1
|
Rida R, Hodeify R, Kreydiyyeh S. Adverse effect of FTY720P on colonic Na + /K + ATPase is mediated via ERK, p38MAPK, PKC, and PI3K. J Appl Toxicol 2023; 43:220-229. [PMID: 35946054 DOI: 10.1002/jat.4375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 01/17/2023]
Abstract
FTY720P, an analogue of sphingosine 1-phosphate, has emerged lately as a potential causative agent of inflammatory bowel disease, in which electrolytes movements driven by the sodium gradient established by the Na+ /K+ ATPase are altered. We showed previously in Caco-2 cells, a 50% FTY720P-induced decrease in the ATPase activity, mediated via S1PR2 and PGE2. This work aims at delineating the mechanism underlying PGE2 release and at investigating if the ATPase inhibition is due to changes in its abundance. The activity of the ATPase and the localization of a GFP-tagged Na+ /K+ -ATPase α1 -subunit were assessed in cells treated with 7.5 nM FTY720P. The involvement of ERK, p38 MAPK, PKC, and PI3K was studied in cells treated with 7.5 nM FTY720P or 1 nM PGE2 in presence of their inhibitors, or by determining changes in the protein expression of their activated phosphorylated forms. Imaging data showed ∼30% reduction in the GFP-tagged Na+ /K+ ATPase at the plasma membrane. Both FTY720P and PGE2 showed, respectively, 50% and 60% reduction in ATPase activity that disappeared when p38 MAPK, PKC, and PI3K were inhibited individually but not with ERK inhibition. The effect of FTY720P was imitated by PMA, an activator of PKC. Western blotting revealed inhibition of ERK by FTY720P. It was concluded that FTY720P, through activation of S1PR2, downregulates the Na+ /K+ ATPase by inhibiting ERK, which in turn activates p38 MAPK leading to the sequential activation of PKC and PI3K, PGE2 release, and a decrease in the Na+ /K+ ATPase activity and membrane abundance.
Collapse
Affiliation(s)
- Reem Rida
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Rawad Hodeify
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Sawsan Kreydiyyeh
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
2
|
Moyes CD, Dastjerdi SH, Robertson RM. Measuring enzyme activities in crude homogenates: Na +/K +-ATPase as a case study in optimizing assays. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110577. [PMID: 33609808 DOI: 10.1016/j.cbpb.2021.110577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/06/2021] [Accepted: 02/08/2021] [Indexed: 12/28/2022]
Abstract
In this review of assays of Na+/K+-ATPase (NKA), we explore the choices made by researchers assaying the enzyme to investigate its role in physiological regulation. We survey NKA structure and function in the context of how it is typically assayed, and how technical choices influence what can be said about the enzyme. In comparing different methods for extraction and assay of NKA, we identified a series of common pitfalls that compromise the veracity of results. We include experimental work to directly demonstrate how choices in detergents, salts and substrates influence NKA activities measured in crude homogenates. Our review of assay approaches integrates what is known from enzymology, biomedical physiology, cell biology and evolutionary biology, offering a more robust method for assaying the enzyme in meaningful ways, identifying caveats and future directions to explore its structure and function. The goal is to provide the sort of background on the enzyme that should be considered in exploring the function of the enzyme in comparative physiology.
Collapse
|
3
|
Fischer RA, Risner ML, Roux AL, Wareham LK, Sappington RM. Impairment of Membrane Repolarization Accompanies Axon Transport Deficits in Glaucoma. Front Neurosci 2019; 13:1139. [PMID: 31736686 PMCID: PMC6838637 DOI: 10.3389/fnins.2019.01139] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Glaucoma is a leading cause of blindness worldwide, resulting from degeneration of retinal ganglion cells (RGCs), which form the optic nerve. In glaucoma, axon transport deficits appear to precede structural degeneration of RGC axons. The period of time between the onset of axon transport deficits and the structural degeneration of RGC axons may represent a therapeutic window for the prevention of irreversible vision loss. However, it is unclear how deficits in axon transport relate to the electrophysiological capacity of RGCs to produce and maintain firing frequencies that encode visual stimuli. Here, we examined the electrophysiological signature of individual RGCs in glaucomatous retina with respect to axon transport facility. Utilizing the Microbead Occlusion Model of murine ocular hypertension, we performed electrophysiological recordings of RGCs with and without deficits in anterograde axon transport. We found that RGCs with deficits in axon transport have a reduced ability to maintain spiking frequency that arises from elongation of the repolarization phase of the action potential. This repolarization phenotype arises from reduced cation flux and K+ dyshomeostasis that accompanies pressure-induced decreases in Na/K-ATPase expression and activity. In vitro studies with purified RGCs indicate that elevated pressure induces early internalization of Na/K-ATPase that, when reversed, stabilizes cation flux and prevents K+ dyshomeostasis. Furthermore, pharmacological inhibition of the Na/K-ATPase is sufficient to replicate pressure-induced cation influx and repolarization phase phenotypes in healthy RGCs. These studies suggest that deficits in axon transport also likely reflect impaired electrophysiological function of RGCs. Our findings further identify a failure to maintain electrochemical gradients and cation dyshomeostasis as an early phenotype of glaucomatous pathology in RGCs that may have significant bearing on efforts to restore RGC health in diseased retina.
Collapse
Affiliation(s)
- Rachel A Fischer
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Michael L Risner
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Abigail L Roux
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Lauren K Wareham
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rebecca M Sappington
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
4
|
Parrish D, Lindell SL, Reichstetter H, Aboutanos M, Mangino MJ. Cell Impermeant-based Low-volume Resuscitation in Hemorrhagic Shock: A Biological Basis for Injury Involving Cell Swelling. Ann Surg 2016; 263:565-72. [PMID: 25915911 DOI: 10.1097/sla.0000000000001049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine the role of cell swelling in severe hemorrhagic shock and resuscitation injury. BACKGROUND Circulatory shock induces the loss of energy-dependent volume control mechanisms. As water enters ischemic cells, they swell, die, and compress nearby vascular structures, which further aggravates ischemia by reducing local microcirculatory flow and oxygenation. Loading the interstitial space with cell impermeant molecules prevents water movement into the cell by passive biophysical osmotic effects, which prevents swelling injury and no-reflow. METHODS Adult rats were hemorrhaged to a pressure of 30 to 35 mm Hg, held there until the plasma lactate reached 10 mM, and given a low-volume resuscitation (LVR) (10%-20% blood volume) with saline or various cell impermeants (sorbitol, raffinose, trehalose, gluconate, and polyethylene glycol-20k (PEG-20k). When lactate again reached 10 mM after LVR, full resuscitation was started with crystalloid and red cells. One hour after full resuscitation, the rats were euthanized. Capillary blood flow was measured by the colored microsphere technique. RESULTS Impermeants prevented ischemia-induced cell swelling in liver tissue and dramatically improved LVR outcomes in shocked rats. Small cell impermeants and PEG-20k in LVR solutions increased tolerance to the low flow state by two and fivefold, respectively, normalized arterial pressure during LVR, and lowered plasma lactate after full resuscitation, relative to saline. This was accompanied by higher capillary blood flow with cell impermeants. CONCLUSIONS Ischemia-induced lethal cell swelling during hemorrhagic shock is a key mediator of resuscitation injury, which can be prevented by cell impermeants in low-volume resuscitation solutions.
Collapse
Affiliation(s)
- Dan Parrish
- *From the Departments of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA †Emergency Medicine, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA ‡Physiology and Biophysics, Division of Acute Care Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA
| | | | | | | | | |
Collapse
|
5
|
Feraille E, Dizin E. Coordinated Control of ENaC and Na+,K+-ATPase in Renal Collecting Duct. J Am Soc Nephrol 2016; 27:2554-63. [PMID: 27188842 DOI: 10.1681/asn.2016020124] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tubular reabsorption of filtered sodium is tightly controlled to maintain body volume homeostasis. The rate of sodium transport by collecting duct (CD) cells varies widely in response to dietary sodium intake, GFR, circulating hormones, neural signals, and local regulatory factors. Reabsorption of filtered sodium by CD cells occurs via a two-step process. First, luminal sodium crosses the apical plasma membrane along its electrochemical gradient through epithelial sodium channels (ENaC). Intracellular sodium is then actively extruded into the interstitial space by the Na(+),K(+)-ATPase located along the basolateral membrane. Mismatch between sodium entry and exit induces variations in sodium intracellular concentration and cell volume that must be maintained within narrow ranges for control of vital cell functions. Therefore, renal epithelial cells display highly coordinated apical and basolateral sodium transport rates. We review evidence from experiments conducted in vivo and in cultured cells that indicates aldosterone and vasopressin, the two major hormones regulating sodium reabsorption by CD, generate a coordinated stimulation of apical ENaC and basolateral Na(+),K(+)-ATPase. Moreover, we discuss evidence suggesting that variations in sodium entry per se induce a coordinated change in Na(+),K(+)-ATPase activity through the signaling of protein kinases such as protein kinase A and p38 mitogen-activated protein kinase.
Collapse
Affiliation(s)
- Eric Feraille
- Department of Cell Biology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Eva Dizin
- Department of Cell Biology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Abstract
BACKGROUND Hypovolemic shock reduces oxygen delivery and compromises energy-dependent cell volume control. Consequent cell swelling compromises microcirculatory flow, which reduces oxygen exchange further. The importance of this mechanism is highlighted by the effectiveness of cell impermeants in low-volume resuscitation (LVR) solutions in acute studies. The objectives of this study were to assess impermeants in survival models and to compare them with commonly used crystalloid solutions. METHODS Adult rats were hemorrhaged to a pressure of 30 mm Hg to 35 mm Hg, held there until the plasma lactate reached 10 mM, and given an LVR solution (5-10% blood volume) with saline alone (control) and saline with various concentrations of polyethylene glycol-20k (PEG-20k), Hextend, or albumin. When lactate again reached 10 mM following LVR, full resuscitation was started with crystalloid and red blood cells. Rats were either euthanized (acute) or allowed to recover (survival). The LVR time, which is the time from the start of the LVR solution until the start of full resuscitation, was measured as was survival and diagnostic laboratory values. In some studies, the capillary oncotic reflection coefficient was determined for PEG-20k to determine its relative impermeant and oncotic effects. RESULTS PEG-20k (10%) significantly increased LVR times relative to saline (eightfold), Hextend, and albumin. Lower amounts of PEG-20k (5%) were also effective but less so than 10% doses. PEG-20k maintained normal arterial pressure during the low-volume state. Survival of a 180-minute LVR time challenge was 0% in saline controls and 100% in rats given PEG-20k as the LVR solution. Surviving rats had normal laboratory values 24 hours later. PEG-20k had an oncotic reflection coefficient of 0.65, which indicates that the molecule is a hybrid cell impermeant with significant oncotic properties. CONCLUSION PEG-20k-based LVR solutions are highly effective for inducing tolerance to the low-volume state and for improving survival.
Collapse
|
7
|
Alves DS, Thulin G, Loffing J, Kashgarian M, Caplan MJ. Akt Substrate of 160 kD Regulates Na+,K+-ATPase Trafficking in Response to Energy Depletion and Renal Ischemia. J Am Soc Nephrol 2015; 26:2765-76. [PMID: 25788531 DOI: 10.1681/asn.2013101040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/06/2015] [Indexed: 01/26/2023] Open
Abstract
Renal ischemia and reperfusion injury causes loss of renal epithelial cell polarity and perturbations in tubular solute and fluid transport. Na(+),K(+)-ATPase, which is normally found at the basolateral plasma membrane of renal epithelial cells, is internalized and accumulates in intracellular compartments after renal ischemic injury. We previously reported that the subcellular distribution of Na(+),K(+)-ATPase is modulated by direct binding to Akt substrate of 160 kD (AS160), a Rab GTPase-activating protein that regulates the trafficking of glucose transporter 4 in response to insulin and muscle contraction. Here, we investigated the effect of AS160 on Na(+),K(+)-ATPase trafficking in response to energy depletion. We found that AS160 is required for the intracellular accumulation of Na(+),K(+)-ATPase that occurs in response to energy depletion in cultured epithelial cells. Energy depletion led to dephosphorylation of AS160 at S588, which was required for the energy depletion-induced accumulation of Na,K-ATPase in intracellular compartments. In AS160-knockout mice, the effects of renal ischemia on the distribution of Na(+),K(+)-ATPase were substantially reduced in the epithelial cells of distal segments of the renal tubules. These data demonstrate that AS160 has a direct role in linking the trafficking of Na(+),K(+)-ATPase to the energy state of renal epithelial cells.
Collapse
Affiliation(s)
| | - Gunilla Thulin
- Pathology, Yale University School of Medicine, New Haven, Connecticut; and
| | | | - Michael Kashgarian
- Pathology, Yale University School of Medicine, New Haven, Connecticut; and
| | | |
Collapse
|
8
|
Mukherjee S, Bhatla SC. A novel fluorescence imaging approach to monitor salt stress-induced modulation of ouabain-sensitive ATPase activity in sunflower seedling roots. PHYSIOLOGIA PLANTARUM 2014; 150:540-9. [PMID: 24032541 DOI: 10.1111/ppl.12101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/17/2013] [Accepted: 08/18/2013] [Indexed: 05/08/2023]
Abstract
Seedlings exposed to salt stress are expected to show modulation of intracellular accumulation of sodium ions through a variety of mechanisms. Using a new methodology, this work demonstrates ouabain (OU)-sensitive ATPase activity in the roots of sunflower seedlings subjected to salt stress (120 mM NaCl). 9-Anthroylouabain (a derivative of ouabain known to inhibit Na(+), K(+) -ATPase activity in animal systems, EC 3.6.3.9) has been used as a probe to analyze OU-sensitive ATPase activity in sunflower (Helianthus annuus) seedling roots by spectrofluorometric estimation and localization of its spatial distribution using confocal laser scanning microscopy. Salt stress for 48 h leads to a significant induction of OU-sensitive ATPase activity in the meristematic region of the seedling roots. Calcium ions (10 mM) significantly inhibit enzyme activity and a parallel accumulation of sodium ions in the cytosol of the columella cells, epidermis and in the cells of the meristematic region of the roots is evident. As a rapid response to NaCl stress, the activity of OU-sensitive ATPase gets localized in the nuclear membrane of root protoplasts and it gets inhibited after treatment with calcium ions. Nuclear membrane localization of the OU-sensitive ATPase activity highlights a possible mechanism to efflux sodium ions from the nucleus. Thus, a correlation between OU-sensitive ATPase activity, its modulation by calcium ions and accumulation of sodium ions in various regions of the seedling roots, has been demonstrated using a novel approach in a plant system.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, 110007, India
| | | |
Collapse
|
9
|
Wang YB, Leroy V, Maunsbach AB, Doucet A, Hasler U, Dizin E, Ernandez T, de Seigneux S, Martin PY, Féraille E. Sodium transport is modulated by p38 kinase-dependent cross-talk between ENaC and Na,K-ATPase in collecting duct principal cells. J Am Soc Nephrol 2013; 25:250-9. [PMID: 24179170 DOI: 10.1681/asn.2013040429] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In relation to dietary Na(+) intake and aldosterone levels, collecting duct principal cells are exposed to large variations in Na(+) transport. In these cells, Na(+) crosses the apical membrane via epithelial Na(+) channels (ENaC) and is extruded into the interstitium by Na,K-ATPase. The activity of ENaC and Na,K-ATPase must be highly coordinated to accommodate variations in Na(+) transport and minimize fluctuations in intracellular Na(+) concentration. We hypothesized that, independent of hormonal stimulus, cross-talk between ENaC and Na,K-ATPase coordinates Na(+) transport across apical and basolateral membranes. By varying Na(+) intake in aldosterone-clamped rats and overexpressing γ-ENaC or modulating apical Na(+) availability in cultured mouse collecting duct cells, enhanced apical Na(+) entry invariably led to increased basolateral Na,K-ATPase expression and activity. In cultured collecting duct cells, enhanced apical Na(+) entry increased the basolateral cell surface expression of Na,K-ATPase by inhibiting p38 kinase-mediated endocytosis of Na,K-ATPase. Our results reveal a new role for p38 kinase in mediating cross-talk between apical Na(+) entry via ENaC and its basolateral exit via Na,K-ATPase, which may allow principal cells to maintain intracellular Na(+) concentrations within narrow limits.
Collapse
Affiliation(s)
- Yu-Bao Wang
- Service of Nephrology, Department of Cell Physiology and Metabolism, University Medical Center, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nikolić L, Bataveljić D, Andjus PR, Nedeljković M, Todorović D, Janać B. Changes in the expression and current of the Na+/K+ pump in the snail nervous system after exposure to a static magnetic field. ACTA ACUST UNITED AC 2013; 216:3531-41. [PMID: 23788713 DOI: 10.1242/jeb.085332] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Compelling evidence supports the use of a moderate static magnetic field (SMF) for therapeutic purposes. In order to provide insight into the mechanisms underlying SMF treatment, it is essential to examine the cellular responses elicited by therapeutically applied SMF, especially in the nervous system. The Na(+)/K(+) pump, by creating and maintaining the gradient of Na(+) and K(+) ions across the plasma membrane, regulates the physiological properties of neurons. In this study, we examined the expression of the Na(+)/K(+) pump in the isolated brain-subesophageal ganglion complex of the garden snail Helix pomatia, along with the immunoreactivity and current of the Na(+)/K(+) pump in isolated snail neurons after 15 min exposure to a moderate (10 mT) SMF. Western blot and immunofluorescence analysis revealed that 10 mT SMF did not significantly change the expression of the Na(+)/K(+) pump α-subunit in the snail brain and the neuronal cell body. However, our immunofluorescence data showed that SMF treatment induced a significant increase in the Na(+)/K(+) pump α-subunit expression in the neuronal plasma membrane area. This change in Na(+)/K(+) pump expression was reflected in pump activity as demonstrated by the pump current measurements. Whole-cell patch-clamp recordings from isolated snail neurons revealed that Na(+)/K(+) pump current density was significantly increased after the 10 mT SMF treatment. The SMF-induced increase was different in the two groups of control snail neurons, as defined by the pump current level. The results obtained could represent a physiologically important response of neurons to 10 mT SMF comparable in strength to therapeutic applications.
Collapse
Affiliation(s)
- Ljiljana Nikolić
- Department of Neurophysiology, Institute for Biological Research Sinisa Stankovic, University of Belgrade, Bulevar Despota Stefana 142, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
11
|
Reinhard L, Tidow H, Clausen MJ, Nissen P. Na(+),K (+)-ATPase as a docking station: protein-protein complexes of the Na(+),K (+)-ATPase. Cell Mol Life Sci 2013; 70:205-22. [PMID: 22695678 PMCID: PMC11113973 DOI: 10.1007/s00018-012-1039-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 05/13/2012] [Accepted: 05/23/2012] [Indexed: 12/13/2022]
Abstract
The Na(+),K(+)-ATPase, or sodium pump, is well known for its role in ion transport across the plasma membrane of animal cells. It carries out the transport of Na(+) ions out of the cell and of K(+) ions into the cell and thus maintains electrolyte and fluid balance. In addition to the fundamental ion-pumping function of the Na(+),K(+)-ATPase, recent work has suggested additional roles for Na(+),K(+)-ATPase in signal transduction and biomembrane structure. Several signaling pathways have been found to involve Na(+),K(+)-ATPase, which serves as a docking station for a fast-growing number of protein interaction partners. In this review, we focus on Na(+),K(+)-ATPase as a signal transducer, but also briefly discuss other Na(+),K(+)-ATPase protein-protein interactions, providing a comprehensive overview of the diverse signaling functions ascribed to this well-known enzyme.
Collapse
Affiliation(s)
- Linda Reinhard
- Danish National Research Foundation, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Department of Molecular Biology and Genetics, 8000 Aarhus C, Denmark
| | - Henning Tidow
- Danish National Research Foundation, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Department of Molecular Biology and Genetics, 8000 Aarhus C, Denmark
| | - Michael J. Clausen
- Danish National Research Foundation, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Department of Molecular Biology and Genetics, 8000 Aarhus C, Denmark
| | - Poul Nissen
- Danish National Research Foundation, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Department of Molecular Biology and Genetics, 8000 Aarhus C, Denmark
| |
Collapse
|
12
|
Gladstones GH, Burton PJ, Mark PJ, Waddell BJ, Roberts P. Immunolocalisation of 11β-HSD-1 and -2, glucocorticoid receptor, mineralocorticoid receptor and Na+ K+-ATPase during the postnatal development of the rat epididymis. J Anat 2012; 220:350-62. [PMID: 22414226 DOI: 10.1111/j.1469-7580.2012.01481.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Glucocorticoids have been implicated in male reproductive function and 11β-HSD-1 and -2, the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR), all of which are known to modulate glucocorticoid action, have been localised in the adult rat epididymis, but their developmental expression has not been investigated. Na(+)K(+)-ATPase activity, responsible for sodium transport, is induced by both mineralocorticoids and glucocorticoids in the kidney and colon, and has been localised in epididymal epithelium. This study examined the immunolocalisation of 11β-HSD-1 and -2, GR, MR and Na(+)K(+)-ATPase in rat epididymal epithelium (n = 5) at postnatal days (pnd) 1, 7, 15, 28, 40, 60, 75 and 104, and relative mRNA expression of 11β-HSD-1 and -2, and GR at pre-puberty (pnd 28) and post-puberty (pnd 75). 11β-HSD-1, GR and MR were localised in the epididymal epithelium from pnd 1, and 11β-HSD-2 and Na(+)K(+)-ATPase reactivity from pnd 15. At pnd 28 there was maximal immunoreactivity for both the GR and MR and 11β-HSD-1 and -2. 11β-HSD-1 mRNA expression in the caput increased from pre- to post-puberty, whereas 11β-HSD-2 mRNA expression fell over the same period (P < 0.01). GR mRNA expression was similar at pre- and post-puberty in both caput and cauda. Developmental changes in expression of 11β-HSD-1 and -2 suggest that overall exposure of the epididymis to glucocorticoids increases post-puberty, but cell-specific expression of the 11β-HSD enzymes still provides a capacity for intricate local control of glucocorticoid exposure.
Collapse
|
13
|
Benziane B, Björnholm M, Pirkmajer S, Austin RL, Kotova O, Viollet B, Zierath JR, Chibalin AV. Activation of AMP-activated protein kinase stimulates Na+,K+-ATPase activity in skeletal muscle cells. J Biol Chem 2012; 287:23451-63. [PMID: 22610379 DOI: 10.1074/jbc.m111.331926] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Contraction stimulates Na(+),K(+)-ATPase and AMP-activated protein kinase (AMPK) activity in skeletal muscle. Whether AMPK activation affects Na(+),K(+)-ATPase activity in skeletal muscle remains to be determined. Short term stimulation of rat L6 myotubes with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), activates AMPK and promotes translocation of the Na(+),K(+)-ATPase α(1)-subunit to the plasma membrane and increases Na(+),K(+)-ATPase activity as assessed by ouabain-sensitive (86)Rb(+) uptake. Cyanide-induced artificial anoxia, as well as a direct AMPK activator (A-769662) also increase AMPK phosphorylation and Na(+),K(+)-ATPase activity. Thus, different stimuli that target AMPK concomitantly increase Na(+),K(+)-ATPase activity. The effect of AICAR on Na(+),K(+)-ATPase in L6 myotubes was attenuated by Compound C, an AMPK inhibitor, as well as siRNA-mediated AMPK silencing. The effects of AICAR on Na(+),K(+)-ATPase were completely abolished in cultured primary mouse muscle cells lacking AMPK α-subunits. AMPK stimulation leads to Na(+),K(+)-ATPase α(1)-subunit dephosphorylation at Ser(18), which may prevent endocytosis of the sodium pump. AICAR stimulation leads to methylation and dephosphorylation of the catalytic subunit of the protein phosphatase (PP) 2A in L6 myotubes. Moreover, AICAR-triggered dephosphorylation of the Na(+),K(+)-ATPase was prevented in L6 myotubes deficient in PP2A-specific protein phosphatase methylesterase-1 (PME-1), indicating a role for the PP2A·PME-1 complex in AMPK-mediated regulation of Na(+),K(+)-ATPase. Thus contrary to the common paradigm, we report AMPK-dependent activation of an energy-consuming ion pumping process. This activation may be a potential mechanism by which exercise and metabolic stress activate the sodium pump in skeletal muscle.
Collapse
Affiliation(s)
- Boubacar Benziane
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Alves DS, Farr GA, Seo-Mayer P, Caplan MJ. AS160 associates with the Na+,K+-ATPase and mediates the adenosine monophosphate-stimulated protein kinase-dependent regulation of sodium pump surface expression. Mol Biol Cell 2010; 21:4400-8. [PMID: 20943949 PMCID: PMC3002392 DOI: 10.1091/mbc.e10-06-0507] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The sodium pump interacts with AS160, a protein that regulates the trafficking of the GLUT4 glucose transporter. This interaction drives the internalization of the sodium pump from the cell surface, and this process is in turn controlled by the energy-sensing kinase adenosine monophosphate-stimulated protein kinase. The Na+,K+-ATPase is the major active transport protein found in the plasma membranes of most epithelial cell types. The regulation of Na+,K+-ATPase activity involves a variety of mechanisms, including regulated endocytosis and recycling. Our efforts to identify novel Na+,K+-ATPase binding partners revealed a direct association between the Na+,K+-ATPase and AS160, a Rab-GTPase-activating protein. In COS cells, coexpression of AS160 and Na+,K+-ATPase led to the intracellular retention of the sodium pump. We find that AS160 interacts with the large cytoplasmic NP domain of the α-subunit of the Na+,K+-ATPase. Inhibition of the activity of the adenosine monophosphate-stimulated protein kinase (AMPK) in Madin-Darby canine kidney cells through treatment with Compound C induces Na+,K+-ATPase endocytosis. This effect of Compound C is prevented through the short hairpin RNA-mediated knockdown of AS160, demonstrating that AMPK and AS160 participate in a common pathway to modulate the cell surface expression of the Na+,K+-ATPase.
Collapse
Affiliation(s)
- Daiane S Alves
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026, USA
| | | | | | | |
Collapse
|
16
|
Yang HS, Cooper DS, Rajbhandari I, Park HJ, Lee S, Choi I. Inhibition of rat Na+(-)HCO3(-) cotransporter (NBCn1) function and expression by the alternative splice domain. Exp Physiol 2009; 94:1114-23. [PMID: 19638364 DOI: 10.1113/expphysiol.2009.048603] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Na(+)-HCO(3)(-) cotransporter NBCn1 (SLC4A7) has multiple variants depending upon splice domains in the cytoplasmic amino- and carboxy-termini of the protein. In this study, we examined the role of the amino-terminal splice domain containing 123 amino acids (cassette II) in the regulation of NBCn1 function and expression. Polymerase chain reaction detected NBCn1 mRNAs containing cassette II in a variety of tissues. Two variants, NBCn1-B containing cassette II and NBCn1-E lacking cassette II, were expressed in Xenopus oocytes and assessed by two-electrode voltage clamp to measure the ionic current mediated by the transporters. The two variants showed similar current-voltage (I-V) relations when measured 3-4 days after RNA injection. Replacment of Cl() with gluconate did not affect the I-V relations. When exposed to solutions containing 20-50 mm Na(+), the current produced by NBCn1-B was slightly more positive than that produced by NBCn1-E. The two currents were similar at 100 mm Na(+). The slope conductances for the two variants were progressively increased at higher Na(+) levels, and the increases were parallel and superimposed. Measured at different time points after RNA injection, NBCn1-B produced lower conductance than NBCn1-E at 24-48 h. Protein expression of NBCn1-B was also low at these time points as determined by immunoblot of oocyte membrane preparation. Expressed in opossum kidney (OK) cells, NBCn1-E caused a 1.5-fold increase in ouabain-sensitive production of p-nitrophenol from p-phenyl phosphate compared with control preparations, whereas NBCn1-B had negligible effect. We conclude that the primary function of cassette II is to reduce NBCn1 protein expression.
Collapse
Affiliation(s)
- Han Soo Yang
- Department of Physiology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
17
|
Cinelli AR, Efendiev R, Pedemonte CH. Trafficking of Na-K-ATPase and dopamine receptor molecules induced by changes in intracellular sodium concentration of renal epithelial cells. Am J Physiol Renal Physiol 2008; 295:F1117-25. [PMID: 18701625 DOI: 10.1152/ajprenal.90317.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Most of the transepithelial transport of sodium in proximal tubules occurs through the coordinated action of the apical sodium/proton exchanger and the basolateral Na-K-ATPase. Hormones that regulate proximal tubule sodium excretion regulate the activities of these proteins. We have previously demonstrated that the level of intracellular sodium concentration modulates the regulation of Na-K-ATPase activity by angiotensin II and dopamine. An increase of a few millimolars in intracellular sodium concentration leads to increased Na-K-ATPase activity without a statistically significant increase in the number of plasma membrane Na-K-ATPase molecules, as determined by cell surface protein biotinylation. Using total internal reflection fluorescence, we detected an increased number of Na-K-ATPase molecules in cytosolic compartments adjacent to the plasma membrane, suggesting that the increased intracellular sodium concentration induces a movement of Na-K-ATPase molecules toward the plasma membrane. While intracellular compartments containing Na-K-ATPase molecules are very close to the plasma membrane, compartments containing type 1 dopamine receptors (D1Rs) are distributed in different parts of the cell cytosol. Fluorescence determinations indicate that an increased intracellular sodium concentration induces the increased colocalization of dopamine receptors with Na-K-ATPase molecules in the region of the plasma membrane. We propose that under in vivo conditions, in response to a sodium load in the lumen of proximal tubules, an increased level of intracellular sodium in epithelial cells is an early event that triggers the cellular response that leads to dopamine inhibition of proximal tubule sodium reabsorption.
Collapse
Affiliation(s)
- Angel R Cinelli
- Department of Anatomy and Cell Biology, State University of New York at Brooklyn, Brooklyn, NY, USA
| | | | | |
Collapse
|
18
|
Morla L, Crambert G, Mordasini D, Favre G, Doucet A, Imbert-Teboul M. Proteinase-activated receptor 2 stimulates Na,K-ATPase and sodium reabsorption in native kidney epithelium. J Biol Chem 2008; 283:28020-8. [PMID: 18678869 DOI: 10.1074/jbc.m804399200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proteinase-activated receptors 2 (PAR2) are expressed in kidney, but their function is mostly unknown. Since PAR2 control ion transport in several epithelia, we searched for an effect on sodium transport in the cortical thick ascending limb of Henle's loop, a nephron segment that avidly reabsorbs NaCl, and for its signaling. Activation of PAR2, by either trypsin or a specific agonist peptide, increased the maximal activity of Na,K-ATPase, its apparent affinity for sodium, the sodium permeability of the paracellular pathway, and the lumen-positive transepithelial voltage, featuring increased NaCl reabsorption. PAR2 activation induced calcium signaling and phosphorylation of ERK1,2. PAR2-induced stimulation of Na,K-ATPase Vmax was fully prevented by inhibition of phospholipase C, of changes in intracellular concentration of calcium, of classical protein kinases C, and of ERK1,2 phosphorylation. PAR2-induced increase in paracellular sodium permeability was mediated by the same signaling cascade. In contrast, increase in the apparent affinity of Na,K-ATPase for sodium, although dependent on phospholipase C, was independent of calcium signaling, was insensitive to inhibitors of classical protein kinases C and of ERK1,2 phosphorylation, but was fully prevented by the nonspecific protein kinase inhibitor staurosporine, as was the increase in transepithelial voltage. In conclusion, PAR2 increases sodium reabsorption in rat thick ascending limb of Henle's loop along both the transcellular and the paracellular pathway. PAR2 effects are mediated in part by a phospholipase C/protein kinase C/ERK1,2 cascade, which increases Na,K-ATPase maximal activity and the paracellular sodium permeability, and by a different phospholipase C-dependent, staurosporine-sensitive cascade that controls the sodium affinity of Na,K-ATPase.
Collapse
Affiliation(s)
- Luciana Morla
- Université Pierre et Marie Curie, Univ Paris 06, UMR 7134, 75005 Paris
| | | | | | | | | | | |
Collapse
|
19
|
Busch L, Sterin-Borda L, Borda E. An Overview of Autonomic Regulation of Parotid Gland Activity: Influence of Orchiectomy. Cells Tissues Organs 2006; 182:117-28. [PMID: 16914915 DOI: 10.1159/000093962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2006] [Indexed: 11/19/2022] Open
Abstract
The parotid gland participates in the digestive process by providing fluid, electrolytes and enzymes that facilitate the onset of digestion. Neurotransmitters, hormones and biologically active peptides regulate its activity. The autonomic system is the main regulatory mechanism of the gland. Sympathetic stimulation induces amylase release through beta(1)-receptor activation and few fluid secretion by alpha(1)-receptor activation. The parasympathetic system controls basal activity of the gland acting on M(1) and M(3) muscarinic acetylcholine receptors and induces the secretion of fluid saliva rich in electrolytes through the modulation of ion channels and the Na(+)-K(+)-ATPase activity. In addition, its activation induces amylase release. The mechanisms involved in amylase secretion by isoproterenol and carbachol, as well as the mechanism of the cholinergic regulation of Na(+)-K(+)-ATPase activity and the changes observed after orchiectomy, are the scope of this review.
Collapse
Affiliation(s)
- Lucila Busch
- Pharmacology Unit, University of Buenos Aires School of Dentistry, Buenos Aires, Argentina.
| | | | | |
Collapse
|
20
|
Vinciguerra M, Mordasini D, Vandewalle A, Feraille E. Hormonal and nonhormonal mechanisms of regulation of the NA,K-pump in collecting duct principal cells. Semin Nephrol 2005; 25:312-21. [PMID: 16139686 DOI: 10.1016/j.semnephrol.2005.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the kidney, the collecting duct (CD) is the site of final Na+ reabsorption, according to Na+ balance requirements. In this segment of the renal tubule, principal cells may reabsorb up to 5% of the filtered sodium. The driving force for this process is provided by the basolateral Na,K-adenosine triphosphatase (ATPase) (sodium pump). Na,K-ATPase activity and expression in the CD are modulated physiologically by hormones (aldosterone, vasopressin, and insulin) and nonhormonal factors including intracellular [Na+] and extracellular osmolality. In this article, we review the short- and long-term hormonal regulation of Na,K-ATPase in CD principal cells, and we analyze the integrated network of implicated signaling pathways with an emphasis on the latest findings.
Collapse
Affiliation(s)
- Manlio Vinciguerra
- Service de Nephrologie, Fondation pour Recherches Medicales, Genève, Switzerland
| | | | | | | |
Collapse
|
21
|
Jornot L, Rochat T, Caruso A, Lacroix JS. Effects of amphotericin B on ion transport proteins in airway epithelial cells. J Cell Physiol 2005; 204:859-70. [PMID: 15799030 DOI: 10.1002/jcp.20347] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Topical intranasal application of the antifungal Amphotericin B (AmphoB) has been shown as an effective medical treatment of chronic rhinosinusitis. Because this antibiotic forms channels in lipid membranes, we considered the possibility that it affects the properties and/or cell surface expression of ion channels/pumps, and consequently transepithelial ion transport. Human nasal epithelial cells were exposed apically to AmphoB (50 microM) for 4 h, 5 days (4 h daily), and 4 weeks (4 h daily, 5 days weekly) and allowed to recover for 18-48 h. AmphoB significantly reduced transepithelial potential difference, short-circuit current, and the amiloride-sensitive current. This was not due to generalized cellular toxicity as judged from normal transepithelial resistance and mitochondrial activity, but was related to inhibitory effects of AmphoB on ion transport proteins. Thus, cells exposed to AmphoB for 4 h showed decreased apical epithelial sodium channels (ENaC) activity with no change in basolateral Na(+)K(+)-ATPase activity and K(+) conductance, and reduced amount of alphaENaC, alpha1-Na(+)K(+)-ATPase, and NKCC1 proteins at the cell membrane, but no change in mRNA levels. After a 5-day treatment, there was a significant decrease in Na(+)K(+)-ATPase activity. After a 4-week treatment, a decrease in basolateral K(+) conductance and in alphaENaC and alpha1-Na(+)K(+)-ATPase mRNA levels was also observed. These findings may reflect a feedback mechanism aimed to limit cellular Na(+) overload and K(+) depletion subsequently to formation of AmphoB pores in the cell membrane. Thus, the decreased Na(+) absorption induced by AmphoB resulted from reduced cell surface expression of the ENaC, Na(+)K(+)-ATPase pump and NKCC1 and not from direct inhibition of their activities.
Collapse
Affiliation(s)
- Lan Jornot
- Respiratory Division, Department of Internal Medicine, University Hospitals, Geneva, Switzerland.
| | | | | | | |
Collapse
|
22
|
Mordasini D, Bustamante M, Rousselot M, Martin PY, Hasler U, Féraille E. Stimulation of Na+ transport by AVP is independent of PKA phosphorylation of the Na-K-ATPase in collecting duct principal cells. Am J Physiol Renal Physiol 2005; 289:F1031-9. [PMID: 15972390 DOI: 10.1152/ajprenal.00128.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arginine-vasopressin (AVP) stimulates Na(+) transport and Na-K-ATPase activity via cAMP-dependent PKA activation in the renal cortical collecting duct (CCD). We investigated the role of the Na-K-ATPase in the AVP-induced stimulation of transepithelial Na(+) transport using the mpkCCD(c14) cell model of mammalian collecting duct principal cells. AVP (10(-9) M) stimulated both the amiloride-sensitive transepithelial Na(+) transport measured in intact cells and the maximal Na pump current measured by the ouabain-sensitive short-circuit current in apically permeabilized cells. These effects were associated with increased Na-K-ATPase cell surface expression, measured by Western blotting after streptavidin precipitation of biotinylated cell surface proteins. The effects of AVP on Na pump current and Na-K-ATPase cell surface expression were dependent on PKA activity but independent of increased apical Na(+) entry. Time course experiments revealed that in response to AVP, the cell surface expression of both endogenous Na-K-ATPase and hybrid Na pumps containing a c-myc-tagged wild-type human alpha(1)-subunit increased transiently. Na-K-ATPase cell surface expression was maximal after 30 min and then declined toward baseline after 60 min. Immunoprecipitation experiments showed that PKA activation did not alter total phosphorylation levels of the endogenous Na-K-ATPase alpha-subunit. In addition, mutation of the PKA phosphorylation site (S943A or S943D) did not alter the time course of increased cell surface expression of c-myc-tagged Na-K-ATPase in response to AVP or to dibutyryl-cAMP. Therefore, stimulation of Na-K-ATPase cell surface expression by AVP is dependent on PKA but does not rely on alpha(1)-subunit phosphorylation on serine 943 in the collecting duct principal cells.
Collapse
Affiliation(s)
- David Mordasini
- Service de Néphrologie, Fondation pour Recherches Médicales, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
23
|
Taub M, Borsick M, Geisel J, Matlhagela K, Rajkhowa T, Allen C. Regulation of the Na,K-ATPase in MDCK cells by prostaglandin E1: a role for calcium as well as cAMP. Exp Cell Res 2004; 299:1-14. [PMID: 15302568 DOI: 10.1016/j.yexcr.2004.04.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 03/30/2004] [Indexed: 11/30/2022]
Abstract
Prostaglandins (PGs) play a significant role in the regulation of sodium reabsorption by the kidney, in addition to accumulating during inflammation as well as in several solid tumors. Previously, we presented evidence indicating that prostaglandin E(1) (PGE(1)), a supplement in the serum-free medium for MDCK cells, increases the activity of the Na,K-ATPase in MDCK cells, in addition to its growth stimulatory effect [J. Cell. Physiol. 151 (1992) 337]. This report defines the molecular mechanisms, and signaling pathways responsible for the increased Na,K-ATPase activity. Our results indicate that the increased activity of the Na,K-ATPase in MDCK monolayers treated with either PGE(1) or 8Bromocyclic AMP (8Br-cAMP) can be attributed to an increase in the rate of biosynthesis of the Na,K-ATPase, and an increase in the levels of Na,K-ATPase alpha and beta subunit mRNAs. As beta subunit mRNA increased to a larger extent than alpha subunit mRNA, transient transfection studies were conducted using a human beta1 promoter/luciferase construct [Nucleic Acids Res. 21 (1993) 2619]. While an 8Br-cAMP stimulation was observed (suggesting the involvement of cAMP), our results also suggest that the observed PGE(1) stimulation could be explained by the involvement of Ca(2+) as well protein kinase C (PKC). Consistent with the involvement of Ca(2+), TMB-8 (which inhibits Ca(2+) efflux from intracellular stores) inhibited the PGE(1) stimulation. Moreover, PGE(1) was observed to stimulate the translocation of PKC beta1 from the soluble to the particulate fraction. The translocation of PKC, the PGE(1) stimulation of transcription, and the PGE(1)-mediated increase in the beta subunit mRNA level were all inhibited by the PKC inhibitor Gö6989. These results can be explained by the involvement of two classes of cell surface receptors in mediating the PGE(1) stimulation, including the EP1subtype (which activates phospholipase C), as well as the EP2 subtype (which activates adenylate cyclase).
Collapse
Affiliation(s)
- Mary Taub
- Biochemistry Department, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Vinciguerra M, Deschênes G, Hasler U, Mordasini D, Rousselot M, Doucet A, Vandewalle A, Martin PY, Féraille E. Intracellular Na+ controls cell surface expression of Na,K-ATPase via a cAMP-independent PKA pathway in mammalian kidney collecting duct cells. Mol Biol Cell 2003; 14:2677-88. [PMID: 12857856 PMCID: PMC165668 DOI: 10.1091/mbc.e02-11-0720] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the mammalian kidney the fine control of Na+ reabsorption takes place in collecting duct principal cells where basolateral Na,K-ATPase provides the driving force for vectorial Na+ transport. In the cortical collecting duct (CCD), a rise in intracellular Na+ concentration ([Na+]i) was shown to increase Na,K-ATPase activity and the number of ouabain binding sites, but the mechanism responsible for this event has not yet been elucidated. A rise in [Na+]i caused by incubation with the Na+ ionophore nystatin, increased Na,K-ATPase activity and cell surface expression to the same extent in isolated rat CCD. In cultured mouse mpkCCDcl4 collecting duct cells, increasing [Na+]i either by cell membrane permeabilization with amphotericin B or nystatin, or by incubating cells in a K(+)-free medium, also increased Na,K-ATPase cell surface expression. The [Na+]i-dependent increase in Na,K-ATPase cell-surface expression was prevented by PKA inhibitors H89 and PKI. Moreover, the effects of [Na+]i and cAMP were not additive. However, [Na+]i-dependent activation of PKA was not associated with an increase in cellular cAMP but was prevented by inhibiting the proteasome. These findings suggest that Na,K-ATPase may be recruited to the cell membrane following an increase in [Na+]i through cAMP-independent PKA activation that is itself dependent on proteasomal activity.
Collapse
Affiliation(s)
- Manlio Vinciguerra
- Division de Néphrologie, Fondation pour Recherches Médicales, CH-1211 Genève 4, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Beck FX, Neuhofer W, Dörge A, Giebisch G, Wang T. Intracellular Na concentration and Rb uptake in proximal convoluted tubule cells and abundance of Na/K-ATPase alpha1-subunit in NHE3-/- mice. Pflugers Arch 2003; 446:100-5. [PMID: 12690468 DOI: 10.1007/s00424-002-1001-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2002] [Accepted: 11/29/2002] [Indexed: 10/22/2022]
Abstract
Proximal solute and fluid absorption is greatly reduced in mice in which the gene encoding the Na/H exchanger isoform 3 has been ablated (NHE3-/-). To obtain information on the intracellular functional consequences of such selective NHE3 deficiency, Na, Cl and K concentrations and cell Rb uptake were measured using electron microprobe analysis after a 30-s infusion of Rb (an index of basolateral Na/K-ATPase activity) in proximal convoluted tubule (PCT) cells of NHE3-/- and wild-type (NHE3+/+) mice. In addition, the relative abundance of the alpha1-subunit of the Na/K-ATPase in the outer cortex was determined by Western blot analysis. PCT cell Na concentration in NHE3-/- mice was slightly but significantly lower than in NHE3+/+ [13.1+/-0.6 ( n=64) vs. 14.9+/-0.6 ( n=62) mmol/kg wet wt.; means +/-SEM]. The lower intracellular Na concentration was associated with significantly reduced Rb uptake rates [9.7+/-0.6 ( n=59) vs. 14.8+/-0.8 ( n=50) mmol/kg wet wt./30 s], but the abundance of the alpha1-subunit of the Na/K-ATPase was not different between NHE3-/- and NHE3+/+ mice. Intracellular Cl concentration was higher (14.2+/-0.4 vs. 12.8+/-0.4 mmol/kg wet wt.) and K concentration unchanged (122.7+/-2.7 vs. 121.6+/-2.5 mmol/kg wet wt.) in PCT cells in NHE3-/- compared with NHE3+/+ mice. These findings suggest that the elimination of apical NHE3 in PCT cells of NHE3-/- mice reduces apical Na entry and, due to lower cell Na concentrations, Na/K-ATPase activity. The observed changes in intracellular Na concentration did not affect the expression of Na/K-ATPase in the renal cortex of NHE3-/- mice. There were no significant changes of cell Na concentration and Rb uptake in distal convoluted tubule, connecting tubule, principal and intercalated cells.
Collapse
Affiliation(s)
- Franz-X Beck
- Physiologisches Institut der Universität, Pettenkoferstrasse 12, 80336, Munich, Germany,
| | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Luis I Juncos
- IPEM-Gambro Healthcare, IV Departmnent of Medicine, National University of Cordoba, Colon 4154, Cordoba 5003, Argentina.
| |
Collapse
|
27
|
Summa V, Mordasini D, Roger F, Bens M, Martin PY, Vandewalle A, Verrey F, Féraille E. Short term effect of aldosterone on Na,K-ATPase cell surface expression in kidney collecting duct cells. J Biol Chem 2001; 276:47087-93. [PMID: 11598118 DOI: 10.1074/jbc.m107165200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldosterone controls extracellular volume and blood pressure by regulating Na+ reabsorption, in particular by epithelia of the distal nephron. A main regulatory site of this transcellular transport is the epithelial sodium channel (ENaC) that mediates luminal Na+ influx. The Na,K-ATPase (Na+ pump) that coordinately extrudes Na+ across the basolateral membrane is known to be regulated by short term aldosterone as well. We now show that in the cortical collecting duct (CCD) from adrenalectomized rats, the increase in Na,K-ATPase activity (approximately 3-fold in 3 h), induced by a single aldosterone injection, can be fully accounted by the increase in Na,K-ATPase cell surface expression (+ 497 +/- 35%). The short term aldosterone action was further investigated in cultured mouse collecting duct principal cells mpkCCD(cl4). Within 2 h, maximal Na,K-ATPase function assessed by Na+ pump current (I(p)) measurements and Na,K-ATPase cell surface expression were increased by 20-50%. Aldosterone did not modify the Na+ dependence of the Na+ pumps and induced transcription- and translation-dependent actions on pump surface expression and current independently of ENaC-mediated Na+ influx. In summary, short term aldosterone directly increases the cell surface expression of pre-existing Na+ pumps in kidney CCD target cells. Thus, aldosterone controls Na+ reabsorption in the short term not only by regulating the apical cell surface expression of ENaC (Loffing, J., Zecevic, M., Feraille, E., Kaissling, B., Asher, C., Rossier, B. C., Firestone, G. L., Pearce, D., and Verrey, F. (2001) Am. J. Physiol. 280, F675-F682) but also by coordinately acting on the basolateral cell surface expression of the Na,K-ATPase.
Collapse
Affiliation(s)
- V Summa
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Djelidi S, Beggah A, Courtois-Coutry N, Fay M, Cluzeaud F, Viengchareun S, Bonvalet JP, Farman N, Blot-Chabaud M. Basolateral translocation by vasopressin of the aldosterone-induced pool of latent Na-K-ATPases is accompanied by alpha1 subunit dephosphorylation: study in a new aldosterone-sensitive rat cortical collecting duct cell line. J Am Soc Nephrol 2001; 12:1805-1818. [PMID: 11518773 DOI: 10.1681/asn.v1291805] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The regulation of plasma membrane Na(+)-K(+)-ATPases (NKA) expression by aldosterone and arginin vasopressin (AVP) in the cortical collecting duct (CCD) has been examined in a new rat CCD cell line, designated as RCCD(2). This cell line has maintained many characteristics of the CCD-in particular, the expression of the mineralocorticoid receptor. Mineralocorticoid receptor is expressed at the protein level and binds (3)H-aldosterone (approximately 15 to 20 fmol/mg protein). Short-circuit current (Isc) experiments showed approximately a twofold increase in Isc associated with a decrease in transepithelial resistance when cells were treated with aldosterone concentrations as low as 10(-9) M. This effect on Isc was significant 2 h after aldosterone addition and was still present after 24 h. It was accompanied by an increase in the amount of mRNA encoding for the alpha subunit of the epithelial sodium channel (sixfold) and the alpha1 subunit of NKA (fourfold) after 24 h of hormone treatment. In addition, mRNA expression of the serum- and glucocorticoid-induced kinase (Sgk) was increased by 10(-9) M aldosterone treatment as early as 45 min after hormone addition. As had already been documented in native CCD obtained by microdissection, incubation of RCCD(2) cells for 24 h with aldosterone resulted in the constitution of a latent pool of NKA that could be rapidly recruited by AVP (15 min). NKA biotinylation experiments and preparation of membrane fractions show that this latent pool of NKA is present in the intracellular compartment of the cells and is recruited by AVP in the basolateral membrane through a translocation process. This mechanism is accompanied by dephosphorylation of the alpha(1) catalytic subunit of NKA.
Collapse
Affiliation(s)
- Sabri Djelidi
- INSERM U478, Institut Fédératif de Recherches "Cellules Epithéliales," Faculté de Médecine Xavier Bichat, Paris, France
| | - Ahmed Beggah
- INSERM U478, Institut Fédératif de Recherches "Cellules Epithéliales," Faculté de Médecine Xavier Bichat, Paris, France
| | - Nathalie Courtois-Coutry
- INSERM U478, Institut Fédératif de Recherches "Cellules Epithéliales," Faculté de Médecine Xavier Bichat, Paris, France
| | - Michel Fay
- INSERM U478, Institut Fédératif de Recherches "Cellules Epithéliales," Faculté de Médecine Xavier Bichat, Paris, France
| | - Francoise Cluzeaud
- INSERM U478, Institut Fédératif de Recherches "Cellules Epithéliales," Faculté de Médecine Xavier Bichat, Paris, France
| | - Say Viengchareun
- INSERM U478, Institut Fédératif de Recherches "Cellules Epithéliales," Faculté de Médecine Xavier Bichat, Paris, France
| | - Jean-Pierre Bonvalet
- INSERM U478, Institut Fédératif de Recherches "Cellules Epithéliales," Faculté de Médecine Xavier Bichat, Paris, France
| | - Nicolette Farman
- INSERM U478, Institut Fédératif de Recherches "Cellules Epithéliales," Faculté de Médecine Xavier Bichat, Paris, France
| | - Marcel Blot-Chabaud
- INSERM U478, Institut Fédératif de Recherches "Cellules Epithéliales," Faculté de Médecine Xavier Bichat, Paris, France
| |
Collapse
|
29
|
Gonin S, Deschênes G, Roger F, Bens M, Martin PY, Carpentier JL, Vandewalle A, Doucet A, Féraille E. Cyclic AMP increases cell surface expression of functional Na,K-ATPase units in mammalian cortical collecting duct principal cells. Mol Biol Cell 2001; 12:255-64. [PMID: 11179413 PMCID: PMC30941 DOI: 10.1091/mbc.12.2.255] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2000] [Revised: 10/13/2000] [Accepted: 11/14/2000] [Indexed: 11/11/2022] Open
Abstract
Cyclic AMP (cAMP) stimulates the transport of Na(+) and Na,K-ATPase activity in the renal cortical collecting duct (CCD). The aim of this study was to investigate the mechanism whereby cAMP stimulates the Na,K-ATPase activity in microdissected rat CCDs and cultured mouse mpkCCD(c14) collecting duct cells. db-cAMP (10(-3) M) stimulated by 2-fold the activity of Na,K-ATPase from rat CCDs as well as the ouabain-sensitive component of (86)Rb(+) uptake by rat CCDs (1.7-fold) and cultured mouse CCD cells (1.5-fold). Pretreatment of rat CCDs with saponin increased the total Na,K-ATPase activity without further stimulation by db-cAMP. Western blotting performed after a biotinylation procedure revealed that db-cAMP increased the amount of Na,K-ATPase at the cell surface in both intact rat CCDs (1.7-fold) and cultured cells (1.3-fold), and that this increase was not related to changes in Na,K-ATPase internalization. Brefeldin A and low temperature (20 degrees C) prevented both the db-cAMP-dependent increase in cell surface expression and activity of Na,K-ATPase in both intact rat CCDs and cultured cells. Pretreatment with the intracellular Ca(2+) chelator bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid also blunted the increment in cell surface expression and activity of Na,K-ATPase caused by db-cAMP. In conclusion, these results strongly suggest that the cAMP-dependent stimulation of Na,K-ATPase activity in CCD results from the translocation of active pump units from an intracellular compartment to the plasma membrane.
Collapse
Affiliation(s)
- S Gonin
- Division de Néphrologie, Fondation pour Recherches Médicales, CH-1211 Genève 4, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Féraille E, Doucet A. Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control. Physiol Rev 2001; 81:345-418. [PMID: 11152761 DOI: 10.1152/physrev.2001.81.1.345] [Citation(s) in RCA: 340] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tubular reabsorption of filtered sodium is quantitatively the main contribution of kidneys to salt and water homeostasis. The transcellular reabsorption of sodium proceeds by a two-step mechanism: Na(+)-K(+)-ATPase-energized basolateral active extrusion of sodium permits passive apical entry through various sodium transport systems. In the past 15 years, most of the renal sodium transport systems (Na(+)-K(+)-ATPase, channels, cotransporters, and exchangers) have been characterized at a molecular level. Coupled to the methods developed during the 1965-1985 decades to circumvent kidney heterogeneity and analyze sodium transport at the level of single nephron segments, cloning of the transporters allowed us to move our understanding of hormone regulation of sodium transport from a cellular to a molecular level. The main purpose of this review is to analyze how molecular events at the transporter level account for the physiological changes in tubular handling of sodium promoted by hormones. In recent years, it also became obvious that intracellular signaling pathways interacted with each other, leading to synergisms or antagonisms. A second aim of this review is therefore to analyze the integrated network of signaling pathways underlying hormone action. Given the central role of Na(+)-K(+)-ATPase in sodium reabsorption, the first part of this review focuses on its structural and functional properties, with a special mention of the specificity of Na(+)-K(+)-ATPase expressed in renal tubule. In a second part, the general mechanisms of hormone signaling are briefly introduced before a more detailed discussion of the nephron segment-specific expression of hormone receptors and signaling pathways. The three following parts integrate the molecular and physiological aspects of the hormonal regulation of sodium transport processes in three nephron segments: the proximal tubule, the thick ascending limb of Henle's loop, and the collecting duct.
Collapse
Affiliation(s)
- E Féraille
- Division of Nephrology, Geneva University Hospital, Geneva, Switzerland.
| | | |
Collapse
|
31
|
Abstract
The mammalian collecting duct plays a dominant role in regulating K(+) excretion by the nephron. The collecting duct exhibits axial and intrasegmental cell heterogeneity and is composed of at least two cell types: collecting duct cells (principal cells) and intercalated cells. Under normal circumstances, the collecting duct cell in the cortical collecting duct secretes K(+), whereas under K(+) depletion, the intercalated cell reabsorbs K(+). Assessment of the electrochemical driving forces and of membrane conductances for transcellular and paracellular electrolyte movement, the characterization of several ATPases, patch-clamp investigation, and cloning of the K(+) channel have provided important insights into the role of pumps and channels in those tubule cells that regulate K(+) secretion and reabsorption. This review summarizes K(+) transport properties in the mammalian collecting duct. Special emphasis is given to the mechanisms of how K(+) transport is regulated in the collecting duct.
Collapse
Affiliation(s)
- S Muto
- Department of Nephrology, Jichi Medical School, Minamikawachi, Tochigi, Japan.
| |
Collapse
|
32
|
Trumper L, Coux G, Elías MM. Effect of acetaminophen on Na(+), K(+) ATPase and alkaline phosphatase on plasma membranes of renal proximal tubules. Toxicol Appl Pharmacol 2000; 164:143-8. [PMID: 10764627 DOI: 10.1006/taap.2000.8889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In previous work we reported that 1 h after acetaminophen (APAP) administration, tubular function remained at control values, while 16 h later a significant deterioration of tubular function was observed. The aim of the present work was to study if APAP induces its renal toxic effects by altering the normal activity of key tubular plasma membrane enzymes. We analyzed the effects of a nephrotoxic dose of APAP (1000 mg/kg b.wt., i.p.) on the activities of the brush-border membrane (BBM) enzyme, alkaline phosphatase, and the basolateral membrane (BLM) enzyme Na(+), K(+) ATPase 1 h (APAP(1h)) and 16 h (APAP(16h)) after dosing. Na(+), K(+) ATPase abundance in homogenates and each membrane domain were analyzed by Western blot. Cortical adenosine 5' triphosphate (ATP) content was also evaluated. At each time studied, APAP promoted a diminution of alkaline phosphatase in BBM. Na(+), K(+) ATPase activity in BLM showed a biphasic response to APAP. One hour after APAP administration it was significantly increased, but it was decreased 16 h after dosing. Na(+), K(+) ATPase protein abundance was elevated in homogenates, BLM, and BBM after 1 h of APAP dosing. After 16 h, Na(+), K(+) ATPase abundance was increased in homogenates, while in BLM it was decreased. No differences were observed in cortical ATP content in each time studied. Our present results could contribute to the understanding of the molecular basis of the previously reported time course alteration in the fractional excretion of sodium promoted by a nephrotoxic dose of APAP.
Collapse
Affiliation(s)
- L Trumper
- Consejo de Investigaciones de la Universidad Nacional de Rosario (CIUNR), Rosario, República Argentina.
| | | | | |
Collapse
|
33
|
Deschênes G, Doucet A. Collecting duct (Na+/K+)-ATPase activity is correlated with urinary sodium excretion in rat nephrotic syndromes. J Am Soc Nephrol 2000; 11:604-615. [PMID: 10752519 DOI: 10.1681/asn.v114604] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In puromycin aminonucleoside (PAN)-treated nephrotic rats, sodium retention is associated with increased (Na+/K+)-ATPase activity in the cortical collecting ducts (CCD). This study was undertaken to determine whether stimulation of (Na+/K+)-ATPase in the CCD is a feature of other experimental nephrotic syndromes, whether it might be responsible for renal sodium retention, and whether it is mediated by increased plasma vasopressin levels or activation of calcineurin. For this purpose, the time courses of urinary excretion of sodium and protein, sodium balance, ascites, and (Na+/K+)-ATPase activities in microdissected CCD were studied in rats with PAN or adriamycin nephrosis or HgCl2 nephropathy. The roles of vasopressin and calcineurin in PAN nephrosis were evaluated by measuring these parameters in Brattleboro rats and in rats treated with cyclosporin or tacrolimus. Despite different patterns of changes in urinary sodium and protein excretion in the three nephrotic syndrome models, there was a linear relationship between CCD (Na+/K+)-ATPase activities and sodium excretion in all three cases. The results also indicated that there was no correlation between proteinuria and sodium retention, but ascites was present only when proteinuria was associated with marked reduction of sodium excretion. Finally, the lack of vasopressin in Brattleboro rats or the inhibition of calcineurin by administration of either cyclosporin or tacrolimus did not prevent development of the nephrotic syndrome in PAN-treated rats or stimulation of CCD (Na+/K+)-ATPase. It is concluded that stimulation of Na(+/K+)-ATPase in the CCD of nephrotic rats might be responsible for sodium retention and that this phenomenon is independent of proteinuria and vasopressin and calcineurin activities.
Collapse
Affiliation(s)
- Georges Deschênes
- Service de Néphrologie Pédiatrique, Hôpital Armand-Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alain Doucet
- Laboratoire de Biologie Intégrée des Cellules Rénales, Centre National de la Recherche Scientifique Unité de Recherche Associée 1859, Service de Biologie Cellulaire, Commissariat à l'Energie Atomique, Saclay, France
| |
Collapse
|
34
|
Husted RF, Sigmund RD, Stokes JB. Mechanisms of inactivation of the action of aldosterone on collecting duct by TGF-beta. Am J Physiol Renal Physiol 2000; 278:F425-33. [PMID: 10710547 DOI: 10.1152/ajprenal.2000.278.3.f425] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of these experiments was to investigate the mechanisms whereby transforming growth factor-beta (TGF-beta) antagonizes the action of adrenocorticoid hormones on Na(+) transport by the rat inner medullary collecting duct in primary culture. Steroid hormones 1) increased Na(+) transport by three- to fourfold, 2) increased the maximum capacity of the Na(+)-K(+) pump by 30-50%, 3) increased the steady-state levels of the alpha(1)-subunit of the Na(+)-K(+)-ATPase by approximately 30%, and 4) increased the steady-state levels of the alpha-subunit of the rat epithelial Na(+) channel (alpha-rENaC) by nearly fourfold. TGF-beta blocked the effects of steroids on the increase in Na(+) transport and the stimulation of the Na(+)-K(+)-ATPase and pump capacity. However, there was no effect of TGF-beta on the steroid-induced increase in mRNA levels of alpha-rENaC. The effects of TGF-beta were not secondary to the decrease in Na(+) transport per se, inasmuch as benzamil inhibited the increase in Na(+) transport but did not block the increase in pump capacity or Na(+)-K(+)-ATPase mRNA. The results indicate that TGF-beta does not inactivate the steroid receptor or its translocation to the nucleus. Rather, they indicate complex pathways involving interruption of the enhancement of pump activity and activation/inactivation of pathways distal to the steroid-induced increase in the transcription of alpha-rENaC.
Collapse
Affiliation(s)
- R F Husted
- Department of Internal Medicine, University of Iowa, and Department of Veterans Affairs Medical Center, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
35
|
Mrnka L, Pácha J. Permissive effect of thyroid hormones on induction of rat colonic Na+ transport by aldosterone is not localised at the level of Na+ channel transcription. Mol Cell Endocrinol 2000; 159:179-85. [PMID: 10687863 DOI: 10.1016/s0303-7207(99)00181-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The interrelationship between thyroid hormones and aldosterone has been examined in the regulation of rat colonic amiloride-sensitive Na+ transport which translocates Na+ through apical amiloride-sensitive Na+ channels and basolateral Na+, K+-ATPase. Electrogenic Na+ transport was measured in an Ussing chamber by the short-circuit current and identified by Na+ channel blocker amiloride. Na+-pumping activity of the basolateral Na+,K+-ATPase was investigated in nystatin-treated epithelium by measuring the equivalent short-circuit current after addition of mucosal Na+. The abundance of mRNA coding for alpha, beta and gamma subunits of the Na+ channel (rENaC) was estimated using Northern blot analysis. Hyperaldosteronism was induced by a low-salt diet and hypothyroidism by methimazole. The low-Na+ diet induced electrogenic Na+ transport in euthyroid rats but its effect was almost completely inhibited in hypothyroid animals even if the plasma concentration of aldosterone was high enough to stimulate this transport pathway both in euthyroid and hypothyroid rats. A kinetic study of the basolateral Na+,K+-ATPase revealed a decrease of Na+ transport capacity in hypothyroid rats kept on the low-Na+ diet in comparison with euthyroid animals fed the same diet. No significant differences in steady-state levels of alpha, beta and gamma rENaC mRNA were detected between euthyroid and hypothyroid rats. These data suggest that hypothyroidism decreases the efficacy of the basolateral Na+ pump but fails to inhibit it completely even though it inhibits the transepithelial electrogenic Na+ transport in response to aldosterone. We conclude that the permissive effect of thyroid hormones on the induction of electrogenic Na+ transport by aldosterone is localised beyond the transcriptional step of Na+ channel regulation.
Collapse
Affiliation(s)
- L Mrnka
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | | |
Collapse
|
36
|
Petershack JA, Nagaraja SC, Guillery EN. Role of glucocorticoids in the maturation of renal cortical Na+-K+-ATPase during fetal life in sheep. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:R1825-32. [PMID: 10362766 DOI: 10.1152/ajpregu.1999.276.6.r1825] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoid levels increase greatly at the time of birth in humans and sheep, coinciding with an increased ability of the kidney to reabsorb sodium. Cortisol induces proximal tubule apical membrane Na+/H+ exchanger maturation in near-term fetal sheep. Proximal tubule salt transport is ultimately dependent on Na+ pump activity, so we studied the effects of cortisol treatment on renal cortical Na+-K+-ATPase. We first looked at six 140 day gestation fetal sheep (term is 145) and compared their renal cortical Na+-K+-ATPase to that of six 1-day-old lambs. Na+-K+-ATPase activity increased 80% after birth. Then nine pairs of twin fetal sheep were chronically instrumented at 127 days gestation. After 72 h recovery, one twin was given a 48-h continuous intraperitoneal infusion of cortisol. Both twins were then killed, and their renal cortices were studied. Na+-K+-ATPase activity increased 122% with cortisol treatment; activity equaled that of 1-day-old lambs. Protein abundance of the alpha1-subunit of the Na+-K+-ATPase increased 19%; the beta1-subunit increased 39% with cortisol treatment. mRNA abundance of the alpha1-subunit increased 58%; the beta1-subunit increased 72%. These results indicate that cortisol matures Na+-K+-ATPase activity.
Collapse
Affiliation(s)
- J A Petershack
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48197, USA.
| | | | | |
Collapse
|
37
|
Johnson J, Wang JM, Edinger R. Chapter 7 The Role of Posttranslational Modifications of Proteins in the Cellular Mechanism of Action of Aldosterone. CURRENT TOPICS IN MEMBRANES 1999. [DOI: 10.1016/s0070-2161(08)60955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Schafer JA, Chen L. Low Na+ diet inhibits Na+ and water transport response to vasopressin in rat cortical collecting duct. Kidney Int 1998; 54:180-7. [PMID: 9648077 DOI: 10.1046/j.1523-1755.1998.00985.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND We previously demonstrated that vasopressin (AVP) produces a sustained increase in Na+ reabsorption by the isolated perfused cortical collecting duct (CCD) from rats on a normal diet, and that this effect is synergistic with that of pharmacological doses of deoxycorticosterone (DOC) or physiological levels of aldosterone. The present experiments examined the effect of AVP under the more physiological circumstances when plasma aldosterone was elevated by prior volume depletion. METHODS Rats were volume depleted by a single dose of furosemide followed by a low-salt diet (0.3% NaCl) for four to nine days. Some of these rats were also implanted with a pellet containing 2.5 mg DOC. Rats in a third group were not injected with furosemide but were implanted with the DOC pellet and maintained on a standard (approximately 1% NaCl) diet. CCD were perfused and the lumen-to-bath Na+ flux (JNA), transepithelial voltage (VT), and osmotic water permeability (Pf) were measured in the presence and absence of 200 pm AVP. RESULTS Although Na+ depletion by a single injection of furosemide and the low salt diet elevated plasma aldosterone and Vt, JNA remained low and there was a decreased response to AVP in comparison with DOC-treated rats on a standard diet. In CCD from rats on the low salt-diet with DOC, JNa was less than observed in CCD from DOC-treated rats on a standard diet. AVP-dependent Pf in CCD from rats on the low salt-diet, with or without DOC treatment, was also markedly lower. CONCLUSIONS We interpret the results to demonstrate that maximal rates of Na+ reabsorption in the CCD depend not only on the synergistic stimulatory effects of aldosterone and AVP, but also require normal to high rates of salt delivery in vivo for the effects of the hormones on Na+ transport to be maximized in vitro.
Collapse
Affiliation(s)
- J A Schafer
- Department of Physiology and Biophysics, University of Alabama at Birmingham, USA.
| | | |
Collapse
|
39
|
Abstract
The regulation of potassium metabolism involves mechanisms for the appropriate distribution between the intra- and extracellular fluid compartments and for the excretion by the kidney. Clearance and single nephron studies show that renal excretion is determined by regulated potassium secretion and potassium reabsorption, respectively, in principal and intercalated cells of the distal nephron. Measurement of the electrochemical driving forces acting on potassium transport across individual cell membranes and characterization of several ATPases and potassium channels provide insights into the transport and regulation of renal potassium excretion.
Collapse
Affiliation(s)
- G Giebisch
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520-8026, USA
| |
Collapse
|
40
|
Escoubet B, Coureau C, Bonvalet JP, Farman N. Noncoordinate regulation of epithelial Na channel and Na pump subunit mRNAs in kidney and colon by aldosterone. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 272:C1482-91. [PMID: 9176138 DOI: 10.1152/ajpcell.1997.272.5.c1482] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Distal colon and renal cortical collecting ducts are major effectors of aldosterone-dependent Na homeostasis. Na is absorbed by entry through an apical amiloride-sensitive Na channel and extruded by Na-K-ATPase at the basolateral membrane. Using a ribonuclease protection assay, we studied, in vivo, aldosterone regulation of alpha-, beta-, gamma-subunits of the rat epithelial Na channel (rENaC) and alpha 1- and beta 1-subunits of Na-K-ATPase. In the kidney, Na-K-ATPase mRNAs were also assayed over discrete tubular segments by in situ hybridization. In rat colon, all three rENaC mRNAs were decreased by adrenalectomy, with a major effect on beta- and gamma-subunits, and were restored with 7 days, but not 2 days, of aldosterone treatment; in the kidney, however, only alpha-transcripts varied. Na-K-ATPase alpha 1- and beta 1-subunit mRNAs in both organs were not (in the case of the beta 1-subunit) or were mildly (in the case of the alpha 1-subunit) affected after adrenalectomy. Our conclusions are as follows: 1) Transcripts of rENaC and Na-K-ATPase subunits are not coordinately regulated by aldosterone in vivo; i.e., modulation involves mainly the Na channel, not Na-K-ATPase; the effect is not of comparable magnitude on each subunit mRNA and differs between tissues. 2) The delay of the aldosterone effect on transcripts is much longer than that required to restore normal Na transport in adrenalectomized rats, indicating that rENaC and Na-K-ATPase subunit transcript levels may depend on unidentified early aldosterone-induced proteins.
Collapse
Affiliation(s)
- B Escoubet
- Institut Fédératif de Recherche Cellules Epithéliales, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | | | | | | |
Collapse
|
41
|
Herman P, Tan CT, van den Abbeele T, Escoubet B, Friedlander G, Huy PT. Glucocorticosteroids increase sodium transport in middle ear epithelium. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 272:C184-90. [PMID: 9038824 DOI: 10.1152/ajpcell.1997.272.1.c184] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effect of glucocorticosteroids on ion transport was investigated on a middle ear cell line with the short-circuit current (Isc) technique. Dexamethasone (DXM) produced a dose- and time-dependent increase in Isc. Concentration of half-maximal stimulation was 2.68 x 10(-8) M. This effect was blunted by the glucocorticoid antagonist RU-38486 and was related to Na+ transport, as evidenced by the inhibition induced by 1) apical addition of the Na+ channel inhibitor benzamil (10(-6) M) or 2) substitution of Na+ with N-methylglucamine in the incubation medium. The increase in Na+ transport resulted from a primary modulation of apical Na+ entry, since 1) the Na(+)-K(+)-ATPase activity of cellular homogenates was not modified by corticosteroids and 2) the DXM-induced increase in the ouabain-sensitive uptake of 86Rb was blunted by benzamil. Ribonuclease protection assay revealed 1) a constitutive expression of the mRNA encoding the alpha-subunit of the epithelial Na+ channel and 2) that DXM increased the expression of this transcript. This increase was dose dependent and paralleled changes in transepithelial Na+ transport. This study suggests that a component of the beneficial effect of steroid therapy for the treatment of otitis media might be related to increased fluid clearance.
Collapse
Affiliation(s)
- P Herman
- Laboratoire d'Otologie Expérimentale, Faculté Lariboisiere, St. Louis, Université Paris VII, France
| | | | | | | | | | | |
Collapse
|
42
|
Ferrandi M, Tripodi G, Salardi S, Florio M, Modica R, Barassi P, Parenti P, Shainskaya A, Karlish S, Bianchi G, Ferrari P. Renal Na,K-ATPase in genetic hypertension. Hypertension 1996; 28:1018-25. [PMID: 8952591 DOI: 10.1161/01.hyp.28.6.1018] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Milan hypertensive rats (MHS) develop hypertension because of a primary renal alteration. Both apical and basolateral sodium transport are faster in membrane vesicles derived from renal tubules of MHS than in those of Milan normotensive control rats (MNS). These findings suggest that the increased renal sodium retention and concomitant development of hypertension in MHS may be linked to an altered transepithelial sodium transport. Since this transport is mainly under the control of the Na-K pump, we investigated whether an alteration of the enzymatic activity and/or protein expression of the renal Na,K-ATPase is detectable in prehypertensive MHS. We measured the Na,K-ATPase activity, Rb+ occlusion, turnover number, alpha 1- and beta 1-subunit protein abundance, and alpha 1 and beta 1 mRNA levels in microsomes from renal outer medulla of young (prehypertensive) and adult (hypertensive) MHS and in age-matched MNS. In both young and adult MHS, the Na,K-ATPase activity was significantly higher because of an enhanced number of active pump sites, as determined by Rb+ occlusion maximal binding. The higher number of pump sites was associated with a significant pretranslational increase of alpha 1 and beta 1 mRNA levels that preceded the development of hypertension in MHS. Since a molecular alteration of the cytoskeletal protein adducin is genetically associated with hypertension in MHS and is able to affect the actin-cytoskeleton and Na-K pump activity in transfected renal cells, we propose that the in vivo upregulation of Na-K pump in MHS is primary and linked to a genetic alteration of adducin.
Collapse
Affiliation(s)
- M Ferrandi
- Prassis-Sigma Tau Research Institute, Settimo M.se, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gierow JP, Yang T, Bekmezian A, Liu N, Norian JM, Kim SA, Rafisolyman S, Zeng H, Okamoto CT, Wood RL, Mircheff AK. Na-K-ATPase in lacrimal gland acinar cell endosomal system: correcting a case of mistaken identity. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:C1685-98. [PMID: 8944653 DOI: 10.1152/ajpcell.1996.271.5.c1685] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Na-K-ATPase is associated with a variety of membrane populations in lacrimal acinar cells. Acinus-like structures formed by rabbit acinar cells in primary culture were incubated with horseradish peroxidase (HRP) to label basolateral and endosomal membranes and then analyzed by electron microscopy cytochemistry with the 3-3'-diaminobenzidine reaction or by fractionation and measurement of marker catalytic activities or immunoreactivities. HRP adsorbed to basolateral membranes at 4 degrees C. Fractionation showed it associated with low-density membranes enriched in acid phosphatase and TGN38 but containing only minor amounts of Na-K-ATPase. Cells internalized HRP to cytoplasmic vesicles, Golgi structures, and lysosomes at 37 degrees C. The major endosomal compartment revealed by fractionation coincided with major peaks of Na-K-ATPase and Rab6 and secondary peaks of galactosyltransferase and gamma-adaptin. Carbachol (10 microM) increased lysosomal and Golgi labeling. Thus most of the Na-K-ATPase is located in the basolateral membrane-oriented endosomal system, concentrated in a compartment possibly related to the trans-Golgi network. Constitutive and stimulation-accelerated traffic to and from this compartment may serve several exocrine cell functions.
Collapse
Affiliation(s)
- J P Gierow
- Department of Physiology and Biophysics, University of Southern California School of Medicine, Los Angeles 90033, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rokaw MD, Sarac E, Lechman E, West M, Angeski J, Johnson JP, Zeidel ML. Chronic regulation of transepithelial Na+ transport by the rate of apical Na+ entry. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:C600-7. [PMID: 8779925 DOI: 10.1152/ajpcell.1996.270.2.c600] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In several settings in vivo, prolonged inhibition of apical Na+ entry reduces and prolonged stimulation of apical entry enhances the ability of renal epithelial cells to reabsorb Na+, an important feature of the load-dependent regulation of renal tubular Na+ transport. To model this load dependency, apical Na+ entry was inhibited or stimulated for 18 h in A6 cells and vectorial transport was measured as short-circuit current (Isc) across monolayers on filter-bottom structures. Basal amiloride-sensitive Isc represents the activity of apical Na+ channels, whereas Isc after permeabilization of the apical membrane to cations with nystatin represents maximal activity of the basolateral Na(+)-K(+)-ATPase. Chronic inhibition of apical Na+ entry by 18-h apical exposure to amiloride or replacement of apical Na+ with tetramethylammonium (TMA+), followed by washing and restoration of normal apical medium, revealed a persistent decrease in Isc that remained despite exposure to nystatin. Both basal and nystatin-stimulated Isc recovered progressively after restoration of normal apical medium. In contrast, chronic stimulation of apical Na+ entry by short circuiting the epithelium increased Isc in the absence and presence of nystatin, indicating upregulation of both apical Na+ channels and basolateral Na(+)-K(+)-ATPase. Basolateral equilibrium [3H]ouabain binding was reduced to 67 +/- 5% in TMA+ vs. control cells, whereas values in 18-h short-circuited cells increased by 42 +/- 19%. The results demonstrate that load dependency of tubular Na+ transport can be modeled in vitro and indicate that the regulation of Na(+)-K(+)-ATPase observed in these studies occurs in part by changes in the density of functional transporter proteins within the basolateral membrane.
Collapse
Affiliation(s)
- M D Rokaw
- Laboratory of Epithelial Cell Biology, University of Pittsburgh Medical Center, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Ewart HS, Klip A. Hormonal regulation of the Na(+)-K(+)-ATPase: mechanisms underlying rapid and sustained changes in pump activity. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 269:C295-311. [PMID: 7653511 DOI: 10.1152/ajpcell.1995.269.2.c295] [Citation(s) in RCA: 319] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The sodium-potassium-activated adenosinetriphosphatase (Na(+)-K(+)-ATPase; Na(+)-K+ pump) is a ubiquitous plasma membrane enzyme that catalyzes the movement of K+ into cells in exchange for Na+. In addition, it provides the driving force for the transport of other solutes, notably amino acids, sugar, and phosphate. The regulation of Na(+)-K(+)-ATPase in various tissues is under the control of a number of circulating hormones that impart both short- and long-term control over its activity. The molecular mechanisms by which hormones alter Na(+)-K(+)-ATPase activity have only begun to be studied. In this review, we assess the acute and long-term actions of a number of hormones (aldosterone, thyroid hormone, catecholamines, insulin, carbachol) on the Na(+)-K+ pump. The long-term regulation exerted by thyroid hormone and aldosterone is mediated by changes in gene expression. The short-term regulation exerted by catecholamines is mediated by reversible phosphorylation of the pump catalytic subunit. Recent evidence supports regulation of the pump by phosphorylation in vitro and in intact cells. Finally, in some tissues the rapid action of insulin, aldosterone, and carbachol involves changes in the subcellular distribution of pump units.
Collapse
Affiliation(s)
- H S Ewart
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
46
|
McDonough AA, Magyar CE, Komatsu Y. Expression of Na(+)-K(+)-ATPase alpha- and beta-subunits along rat nephron: isoform specificity and response to hypokalemia. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 267:C901-8. [PMID: 7943283 DOI: 10.1152/ajpcell.1994.267.4.c901] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The activity of Na(+)-K(+)-adenosinetriphosphatase (Na(+)-K(+)-ATPase), the sodium pump, which drives active Na+ reabsorption along the nephron, varies over an order of magnitude, depending on the nephron segment, and activity is increased in the outer medullary collecting tubule (MCT) during hypokalemia. The aims of the present study were to assess abundance of sodium pump alpha 1- and beta 1-subunits in dissected nephron segments of the rat by immunoblotting, to determine if alpha 2- or alpha 3-protein could be detected in the collecting tubules, as suggested by Barlet-Bas et al. (C. Barlet-Bas, E. Arystarkhova, L. Cheval, S. Marsy, K. Sweadner, N. Modyanov, and A. Doucet. J. Biol. Chem. 268: 11512-11515, 1993) for rabbit, and to determine if alpha 1 and beta 1 were increased in MCT by hypokalemia. Tubules from the rat were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (12-100 mm/lane), blotted, and probed with subunit-specific antisera. alpha 1 and beta 1, detected in all tubule segments assayed, were highest in cortical and medullary thick ascending limbs and proximal convoluted tubule (PCT), lower in the MCT and barely detectable in proximal straight tubule. In the cortical collecting tubule (CCT), alpha 1 abundance was equivalent to that in PCT, whereas beta 1 and enzymatic activity were both less than one-half of that in PCT. After 2 wk of a K(+)-deficient diet, alpha 1- and beta 1-subunit levels in MCT increased 3.4 +/- 0.6- and 11.7 +/- 4.0-fold, respectively, associated with a 5-fold increase in activity. alpha 2 and alpha 3 were not detected in the CCT or MCT.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A A McDonough
- Department of Physiology and Biophysics, University of Southern California School of Medicine, Los Angeles 90033
| | | | | |
Collapse
|
47
|
Issautier T, Kovacic H, Gallice P, Raccah D, Vague P, Crevat A. Modulation defect of sodium pump evidenced in diabetic patients by a microcalorimetric study. Clin Chim Acta 1994; 228:161-70. [PMID: 7988032 DOI: 10.1016/0009-8981(94)90286-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sodium pump activity of intact erythrocytes in their own plasma was measured by microcalorimetry in 41 healthy subjects and 35 insulin-dependent diabetic patients. Results show that modulation of the sodium pump is altered in diabetic patients. Addition of insulin increases functioning of the Na(+)-K+ pump in controls but has no effect in diabetic patients. These subjects show a slower response of the Na(+)-K+ pump to the inhibitory effect of ouabain. Cross-incubation experiments suggest that these findings may be explained by the existence of a plasmatic factor that impairs the modulation of the sodium pump in diabetic patients.
Collapse
Affiliation(s)
- T Issautier
- Laboratoire de Biophysique, Faculté de Pharmacie, Université d'Aix-Marseille II, France
| | | | | | | | | | | |
Collapse
|
48
|
Bennett SE, Bevington A, Walls J. Regulation of intracellular creatine in erythrocytes and myoblasts: influence of uraemia and inhibition of Na,K-ATPase. Cell Biochem Funct 1994; 12:99-106. [PMID: 8044895 DOI: 10.1002/cbf.290120204] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The regulation of intracellular creatine concentration in mammalian cells is poorly understood, but is thought to depend upon active sodium-linked uptake of creatine from extracellular fluid. In normal human erythrocytes, creatine influx into washed cells was inhibited by 40 per cent in the absence of extracellular sodium. In washed cells from uraemic patients, sodium-independent creatine influx was normal, whereas the sodium-dependent component of creatine influx was 3.3 times higher than normal, possibly reflecting the reduced mean age of uraemic erythrocytes. In spite of this, the intracellular creatine concentration was no higher than normal in uraemic erythrocytes, implying that some factor in uraemic plasma in vivo inhibits sodium-dependent creatine influx. Both in normal and uraemic erythrocytes, the creatine concentration was 10 times that in plasma, and the concentration in the cells showed no detectable dependence on that in plasma, suggesting that the intracellular creatine concentration is controlled by an active saturable process. Active sodium-dependent accumulation of creatine was also demonstrated in L6 rat myoblasts and was inhibited when transport was measured in the presence of 10(-4) M ouabain or digoxin, implying that uptake was driven by the transmembrane sodium gradient. However, when creatine influx was measured immediately after ouabain or digoxin had been washed away, it was higher than in control cells, suggesting that Na,K-ATPase and/or sodium-linked creatine transport are up-regulated when treated with inhibitors of Na,K-ATPase.
Collapse
Affiliation(s)
- S E Bennett
- Department of Nephrology, Leicester General Hospital, U.K
| | | | | |
Collapse
|
49
|
Beron J, Verrey F. Aldosterone induces early activation and late accumulation of Na-K-ATPase at surface of A6 cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 266:C1278-90. [PMID: 8203493 DOI: 10.1152/ajpcell.1994.266.5.c1278] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In A6 cells cultured on filters, aldosterone (10(-6) M) induces an early increase in the initial rate of ouabain binding to intact monolayers (in K-free buffer) that parallels an early increase in Na transport. This effect is independent of apical Na influx and precedes an increase in the synthesis of Na-K-adenosinetriphosphatase (ATPase) subunits. In the present study we observed in addition a late aldosterone-induced increase in the rate of ouabain binding (2.5 times from 3 to 120 h aldosterone). The role of Na-K-ATPase accumulation and/or translocation to the cell surface was tested by Western blotting, saturation ouabain binding, and cell-surface labeling using sulfosuccinimidobiotin or enzyme-mediated radioiodination. Only cell-surface beta 1-subunit was detected by blotting with streptavidin or autoradiography, because the alpha 1-subunit was not efficiently labeled. Three hours after hormone addition, none of the three parameters had increased significantly, whereas after 20 and 120 h similar increases (approximately 1.6 and 2.3 times, respectively) were detected by all three methods. In addition, it was shown that increasing intracellular Na with amphotericin B or a K-free preincubation also stimulated the rate of ouabain binding without increasing the surface labeling of beta 1-subunits. Taken together, these results suggest that a short aldosterone treatment or an increase in intracellular Na leads to an increase in the rate of ouabain binding that is due to an in situ activation of cell-surface Na-K-ATPase molecules. In contrast, the late increase in the rate of ouabain binding parallels an increase in the number of pumps.
Collapse
Affiliation(s)
- J Beron
- Institute of Physiology, University of Zurich, Switzerland
| | | |
Collapse
|
50
|
Coutry N, Farman N, Bonvalet JP, Blot-Chabaud M. Role of cell volume variations in Na(+)-K(+)-ATPase recruitment and/or activation in cortical collecting duct. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 266:C1342-9. [PMID: 8203498 DOI: 10.1152/ajpcell.1994.266.5.c1342] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The aim of this study was to examine whether cell volume variations could play a role in the previously reported Na(+)-K(+)-ATPase pump recruitment and/or activation induced by an increase in intracellular Na concentration (Nai) in cortical collecting ducts (CCD). Isolated CCD from kidneys of aldosterone-repleted mice were incubated in hyper-, hypo-, or isosmotic solutions with and without Na to modify Nai and cell volume independently. Nai, cell volume, and the number of basolateral pumps were measured using 22Na, image analysis, and specific [3H]ouabain binding, respectively. Ouabain-sensitive 86Rb uptake was also measured. In CCD with high Nai, pump recruitment and/or activation was observed only when an increase in tubular volume was associated with Na load. Pump recruitment and/or activation was also induced by cell swelling in the absence of Na load. Recruited and/or activated pumps display an affinity for ouabain and a specific activity (ouabain-sensitive Rb uptake per pump unit) similar to basal pumps. We conclude that 1) cell swelling is implied in the process of Nai-dependent pump recruitment and/or activation, 2) cell swelling can promote pump recruitment and/or activation independently of Na load, 3) basal and recruited and/or activated pumps probably correspond to the same Na(+)-K(+)-ATPase isoform.
Collapse
Affiliation(s)
- N Coutry
- Institut National de la Santé et de la Recherche Médicale U. 246 Unité d'Enseignement et de Recherche Xavier Bichat, Paris, France
| | | | | | | |
Collapse
|