1
|
To VPTH, Masagounder K, Loewen ME. Critical transporters of methionine and methionine hydroxyl analogue supplements across the intestine: What we know so far and what can be learned to advance animal nutrition. Comp Biochem Physiol A Mol Integr Physiol 2021; 255:110908. [PMID: 33482339 DOI: 10.1016/j.cbpa.2021.110908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/15/2020] [Accepted: 01/11/2021] [Indexed: 11/19/2022]
Abstract
DL-methionine (DL-Met) and its analogue DL-2-hydroxy-4-(methylthio) butanoic acid (DL-methionine hydroxyl analogue or DL-MHA) have been used as nutritional supplements in the diets of farmed raised animals. Knowledge of the intestinal transport mechanisms involved in these products is important for developing dietary strategies. This review provides updated information of the expression, function, and transport kinetics in the intestine of known Met-linked transporters along with putative MHA-linked transporters. As a neutral amino acid (AA), the transport of DL-Met is facilitated by multiple apical sodium-dependent/-independent high-/low-affinity transporters such as ASCT2, B0AT1 and rBAT/b0,+AT. The basolateral transport largely relies on the rate-limiting uniporter LAT4, while the presence of the basolateral antiporter y+LAT1 is probably necessary for exchanging intracellular cationic AAs and Met in the blood. In contrast, the intestinal transport kinetics of DL-MHA have been scarcely studied. DL-MHA transport is generally accepted to be mediated simply by the proton-dependent monocarboxylate transporter MCT1. However, in-depth mechanistic studies have indicated that DL-MHA transport is also achieved through apical sodium monocarboxylate transporters (SMCTs). In any case, reliance on either a proton or sodium gradient would thus require energy input for both Met and MHA transport. This expanding knowledge of the specific transporters involved now allows us to assess the effect of dietary ingredients on the expression and function of these transporters. Potentially, the resulting information could be furthered with selective breeding to reduce overall feed costs.
Collapse
Affiliation(s)
- Van Pham Thi Ha To
- Veterinary Biomedical Science, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Matthew E Loewen
- Veterinary Biomedical Science, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
2
|
|
3
|
Miyauchi S, Gopal E, Babu E, Srinivas SR, Kubo Y, Umapathy NS, Thakkar SV, Ganapathy V, Prasad PD. Sodium-coupled electrogenic transport of pyroglutamate (5-oxoproline) via SLC5A8, a monocarboxylate transporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1164-71. [PMID: 20211600 DOI: 10.1016/j.bbamem.2010.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 02/26/2010] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
Abstract
Pyroglutamate, also known as 5-oxoproline, is a structural analog of proline. This amino acid derivative is a byproduct of glutathione metabolism, and is reabsorbed efficiently in kidney by Na(+)-coupled transport mechanisms. Previous studies have focused on potential participation of amino acid transport systems in renal reabsorption of this compound. Here we show that it is not the amino acid transport systems but instead the Na(+)-coupled monocarboxylate transporter SLC5A8 that plays a predominant role in this reabsorptive process. Expression of cloned human and mouse SLC5A8 in mammalian cells induces Na(+)-dependent transport of pyroglutamate that is inhibitable by various SLC5A8 substrates. SLC5A8-mediated transport of pyroglutamate is saturable with a Michaelis constant of 0.36+/-0.04mM. Na(+)-activation of the transport process exhibits sigmoidal kinetics with a Hill coefficient of 1.8+/-0.4, indicating involvement of more than one Na(+) in the activation process. Expression of SLC5A8 in Xenopuslaevis oocytes induces Na(+)-dependent inward currents in the presence of pyroglutamate under voltage-clamp conditions. The concentration of pyroglutamate necessary for induction of half-maximal current is 0.19+/-0.01mM. The Na(+)-activation kinetics is sigmoidal with a Hill coefficient of 2.3+/-0.2. Ibuprofen, a blocker of SLC5A8, suppressed pyroglutamate-induced currents in SLC5A8-expressing oocytes; the concentration of the blocker necessary for causing half-maximal inhibition is 14+/-1microM. The involvement of SLC5A8 can be demonstrated in rabbit renal brush border membrane vesicles by showing that the Na(+)-dependent uptake of pyroglutamate in these vesicles is inhibitable by known substrates of SLC5A8. The Na(+) gradient-driven pyroglutamate uptake was stimulated by an inside-negative K(+) diffusion potential induced by valinomycin, showing that the uptake process is electrogenic.
Collapse
Affiliation(s)
- Seiji Miyauchi
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Gopal E, Fei YJ, Miyauchi S, Zhuang L, Prasad P, Ganapathy V. Sodium-coupled and electrogenic transport of B-complex vitamin nicotinic acid by slc5a8, a member of the Na/glucose co-transporter gene family. Biochem J 2009; 388:309-16. [PMID: 15651982 PMCID: PMC1186720 DOI: 10.1042/bj20041916] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
SMCT (sodium-coupled monocarboxylate transporter; slc5a8) is a Na+-coupled transporter for lactate, pyruvate and short-chain fatty acids. Similar to these already known substrates of SMCT, the water-soluble B-complex vitamin nicotinic acid also exists as a monocarboxylate anion (nicotinate) under physiological conditions. Therefore we evaluated the ability of SMCT to mediate the uptake of nicotinate. In mammalian cells, the cloned mouse SMCT (slc5a8) induced the uptake of nicotinate. The SMCT-induced uptake was Na+-dependent. The Michaelis constant for the uptake process was 296+/-88 microM. The Na+-activation kinetics indicated that at least two Na+ ions are involved in the process. Among the various structural analogues tested, nicotinate was the most effective substrate. Nicotinamide and methylnicotinate were not recognized by the transporter. 2-pyrazine carboxylate and isonicotinate interacted with the transporter to a moderate extent. SMCT-mediated uptake of nicotinate was inhibited by lactate and pyruvate. In the Xenopus laevis oocyte expression system, SMCT-mediated nicotinate transport was electrogenic, as evident from the nicotinate-induced inward currents under voltage-clamp conditions. Substrate-induced currents in this expression system corroborated the substrate specificity determined in the mammalian cell expression system. The kinetic parameters with regard to the affinity of the transporter for nicotinate and the Hill coefficient for Na+ activation, determined by using the oocyte expression system, were also similar to those obtained from the mammalian cell expression system. We conclude that SMCT functions not only as a Na+-coupled transporter for short-chain fatty acids and lactate but also as a Na+-coupled transporter for the water-soluble vitamin nicotinic acid.
Collapse
Affiliation(s)
- Elangovan Gopal
- *Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, U.S.A
| | - You-Jun Fei
- *Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, U.S.A
| | - Seiji Miyauchi
- *Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, U.S.A
| | - Lina Zhuang
- *Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, U.S.A
| | - Puttur D. Prasad
- †Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta, GA 30912, U.S.A
| | - Vadivel Ganapathy
- *Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, U.S.A
- †Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta, GA 30912, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
5
|
Plata C, Sussman CR, Sindic A, Liang JO, Mount DB, Josephs ZM, Chang MH, Romero MF. Zebrafish Slc5a12 Encodes an Electroneutral Sodium Monocarboxylate Transporter (SMCTn). J Biol Chem 2007; 282:11996-2009. [PMID: 17255103 DOI: 10.1074/jbc.m609313200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified and characterized two different sodium-coupled monocarboxylate cotransporters (SMCT) from zebrafish (Danio rerio), electrogenic (zSMCTe) and electroneutral (zSMCTn). zSMCTn is the 12th member of the zebrafish Slc5 gene family (zSlc5a12). Both zSMCT sequences have approximately 50% homology to human SLC5A8 (hSMCT). Transport function and kinetics were measured in Xenopus oocytes injected with zSMCT cRNAs by measurement of intracellular Na(+) concentration ([Na(+)](i)) and membrane potential. Both zSMCTs oocytes increased [Na(+)](i) with addition of monocarboxylates (MC) such as lactate, pyruvate, nicotinate, and butyrate. By using two electrode voltage clamp experiments, we measured currents elicited from zSMCTe after MC addition. MC-elicited currents from zSMCTe were similar to hSMCT currents. In contrast, we found no significant MC-elicited current in either zSMCTn or control oocytes. Kinetic data show that zSMCTe has a higher affinity for lactate, nicotinate, and pyruvate (K(m)(L-lactate) = 0.17 +/- 0.02 mM, K(m)(nicotinate) = 0.54 +/- 0.12 mM at -150 mV) than zSMCTn (K(m)(L-lactate) = 1.81 +/- 0.19 mM, K(m)(nicotinate) = 23.68 +/- 4.88 mM). In situ hybridization showed that 1-, 3-, and 5-day-old zebrafish embryos abundantly express both zSMCTs in the brain, eyes, intestine, and kidney. Within the kidney, zSMCTn mRNA is expressed in pronephric tubules, whereas zSMCTe mRNA is more distal in pronephric ducts. zSMCTn is expressed in exocrine pancreas, but zSMCTe is not. Roles for Na(+)-coupled monocarboxylate cotransporters have not been described for the brain or eye. In summary, zSMCTe is the zebrafish SLC5A8 ortholog, and zSMCTn is a novel, electroneutral SMCT (zSlc5a12). Slc5a12 in higher vertebrates is likely responsible for the electroneutral Na(+)/lactate cotransport reported in mammalian and amphibian kidneys.
Collapse
Affiliation(s)
- Consuelo Plata
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Srinivas S, Gopal E, Zhuang L, Itagaki S, Martin P, Fei YJ, Ganapathy V, Prasad P. Cloning and functional identification of slc5a12 as a sodium-coupled low-affinity transporter for monocarboxylates (SMCT2). Biochem J 2006; 392:655-64. [PMID: 16104846 PMCID: PMC1316307 DOI: 10.1042/bj20050927] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We report in the present paper, on the isolation and functional characterization of slc5a12, the twelfth member of the SLC5 gene family, from mouse kidney. The slc5a12 cDNA codes for a protein of 619 amino acids. Heterologous expression of slc5a12 cDNA in mammalian cells induces Na+-dependent transport of lactate and nicotinate. Several other short-chain monocarboxylates compete with nicotinate for the cDNA-induced transport process. Expression of slc5a12 in Xenopus oocytes induces electrogenic and Na+-dependent transport of lactate, nicotinate, propionate and butyrate. The substrate specificity of slc5a12 is similar to that of slc5a8, an Na+-coupled transporter for monocarboxylates. However, the substrate affinities of slc5a12 were much lower than those of slc5a8. slc5a12 mRNA is expressed in kidney, small intestine and skeletal muscle. In situ hybridization with sagittal sections of mouse kidney showed predominant expression of slc5a12 in the outer cortex. This is in contrast with slc5a8, which is expressed in the cortex as well as in the medulla. The physiological function of slc5a12 in the kidney is likely to mediate the reabsorption of lactate. In the intestinal tract, slc5a12 is expressed in the proximal parts, whereas slc5a8 is expressed in the distal parts. The expression of slc5a12 in the proximal parts of the intestinal tract, where there is minimal bacterial colonization, suggests that the physiological function of slc5a12 is not to mediate the absorption of short-chain monocarboxylates derived from bacterial fermentation but rather to mediate the absorption of diet-derived short-chain monocarboxylates. Based on the functional and structural similarities between slc5a8 and slc5a12, we suggest that the two transporters be designated as SMCT1 (sodium-coupled monocarboxylate transporter 1) and SMCT2 respectively.
Collapse
Affiliation(s)
- Sonne R. Srinivas
- *Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta, GA 30912, U.S.A
| | - Elangovan Gopal
- †Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, U.S.A
| | - Lina Zhuang
- †Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, U.S.A
| | - Shirou Itagaki
- †Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, U.S.A
| | - Pamela M. Martin
- †Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, U.S.A
| | - You-Jun Fei
- †Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, U.S.A
| | - Vadivel Ganapathy
- *Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta, GA 30912, U.S.A
- †Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, U.S.A
| | - Puttur D. Prasad
- *Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta, GA 30912, U.S.A
- †Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
7
|
Gopal E, Fei YJ, Sugawara M, Miyauchi S, Zhuang L, Martin P, Smith SB, Prasad PD, Ganapathy V. Expression of slc5a8 in Kidney and Its Role in Na+-coupled Transport of Lactate. J Biol Chem 2004; 279:44522-32. [PMID: 15322102 DOI: 10.1074/jbc.m405365200] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here on the expression of slc5a8 in kidney and its relevance to Na(+)-coupled reabsorption of lactate. slc5a8 is the murine ortholog of SLC5A8, a candidate tumor suppressor gene, which we recently cloned from human intestine and demonstrated its functional identity as a Na(+)-coupled transporter for short-chain fatty acids and lactate. The slc5a8 cDNA, cloned from mouse kidney, codes for a protein consisting of 611 amino acids. When expressed heterologously in mammalian cells or Xenopus oocytes, slc5a8 mediates Na(+)-coupled electrogenic transport of lactate/pyruvate as well as short-chain fatty acids (e.g. acetate, propionate, and butyrate). The Na+/fatty acid stoichiometry varies depending on the fatty acid substrate (2:1 for lactate and 4:1 for propionate). This phenomenon of variable Na+/substrate stoichiometry depending on the fatty acid substrate is also demonstrable with human SLC5A8. In situ hybridization with sagittal sections of mouse kidney demonstrates abundant expression of the transcripts in the cortex as well as the medulla. Brush border membrane vesicles prepared from rabbit kidney are able to transport lactate in a Na(+)-coupled manner. The transport process exhibits the overshoot phenomenon, indicating uphill lactate transport in response to the transmembrane Na+ gradient. The Na(+)-coupled lactate transport in these membrane vesicles is inhibitable by short-chain fatty acids. We conclude that slc5a8 is expressed abundantly in the kidney and that it plays a role in the active reabsorption of lactate. slc5a8 is the first transporter known to be expressed in mammalian kidney that has the ability to mediate the Na(+)-coupled reabsorption of lactate.
Collapse
Affiliation(s)
- Elangovan Gopal
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Coady MJ, Chang MH, Charron FM, Plata C, Wallendorff B, Sah JF, Markowitz SD, Romero MF, Lapointe JY. The human tumour suppressor gene SLC5A8 expresses a Na+-monocarboxylate cotransporter. J Physiol 2004; 557:719-31. [PMID: 15090606 PMCID: PMC1665153 DOI: 10.1113/jphysiol.2004.063859] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The orphan cotransport protein expressed by the SLC5A8 gene has been shown to play a role in controlling the growth of colon cancers, and the silencing of this gene is a common and early event in human colon neoplasia. We expressed this protein in Xenopus laevis oocytes and have found that it transports small monocarboxylic acids. The electrogenic activity of the cotransporter, which we have named SMCT (sodium monocarboxylate transporter), was dependent on external Na(+) and was compatible with a 3 : 1 stoichiometry between Na(+) and monocarboxylates. A portion of the SMCT-mediated current was also Cl(-) dependent, but Cl(-) was not cotransported. SMCT transports a variety of monocarboxylates (similar to unrelated monocarboxylate transport proteins) and most transported monocarboxylates demonstrated K(m) values near 100 microm, apart from acetate and d-lactate, for which the protein showed less affinity. SMCT was strongly inhibited by 1 mm probenecid or ibuprofen. In the absence of external substrate, a Na(+)-independent leak current was also observed to pass through SMCT. SMCT activity was strongly inhibited after prolonged exposure to high external concentrations of monocarboxylates. The transport of monocarboxylates in anionic form was confirmed by the observation of a concomitant alkalinization of the cytosol. SMCT, being expressed in colon and kidney, represents a novel means by which Na(+), short-chain fatty acids and other monocarboxylates are transported in these tissues. The significance of a Na(+)-monocarboxylate transporter to colon cancer presumably stems from the transport of butyrate, which is well known for having anti-proliferative and apoptosis-inducing activity in colon epithelial cells.
Collapse
Affiliation(s)
- Michael J Coady
- Groupe d'etude des protéines membranaires, Pavillon Paul-G-Desmarais, Université de Montréal, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mengual R, El Abida K, Mouaffak N, Rieu M, Beaudry M. Pyruvate shuttle in muscle cells: high-affinity pyruvate transport sites insensitive to trans-lactate efflux. Am J Physiol Endocrinol Metab 2003; 285:E1196-204. [PMID: 12915395 DOI: 10.1152/ajpendo.00034.2003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The specificity of the transport mechanisms for pyruvate and lactate and their sensitivity to inhibitors were studied in L6 skeletal muscle cells. Trans- and cis-lactate effects on pyruvate transport kinetic parameters were examined. Pyruvate and lactate were transported by a multisite carrier system, i.e., by two families of sites, one with low affinity and high capacity (type I sites) and the other with high affinity and low capacity (type II). The multisite character of transport kinetics was not modified by either hydroxycinnamic acid (CIN) or p-chloromercuribenzylsulfonic acid (PCMBS), which exert different types of inhibition. The transport efficiency (TE) ratios of maximal velocity to the trans-activation dissociation constant (Kt) showed that lactate and pyruvate were preferentially transported by types I and II sites, respectively. The cis-lactate effect was observed with high Ki values for both sites. The trans-lactate effect on pyruvate transport occurred only on type I sites and exhibited an asymmetric interaction pattern (Kt of inward lactate > Kt of outward lactate). The inability of lactate to trans-stimulate type II sites suggests that intracellular lactate cannot recruit these sites. The high-affinity type II sites act as a specific pyruvate shuttle and constitute an essential relay for the intracellular lactate shuttle.
Collapse
Affiliation(s)
- Raymond Mengual
- Laboratoire de Physiologie des Adaptations, Unité de Formation et de Recherche Cochin Port Royal, Université René Descartes, 75014 Paris, France.
| | | | | | | | | |
Collapse
|
10
|
Tiihonen K, Yao SYM, Nikinmaa M, Young JD. Na+-dependent transport of pyruvate in erythrocytes of the Pacific hagfish (Eptatretus stouti). CAN J ZOOL 2000. [DOI: 10.1139/z00-145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the mechanisms of pyruvate transport in the erythrocytes of an ancient marine agnathan, the Pacific hagfish (Eptatretus stouti), and a sedentary euryhaline teleost, the starry flounder (Platichthys stellatus). Uptake of [14C]pyruvate (50 µM, 10°C) by flounder erythrocytes was slow (t1/2 (half-life) ~ 30 min), nonconcentrative, and mediated by the band 3 Cl-/HCO-3 exchanger in combination with a process similar to the H+/monocarboxylate symporter present in freshwater teleosts and mammalian erythrocytes. In contrast, pyruvate uptake by hagfish erythrocytes (50 µM, 10°C) was rapid (t1/2 ~ 1.5 min) and, in 10 min, reached an intracellular concentration more than 20-fold higher than that present in the extracellular medium. Pyruvate accounted for almost 90% of the accumulated intracellular radioactivity, the remaining label being incorporated into tricarboxylic acid cycle intermediates and glutamate. Influx of pyruvate was saturable (apparent Km = 12 mM) and inhibited by p-chloromercuriphenylsulphonate (PCMBS) (Ki = 71 µM) and 4,4'-diisothiocyanatostilbene-2,2'-disulphonate (DIDS) (Ki = 0.49 mM). Transport was inhibited poorly by α-cyano-4-hydroxycinnamate (CIN) (Ki > 4 mM) and was not coupled to the movement of protons. Instead, the influx of pyruvate was Na+ dependent. A sigmoidal relationship between pyruvate transport and extracellular Na+ concentration was observed, suggesting a Na+:pyruvate coupling ratio greater than 1:1. In contrast with previously described Na+-dependent monocarboxylate transport activities in mammalian renal and intestinal epithelia, the hagfish erythrocyte system did not transport lactate.
Collapse
|
11
|
Mac M, Nehlig A, Nałecz MJ, Nałecz KA. Transport of alpha-ketoisocaproate in rat cerebral cortical neurons. Arch Biochem Biophys 2000; 376:347-53. [PMID: 10775422 DOI: 10.1006/abbi.2000.1724] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transport of alpha-ketoisocaproic acid (KIC), the product of leucine transamination, was studied in the cerebral cortex cells isolated from the adult rat brain. The process of [(14)C]KIC accumulation was followed in the presence of aminooxyacetate, an inhibitor of transaminases. Accumulation of KIC was not affected by Na(+) replacement, its initial velocity was observed to be higher upon lowering of external pH. Addition of KIC promoted acidification of cytoplasmic pH, monitored with 2'7'-bis(carboxyethyl)-5(6)-carboxyfluorescein. The detected inhibition of KIC accumulation by alpha-cyano-4(OH)cinnamate pointed to an involvement of one of monocarboxylate transporters (MCT), although 4,4'-diisothiocyano-2,2'-stilbenedisulphonate was without effect. Accumulation of KIC was inhibited by lactate; the effect of pyruvate was detected to be much weaker. Other branched-chain alpha-ketoacids (ketoisovalerate, keto-methylvalerate), as well as beta-hydroxybutyrate and valproate decreased the transport of KIC by 30, 60, and 80%, respectively. The observed characteristics of KIC accumulation in the cortical neurons indicate an involvement of one of the MCT transporters. A crucial role of SH group(s) in the process of KIC accumulation, excluding MCT2, indicates the MCT1, although an involvement of another isoform of MCT in the process of KIC transport in neurons from cerebral cortex of adult brain has not been definitely excluded.
Collapse
Affiliation(s)
- M Mac
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Pasteur Street 3, Warsaw, 02-093, Poland
| | | | | | | |
Collapse
|
12
|
Beaudry M, Mouaffak N, el Abida K, Rieu M, Mengual R. Lactate transport in L6 skeletal muscle cells and vesicles: allosteric or multisite mechanism and functional membrane marker of differentiation. ACTA PHYSIOLOGICA SCANDINAVICA 1998; 162:33-46. [PMID: 9492900 DOI: 10.1046/j.1365-201x.1998.0220f.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Membrane lactate transport was studied in skeletal muscle cells and membrane vesicles from the L6 line in relation to in vitro myogenesis. In myoblasts, lactate was transported by simple diffusion and insensitive to classical inhibitors: a positive correlation between onset of creatine kinase activity and lactate transport in differentiated myotubes was observed and could be considered to be a functional marker of cell differentiation. In myotubes, complete analysis of the velocity curves (direct coordinates, Eadie-Scatchard plots, Hill plots) gave parameters showing that lactate was carried by an allosteric or multisite system. This was confirmed by using sarcolemmal vesicles and specific inhibitors. In whole cells, alpha-cyano-4-hydroxycinnamic acid (CIN) and parachloromercuribenzylsulphonic acid (pCMBS) inhibited the maximal velocity without modifying the global cooperativity of the system. The weak effect of 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS), which has a low affinity constant (Ki = 22.5 microM), implicated the monocarboxylate system rather than the anionic exchanger as a carrier system in muscle cells. CIN and DIDS exhibited one type of interaction with lactate carriers, and the curvilinear shape of the lactate Hill plot with or without inhibitors suggested that inhibitors were active at the same family of interaction sites and had a common range of affinities. The apparent competitive inhibition of pyruvate (Ki = 3.2 mM) did not modify the transport pathway of lactate in L6 myotubes. In conclusion, kinetic analysis of lactate transport in the presence or absence of inhibitors gave evidence for a multisite lactate carrier activity in myotubes composed of two systems at least, related to two or three isoforms of lactate carriers.
Collapse
Affiliation(s)
- M Beaudry
- Laboratoire de Physiologie des Adaptations UFR Medicine Cochin, Université René Descartes, Paris, France
| | | | | | | | | |
Collapse
|
13
|
Bachowska-Mac M, Nehlig A, Nałecz MJ, Nałecz KA. Transport of alpha-ketoisocaproate in neuroblastoma NB-2a cells. Biochem Biophys Res Commun 1997; 237:63-7. [PMID: 9266830 DOI: 10.1006/bbrc.1997.7001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transport of alpha-ketoisocaproate (KIC), a ketoacid originating from leucine and proposed to be involved in the buffering of glutamate in neurones, was studied in neuroblastoma NB-2a cells. The accumulated KIC was mostly transaminated to leucine, while free keto-acid was detectable either only after prolonged times or after inhibiting transaminase with aminooxyacetate. Accumulation of KIC was found to be inhibited by other branched-chain ketoacids, while lactate and beta-hydroxybutyrate were ineffective. The transport of KIC, resembling a facilitated diffusion, was decreased by phloretin, alpha-cyano-4-hydroxycinnamate, 4,4'-diisothiocyano-2,2'-stilbenedisulphonate, and p-chlorimercuribenzoate. The process of accumulation did not resemble a symport with protons; therefore an involvement of the known proton-coupled monocarboxylate transporters (MCT) was excluded. Distribution of KIC suggests a mechanism involving a cotransport with 2 [Na+].
Collapse
Affiliation(s)
- M Bachowska-Mac
- The Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | |
Collapse
|
14
|
Ullrich KJ. Specificity of transporters for 'organic anions' and 'organic cations' in the kidney. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1197:45-62. [PMID: 8155691 DOI: 10.1016/0304-4157(94)90018-3] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- K J Ullrich
- Max-Planck-Institut für Biophysik, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Beaudry M, El Abida K, Duvallet A, Mouaffak N, Rieu M. Transport du lactate dans les cellules de mammifères. Sci Sports 1993. [DOI: 10.1016/s0765-1597(05)80006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|