1
|
Wang J, Wang Y, Jiang Y, Li S, Jia X, Xiao X, Sun W, Wang P, Zhang Q. Datasets-Based IMPDH1 Revisited: Heterozygous Missense Variants for Dominant Retinitis Pigmentosa While Truncation Variants Are Likely Non-Pathogenic. Curr Eye Res 2024; 49:853-861. [PMID: 38604988 DOI: 10.1080/02713683.2024.2336158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE Heterozygous variants of IMPDH1 are associated with autosomal dominant retinitis pigmentosa (adRP). The current study aims to investigate the characteristics of the adRP-associated variants. METHODS IMPDH1 variants from our exome sequencing dataset were retrieved and systemically evaluated through multiple online prediction tools, comparative genomics (in-house dataset, HGMD, and gnomAD), and phenotypic association. Potential pathogenic variants (PPVs) were further confirmed by Sanger sequencing and segregation analysis. RESULTS In total, seven heterozygous PPVs (six missenses and one inframe) were identified in 10 families with RP, in which six of the seven might be classified as pathogenic or likely pathogenic while one others as variants of uncertain significance. IMPDH1 variants contributed to 0.7% (10/1519) of RP families in our cohort, ranking the top four genes implicated in adRP. These adRP-associated variants were located in exons 8-10, a region within or downstream of the CBS domain. All these variants were predicted to be damaged by at least three of the six online prediction tools. Two truncation variants were considered non-pathogenic. Hitherto, 41 heterozygous variants of IMPDH1 were detected in 110 families in published literature, including 33 missenses, two inframes, and six truncations (including a synonymous variant affecting splicing). Of the 35 missense and inframe variants, most were clustered in exons 8-10 (77.1%, 27/35), including 18 (51.4%, 18/35) in exon 10 accounting for 70.9% (78/110) of the families. However, truncation variants were enriched in the general population with a pLI value of 0 (tolerated), and the reported variants in patients with RP did not cluster in specific region. CONCLUSIONS Our data together with comprehensive analysis of existing datasets suggest that causative variants of IMPDH1 are usually missense and mostly clustered in exons 8-10. Conversely, most missense variants outside this region and truncation variants should be interpreted with great care in clinical gene test.
Collapse
Affiliation(s)
- Junwen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Department of Ophthalmology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Yingwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
2
|
Regulation of local GTP availability controls RAC1 activity and cell invasion. Nat Commun 2021; 12:6091. [PMID: 34667203 PMCID: PMC8526568 DOI: 10.1038/s41467-021-26324-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/27/2021] [Indexed: 12/04/2022] Open
Abstract
Physiological changes in GTP levels in live cells have never been considered a regulatory step of RAC1 activation because intracellular GTP concentration (determined by chromatography or mass spectrometry) was shown to be substantially higher than the in vitro RAC1 GTP dissociation constant (RAC1-GTP Kd). Here, by combining genetically encoded GTP biosensors and a RAC1 activity biosensor, we demonstrated that GTP levels fluctuating around RAC1-GTP Kd correlated with changes in RAC1 activity in live cells. Furthermore, RAC1 co-localized in protrusions of invading cells with several guanylate metabolism enzymes, including rate-limiting inosine monophosphate dehydrogenase 2 (IMPDH2), which was partially due to direct RAC1-IMPDH2 interaction. Substitution of endogenous IMPDH2 with IMPDH2 mutants incapable of binding RAC1 did not affect total intracellular GTP levels but suppressed RAC1 activity. Targeting IMPDH2 away from the plasma membrane did not alter total intracellular GTP pools but decreased GTP levels in cell protrusions, RAC1 activity, and cell invasion. These data provide a mechanism of regulation of RAC1 activity by local GTP pools in live cells. Changes in intracellular GTP levels are not considered as a regulatory event in RAC1 activation in live cells since total GTP levels are substantially higher than the RAC1 GTP dissociation constant determined in vitro. Here, the authors demonstrate that the availability of free GTP in live cells controls the activity of RAC1 and cell invasion.
Collapse
|
3
|
Ni S, Zhang T, Zhou C, Long M, Hou X, You L, Li H, Shi L, Su YQ. Coordinated Formation of IMPDH2 Cytoophidium in Mouse Oocytes and Granulosa Cells. Front Cell Dev Biol 2021; 9:690536. [PMID: 34124077 PMCID: PMC8194064 DOI: 10.3389/fcell.2021.690536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme catalyzing de novo biosynthesis of guanine nucleotides, aggregates under certain circumstances into a type of non-membranous filamentous macrostructure termed “cytoophidium” or “rod and ring” in several types of cells. However, the biological significance and underlying mechanism of IMPDH assembling into cytoophidium remain elusive. In mouse ovaries, IMPDH is reported to be crucial for the maintenance of oocyte–follicle developmental synchrony by providing GTP substrate for granulosa cell natriuretic peptide C/natriuretic peptide receptor 2 (NPPC/NPR2) system to produce cGMP for sustaining oocyte meiotic arrest. Oocytes and the associated somatic cells in the ovary hence render an exciting model system for exploring the functional significance of formation of IMPDH cytoophidium within the cell. We report here that IMPDH2 cytoophidium forms in vivo in the growing oocytes naturally and in vitro in the cumulus-enclosed oocytes treated with IMPDH inhibitor mycophenolic acid (MPA). Inhibition of IMPDH activity in oocytes and preimplantation embryos compromises oocyte meiotic and developmental competences and the development of embryos beyond the 4-cell stage, respectively. IMPDH cytoopidium also forms in vivo in the granulosa cells of the preovulatory follicles after the surge of luteinizing hormone (LH), which coincides with the resumption of oocyte meiosis and the reduction of IMPDH2 protein expression. In cultured COCs, MPA-treatment causes the simultaneous formation of IMPDH cytoopidium in cumulus cells and the resumption of meiosis in oocytes, which is mediated by the MTOR pathway and is prevented by guanosine supplementation. Therefore, our results indicate that cytoophidia do form in the oocytes and granulosa cells at particular stages of development, which may contribute to the oocyte acquisition of meiotic and developmental competences and the induction of meiosis re-initiation by the LH surge, respectively.
Collapse
Affiliation(s)
- Shiwen Ni
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Teng Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Chenmin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Min Long
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xuan Hou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Liji You
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Hui Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Lanying Shi
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - You-Qiang Su
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.,Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Lee S, Ku AF, Vippila MR, Wang Y, Zhang M, Wang X, Hedstrom L, Cuny GD. Mycophenolic anilides as broad specificity inosine-5'-monophosphate dehydrogenase (IMPDH) inhibitors. Bioorg Med Chem Lett 2020; 30:127543. [PMID: 32931912 DOI: 10.1016/j.bmcl.2020.127543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 11/28/2022]
Abstract
Inosine-5'-monophosphate dehydrogenase (IMPDH) is a potential target for microorganisms. However, identifying inhibitor design determinants for IMPDH orthologs continues to evolve. Herein, a series of mycophenolic anilide inhibitors of Cryptosporidium parvum and human IMPDHs are reported. Furthermore, molecular docking of 12 (e.g. SH-19; CpIMPDH Ki,app = 0.042 ± 0.015 µM, HsIMPDH2 Ki,app = 0.13 ± 0.05 µM) supports different binding modes with the two enzymes. For CpIMPDH the inhibitor extends into a pocket in an adjacent subunit. In contrast, docking suggests the inhibitor interacts with Ser276 in the NAD binding site in HsIMPDH2, as well as an adjacent pocket within the same subunit. These results provide further guidance for generating IMPDH inhibitors for enzymes found in an array of pathogenic microorganisms, including Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Seungheon Lee
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Health Building 2, Houston, TX 77204, USA
| | - Angela F Ku
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Health Building 2, Houston, TX 77204, USA; Department of Chemistry, University of Houston, Health Building 2, Houston, TX 77204, USA
| | - Mohana Rao Vippila
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Health Building 2, Houston, TX 77204, USA
| | - Yong Wang
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Health Building 2, Houston, TX 77204, USA
| | - Minjia Zhang
- Departments of Biology, 415 South St., Waltham, MA 02454, USA
| | - Xingyou Wang
- Departments of Biology, 415 South St., Waltham, MA 02454, USA
| | - Lizbeth Hedstrom
- Departments of Biology, 415 South St., Waltham, MA 02454, USA; Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Gregory D Cuny
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Health Building 2, Houston, TX 77204, USA.
| |
Collapse
|
5
|
Padhy SK, Takkar B, Narayanan R, Venkatesh P, Jalali S. Voretigene Neparvovec and Gene Therapy for Leber's Congenital Amaurosis: Review of Evidence to Date. APPLICATION OF CLINICAL GENETICS 2020; 13:179-208. [PMID: 33268999 PMCID: PMC7701157 DOI: 10.2147/tacg.s230720] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
Gene therapy has now evolved as the upcoming modality for management of many disorders, both inheritable and non-inheritable. Knowledge of genetics pertaining to a disease has therefore become paramount for physicians across most specialities. Inheritable retinal dystrophies (IRDs) are notorious for progressive and relentless vision loss, frequently culminating in complete blindness in both eyes. Leber’s congenital amaurosis (LCA) is a typical example of an IRD that manifests very early in childhood. Research in gene therapy has led to the development and approval of voretigene neparvovec (VN) for use in patients of LCA with a deficient biallelic RPE65 gene. The procedure involves delivery of a recombinant virus vector that carries the RPE65 gene in the subretinal space. This comprehensive review reports the evidence thus far in support of gene therapy for LCA. We explore and compare the various gene targets including but not limited to RPE65, and discuss the choice of vector and method for ocular delivery. The review details the evolution of gene therapy with VN in a phased manner, concluding with the challenges that lie ahead for its translation for use in communities that differ much both genetically and economically.
Collapse
Affiliation(s)
- Srikanta Kumar Padhy
- Vitreoretina and Uveitis Services, L V Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, India
| | - Brijesh Takkar
- Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Kallam Anji Reddy Campus, L.V. Prasad Eye Institute, Hyderabad, India.,Center of Excellence for Rare Eye Diseases, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, India
| | - Raja Narayanan
- Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Kallam Anji Reddy Campus, L.V. Prasad Eye Institute, Hyderabad, India
| | - Pradeep Venkatesh
- Dr RP Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Subhadra Jalali
- Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Kallam Anji Reddy Campus, L.V. Prasad Eye Institute, Hyderabad, India.,Jasti V. Ramanamma Childrens' Eye Care Centre, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
6
|
Calise SJ, Chan EKL. Anti-rods/rings autoantibody and IMPDH filaments: an update after fifteen years of discovery. Autoimmun Rev 2020; 19:102643. [PMID: 32805424 DOI: 10.1016/j.autrev.2020.102643] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
Autoantibodies to unknown subcellular rod and ring-shaped structures were first discovered in sera from hepatitis C patients in 2005. Early studies showed a strong association between these anti-rods/rings antibodies (anti-RR) and the standard of care interferon-α plus ribavirin combination therapy (IFN/RBV), suggesting that anti-RR are drug-induced autoantibodies. In the context of hepatitis C, anti-RR have been linked with relapse from or lack of response to IFN/RBV in some patient cohorts. However, examples of anti-RR in other diseases and healthy individuals have also been reported over the years, although anti-RR remains a rare autoantibody response in general. The advent of new direct-acting antiviral drugs for chronic hepatitis C and studies of anti-RR from different parts of the world are also beginning to change the perception of anti-RR. The nucleotide biosynthetic enzyme inosine monophosphate dehydrogenase (IMPDH) has been identified as the major autoantigen recognized by anti-RR. Coincidentally, the assembly of IMPDH into micron-scale rod and ring-shaped structures was discovered around the same time as anti-RR. Knowledge of the fundamental biological properties and cellular functions of these structures, referred to as "IMPDH filaments" by cell biologists, has advanced in parallel to anti-RR antibodies. Recent studies have revealed that IMPDH filament assembly is a mechanism to prevent feedback inhibition of IMPDH and is therefore important for the increased nucleotide production required in hyperproliferating cells, like activated T cells. Fifteen years later, we review the history and current knowledge in both the anti-RR autoantibody and IMPDH filament fields. TAKE-HOME MESSAGE: Anti-rods/rings are recognized as an example of a drug-induced autoantibody in hepatitis C patients treated with interferon and ribavirin, although new studies suggest anti-rods/rings may be detected in other contexts and may depend on unknown environmental or genetic factors in different populations. Recent data suggest that the assembly of IMPDH into rod and ring structures, the targets of anti-rods/rings autoantibody, is a mechanism for hyperproliferating cells, like activated T cells, to maintain increased guanine nucleotide levels to support rapid cell division.
Collapse
Affiliation(s)
- S John Calise
- Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL 32610-0424, USA.
| | - Edward K L Chan
- Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL 32610-0424, USA.
| |
Collapse
|
7
|
Bennett LD, Klein M, John FT, Radojevic B, Jones K, Birch DG. Disease Progression in Patients with Autosomal Dominant Retinitis Pigmentosa due to a Mutation in Inosine Monophosphate Dehydrogenase 1 (IMPDH1). Transl Vis Sci Technol 2020; 9:14. [PMID: 32821486 PMCID: PMC7401855 DOI: 10.1167/tvst.9.5.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose Mutations in the inosine monophosphate dehydrogenase 1 (IMPDH1) gene are a common cause of inherited retinal degeneration (IRD). Due to species- and tissue-dependent expression of IMPDH1, there are no appropriate models of human IMPDH1 disease. Therefore, a limited understanding remains of disease expression and rates of progression for IMPDH1-related IRD. Methods We evaluated semiautomated kinetic and chromatic static perimetry, spectral-domain optical coherence tomography (SD-OCT), and ultra-wide field fundus images with autofluorescence in a cohort of 12 patients (ages 11–58 at first visit). Ten patients had longitudinal data for which rates of progression were estimated. Results Visual acuities were relatively stable over time and the photoreceptors within the central retina remained intact. Perifoveal photoreceptor loss measured over a period of years coincided with visual fields, which were constricted and progressed over time in all patients. Rod sensitivity showed a similar pattern of defect to that of the kinetic perimetry and the autofluorescence ultra-wide field imaging. Full-field electroretinograms were severely reduced and the dark-adapted rod and mixed responses were extinguished at earlier visits than the light-adapted cone responses. Conclusions There was variability in disease severity at the first visit, but results show that the peripheral retina is more susceptible to the deleterious consequences of an IMPDH1 mutation. Given the pattern of degeneration and the alternatively spliced isoforms of IMPDH1, potential interventions may consider targeting the periphery early in disease, modulating transcript expression, and/or preserving central vision at late stages of the disease. Translational Relevance These results inform clinical prognosis and offer evidence strategies toward therapeutic intervention.
Collapse
Affiliation(s)
- Lea D Bennett
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Martin Klein
- Retina Foundation of the Southwest, Dallas, TX, USA
| | - Finny T John
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Bojana Radojevic
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kaylie Jones
- Retina Foundation of the Southwest, Dallas, TX, USA
| | - David G Birch
- Retina Foundation of the Southwest, Dallas, TX, USA.,Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
8
|
Johnson MC, Kollman JM. Cryo-EM structures demonstrate human IMPDH2 filament assembly tunes allosteric regulation. eLife 2020; 9:e53243. [PMID: 31999252 PMCID: PMC7018514 DOI: 10.7554/elife.53243] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH) mediates the first committed step in guanine nucleotide biosynthesis and plays important roles in cellular proliferation and the immune response. IMPDH reversibly polymerizes in cells and tissues in response to changes in metabolic demand. Self-assembly of metabolic enzymes is increasingly recognized as a general mechanism for regulating activity, typically by stabilizing specific conformations of an enzyme, but the regulatory role of IMPDH filaments has remained unclear. Here, we report a series of human IMPDH2 cryo-EM structures in both active and inactive conformations. The structures define the mechanism of filament assembly, and reveal how filament-dependent allosteric regulation of IMPDH2 makes the enzyme less sensitive to feedback inhibition, explaining why assembly occurs under physiological conditions that require expansion of guanine nucleotide pools. Tuning sensitivity to an allosteric inhibitor distinguishes IMPDH from other metabolic filaments, and highlights the diversity of regulatory outcomes that can emerge from self-assembly.
Collapse
Affiliation(s)
- Matthew C Johnson
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
| | - Justin M Kollman
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
| |
Collapse
|
9
|
Matsumoto T, Jimi S, Migita K, Terada K, Mori M, Takamatsu Y, Suzumiya J, Hara S. FF-10501 induces caspase-8-mediated apoptotic and endoplasmic reticulum stress-mediated necrotic cell death in hematological malignant cells. Int J Hematol 2019; 110:606-617. [PMID: 31407254 DOI: 10.1007/s12185-019-02722-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 02/08/2023]
Abstract
FF-10501 is a novel inhibitor of inosine monophosphate dehydrogenase (IMPDH). Clinical trials of FF-10501 for myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are currently being conducted in the United States. Although it has been shown that FF-10501 induces apoptosis in hematological malignant cells, the intracellular mechanisms of this effect have not been characterized. We conducted an in vitro study to elucidate the mechanisms of FF-10501-induced cell death using 12 hematological malignant cell lines derived from myeloid and lymphoid malignancies. FF-10501 suppressed the growth of each cell line in a dose-dependent manner. However, the clinically relevant dose (40 μM) of FF-10501 induced cell death in three cell lines (MOLM-13, OCI-AML3, and MOLT-3). Investigation of the cell death mechanism suggested that FF-10501 induces both apoptotic and necrotic cell death. FF-10501-induced apoptosis was mediated by caspase-8 activation followed by activation of the mitochondrial pathway in MOLM-13 and MOLT-3 cells. FF-10501 induced necrotic cell death via endoplasmic reticulum stress in OCI-AML3 cells. The present study is the first to identify intracellular pathways involved in FF-10501-induced cell death.
Collapse
Affiliation(s)
- Taichi Matsumoto
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jounan, Fukuoka, 814-0180, Japan.
| | - Shiro Jimi
- Central Laboratory of Pathology and Morphology, Department of Medicine, Fukuoka University, Fukuoka, Japan
| | - Keisuke Migita
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jounan, Fukuoka, 814-0180, Japan
| | - Kazuki Terada
- Laboratory of Drug Design and Drug Delivery, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Yasushi Takamatsu
- Division of Medical Oncology, Hematology, and Infectious Diseases, Department of Medicine, Fukuoka University, Fukuoka, Japan
| | - Junji Suzumiya
- Department of Oncology/Hematology, Shimane University Hospital, Shimane, Japan
| | - Shuuji Hara
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jounan, Fukuoka, 814-0180, Japan
| |
Collapse
|
10
|
Genome Editing as a Treatment for the Most Prevalent Causative Genes of Autosomal Dominant Retinitis Pigmentosa. Int J Mol Sci 2019; 20:ijms20102542. [PMID: 31126147 PMCID: PMC6567127 DOI: 10.3390/ijms20102542] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023] Open
Abstract
: Inherited retinal dystrophies (IRDs) are a clinically and genetically heterogeneous group of diseases with more than 250 causative genes. The most common form is retinitis pigmentosa. IRDs lead to vision impairment for which there is no universal cure. Encouragingly, a first gene supplementation therapy has been approved for an autosomal recessive IRD. However, for autosomal dominant IRDs, gene supplementation therapy is not always pertinent because haploinsufficiency is not the only cause. Disease-causing mechanisms are often gain-of-function or dominant-negative, which usually require alternative therapeutic approaches. In such cases, genome-editing technology has raised hopes for treatment. Genome editing could be used to i) invalidate both alleles, followed by supplementation of the wild type gene, ii) specifically invalidate the mutant allele, with or without gene supplementation, or iii) to correct the mutant allele. We review here the most prevalent genes causing autosomal dominant retinitis pigmentosa and the most appropriate genome-editing strategy that could be used to target their different causative mutations.
Collapse
|
11
|
Yang L, Ru Y, Cai X, Yin Z, Liu X, Xiao Y, Zhang H, Zheng X, Wang P, Zhang Z. MoImd4 mediates crosstalk between MoPdeH-cAMP signalling and purine metabolism to govern growth and pathogenicity in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2019; 20:500-518. [PMID: 30426699 PMCID: PMC6422694 DOI: 10.1111/mpp.12770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The high-affinity cyclic adenosine monophosphate (cAMP) phosphodiesterase MoPdeH is important not only for cAMP signalling and pathogenicity, but also for cell wall integrity (CWI) maintenance in the rice blast fungus Magnaporthe oryzae. To explore the underlying mechanism, we identified MoImd4 as an inosine-5'-monophosphate dehydrogenase (IMPDH) homologue that interacts with MoPdeH. Targeted deletion of MoIMD4 resulted in reduced de novo purine biosynthesis and growth, as well as attenuated pathogenicity, which were suppressed by exogenous xanthosine monophosphate (XMP). Treatment with mycophenolic acid (MPA), which specifically inhibits MoImd4 activity, resulted in reduced growth and virulence attenuation. Intriguingly, further analysis showed that MoImd4 promotes the phosphodiesterase activity of MoPdeH, thereby decreasing intracellular cAMP levels, and MoPdeH also promotes the IMPDH activity of MoImd4. Our studies revealed the presence of a novel crosstalk between cAMP regulation and purine biosynthesis in M. oryzae, and indicated that such a link is also important in the pathogenesis of M. oryzae.
Collapse
Affiliation(s)
- Lina Yang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Yanyan Ru
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Xingjia Cai
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Ziyi Yin
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Yuhan Xiao
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Ping Wang
- Departments of Pediatrics, and Microbiology, Immunology, and ParasitologyLouisiana State University Health Sciences CenterNew OrleansLA70112USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| |
Collapse
|
12
|
Yoshimura K, Yano I, Yamamoto T, Kondo T, Kawanishi M, Isomoto Y, Yonezawa A, Takaori-Kondo A, Matsubara K. Pharmacokinetic and Pharmacodynamic Markers of Mycophenolic Acid Associated with Effective Prophylaxis for Acute Graft-Versus-Host Disease and Neutrophil Engraftment in Cord Blood Transplant Patients. Biol Blood Marrow Transplant 2018; 24:1441-1448. [DOI: 10.1016/j.bbmt.2018.01.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/30/2018] [Indexed: 10/18/2022]
|
13
|
Keppeke GD, Chang CC, Peng M, Chen LY, Lin WC, Pai LM, Andrade LEC, Sung LY, Liu JL. IMP/GTP balance modulates cytoophidium assembly and IMPDH activity. Cell Div 2018; 13:5. [PMID: 29946345 PMCID: PMC6004095 DOI: 10.1186/s13008-018-0038-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023] Open
Abstract
Background Inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme in de novo GTP biosynthesis, plays an important role in cell metabolism and proliferation. It has been demonstrated that IMPDH can aggregate into a macrostructure, termed the cytoophidium, in mammalian cells under a variety of conditions. However, the regulation and function of the cytoophidium are still elusive. Results In this study, we report that spontaneous filamentation of IMPDH is correlated with rapid cell proliferation. Intracellular IMP accumulation promoted cytoophidium assembly, whereas elevated GTP level triggered disassociation of aggregates. By using IMPDH2 CBS domain mutant cell models, which are unable to form the cytoophidium, we have determined that the cytoophidium is of the utmost importance for maintaining the GTP pool and normal cell proliferation in the condition that higher IMPDH activity is required. Conclusions Together, our results suggest a novel mechanism whereby cytoophidium assembly upregulates IMPDH activity and mediates guanine nucleotide homeostasis. Electronic supplementary material The online version of this article (10.1186/s13008-018-0038-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gerson Dierley Keppeke
- 1Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT UK
| | - Chia Chun Chang
- 1Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT UK.,2Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan, ROC
| | - Min Peng
- 2Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan, ROC
| | - Li-Yu Chen
- 1Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT UK
| | - Wei-Cheng Lin
- 3Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao-Yuan, 333 Taiwan, ROC
| | - Li-Mei Pai
- 3Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao-Yuan, 333 Taiwan, ROC.,4Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Tao-Yuan, 333 Taiwan, ROC.,5Department of Biochemistry, College of Medicine, Chang Gung University, Tao-Yuan, 333 Taiwan, ROC
| | - Luis Eduardo Coelho Andrade
- 6Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, SP 04023-062 Brazil
| | - Li-Ying Sung
- 2Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan, ROC.,7Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan, ROC
| | - Ji-Long Liu
- 1Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT UK.,8School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210 China
| |
Collapse
|
14
|
Yoshimura K, Yano I, Yamamoto T, Kawanishi M, Isomoto Y, Yonezawa A, Kondo T, Takaori-Kondo A, Matsubara K. Population pharmacokinetics and pharmacodynamics of mycophenolic acid using the prospective data in patients undergoing hematopoietic stem cell transplantation. Bone Marrow Transplant 2017; 53:44-51. [DOI: 10.1038/bmt.2017.213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/20/2017] [Accepted: 08/27/2017] [Indexed: 11/09/2022]
|
15
|
Highly selective inhibition of IMPDH2 provides the basis of antineuroinflammation therapy. Proc Natl Acad Sci U S A 2017; 114:E5986-E5994. [PMID: 28674004 DOI: 10.1073/pnas.1706778114] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH) of human is an attractive target for immunosuppressive agents. Currently, small-molecule inhibitors do not show good selectivity for different IMPDH isoforms (IMPDH1 and IMPDH2), resulting in some adverse effects, which limit their use. Herein, we used a small-molecule probe specifically targeting IMPDH2 and identified Cysteine residue 140 (Cys140) as a selective druggable site. On covalently binding to Cys140, the probe exerts an allosteric regulation to block the catalytic pocket of IMPDH2 and further induces IMPDH2 inactivation, leading to an effective suppression of neuroinflammatory responses. However, the probe does not covalently bind to IMPDH1. Taken together, our study shows Cys140 as a druggable site for selectively inhibiting IMPDH2, which provides great potential for development of therapy agents for autoimmune and neuroinflammatory diseases with less unfavorable tolerability profile.
Collapse
|
16
|
Coussa RG, Lopez Solache I, Koenekoop RK. Leber congenital amaurosis, from darkness to light: An ode to Irene Maumenee. Ophthalmic Genet 2017; 38:7-15. [PMID: 28095138 DOI: 10.1080/13816810.2016.1275021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article is dedicated to Irene Hussels Maumenee, Professor of Human Genetics and Ophthalmology, Johns Hopkins' Wilmer Eye Institute, Ocular Genetics Fellowship director in 1994-1995. Leber congenital amaurosis (LCA) has almost come full circle, from a profound and molecularly uncharacterized form of congenital retinal blindness to one in which a large number of causative genes and disease pathways are known, and the world's first human retinal disease to be treated by gene therapy. Dr. Maumenee's insights, efforts, and leadership have contributed significantly to this remarkable scientific journey. In this manuscript, we present a short summary of the known LCA genes, LCA disease subtypes, and emerging treatment options. Our manuscript consolidates previous knowledge with current findings in an attempt to provide a more comprehensive understanding of LCA.
Collapse
Affiliation(s)
- Razek Georges Coussa
- a Department of Paediatric Surgery, Montreal Children's Hospital , McGill University Health Centre , Montreal , Quebec , Canada.,b The McGill Ocular Genetics Laboratory, Paediatric Ophthalmology Division , Montreal Children's Hospital, McGill University Health Centre , Montreal , Quebec , Canada
| | - Irma Lopez Solache
- b The McGill Ocular Genetics Laboratory, Paediatric Ophthalmology Division , Montreal Children's Hospital, McGill University Health Centre , Montreal , Quebec , Canada
| | - Robert K Koenekoop
- a Department of Paediatric Surgery, Montreal Children's Hospital , McGill University Health Centre , Montreal , Quebec , Canada.,b The McGill Ocular Genetics Laboratory, Paediatric Ophthalmology Division , Montreal Children's Hospital, McGill University Health Centre , Montreal , Quebec , Canada
| |
Collapse
|
17
|
Noble JW, Hunter DV, Roskelley CD, Chan EKL, Mills J. Loukoumasomes Are Distinct Subcellular Structures from Rods and Rings and Are Structurally Associated with MAP2 and the Nuclear Envelope in Retinal Cells. PLoS One 2016; 11:e0165162. [PMID: 27798680 PMCID: PMC5087950 DOI: 10.1371/journal.pone.0165162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 10/07/2016] [Indexed: 12/19/2022] Open
Abstract
“Rods and rings” (RR) and loukoumasomes are similarly shaped, subcellular macromolecular structures with as yet unknown function. RR, so named because of their shape, are formed in response to inhibition in the GTP or CTP synthetic pathways and are highly enriched in the two key enzymes of the nucleotide synthetic pathway. Loukoumasomes also occur as linear and toroidal bodies and were initially inferred to be the same as RR, largely due to their shared shape and size and the fact that it was unclear if they shared the same subcomponents. In human retinoblastoma tissue and cells we have observed toroidal, perinuclear, macromolecular structures of similar size and antigenicity to those previously reported in neurons (neuronal-loukoumasomes). To further characterize the subcomponents of the retinal-loukoumasomes, confocal analysis following immunocytochemical staining for alpha-tubulin, beta-III tubulin and detyrosinated tubulin was performed. These studies indicate that retinal-loukoumasomes are enriched for beta-III tubulin and other tubulins associated with microtubules. Immunofluorescence together with the in situ proximity ligation assay (PLA), confirmed that beta-III tubulin colocalized with detyrosinated tubulin within loukoumasomes. Our results indicate that these tissues contain only loukoumasomes because these macromolecular structures are immunoreactive with an anti-tubulin antibody but are not recognized by the prototype anti-RR/inosine monophosphate dehydrogenase (IMPDH) antibody (It2006). To further compare the RR and retinal-loukoumasomes, retinoblastoma cells were exposed to the IMPDH-inhibitor ribavirin, a drug known to induce the formation of RR. In contrast to RR, the production of retinal-loukoumasomes was unaffected. Coimmunostaining of Y79 cells for beta-III tubulin and IMPDH indicate that these cells, when treated with ribavirin, can contain both retinal-loukoumasomes and RR and that these structures are antigenically distinct. Subcellular fractionation studies indicate that ribavirin increased the RR subcomponent, IMPDH, in the nuclear fraction of Y79 cells from 21.3 ± 5.8% (0 mM ribavirin) to 122.8 ± 7.9% (1 mM ribavirin) while the subcellular localization of the retinal-loukoumasome subcomponent tubulin went unaltered. Further characterization of retinal-loukoumasomes in retinoblastoma cells reveals that they are intimately associated with lamin folds within the nuclear envelope. Using immunofluorescence and the in situ PLA in this cell type, we have observed colocalization of beta-III tubulin with MAP2. As MAP2 is a microtubule-associated protein implicated in microtubule crosslinking, this supports a role for microtubule crosslinkers in the formation of retinal-loukoumasomes. Together, these results suggest that loukoumasomes and RR are distinct subcellular macromolecular structures, formed by different cellular processes and that there are other loukoumasome-like structures within retinal tissues and cells.
Collapse
Affiliation(s)
- Jake W. Noble
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada
| | - Diana V. Hunter
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Calvin D. Roskelley
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward K. L. Chan
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
| | - Julia Mills
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
18
|
Jiang LL, Liu MH, Li JY, He ZH, Li H, Shen N, Wei P, He MF. Mycophenolic Acid-Induced Developmental Defects in Zebrafish Embryos. Int J Toxicol 2016; 35:712-718. [DOI: 10.1177/1091581816668308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
With the increasing use of mycophenolic acid (MPA) in solid organ transplantation, some clinical studies indicate that it is also a human teratogen. However, it is unknown by which mechanism MPA acts as a teratogen. Mycophenolic acid was a selective blocker of de novo purine synthesis, and its immunosuppressive effect is mediated by the inhibition of inosine monophosphate dehydrogenase, which could be a target for MPA-induced toxicity as well. The aim of our study was to examine the direct influence of MPA exposure on zebrafish ( Danio rerio) embryos. Morphological defects including tail curvature and severe pericardial edema in zebrafish embryos caused by MPA (3.7-11.1 µmol/L) were found in a dose-dependent manner. The teratogenic index (25% lethal concentration value (LC25)/no observed adverse effect level ratio) was 16, which indicated MPA as a teratogen. Quantitative polymerase chain reaction analysis revealed that the expression level of impdh1b and impdh2 was significantly reduced by MPA treatment at 8 µmol/L (equals to LC25 level). All the toxic effects could be partially reversed by the addition of 33.3 µmol/L guanosine. Our results indicated that MPA impairs the development of zebrafish embryos via inhibition of impdh activity, which subsequently caused a guanosine nucleotide depletion in vivo.
Collapse
Affiliation(s)
- Ling-Ling Jiang
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| | - Mei-Hui Liu
- Department of Pharmaceutical Sciences, Jiangsu Jiankang Vocational College, Nanjing, People’s Republic of China
| | - Jian-Ying Li
- Nanjing Emory Biotechnology Company, Nanjing, People’s Republic of China
| | - Zhi-Heng He
- School of Medicine, Yale University, New Haven, CT, USA
| | - Huan Li
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| | - Ning Shen
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| | - Ping Wei
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| | - Ming-Fang He
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| |
Collapse
|
19
|
Bemer MJ, Risler LJ, Phillips BR, Wang J, Storer BE, Sandmaier BM, Duan H, Raccor BS, Boeckh MJ, McCune JS. Recipient pretransplant inosine monophosphate dehydrogenase activity in nonmyeloablative hematopoietic cell transplantation. Biol Blood Marrow Transplant 2014; 20:1544-52. [PMID: 24923537 PMCID: PMC4163086 DOI: 10.1016/j.bbmt.2014.05.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
Abstract
Mycophenolic acid, the active metabolite of mycophenolate mofetil (MMF), inhibits inosine monophosphate dehydrogenase (IMPDH) activity. IMPDH is the rate-limiting enzyme involved in de novo synthesis of guanosine nucleotides and catalyzes the oxidation of inosine 5'-monophosphate to xanthosine 5'-monophosphate (XMP). We developed a highly sensitive liquid chromatography-mass spectrometry method to quantitate XMP concentrations in peripheral blood mononuclear cells (PMNCs) isolated from the recipient pretransplant and used this method to determine IMPDH activity in 86 nonmyeloablative allogeneic hematopoietic cell transplantation (HCT) patients. The incubation procedure and analytical method yielded acceptable within-sample and within-individual variability. Considerable between-individual variability was observed (12.2-fold). Low recipient pretransplant IMPDH activity was associated with increased day +28 donor T cell chimerism, more acute graft-versus-host disease (GVHD), lower neutrophil nadirs, and more cytomegalovirus reactivation but not with chronic GVHD, relapse, nonrelapse mortality, or overall mortality. We conclude that quantitation of the recipient's pretransplant IMPDH activity in PMNC lysate could provide a useful biomarker to evaluate a recipient's sensitivity to MMF. Further trials should be conducted to confirm our findings and to optimize postgrafting immunosuppression in nonmyeloablative HCT recipients.
Collapse
Affiliation(s)
- Meagan J Bemer
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; School of Pharmacy, University of Washington, Seattle, Washington
| | - Linda J Risler
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; School of Pharmacy, University of Washington, Seattle, Washington
| | - Brian R Phillips
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; School of Pharmacy, University of Washington, Seattle, Washington
| | - Joanne Wang
- School of Pharmacy, University of Washington, Seattle, Washington
| | - Barry E Storer
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Brenda M Sandmaier
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; School of Medicine, University of Washington, Seattle, Washington
| | - Haichuan Duan
- School of Pharmacy, University of Washington, Seattle, Washington
| | - Brianne S Raccor
- School of Pharmacy, University of Washington, Seattle, Washington
| | - Michael J Boeckh
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; School of Medicine, University of Washington, Seattle, Washington
| | - Jeannine S McCune
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; School of Pharmacy, University of Washington, Seattle, Washington.
| |
Collapse
|
20
|
Wawrzyniak JA, Bianchi-Smiraglia A, Bshara W, Mannava S, Ackroyd J, Bagati A, Omilian AR, Im M, Fedtsova N, Miecznikowski JC, Moparthy KC, Zucker SN, Zhu Q, Kozlova NI, Berman AE, Hoek KS, Gudkov AV, Shewach DS, Morrison CD, Nikiforov MA. A purine nucleotide biosynthesis enzyme guanosine monophosphate reductase is a suppressor of melanoma invasion. Cell Rep 2013; 5:493-507. [PMID: 24139804 DOI: 10.1016/j.celrep.2013.09.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/20/2013] [Accepted: 09/11/2013] [Indexed: 01/02/2023] Open
Abstract
Melanoma is one of the most aggressive types of human cancers, and the mechanisms underlying melanoma invasive phenotype are not completely understood. Here, we report that expression of guanosine monophosphate reductase (GMPR), an enzyme involved in de novo biosynthesis of purine nucleotides, was downregulated in the invasive stages of human melanoma. Loss- and gain-of-function experiments revealed that GMPR downregulates the amounts of several GTP-bound (active) Rho-GTPases and suppresses the ability of melanoma cells to form invadopodia, degrade extracellular matrix, invade in vitro, and grow as tumor xenografts in vivo. Mechanistically, we demonstrated that GMPR partially depletes intracellular GTP pools. Pharmacological inhibition of de novo GTP biosynthesis suppressed whereas addition of exogenous guanosine increased invasion of melanoma cells as well as cells from other cancer types. Our data identify GMPR as a melanoma invasion suppressor and establish a link between guanosine metabolism and Rho-GTPase-dependent melanoma cell invasion.
Collapse
Affiliation(s)
- Joseph A Wawrzyniak
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Thomas EC, Gunter JH, Webster JA, Schieber NL, Oorschot V, Parton RG, Whitehead JP. Different characteristics and nucleotide binding properties of inosine monophosphate dehydrogenase (IMPDH) isoforms. PLoS One 2012; 7:e51096. [PMID: 23236438 PMCID: PMC3517587 DOI: 10.1371/journal.pone.0051096] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/29/2012] [Indexed: 11/18/2022] Open
Abstract
We recently reported that Inosine Monophosphate Dehydrogenase (IMPDH), a rate-limiting enzyme in de novo guanine nucleotide biosynthesis, clustered into macrostructures in response to decreased nucleotide levels and that there were differences between the IMPDH isoforms, IMPDH1 and IMPDH2. We hypothesised that the Bateman domains, which are present in both isoforms and serve as energy-sensing/allosteric modules in unrelated proteins, would contribute to isoform-specific differences and that mutations situated in and around this domain in IMPDH1 which give rise to retinitis pigmentosa (RP) would compromise regulation. We employed immuno-electron microscopy to investigate the ultrastructure of IMPDH macrostructures and live-cell imaging to follow clustering of an IMPDH2-GFP chimera in real-time. Using a series of IMPDH1/IMPDH2 chimera we demonstrated that the propensity to cluster was conferred by the N-terminal 244 amino acids, which includes the Bateman domain. A protease protection assay suggested isoform-specific purine nucleotide binding characteristics, with ATP protecting IMPDH1 and AMP protecting IMPDH2, via a mechanism involving conformational changes upon nucleotide binding to the Bateman domain without affecting IMPDH catalytic activity. ATP binding to IMPDH1 was confirmed in a nucleotide binding assay. The RP-causing mutation, R224P, abolished ATP binding and nucleotide protection and this correlated with an altered propensity to cluster. Collectively these data demonstrate that (i) the isoforms are differentially regulated by AMP and ATP by a mechanism involving the Bateman domain, (ii) communication occurs between the Bateman and catalytic domains and (iii) the RP-causing mutations compromise such regulation. These findings support the idea that the IMPDH isoforms are subject to distinct regulation and that regulatory defects contribute to human disease.
Collapse
Affiliation(s)
- Elaine C. Thomas
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane, Queensland, Australia
- * E-mail: (ECT); (JPW)
| | - Jennifer H. Gunter
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane, Queensland, Australia
| | - Julie A. Webster
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane, Queensland, Australia
- Metabolic Medicine, Mater Medical Research Institute, South Brisbane, Queensland, Australia
| | - Nicole L. Schieber
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Viola Oorschot
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Robert G. Parton
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Jonathan P. Whitehead
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane, Queensland, Australia
- Metabolic Medicine, Mater Medical Research Institute, South Brisbane, Queensland, Australia
- * E-mail: (ECT); (JPW)
| |
Collapse
|
22
|
Molinaro M, Chiarelli LR, Biancone L, Castagneto M, Boschiero L, Pisani F, Sabbatini M, Sandrini S, Arbustini E, Tinelli C, Regazzi M, Schena FP, Segoloni GP. Monitoring of inosine monophosphate dehydrogenase activity and expression during the early period of mycophenolate mofetil therapy in de novo renal transplant patients. Drug Metab Pharmacokinet 2012; 28:109-17. [PMID: 22892445 DOI: 10.2133/dmpk.dmpk-12-rg-048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Measurement of inosine-monophosphate dehydrogenase (IMPDH) activity or gene expression was used as a further approach in pharmacokinetics (PK)/pharmacodynamic (PD)-guided mycophenolate mofetil (MMF) therapy. Forty-four de novo kidney transplant patients were enrolled; 35 of these completed the study, and were followed for 24 weeks for clinical status, PK parameters, IMPDH activity and IMPDH1/2 gene expression. IMPDH activity and expression were measured in peripheral blood mononuclear cells before transplant and at week 2,4,12 and 24, drawn before (t0) and 2 h (t2 h) after MMF administration. No significant correlation was found between IMPDH activity/expression and PK parameters. For both genes, significant enhancement in t2 h expression was observed, then decreases towards week 24 with a trend following steroid dosages. Seven patients experienced acute rejection (AR) and exhibited significantly higher pre-transplant expression of both IMPDH1 (median 3.42 vs. 0.84; p=0.0025), and IMPDH2 genes (135 vs. 104; p=0.0218) with respect to non-rejecting patients. A significant association was also found between pre-transplant IMPDH1 mRNA and haematological complications (p=0.032). This study suggests that high steroid dosages may influence IMPDH1/2 expression, hampering their use as a PD biomarker, particularly during the early post-transplant period. The measurement of pre-transplant levels of IMPDH1/2 may contribute to prediction of individual drug responsiveness to improve the clinical management of patients in MMF therapy.
Collapse
Affiliation(s)
- Mariadelfina Molinaro
- Clinical Pharmacokinetics in Transplantation and Autoimmune Diseases, Foundation IRCCS Policlinico S. Matteo, Pavia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yang N, Wang J, Wang ZW, Wang QH, Yang HG, Wang XJ, Cheng MS. Computational insights into the inhibition of inosine 5'-monophosphate dehydrogenase by mycophenolic acid analogs: three-dimensional quantitative structure-activity relationship and molecular docking studies. Chem Biol Drug Des 2012; 79:1063-71. [PMID: 22405057 DOI: 10.1111/j.1747-0285.2012.01375.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) is a key enzyme in the de novo synthesis of guanosine nucleotides. It is considered as an important target in the quest for drugs in the immunosuppressive, antiviral, antibacterial, and anticancer therapeutic areas. Herein, we report the 3D-QSAR analyses using comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA) and docking on mycophenolic acid derivates for the first time. We obtained cross-validated q(2) value of 0.805 for CoMFA and 0.620 for CoMSIA, while the non-cross-validated r(2) values for them were 0.969 and 0.935, respectively. Based on the CoMFA and CoMSIA contour maps and docking analyses, some key structural factors responsible for inhibitory activity were revealed. The results obtained from this study could be used for the rational design of potent inhibitors against IMPDH.
Collapse
|
24
|
Nakanishi T, Kozuki Y, Eikyu Y, Kubo K, Kawato Y, Marui T, Seki N, Masunaga T, Tamura K, Morokata T. In vitro and in vivo characterization of AS2643361, a novel and highly potent inosine 5'-monophosphate dehydrogenase inhibitor. Eur J Pharmacol 2011; 674:58-63. [PMID: 22075081 DOI: 10.1016/j.ejphar.2011.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/11/2011] [Accepted: 10/27/2011] [Indexed: 01/01/2023]
Abstract
Inosine 5'-monophosphate (IMP) dehydrogenase is a critical target in solid organ transplantation. To this end, the development of mycophenolate mofetil (MMF) represents a major advance in transplant medicine. Here, we investigated the in vitro and in vivo pharmacological effects of a novel IMP dehydrogenase inhibitor, AS2643361, in several immunological and non-immunological models. The in vitro inhibitory activity of AS2643361 on immune cell and endothelial cell proliferation and on antibody production from lipopolysaccharide-stimulated B cells, was significantly more potent than that of mycophenolic acid, the active form of MMF, despite the similar potency of these compounds on IMP dehydrogenase. In a rat heterotopic cardiac transplant model, monotherapy using orally administered AS2643361 at 10 or 20mg/kg/day prolonged the median graft survival time from 6 to 16 and 19days, respectively. In dinitrophenol-lipopolysaccharide stimulated rats, oral administration of AS2643361 at 2.5, 5 or 10mg/kg/day resulted in suppression of antibody production. In vivo antibody production against alloantigen was also suppressed by AS2643361 treatment at 5 or 10mg/kg/day. Furthermore, treatment with AS2543361 effectively inhibited balloon injury induced-intimal thickening, which is a major cause of late allograft loss. Overall, the in vivo activity of AS2643361 was over two-fold more potent than that of MMF. In addition, gastrointestinal toxicity, considered a dose-limiting factor for MMF, was reduced with AS2643361 treatment. These results suggest AS2643361 has higher potency and less toxicity than MMF, making it a potential candidate for treatment of acute and chronic rejection in transplant medicine.
Collapse
Affiliation(s)
- Tomonori Nakanishi
- Astellas Research Institute of America LLC, Transplantation Immunology, Skokie, IL 60077, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Guo W, Azhar MA, Xu Y, Wright M, Kamal A, Miller AD. Isolation and identification of diadenosine 5',5'''-P1,P4-tetraphosphate binding proteins using magnetic bio-panning. Bioorg Med Chem Lett 2011; 21:7175-9. [PMID: 22014552 DOI: 10.1016/j.bmcl.2011.09.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 11/19/2022]
Abstract
We report the development of a synthetic, biotin-conjugated diadenosine tetraphosphate (Ap(4)A)-'molecular hook' attached to magnetic beads enabling the isolation of Ap(4)A-binding proteins from bacterial cells or mammalian tissue lysates. Characterisation and identification of isolated binding proteins is performed sequentially by mass spectrometry. The observation of positive controls suggests that these newly observed proteins are putative Ap(4)A-binding partners, and we have expectations that others can be found with further technical improvements in our methods.
Collapse
Affiliation(s)
- Wei Guo
- Pharmacy School of Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
26
|
Yang N, Wang J, Li J, Wang QH, Wang Y, Cheng MS. A three-dimensional pharmacophore model for IMPDH inhibitors. Chem Biol Drug Des 2011; 78:175-82. [PMID: 21507206 DOI: 10.1111/j.1747-0285.2011.01128.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) is a key enzyme in the de novo synthesis of guanosine nucleotides. It is considered an important target in the quest for drugs in the immunosuppressive, antiviral, antibacterial and anticancer therapeutic areas. In this study, a chemical feature-based pharmacophore model of IMPDH inhibitors has been firstly developed with the aid of the HypoRefine protocol within Discovery Studio 2.5. The best model for IMPDH inhibitors, Hypo1-1, was characterized by the best correlation coefficient (0.97595) and the lowest RMSD (0.582058). It consisted of one hydrogen-bond donor, one hydrogen-bond acceptor, one aromatic ring and one hydrophobic feature, as well as two excluded volumes. The model was validated using a wide range of test molecules and a cross-validation. Furthermore, the pharmacophore features were confirmed by molecular docking studies. The pharmacophore model could quantitatively predict inhibitor activity and identify highly potent molecules. Therefore, the present results could be valuable for the discovery and development of specific IMPDH inhibitors.
Collapse
Affiliation(s)
- Na Yang
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | | | | | | |
Collapse
|
27
|
Toubiana J, Rossi AL, Grimaldi D, Belaidouni N, Chafey P, Clary G, Courtine E, Pene F, Mira JP, Claessens YE, Chiche JD. IMPDHII protein inhibits Toll-like receptor 2-mediated activation of NF-kappaB. J Biol Chem 2011; 286:23319-33. [PMID: 21460227 DOI: 10.1074/jbc.m110.201210] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toll-like receptor 2 (TLR2) plays an essential role in innate immunity by the recognition of a large variety of pathogen-associated molecular patterns. It induces its recruitment to lipid rafts induces the formation of a membranous activation cluster necessary to enhance, amplify, and control downstream signaling. However, the exact composition of the TLR2-mediated molecular complex is unknown. We performed a proteomic analysis in lipopeptide-stimulated THP1 and found IMPDHII protein rapidly recruited to lipid raft. Whereas IMPDHII is essential for lymphocyte proliferation, its biologic function within innate immune signal pathways has not been established yet. We report here that IMPDHII plays an important role in the negative regulation of TLR2 signaling by modulating PI3K activity. Indeed, IMPDHII increases the phosphatase activity of SHP1, which participates to the inactivation of PI3K.
Collapse
|
28
|
Felczak K, Chen L, Wilson D, Williams J, Vince R, Petrelli R, Jayaram HN, Kusumanchi P, Kumar M, Pankiewicz KW. Cofactor-type inhibitors of inosine monophosphate dehydrogenase via modular approach: Targeting the pyrophosphate binding sub-domain. Bioorg Med Chem 2011; 19:1594-605. [DOI: 10.1016/j.bmc.2011.01.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/14/2011] [Accepted: 01/21/2011] [Indexed: 10/18/2022]
|
29
|
Nair V, Zhang F, Ma X, Bonsu E. Base-functionalized carbocyclic nucleosides: design, synthesis, and mechanism of antiviral activity. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 28:408-23. [PMID: 20183592 DOI: 10.1080/15257770903044465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
New carbocyclic ribonucleosides with unsaturated groups at the C-2 position of the nucleobase were designed as potential RNA antiviral compounds. The design was based on the expectation that the monophosphates of these compounds would be inhibitors of the enzyme, IMPDH. Appropriate methodologies were developed to achieve the target molecules. Results from the initial in vitro antiviral studies are mentioned. The IMPDH-associated mechanism of the antiviral activity of the most active compound is supported by enzyme inhibition studies.
Collapse
Affiliation(s)
- Vasu Nair
- Department of Pharmaceutical and Biomedical Sciences and the Center for Drug Discovery, University of Georgia, Athens, Georgia, USA.
| | | | | | | |
Collapse
|
30
|
Chiarelli LR, Molinaro M, Libetta C, Tinelli C, Cosmai L, Valentini G, Dal Canton A, Regazzi M. Inosine monophosphate dehydrogenase variability in renal transplant patients on long-term mycophenolate mofetil therapy. Br J Clin Pharmacol 2010; 69:38-50. [PMID: 20078611 DOI: 10.1111/j.1365-2125.2009.03542.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT * Mycophenolic acid (MPA) is a potent, selective and reversible inhibitor of inosine 5'-monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme for de novo guanosine triphosphate biosynthesis. * The large IMPDH interindividual variability could be responsible for the differences in therapeutic effects and side-effects observed with MPA. * Induction of IMPDH activity has been observed in whole blood during immunosuppressive therapy. WHAT THIS STUDY ADDS * Our data were acquired in long-term mycophenolate mofetil-treated renal transplant recipients on different combinations of immunosuppressive agents (ciclosporin, tacrolimus, sirolimus) and with different treatment duration (up to 8.8 years post transplant). * The increasing trend in IMPDH activity that we observed throughout our 12-month observation period was significantly higher in rejecting than in nonrejecting subjects. AIMS Long-term mycophenolate mofetil (MMF) therapy may induce inosine 5'-monophosphate dehydrogenase (IMPDH) activity in peripheral blood mononuclear cells (PBMCs), thus decreasing MMF immunosuppressive properties. Pharmacodynamic monitoring was used to investigate whether biological activity is altered after long-term therapy. METHODS IMPDH activity was measured in PBMC samples from 54 stable kidney transplant patients, already on MMF (for at least 3 months), before (t(0)) and 2 h after (t(2)) MMF morning dose administration; levels were monitored for up to 15 months, together with total mycophenolic acid (MPA) and free MPA concentrations. RESULTS During the 15 months' monitoring, t(0) IMPDH activity in transplant recipients increased from 5.9 +/- 3.7 nmol h(-1) mg(-1)[95% confidence interval (CI) 4.9, 6.9] to 9.0 +/- 3.9 nmol h(-1) mg(-1) (95% CI 7.2, 10.8), with an intra- and interpatient variability of 28% and 42%. Five patients experienced acute rejection during the follow-up: t(0) IMPDH activity was increased during rejection vs. nonrejection, and the trend was significantly higher in rejecting than in nonrejecting subjects for the whole monitoring period. CONCLUSIONS Even though a correlation has been found between IMPDH activity and rejection, its efficacy as a predictive tool in long-term transplant outcomes may be affected by high interpatient variability; on the other hand, continuous monitoring of the IMPDH trend could make an effective prognostic parameter of rejection. Other trials also including pre-transplant data on both IMPDH expression and activity are warranted to better assess their role as biomarkers for MPA effect in clinical practice.
Collapse
Affiliation(s)
- Laurent R Chiarelli
- Department of Biochemistry, University of Pavia, Pharmacokinetics Unit, Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Garat A, Cauffiez C, Hamdan-Khalil R, Glowacki F, Devos A, Leclerc J, Lionet A, Allorge D, Lo-Guidice JM, Broly F. IMPDH2 Genetic Polymorphism: A Promoter Single-Nucleotide Polymorphism Disrupts a Cyclic Adenosine Monophosphate Responsive Element. Genet Test Mol Biomarkers 2009; 13:841-7. [DOI: 10.1089/gtmb.2009.0096] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Anne Garat
- EA267, Faculty of Medicine, University Lille Nord de France, Lille, France
| | | | - Rima Hamdan-Khalil
- EA267, Faculty of Medicine, University Lille Nord de France, Lille, France
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - François Glowacki
- EA267, Faculty of Medicine, University Lille Nord de France, Lille, France
- Department of Nephrology, Calmette Hospital, CHRU Lille, Lille, France
| | - Aurore Devos
- EA267, Faculty of Medicine, University Lille Nord de France, Lille, France
| | - Julie Leclerc
- EA267, Faculty of Medicine, University Lille Nord de France, Lille, France
| | - Arnaud Lionet
- Department of Nephrology, Calmette Hospital, CHRU Lille, Lille, France
| | - Delphine Allorge
- EA267, Faculty of Medicine, University Lille Nord de France, Lille, France
| | | | - Franck Broly
- EA267, Faculty of Medicine, University Lille Nord de France, Lille, France
| |
Collapse
|
32
|
Effect of the inosine 5'-monophosphate dehydrogenase inhibitor BMS-566419 on rat cardiac allograft rejection. Int Immunopharmacol 2009; 10:91-7. [PMID: 19840872 DOI: 10.1016/j.intimp.2009.09.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 09/15/2009] [Accepted: 09/19/2009] [Indexed: 01/06/2023]
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) inhibition is a critical target in solid organ transplantation, and the development of mycophenolate mofetil (MMF) represents a major advance in transplant medicine. In this study, the in vitro and in vivo pharmacological effects of BMS-566419, a novel chemically synthesized IMPDH inhibitor, were compared to those of mycophenolic acid (MPA) and MMF based on results from several immunological experiments. The in vitro inhibitory activity of BMS-566419 on IMPDH type I/II, immune cell proliferation and antibody production from lipopolysaccharide (LPS)-stimulated B cells was similar, albeit slightly less potent than that of MPA. In a rat heterotopic cardiac transplant model, monotherapy using orally administered BMS-566419 60mg/kg or MMF 40mg/kg prolonged the median survival time (MST) of transplanted grafts in the vehicle group from 5 to 18 and 18.5 days, respectively. In the presence of a sub-therapeutic dose of FK506, BMS-566419 30mg/kg and MMF 20mg/kg showed identical efficacy with an MST of 21.5 days. In dinitrophenol-LPS-stimulated rats in which calcineurin inhibitors failed to inhibit antibody production, in vivo oral administration of BMS-566419 resulted in antibody production suppression with similar efficacy to MMF. The in vivo antibody production against alloantigen was also suppressed by MMF or BMS-566419 treatment. In addition, gastrointestinal toxicity, considered a dose-limiting factor of MMF, was reduced in BMS-566419 treatment. These results suggest that BMS-566419 and other chemically synthesized IMPDH inhibitors have beneficial pharmacological effects similar to those of MMF, and are potential pharmaceutical candidates in transplant indications.
Collapse
|
33
|
Gensburger O, Picard N, Marquet P. Effect of mycophenolate acyl-glucuronide on human recombinant type 2 inosine monophosphate dehydrogenase. Clin Chem 2009; 55:986-93. [PMID: 19299544 DOI: 10.1373/clinchem.2008.113936] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The immunosuppressive effect of mycophenolic acid (MPA) is essentially attributed to IMPDH II inhibition, which leads to a reduction of lymphocyte proliferation. We investigated the action of the MPA metabolites MPA-phenyl-glucuronide (MPAG) and MPA-acyl-glucuronide (AcMPAG) on recombinant human IMPDH II (rhIMPDH II), as well as their passage into lymphocytes in vitro. METHODS We measured rhIMPDH II activity spectrophotometrically through the initial velocity of NADH formation, leading to the computation of the kinetic parameters K(m), IC(50), and K(i) (Michaelis constant, half-maximal inhibition concentration, and inhibition constant). We measured intracellular and extracellular concentrations of MPA, MPAG, and AcMPAG after incubation of Jurkat lymphoma cells with each compound separately, using liquid chromatography-tandem mass spectrometry. RESULTS MPA and AcMPAG showed an inhibition of rhIMPDH II (IC(50) 25.6 microg/L and 301.7 microg/L, respectively; the K(i) of MPA for NAD and IMP was 50.8 and 57.7 nmol/L, respectively; and that of AcMPAG for NAD and IMP was 382.0 and 511.0 nmol/L. MPAG had no significant effect on the enzyme. AcMPAG apparently acts by the same uncompetitive inhibition mechanism as MPA, with a 12-fold higher IC(50) and an 8-10 times higher K(i). When coincubated with MPA, AcMPAG activity was negligible at pharmacological concentrations. Furthermore, after 6-h incubation at their respective maximum concentration (C(max)), MPA was 10 times more concentrated in Jurkat cells than AcMPAG. CONCLUSIONS AcMPAG is a weaker inhibitor of rhIMPDH II than MPA and is less concentrated in lymphocytes in vitro, suggesting that it would not be pharmacologically active in vivo and might not need to be monitored in MPA-treated patients.
Collapse
|
34
|
Roberts RL, Gearry RB, Kennedy MA, Barclay ML. Beyond TPMT: genetic influences on thiopurine drug responses in inflammatory bowel disease. Per Med 2008; 5:233-248. [PMID: 29783500 DOI: 10.2217/17410541.5.3.233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Azathioprine and 6-mercaptopurine are widely used in the management of inflammatory bowel disease (IBD). However, approximately 25% of IBD patients experience toxicity, and up to 10% show resistance to these thiopurine drugs. The importance of genetic variability in determining thiopurine toxicity was first recognized over 25 years ago with the discovery of the thiopurine S-methyltransferase (TPMT) polymorphism and the occurrence of azathioprine-induced myelosuppression in TPMT-deficient patients. In the intervening period, TPMT has become the foremost example of pharmacogenetics, and TPMT deficiency represents one of the few pharmacogenetic phenomena that have successfully made the transition from the research laboratory to diagnostics. While TPMT activity predicts some cases of myelosuppression, deficiency in this enzyme is neither predictive of other adverse drug reactions, nor resistance to thiopurine therapy. As myelosuppression only accounts for approximately 2.5% of adverse reactions in IBD patients, researchers are increasingly turning their attention to other enzymes involved in thiopurine metabolism to find molecular explanations for intolerance and resistance to azathioprine and 6-mercaptopurine. In this review, we summarize the current state of knowledge with regards to TPMT, and also explore genetic variability, beyond TPMT, that may contribute to thiopurine response in IBD patients.
Collapse
Affiliation(s)
| | - Richard B Gearry
- Department of Medicine, University of Otago, Christchurch 8140, New Zealand.,Department of Gastroenterology, Christchurch Hospital, Private Bag 151, Christchurch 8140, New Zealand
| | - Martin A Kennedy
- Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - Murray L Barclay
- Department of Medicine, University of Otago, Christchurch 8140, New Zealand.,Department of Gastroenterology, Christchurch Hospital, Private Bag 151, Christchurch 8140, New Zealand
| |
Collapse
|
35
|
Tam LCS, Kiang AS, Kennan A, Kenna PF, Chadderton N, Ader M, Palfi A, Aherne A, Ayuso C, Campbell M, Reynolds A, McKee A, Humphries MM, Farrar GJ, Humphries P. Therapeutic benefit derived from RNAi-mediated ablation of IMPDH1 transcripts in a murine model of autosomal dominant retinitis pigmentosa (RP10). Hum Mol Genet 2008; 17:2084-100. [PMID: 18385099 DOI: 10.1093/hmg/ddn107] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations within the inosine 5'-monophosphate dehydrogenase 1 (IMPDH1) gene cause the RP10 form of autosomal dominant retinitis pigmentosa (adRP), an early-onset retinopathy resulting in extensive visual handicap owing to progressive death of photoreceptors. Apart from the prevalence of RP10, estimated to account for 5-10% of cases of adRP in United States and Europe, two observations render this form of RP an attractive target for gene therapy. First, we show that while recombinant adeno-associated viral (AAV)-mediated expression of mutant human IMPDH1 protein in the mouse retina results in an aggressive retinopathy modelling the human counterpart, expression of a normal human IMPDH1 gene under similar conditions has no observable pathological effect on retinal function, indicating that over-expression of a therapeutic replacement gene may be relatively well tolerated. Secondly, complete absence of IMPDH1 protein in mice with a targeted disruption of the gene results in relatively mild retinal dysfunction, suggesting that significant therapeutic benefit may be derived even from the suppression-only component of an RNAi-based gene therapy. We show that AAV-mediated co-expression in the murine retina of a mutant human IMPDH1 gene together with short hairpin RNAs (shRNA) validated in vitro and in vivo, targeting both human and mouse IMPDH1, substantially suppresses the negative pathological effects of mutant IMPDH1, at a point where, in the absence of shRNA, expression of mutant protein in the RP10 model essentially ablates all photoreceptors in transfected areas of the retina. These data strongly suggest that an RNAi-mediated approach to therapy for RP10 holds considerable promise for human subjects.
Collapse
Affiliation(s)
- Lawrence C S Tam
- The Ocular Genetics Unit, Department of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gunter JH, Thomas EC, Lengefeld N, Kruger SJ, Worton L, Gardiner EM, Jones A, Barnett NL, Whitehead JP. Characterisation of inosine monophosphate dehydrogenase expression during retinal development: differences between variants and isoforms. Int J Biochem Cell Biol 2008; 40:1716-28. [PMID: 18295529 DOI: 10.1016/j.biocel.2007.12.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 12/19/2007] [Accepted: 12/23/2007] [Indexed: 02/07/2023]
Abstract
In mammals there are two ubiquitous, catalytically indistinguishable isoforms of inosine monophosphate dehydrogenase and mutations in the type I isoform, but not type II, cause retina-specific disorders. We have characterised the spatio-temporal expression of these proteins during development of the rat retina and performed functional investigations of the recently described retinal type I variants. Inosine monophosphate dehydrogenase was present in all immature cells throughout the retina during embryonic and neonatal development. Following eye opening and cell differentiation its distribution was restricted to the photoreceptors and bipolar cells, becoming prominent in Müller cells with aging. Type II was present in early, developing retinae whilst type I was undetectable. An isoform switch occurred around P10, after which the type I variants, type Ialpha and type Igamma, were the major forms. Functional investigations indicate type Igamma has greater catalytic activity compared with other variants and isoforms. Finally, all forms of type I show an increased propensity to form intracellular macrostructures compared to type II and these structures appear to be regulated in response to changing intracellular GTP levels. Collectively these data demonstrate that (i) type I does not play a role in early retinal development, (ii) type Igamma has greater activity and (iii) there are differences between type I and type II isoforms. These observations are consistent with the aetiology of retinitis pigmentosa and raise the possibility that programmed expression of specific inosine monophosphate dehydrogenase proteins may have arisen to meet the requirements of the cellular environment.
Collapse
Affiliation(s)
- Jennifer H Gunter
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD 4102, Brisbane, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sanquer S, Maison P, Tomkiewicz C, Macquin-Mavier I, Legendre C, Barouki R, Lang P. Expression of inosine monophosphate dehydrogenase type I and type II after mycophenolate mofetil treatment: a 2-year follow-up in kidney transplantation. Clin Pharmacol Ther 2007; 83:328-35. [PMID: 17713475 DOI: 10.1038/sj.clpt.6100300] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The objective of the study was to evaluate the effect of mycophenolate mofetil (MMF) on the regulation of inosine monophosphate dehydrogenase (IMPDH) during the first 2 years after renal transplantation. Twelve patients were enrolled, and 10-h time-course evaluations of the effects of MMF were regularly performed during the study. IMPDH activity and gene expression were measured in whole blood and in mononuclear cells, respectively. Type I IMPDH (IMPDH-I) mRNA was increased during the first 3 months following transplantation and reached its maximal level during acute rejection episodes, whereas type II IMPDH mRNA was stable. Furthermore, although no alteration in the predose samples was observed, patients with prolonged MMF treatment exhibited an increase in the induction potency of both IMPDH activity and gene expression. In vitro experiments confirmed that IMPDH-I is inducible, but preferentially in monocytes than in lymphocytes. This finding suggests that the measurement of IMPDH mRNAs may provide reliable information to predict acute rejection.
Collapse
Affiliation(s)
- S Sanquer
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Biochimie, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
38
|
Nakajo A, Khoshnoodi J, Takenaka H, Hagiwara E, Watanabe T, Kawakami H, Kurayama R, Sekine Y, Bessho F, Takahashi S, Swiatecka-Urban A, Tryggvason K, Yan K. Mizoribine corrects defective nephrin biogenesis by restoring intracellular energy balance. J Am Soc Nephrol 2007; 18:2554-64. [PMID: 17687078 DOI: 10.1681/asn.2006070732] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Proteins are modified and folded within the endoplasmic reticulum (ER). When the influx of proteins exceeds the capacity of the ER to handle the load, the ER is "stressed" and protein biogenesis is affected. We have previously shown that the induction of ER stress by ATP depletion in podocytes leads to mislocalization of nephrin and subsequent injury of podocytes. The aim of the present study was to determine whether ER stress is associated with proteinuria in vivo and whether the immunosuppressant mizoribine may exert its antiproteinuric effect by restoring normal nephrin biogenesis. Induction of nephrotic-range proteinuria with puromycin aminonucleoside in mice increased expression of the ER stress marker GRP78 in podocytes, and led to the mislocalization of nephrin to the cytoplasm. In vitro, mizoribine, through a mechanism likely dependent on the inhibition of inosine 5'-monophosphate dehydrogenase (IMPDH) activity in podocytes, restored the intracellular energy balance by increasing levels of ATP and corrected the posttranslational processing of nephrin. Therefore, we speculate that mizoribine may induce remission of proteinuria, at least in part, by restoring the biogenesis of slit diaphragm proteins in injured podocytes. Further understanding of the ER microenvironment may lead to novel approaches to treat diseases in which abnormal handling of proteins plays a role in pathogenesis.
Collapse
Affiliation(s)
- Aya Nakajo
- Department of Pediatrics, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Watterson SH, Chen P, Zhao Y, Gu HH, Dhar TGM, Xiao Z, Ballentine SK, Shen Z, Fleener CA, Rouleau KA, Obermeier M, Yang Z, McIntyre KW, Shuster DJ, Witmer M, Dambach D, Chao S, Mathur A, Chen BC, Barrish JC, Robl JA, Townsend R, Iwanowicz EJ. Acridone-based inhibitors of inosine 5'-monophosphate dehydrogenase: discovery and SAR leading to the identification of N-(2-(6-(4-ethylpiperazin-1-yl)pyridin-3-yl)propan-2-yl)-2- fluoro-9-oxo-9,10-dihydroacridine-3-carboxamide (BMS-566419). J Med Chem 2007; 50:3730-42. [PMID: 17585753 DOI: 10.1021/jm070299x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inosine monophosphate dehydrogenase (IMPDH), a key enzyme in the de novo synthesis of guanosine nucleotides, catalyzes the irreversible nicotinamide-adenine dinucleotide dependent oxidation of inosine-5'-monophosphate to xanthosine-5'-monophosphate. Mycophenolate Mofetil (MMF), a prodrug of mycophenolic acid, has clinical utility for the treatment of transplant rejection based on its inhibition of IMPDH. The overall clinical benefit of MMF is limited by what is generally believed to be compound-based, dose-limiting gastrointestinal (GI) toxicity that is related to its specific pharmacokinetic characteristics. Thus, development of an IMPDH inhibitor with a novel structure and a different pharmacokinetic profile may reduce the likelihood of GI toxicity and allow for increased efficacy. This article will detail the discovery and SAR leading to a novel and potent acridone-based IMPDH inhibitor 4m and its efficacy and GI tolerability when administered orally in a rat adjuvant arthritis model.
Collapse
Affiliation(s)
- Scott H Watterson
- Bristol-Myers Squibb Pharmaceutical Research Institute, Post Office Box 4000, Princeton, New Jersey 08543, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dobie F, Berg A, Boitz JM, Jardim A. Kinetic characterization of inosine monophosphate dehydrogenase of Leishmania donovani. Mol Biochem Parasitol 2006; 152:11-21. [PMID: 17173987 DOI: 10.1016/j.molbiopara.2006.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2006] [Revised: 11/08/2006] [Accepted: 11/14/2006] [Indexed: 11/27/2022]
Abstract
Trypanosomatid protozoan pathogens are purine auxotrophs that are highly dependent on the enzyme inosine monophosphate dehydrogenase (IMPDH) for the synthesis of guanylate nucleotides. Enzymatic characterization of the Leishmania donovani IMPDH (LdIMPDH) overexpressed in E. coli revealed that this enzyme was highly specific for the substrates IMP and NAD(+) with K(m)(app) values of 33 and 390 microM, respectively. In contrast to other IMPDHs, LdIMPDH exhibits no substrate inhibition in high concentrations of NAD(+). Kinetic studies revealed that XMP and GMP were inhibitors with K(i) values of approximately 26 and 210 microM, respectively, suggesting that these nucleotides may regulate LdIMPDH activity. Mycophenolic acid was also a potent inhibitor of L. donovani IMPDH with a K(i) value of approximately 25 nM. Confocal immunofluorescence microscopy and subcellular fractionation localized LdIMPDH to the glycosome. Protein-protein interaction assays revealed that LdIMPDH associated tightly with glycosomal protein sorting receptor LdPEX5.
Collapse
Affiliation(s)
- Fredrick Dobie
- Institute of Parasitology, Macdonald Campus of McGill University, 21, 111 Lakeshore Road, Ste. Anne-de-Bellevue, Quebec, Canada H9X 3V9
| | | | | | | |
Collapse
|
41
|
Wu X, Zhong H, Song J, Damoiseaux R, Yang Z, Lin S. Mycophenolic Acid Is a Potent Inhibitor of Angiogenesis. Arterioscler Thromb Vasc Biol 2006; 26:2414-6. [PMID: 16990565 DOI: 10.1161/01.atv.0000238361.07225.fc] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Forbus J, Spratt H, Wiktorowicz J, Wu Z, Boldogh I, Denner L, Kurosky A, Brasier RC, Luxon B, Brasier AR. Functional analysis of the nuclear proteome of human A549 alveolar epithelial cells by HPLC-high resolution 2-D gel electrophoresis. Proteomics 2006; 6:2656-72. [PMID: 16586437 DOI: 10.1002/pmic.200500652] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The airway epithelial cell plays a central role in coordinating airway inflammatory responses, where significant changes in the proteome occur in response to infectious stimuli. To further understand the spectrum of proteins and the biological processes they control, we have initially determined the nuclear proteome of human type II-like alveolar epithelial cells (A549) using a sequential method of organellar enrichment followed by HPLC prefractionation prior to 2-DE-based protein identification using MALDI-TOF MS. This approach yielded 719 high-confidence identifications, 433 mapping to unique gene identifiers. Expert classification showed that these proteins controlled chromatin remodeling, protein refolding, cytoskeletal structure, membrane function, metabolic processes, mitochondrial function, RNA binding, protein synthesis, signaling, and transcription factor activities. The proteins were mapped to gene ontology classifications, where metabolism and catalytic activity functions were significantly enriched, representing 43 and 32% of the protein set, respectively. Pathways analysis indicated a protein network affecting tumor necrosis factor-nuclear factor-kappaB signaling pathway interacting with intermediate cytoskeletal filaments. Forty-five proteins of unknown function were subjected to domain analysis and inferred to have additional nuclear functions controlling purine nucleotide metabolism and protein-protein interactions. This database represents the most comprehensive data set of mammalian nuclear proteins and will serve as a foundation for further discovery.
Collapse
Affiliation(s)
- Jeffery Forbus
- Department of Medicine, The University of Texas Medical Branch, Galveston, TX 77555-1060, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Brouwer C, Vermunt-de Koning DGM, Trueworthy RC, Ter Riet PGJH, Duley JA, Trijbels FJM, Hoogerbrugge PM, Bökkerink JPM, van Wering ER, De Abreu RA. Monitoring of inosine monophosphate dehydrogenase activity in mononuclear cells of children with acute lymphoblastic leukemia: enzymological and clinical aspects. Pediatr Blood Cancer 2006; 46:434-8. [PMID: 16333815 DOI: 10.1002/pbc.20452] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Inosine 5'-monophosphate dehydrogenase (IMPDH; EC1.1.1.205) catalyzes the rate-limiting step in guanine nucleotide biosynthesis, and may play an important role in treatment of patients with antipurines. METHODS We used an HPLC method to measure the IMPDH activity in peripheral blood and bone marrow mononuclear cells (MNC). IMPDH activities were determined in children who were diagnosed with and treated for acute lymphoblastic leukemia (ALL), and in a group of control children. RESULTS The median IMPDH activity for control children was 350 pmol/10(6) pMNC/hr (range 97-896; n = 47). No gender or age differences were observed. IMPDH activity at diagnosis of ALL was correlated with the percentage of peripheral blood lymphoblasts (r = 0.474; P < 0.001; n = 71). The median IMPDH activity at diagnosis was 410 pmol/10(6) pMNC/hr (range 40-2009; n = 76), significantly higher than for controls (P = 0.012). IMPDH activity significantly decreased after induction treatment, and during treatment with methotrexate (MTX) infusions (median 174 pmol/10(6) pMNC/hr; range 52-516; n = 21). The activity remained low during maintenance treatment with 6-mercaptopurine (6MP) and MTX, at a significantly lower level than for controls (P < 0.004). One year after cessation of treatment IMPDH activity returned to normal values. CONCLUSION The decrease of IMPDH activity at remission of ALL seems to be at least partly due to the eradication of lymphoblasts with the type 2 isoform of the enzyme.
Collapse
Affiliation(s)
- Connie Brouwer
- Department of Pediatric Hemato-Oncology, University Medical Center St. Radboud, HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Beevers RE, Buckley GM, Davies N, Fraser JL, Galvin FC, Hannah DR, Haughan AF, Jenkins K, Mack SR, Pitt WR, Ratcliffe AJ, Richard MD, Sabin V, Sharpe A, Williams SC. Low molecular weight indole fragments as IMPDH inhibitors. Bioorg Med Chem Lett 2006; 16:2535-8. [PMID: 16483769 DOI: 10.1016/j.bmcl.2006.01.089] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 01/19/2006] [Accepted: 01/19/2006] [Indexed: 11/15/2022]
Abstract
The study of non-oxazole containing indole fragments as inhibitors of inosine monophosphate dehydrogenase (IMPDH) is described. The synthesis and in vitro inhibitory values for IMPDH II are discussed.
Collapse
|
45
|
Ignoul S, Eggermont J. CBS domains: structure, function, and pathology in human proteins. Am J Physiol Cell Physiol 2005; 289:C1369-78. [PMID: 16275737 DOI: 10.1152/ajpcell.00282.2005] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The cystathionine-β-synthase (CBS) domain is an evolutionarily conserved protein domain that is present in the proteome of archaebacteria, prokaryotes, and eukaryotes. CBS domains usually come in tandem repeats and are found in cytosolic and membrane proteins performing different functions (metabolic enzymes, kinases, and channels). Crystallographic studies of bacterial CBS domains have shown that two CBS domains form an intramolecular dimeric structure (CBS pair). Several human hereditary diseases (homocystinuria, retinitis pigmentosa, hypertrophic cardiomyopathy, myotonia congenital, etc.) can be caused by mutations in CBS domains of, respectively, cystathionine-β-synthase, inosine 5′-monophosphate dehydrogenase, AMP kinase, and chloride channels. Despite their clinical relevance, it remains to be established what the precise function of CBS domains is and how they affect the structural and/or functional properties of an enzyme, kinase, or channel. Depending on the protein in which they occur, CBS domains have been proposed to affect multimerization and sorting of proteins, channel gating, and ligand binding. However, recent experiments revealing that CBS domains can bind adenosine-containing ligands such ATP, AMP, or S-adenosylmethionine have led to the hypothesis that CBS domains function as sensors of intracellular metabolites.
Collapse
Affiliation(s)
- Sofie Ignoul
- Laboratory of Physiology, K.U. Leuven, Campus Gasthuisberg O&N, Herestraat 49, B-3000 Leuven, Belgium
| | | |
Collapse
|
46
|
Birch HL, Buckley GM, Davies N, Dyke HJ, Frost EJ, Gilbert PJ, Hannah DR, Haughan AF, Madigan MJ, Morgan T, Pitt WR, Ratcliffe AJ, Ray NC, Richard MD, Sharpe A, Taylor AJ, Whitworth JM, Williams SC. Novel 7-methoxy-6-oxazol-5-yl-2,3-dihydro-1H-quinazolin-4-ones as IMPDH inhibitors. Bioorg Med Chem Lett 2005; 15:5335-9. [PMID: 16202581 DOI: 10.1016/j.bmcl.2005.06.108] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 06/02/2005] [Accepted: 06/23/2005] [Indexed: 11/19/2022]
Abstract
The synthesis and biological activity of a novel series of 7-methoxy-6-oxazol-5-yl-2,3-dihydro-1H-quinazolin-4-ones are described. Some of these compounds were found to be potent inhibitors of inosine 5'-monophosphate dehydrogenase type II (IMPDH II).
Collapse
Affiliation(s)
- Helen L Birch
- UCB Celltech, Granta Park, Great Abington, Cambridge, CB1 6GS, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Buckley GM, Davies N, Dyke HJ, Gilbert PJ, Hannah DR, Haughan AF, Hunt CA, Pitt WR, Profit RH, Ray NC, Richard MD, Sharpe A, Taylor AJ, Whitworth JM, Williams SC. Quinazolinethiones and quinazolinediones, novel inhibitors of inosine monophosphate dehydrogenase: synthesis and initial structure-activity relationships. Bioorg Med Chem Lett 2005; 15:751-4. [PMID: 15664851 DOI: 10.1016/j.bmcl.2004.11.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 11/02/2004] [Accepted: 11/04/2004] [Indexed: 11/23/2022]
Abstract
The development of a series of novel quinazolinethiones and quinazolinediones as inhibitors of inosine monophosphate dehydrogenase (IMPDH) is described. The synthesis, in vitro inhibitory values for IMPDH II and in vitro inhibitory value for PBMC proliferation are discussed.
Collapse
Affiliation(s)
- George M Buckley
- Celltech R and D, Granta Park, Great Abington, Cambridge CB1 6GS, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Whitehead JP, Simpson F, Hill MM, Thomas EC, Connolly LM, Collart F, Simpson RJ, James DE. Insulin and oleate promote translocation of inosine-5' monophosphate dehydrogenase to lipid bodies. Traffic 2005; 5:739-49. [PMID: 15355510 DOI: 10.1111/j.1600-0854.2004.00217.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the present study we identify inosine-5' monophosphate dehydrogenase (IMPDH), a key enzyme in de novo guanine nucleotide biosynthesis, as a novel lipid body-associated protein. To identify new targets of insulin we performed a comprehensive 2-DE analysis of (32)P-labelled proteins isolated from 3T3-L1 adipocytes (Hill et al. J Biol Chem 2000; 275: 24313-24320). IMPDH was identified by liquid chromatography/tandem mass spectrometry as a protein which was phosphorylated in a phosphatidylinositol (PI) 3-kinase-dependent manner upon insulin treatment. Although insulin had no significant effect on IMPDH activity, we observed translocation of IMPDH to lipid bodies following insulin treatment. Induction of lipid body formation with oleic acid promoted dramatic redistribution of IMPDH to lipid bodies, which appeared to be in contact with the endoplasmic reticulum, the site of lipid body synthesis and recycling. Inhibition of PI 3-kinase blocked insulin- and oleate-induced translocation of IMPDH and reduced oleate-induced lipid accumulation. However, we found no evidence of oleate-induced IMPDH phosphorylation, suggesting phosphorylation and translocation may not be coupled events. These data support a role for IMPDH in the dynamic regulation of lipid bodies and fatty acid metabolism and regulation of its activity by subcellular redistribution in response to extracellular factors that modify lipid metabolism.
Collapse
Affiliation(s)
- Jonathan P Whitehead
- Department of Diabetes & Obesity, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Pankiewicz KW. Inhibitors of inosine monophosphate dehydrogenase as potential chemotherapeutic agents. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.9.1.55] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Pankiewicz KW. Inhibitors of inosine monophosphate dehydrogenase as potential chemotherapeutic agents. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.11.7.1161] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|