghrabi MR. The kinase activity of human brain 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is regulated via inhibition by phosphoenolpyruvate. Arch Biochem Biophys 2005; 438:125-36. [PMID: 15896703 DOI: 10.1016/j.abb.2005.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 04/14/2005] [Accepted: 04/14/2005] [Indexed: 12/31/2022]
Abstract
The two enzymatic activities of the highly conserved catalytic core of 6PF2K/Fru-2,6-P(2)ase are thought to be reciprocally regulated by the amino- and carboxy-terminal regions unique to each isoform. In this study, we describe the recombinant expression, purification, and kinetic characterization of two human brain 6PF2K/Fru-2,6-P(2)ase splice variants, HBP1 and HBP2. Interestingly, both lack an arginine which is highly conserved among other tissue isoforms, and which is understood to be critical to the fructose-2,6-bisphosphatase mechanism. As a result, the phosphatase activity of both HBP isoforms is negligible, but we found that it could be recovered by restoration of the arginine by site directed mutagenesis. We also found that AMP activated protein kinase and protein kinases A, B, and C catalyzed the phosphorylation of Ser-460 of HBP1, and that in addition both isoforms are phosphorylated at a second, as yet undetermined site by protein kinase C. However, none of the phosphorylations had any effect on the intrinsic kinetic characteristics of either enzymatic activity, and neither did point mutation (mimicking phosphorylation), deletion, and alternative-splice modification of the HBP1 carboxy-terminal region. Instead, these phosphorylations and mutations decreased the sensitivity of the 6PF2K to a potent allosteric inhibitor, phosphoenolpyruvate, which appears to be the major regulatory mechanism.
Collapse
Affiliation(s)
- Nathan P Manes
- Department of Physiology and Biophysics, Stony Brook University, NY 11794-8661, USA
| | | |
Collapse
|
5
|
Ikemoto A, Ueda T. Identification of a nerve ending-enriched 29-kDa protein, labeled with [3-32P]1,3-bisphosphoglycerate, as monophosphoglycerate mutase: inhibition by fructose-2,6-bisphosphate via enhancement of dephosphorylation. J Neurochem 2003; 85:1382-93. [PMID: 12787058 DOI: 10.1046/j.1471-4159.2003.01777.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glucose metabolism is of vital importance in normal brain function. Evidence indicates that glycolysis, in addition to production of ATP, plays an important role in maintaining normal synaptic function. In an effort to understand the potential involvement of a glycolytic intermediate(s) in synaptic function, we have prepared [3-32P]1,3-bisphosphoglycerate and [32P]3-phosphoglycerate and sought their interaction with a specific nerve-ending protein. We have found that a 29-kDa protein is the major component labeled with either [3-32P]1,3-bisphosphoglycerate or [32P]3-phosphoglycerate. The protein was identified as monophosphoglycerate mutase (PGAM). This labeling was remarkably high in the brain and synaptosomal cytosol fraction, consistent with the importance of glycolysis in synaptic function. Of interest, fructose-2,6-bisphosphate (Fru-2,6-P2) inhibited PGAM phosphorylation and enzyme activity. Moreover, Fru-2,6-P2 potently stimulated release of [32P]phosphate from the 32P-labeled PGAM (EC50 = 1 microM), suggesting that apparent reduction of PGAM phosphorylation and enzyme activity by Fru-2,6-P2 may be due to stimulation of dephosphorylation of PGAM. The significance of these findings is discussed.
Collapse
Affiliation(s)
- Atsushi Ikemoto
- Mental Health Research Institute, The University of Michigan Medical School, Ann Arbor, Michigan 48109-0669, USA
| | | |
Collapse
|
6
|
Lee YH, Li Y, Uyeda K, Hasemann CA. Tissue-specific structure/function differentiation of the liver isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. J Biol Chem 2003; 278:523-30. [PMID: 12379646 DOI: 10.1074/jbc.m209105200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structures of the human liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in three different liganding states were determined and compared with those of the rat testis isozyme. A set of amino acid sequence heterogeneity from the two distinct genes encoding the two different tissue isozymes leads to both global and local conformational differences that may cause the differences in catalytic properties of the two isozymes. The sequence differences in a beta-hairpin loop in the kinase domain causes a translational shift of several hydrophobic interactions in the dimeric contact region, and its propagation to the domains interface results in a 5 degrees twist of the entire bisphosphatase domain relative to the kinase domain. The bisphosphatase domain twist allows the dimeric interactions between the bisphosphatase domains, which are negligible in the testis enzyme, and as a result, the conformational stability of the domain is increased. Sequence polymorphisms also confer small but significant structural dissimilarities in the substrate-binding loops, allowing the differentiated catalytic properties between the two different tissue-type isozymes. Whereas the polymorphic sequence at the bisphosphatase-active pocket suggests a more suitable substrate binding, a similar extent of sequence differences at the kinase-active pocket confers a different mechanism of substrates bindings to the kinase-active pocket. It includes the ATP-sensitive unwinding of the switch helix alpha5, which is a characteristic ATP-dependent conformational change in the testis form. The sequence-dependent structural difference disallows the liver kinase to follow the ATP-switch mechanism. Altogether these suggest that the liver isoform has structural features more appropriate for an elevated bisphosphatase activity, compared with that of the testis form. The structural predisposition for bisphosphatase activity in the liver isozyme is consistent with the liver-unique glucose metabolic pathway, gluconeogenesis.
Collapse
Affiliation(s)
- Yong-Hwan Lee
- Structural Biology Core, Molecular Biology, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | | | |
Collapse
|
7
|
Kessler R, Eschrich K. Splice isoforms of ubiquitous 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in human brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 87:190-5. [PMID: 11245921 DOI: 10.1016/s0169-328x(01)00014-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In human brain we were able to demonstrate sequence diversity of the ubiquitous 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2). Six different isoforms of PFK-2/FBPase-2, two of which are identical with the ubiquitous PFK-2/FBPase-2 and the inducible PFK-2, respectively, could be identified. The heterogeneity of human brain PFK-2/FBPase-2 isoforms is generated by alternative splicing. Three hitherto unrecognized exons were detected. The multiple PFK-2/FBPase-2 transcripts encode proteins which differ with respect to their length and to the amino acid composition of the carboxyl-termini. The isoform pattern of ubiquitous PFK-2/FBPase-2 is more complex in human brain than in skeletal muscle and liver.
Collapse
Affiliation(s)
- R Kessler
- Institute of Biochemistry, School of Medicine, University of Leipzig, Liebigstrasse 16, Leipzig, 04103, Germany
| | | |
Collapse
|
8
|
Jedrzejas MJ. Structure, function, and evolution of phosphoglycerate mutases: comparison with fructose-2,6-bisphosphatase, acid phosphatase, and alkaline phosphatase. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 73:263-87. [PMID: 10958932 DOI: 10.1016/s0079-6107(00)00007-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- M J Jedrzejas
- Department of Microbiology, University of Alabama at Birmingham, 933 19th Street South, CHSB-19 room 545, Birmingham, AL 35-294-2041, USA.
| |
Collapse
|
9
|
Okar DA, Manzano A, Navarro-Sabatè A, Riera L, Bartrons R, Lange AJ. PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem Sci 2001; 26:30-5. [PMID: 11165514 DOI: 10.1016/s0968-0004(00)01699-6] [Citation(s) in RCA: 245] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Fructose-2,6-bisphosphate is responsible for mediating glucagon-stimulated gluconeogenesis in the liver. This discovery has led to the realization that this compound plays a significant role in directing carbohydrate fluxes in all eukaryotes. Biophysical studies of the enzyme that both synthesizes and degrades this biofactor have yielded insight into its molecular enzymology. Moreover, the metabolic role of fructose-2,6-bisphosphate has great potential in the treatment of diabetes.
Collapse
Affiliation(s)
- D A Okar
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
10
|
Zhu Z, Ling S, Yang QH, Li L. The difference in the carboxy-terminal sequence is responsible for the difference in the activity of chicken and rat liver fructose-2,6-bisphosphatase. Biol Chem 2000; 381:1195-202. [PMID: 11209754 DOI: 10.1515/bc.2000.147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The fructose-2,6-bisphosphatase domain of the bifunctional chicken liver enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase shares approximately 95% amino acid sequence homology with that of the rat enzyme. However, these two enzymes are significantly different in their phosphatase activities. In this report, we show that the COOH-terminal 25 amino acids of the two enzymes are responsible for the different enzymatic activities. Although these 25 amino acids are not required for the phosphatase activity, their removal diminishes the differences in the activities between the two enzymes. In addition, two chimeric molecules (one consisting of the catalytic core of the chicken bisphosphatase domain and the rat COOH-terminal 25 amino acids, and the other consisting of most of the intact chicken enzyme and the rat COOH-terminal 25 amino acids) showed the same kinetic properties as the rat enzyme. Furthermore, substitution of the residues Pro456Pro457Ala458 of the chicken enzyme with GluAlaGlu, the corresponding sequence in the rat liver enzyme, yields a chicken enzyme that behaves like the rat enzyme. These results demonstrate that the different bisphosphatase activities of the chicken and rat liver bifunctional enzymes can be attributed to the differences in their COOH-terminal amino acid sequences, particularly the three residues.
Collapse
Affiliation(s)
- Z Zhu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
| | | | | | | |
Collapse
|
11
|
Goren N, Manzano A, Riera L, Ambrosio S, Ventura F, Bartrons R. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase expression in rat brain during development. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 75:138-42. [PMID: 10648897 DOI: 10.1016/s0169-328x(99)00319-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study reports the expression of the ubiquitous 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene (PFKFB3) (PFK-2/FBPase-2) in different stages of rat brain development. Northern blot and RT-PCR analysis demonstrated that ubiquitous PFK-2/FBPase-2 is expressed in rat brain from embryonic to adult life and shows a transient increase 1 day before birth, coincident with the maximum concentration of Fru-2,6-P(2) and PFK-2 activity. The levels of brain PFK-2/FBPase-2 gene expression as well as the enzymatic activity and the concentration of Fru-2,6-P(2) appear to be remarkably constant during adult life, without significant differences in the brain hippocampus, cortex, cerebellum or striatum areas.
Collapse
Affiliation(s)
- N Goren
- Cátedra de Farmacología, Facultad de Odontología, Universidad de Buenos Aires, CEFYBO-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
12
|
Manzano A, Pérez JX, Nadal M, Estivill X, Lange A, Bartrons R. Cloning, expression and chromosomal localization of a human testis 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene. Gene 1999; 229:83-9. [PMID: 10095107 DOI: 10.1016/s0378-1119(99)00037-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
6-Phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFK-2/FBPase-2) is a bifunctional enzyme responsible for the synthesis and breakdown of Fru-2,6-P2, a key metabolite in the regulation of glycolysis. Several genes encode distinct PFK-2/FBPase-2 isozymes that differ in their tissue distribution and enzyme regulation. In this paper, we present the isolation of a cDNA from a human testis cDNA library that encodes a PFK-2/FBPase-2 isozyme. Sequencing data show an open reading frame of 1407 nucleotides that codifies for a protein of 469 amino acids. This has a calculated molecular weight of 54kDa and 97% similarity with rat testis PFK-2/FBPase-2, with complete conservation of the amino acid residues involved in the catalytic mechanism. Fluorescence in-situ hybridization (FISH) localized testis PFK-2/FBPase-2 gene (PFKFB4) in human chromosome 3 at bands p21-p22. A Northern blot analysis of different rat tissues showed the presence of a 2.4-kb mRNA expressed specifically in testis. In mammalian COS-1 cells, the human testis cDNA drives expression of an isozyme with a molecular weight of 55kDa. This isozyme shows clear PFK-2 activity. Taken together, these results provide evidence for a new PFK-2/FBPase-2 gene coding for a human testis isozyme.
Collapse
Affiliation(s)
- A Manzano
- Unitat de Bioquímica, Campus de Bellvitge, U.B.C/Feixa Llarga sn E-08907, L'Hospitalet, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Metón I, Caseras A, Mediavilla D, Fernández F, Baanante IV. Molecular cloning of a cDNA encoding 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from liver of Sparus aurata: nutritional regulation of enzyme expression. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1444:153-65. [PMID: 10023046 DOI: 10.1016/s0167-4781(98)00270-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A cDNA clone encoding full-length 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF-2-K/Fru-2, 6-P2ase) was isolated and sequenced from a Sparus aurata liver cDNA library. The 2527 bp nucleotide sequence of the cDNA contains a 73 bp 5'-untranslated region (5'-UTR), an open reading frame that encodes a 469 amino acid protein and 1041 bp at the 3'-UTR. The deduced amino acid sequence is the first inferred 6PF-2-K/Fru-2, 6-P2ase in fish. The kinase and bisphosphatase domains, where the residues described as crucial for the mechanism of reaction of the bifunctional enzyme are located, present a high degree of homology with other liver isoenzymes. However, within the first 30 amino acids at the N-terminal regulatory domain of the fish enzyme a low homology is found. Nutritional regulation of the 6-phosphofructo-2-kinase activity, together with immunodetectable protein and mRNA levels of 6PF-2-K/Fru-2,6-P2ase, was observed after starvation and refeeding. In contrast to results previously described for rat liver, the decrease in immunodetectable protein and kinase activity caused by starvation was associated in the teleostean fish to a decrease in mRNA levels.
Collapse
Affiliation(s)
- I Metón
- Departament de Bioquímica, Facultat de Farmàcia, Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | | | | | | | | |
Collapse
|
14
|
Batra RS, Brown R, Brown GK, Craig IW. Molecular cloning and tissue-specific expression of mouse kidney 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. FEBS Lett 1996; 393:167-73. [PMID: 8814283 DOI: 10.1016/0014-5793(96)00878-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A 1932 bp cDNA clone encoding a novel isozyme of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (PFK-2/ FBPase-2) was isolated from a mouse kidney cDNA library. The sequence encodes 519 amino acids and, based on homology to rat heart genomic sequence, appears to be the product of alternative splicing from PFK-2/FBPase-2 gene B with an extended version of exon 15. Northern blot analysis indicated that this clone corresponds to an 8 kb mRNA expressed in multiple tissues, with the strongest signal in kidney, and detects several additional transcripts which may be alternatively spliced from gene B.
Collapse
Affiliation(s)
- R S Batra
- Department of Biochemistry, University of Oxford, UK
| | | | | | | |
Collapse
|
15
|
Hasemann CA, Istvan ES, Uyeda K, Deisenhofer J. The crystal structure of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase reveals distinct domain homologies. Structure 1996; 4:1017-29. [PMID: 8805587 DOI: 10.1016/s0969-2126(96)00109-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Glucose homeostasis is maintained by the processes of glycolysis and gluconeogenesis. The importance of these pathways is demonstrated by the severe and life threatening effects observed in various forms of diabetes. The bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase catalyzes both the synthesis and degradation of fructose-2,6-bisphosphate, a potent regulator of glycolysis. Thus this bifunctional enzyme plays an indirect yet key role in the regulation of glucose metabolism. RESULTS We have determined the 2.0 A crystal structure of the rat testis isozyme of this bifunctional enzyme. The enzyme is a homodimer of 55 kDa subunits arranged in a head-to-head fashion, with each monomer consisting of independent kinase and phosphatase domains. The location of ATPgammaS and inorganic phosphate in the kinase and phosphatase domains, respectively, allow us to locate and describe the active sites of both domains. CONCLUSIONS The kinase domain is clearly related to the superfamily of mononucleotide binding proteins, with a particularly close relationship to the adenylate kinases and the nucleotide-binding portion of the G proteins. This is in disagreement with the broad speculation that this domain would resemble phosphofructokinase. The phosphatase domain is structurally related to a family of proteins which includes the cofactor independent phosphoglycerate mutases and acid phosphatases.
Collapse
Affiliation(s)
- C A Hasemann
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75235-8884, USA.
| | | | | | | |
Collapse
|
16
|
Nissler K, Petermann H, Wenz I, Brox D. Fructose 2,6-bisphosphate metabolism in Ehrlich ascites tumour cells. J Cancer Res Clin Oncol 1995; 121:739-45. [PMID: 7499445 DOI: 10.1007/bf01213320] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cancer cell energy metabolism is characterized by a high glycolytic rate, which is maintained under aerobic conditions. In Ehrlich ascites tumour cells, the concentration of fructose 2,6-bisphosphate (Fru-2,6-P2), the powerful activator of 6-phosphofructo-1-kinase, is tenfold increased. The bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2), synthesizing and degrading Fru-2,6-P2, was characterized. The molecular mass is 120 kDa. The dependence of PFK-2 activity on the substrate concentrations is hyperbolic (Km for Fru-6-P = 0.09 mM; Km for ATP = 0.7 mM), while the dependence of the FBPase-2 activity on the concentrations of Fru-2,6-P2 is sigmoidal (K0.5 for Fru-2,6-P2 = 4 microM). The PFK-2/FBPase-2 activity ratio is 1. PFK-2 activity is inhibited by citrate (I0.5 = 0.17 mM) and phosphoenolpyruvate (I0.5 = 0.08 mM) but only weakly by glycerol 3-phosphate (I0.5 = 1.57 mM). In contrast to the liver enzyme, the activity of tumour PFK-2/FBPase-2 is not influenced by the action of cAMP-dependent protein kinase. The kinetic properties as well as ion-exchange chromatography pattern differ from their normal counterparts in liver and muscle. The properties are likely to contribute to the maintenance of the high glycolytic rate in these tumour cells.
Collapse
Affiliation(s)
- K Nissler
- Institute of Biochemistry, Medical Faculty, Friedrich Schiller University, Jena, Germany
| | | | | | | |
Collapse
|
17
|
Kurland IJ, Pilkis SJ. Covalent control of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: insights into autoregulation of a bifunctional enzyme. Protein Sci 1995; 4:1023-37. [PMID: 7549867 PMCID: PMC2143155 DOI: 10.1002/pro.5560040601] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The hepatic bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF-2-K/Fru-2,6-P2ase), E.C. 2.7-1-105/E.C. 3-1-3-46, is one member of a family of unique bifunctional proteins that catalyze the synthesis and degradation of the regulatory metabolite fructose-2,6-bisphosphate (Fru-2,6-P2). Fru-2,6-P2 is a potent activator of the glycolytic enzyme 6-phosphofructo-1-kinase and an inhibitor of the gluconeogenic enzyme fructose-1,6-bisphosphatase, and provides a switching mechanism between these two opposing pathways of hepatic carbohydrate metabolism. The activities of the hepatic 6PF-2-K/Fru-2,6-P2ase isoform are reciprocally regulated by a cyclic AMP-dependent protein kinase (cAPK)-catalyzed phosphorylation at a single NH2-terminal residue, Ser-32. Phosphorylation at Ser-32 inhibits the kinase and activates the bisphosphatase, in part through an electrostatic mechanism. Substitution of Asp for Ser-32 mimics the effects of cAPK-catalyzed phosphorylation. In the dephosphorylated homodimer, the NH2- and COOH-terminal tail regions also have an interaction with their respective active sites on the same subunit to produce an autoregulatory inhibition of the bisphosphatase and activation of the kinase. In support of this hypothesis, deletion of either the NH2- or COOH-terminal tail region, or both regions, leads to a disruption of these interactions with a maximal activation of the bisphosphatase. Inhibition of the kinase is observed with the NH2-truncated forms, in which there is also a diminution of cAPK phosphorylation to decrease the Km for Fru-6-P. Phosphorylation of the bifunctional enzyme by cAPK disrupts these autoregulatory interactions, resulting in inhibition of the kinase and activation of the bisphosphatase. Therefore, effects of cyclic AMP-dependent phosphorylation are mediated by a combination of electrostatic and autoregulatory control mechanisms.
Collapse
Affiliation(s)
- I J Kurland
- Department of Physiology, State University of New York at Stony Brook 11794-8661, USA
| | | |
Collapse
|
18
|
Evidence for NH2- and COOH-terminal interactions in rat 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)89482-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Espino A, Tortosa A, Bendahan G, Bartrons R, Calopa M, Ferrer I, Ambrosio S. Stereotaxic administration of 1-methyl-4-phenylpyridinium ion (MPP+) decreases striatal fructose 2,6-bisphosphate in rats. J Neurochem 1994; 62:1913-20. [PMID: 8158139 DOI: 10.1046/j.1471-4159.1994.62051913.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The stereotaxic administration of 1-methyl-4-phenylpyridinium ion (MPP+) into the neostriatum of male rats caused a lesion that resulted in a large dose-dependent loss of striatal fructose 2,6-bisphosphate; initial values were restored 5 days after the treatment. This effect was not protected by systemic administration of MK-801 or by nitroarginine. The content of hexose 6-phosphates and ATP was also reduced by MPP+ treatment, whereas lactate was increased. Biochemical and histological results suggested that MPP+ caused a nonselective cell death, followed by a pronounced astroglial response, parallel to fructose 2,6-bisphosphate recovery. The stereotaxic administration of rotenone showed a different time effect on fructose 2,6-bisphosphate cerebral content, with a significantly faster recovery. These results indicate that cerebral fructose 2,6-bisphosphate may be a sensitive metabolite related to brain damage caused by potent neurotoxins such as MPP+. On the other hand, they show that MPP+ acts in the brain through a quick, strong cytotoxic mechanism, which probably involves mechanisms other than mitochondrial chain blockage.
Collapse
Affiliation(s)
- A Espino
- Unitat de Bioquímica, Universitat de Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Mechanism of modulation of rat liver fructose-2,6-bisphosphatase by nucleoside triphosphates. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)78083-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Kretschmer M, Langer C, Prinz W. Mutation of monofunctional 6-phosphofructo-2-kinase in yeast to bifunctional 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase. Biochemistry 1993; 32:11143-8. [PMID: 8218176 DOI: 10.1021/bi00092a025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have shown previously that 6-phosphofructo-2-kinase in yeast has negligible fructose-2,6-bisphosphatase activity even though resembling in part of its C-terminal sequence the phosphatase domain of the bifunctional liver enzyme. Here we show that exchanging Ser-404 to His-404 in the yeast peptide creates a bifunctional enzyme with a fructose-2,6-bisphosphatase activity involving a phosphoprotein intermediate. Like mammalian bifunctional enzymes, the His-404 mutant protein is readily phosphorylated by fructose 2,6-P2 with a half-saturation of 0.4 microM, the same Km value as for its fructose-2,6-bisphosphatase activity. Protein phosphorylation by the C-subunit of cAMP-dependent protein kinase, presumably at a C-terminal consensus site, increases the Km value to 1.5 microM. The newly created fructose-2,6-bisphosphatase is inhibited competitively by its product fructose 6-P with a K(i) of 0.6 mM. No effect of the His-404 mutation was found on 6-phosphofructo-2-kinase activity, in line with the mutant yeast enzyme having independent kinase and phosphatase domains, like its mammalian wild-type counterparts. The results would fit with the evolution of the PFK26 gene having involved fusion between kinase and phosphatase genes--as proposed for the mammalian enzyme--but with accompanying or later silencing of the fructose-2,6-bisphosphatase activity.
Collapse
Affiliation(s)
- M Kretschmer
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
22
|
Crepin K, Vertommen D, Dom G, Hue L, Rider M. Rat muscle 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Study of the kinase domain by site-directed mutagenesis. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82466-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Expression of human liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in Escherichia coli. Role of N-2 proline in degradation of the protein. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53065-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
24
|
Li L, Lin K, Pilkis J, Correia J, Pilkis S. Hepatic 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. The role of surface loop basic residues in substrate binding to the fructose-2,6-bisphosphatase domain. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36651-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|