1
|
Hashimoto S, Nagoshi N, Nakamura M, Okano H. Clinical application and potential pluripotent effects of hepatocyte growth factor in spinal cord injury regeneration. Expert Opin Investig Drugs 2024; 33:713-720. [PMID: 38783527 DOI: 10.1080/13543784.2024.2360191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Spinal cord injury (SCI) is a condition in which the spinal cord parenchyma is damaged by various factors. The mammalian central nervous system has been considered unable to regenerate once damaged, but recent progress in basic research has gradually revealed that injured neural cells can indeed regenerate. Drug therapy using novel agents is being actively investigated as a new treatment for SCI. One notable treatment method is regeneration therapy using hepatocyte growth factors (HGF). AREA COVERED HGF has pluripotent neuroregenerative actions, as indicated by its neuroprotective and regenerative effects on the microenvironment and damaged cells, respectively. This review examines these effects in various phases of SCI, from basic research to clinical studies, and the application of this treatment to other diseases. EXPERT OPINION In regenerative medicine for SCI, drug therapies have tended to be more likely to be developed compared to cell replacement treatment. Nevertheless, there are still challenges to be addressed for these clinical applications due to a wide variety of pathology and animal experimental models of basic study, but HGF could be an effective treatment for SCI with expanded application.
Collapse
Affiliation(s)
- Shogo Hashimoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
2
|
Hayes AJ, Zheng X, O'Kelly J, Neyton LPA, Bochkina NA, Uings I, Liddle J, Baillie JK, Just G, Binnie M, Homer NZM, Murray TBJ, Baily J, McGuire K, Skouras C, Garden OJ, Webster SP, Iredale JP, Howie SEM, Mole DJ. Kynurenine monooxygenase regulates inflammation during critical illness and recovery in experimental acute pancreatitis. Cell Rep 2023; 42:112763. [PMID: 37478012 DOI: 10.1016/j.celrep.2023.112763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/14/2022] [Accepted: 06/21/2023] [Indexed: 07/23/2023] Open
Abstract
Kynurenine monooxygenase (KMO) blockade protects against multiple organ failure caused by acute pancreatitis (AP), but the link between KMO and systemic inflammation has eluded discovery until now. Here, we show that the KMO product 3-hydroxykynurenine primes innate immune signaling to exacerbate systemic inflammation during experimental AP. We find a tissue-specific role for KMO, where mice lacking Kmo solely in hepatocytes have elevated plasma 3-hydroxykynurenine levels that prime inflammatory gene transcription. 3-Hydroxykynurenine synergizes with interleukin-1β to cause cellular apoptosis. Critically, mice with elevated 3-hydroxykynurenine succumb fatally earlier and more readily to experimental AP. Therapeutically, blockade with the highly selective KMO inhibitor GSK898 rescues the phenotype, reducing 3-hydroxykynurenine and protecting against critical illness and death. Together, our findings establish KMO and 3-hydroxykynurenine as regulators of inflammation and the innate immune response to sterile inflammation. During critical illness, excess morbidity and death from multiple organ failure can be rescued by systemic KMO blockade.
Collapse
Affiliation(s)
- Alastair J Hayes
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Clinical Surgery, University of Edinburgh, Edinburgh, UK
| | - Xiaozhong Zheng
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - James O'Kelly
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Clinical Surgery, University of Edinburgh, Edinburgh, UK
| | - Lucile P A Neyton
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Natalia A Bochkina
- School of Mathematics and Maxwell Institute, University of Edinburgh, Edinburgh, UK
| | - Iain Uings
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | - John Liddle
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | | | - George Just
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Margaret Binnie
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Natalie Z M Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | | | - James Baily
- Charles River Laboratories, East Lothian, UK
| | - Kris McGuire
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | | | - O James Garden
- Clinical Surgery, University of Edinburgh, Edinburgh, UK
| | - Scott P Webster
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | - Sarah E M Howie
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Damian J Mole
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Clinical Surgery, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Büki A, Kekesi G, Horvath G, Vécsei L. A Potential Interface between the Kynurenine Pathway and Autonomic Imbalance in Schizophrenia. Int J Mol Sci 2021; 22:10016. [PMID: 34576179 PMCID: PMC8467675 DOI: 10.3390/ijms221810016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by various symptoms including autonomic imbalance. These disturbances involve almost all autonomic functions and might contribute to poor medication compliance, worsened quality of life and increased mortality. Therefore, it has a great importance to find a potential therapeutic solution to improve the autonomic disturbances. The altered level of kynurenines (e.g., kynurenic acid), as tryptophan metabolites, is almost the most consistently found biochemical abnormality in schizophrenia. Kynurenic acid influences different types of receptors, most of them involved in the pathophysiology of schizophrenia. Only few data suggest that kynurenines might have effects on multiple autonomic functions. Publications so far have discussed the implication of kynurenines and the alteration of the autonomic nervous system in schizophrenia independently from each other. Thus, the coupling between them has not yet been addressed in schizophrenia, although their direct common points, potential interfaces indicate the consideration of their interaction. The present review gathers autonomic disturbances, the impaired kynurenine pathway in schizophrenia, and the effects of kynurenine pathway on autonomic functions. In the last part of the review, the potential interaction between the two systems in schizophrenia, and the possible therapeutic options are discussed.
Collapse
Affiliation(s)
- Alexandra Büki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - Gabriella Kekesi
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - Gyongyi Horvath
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6., H-6725 Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, H-6725 Szeged, Hungary
- Interdisciplinary Excellence Center, Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6., H-6725 Szeged, Hungary
| |
Collapse
|
4
|
Chuang TD, Quintanilla D, Boos D, Khorram O. Tryptophan catabolism is dysregulated in leiomyomas. Fertil Steril 2021; 116:1160-1171. [PMID: 34116832 DOI: 10.1016/j.fertnstert.2021.05.081] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To determine the expression and functional roles of indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO2) in leiomyoma. DESIGN Experimental study. SETTING Academic research laboratory. PATIENT(S) Women undergoing hysterectomy for leiomyoma. INTERVENTION(S) Blockade of IDO1 and TDO2. MAIN OUTCOME MEASURE(S) Expression of IDO1 and TDO2 in leiomyoma and the effects of their inhibitors on the extracellular matrix. RESULT(S) Leiomyoma expressed significantly higher levels of IDO1 and TDO2 messenger ribonucleic acid (mRNA; 60.3%, 35/58 pairs and 98.3%, 57/58 pairs, respectively) and protein (54%, 27/50 pairs and 92%, 46/50 pairs, respectively) as well as the enzyme activity marker kynurenine (78.3%, 36/46 pairs for IDO1/TDO2) compared with levels in matched myometrium. The expression of TDO2 but not IDO1 mRNA was significantly higher in fibroids from African American compared with that in Caucasian and Hispanic patients. The TDO2 but not the IDO1 protein and mRNA levels were more abundant in fibroids bearing the MED12 mutation compared with results in wild-type leiomyomas. Treatment of leiomyoma smooth muscle cell and myometrial smooth muscle cell spheroids with the TDO2 inhibitor 680C91 but not the IDO1 inhibitor epacadostat significantly repressed cell proliferation and the expression of collagen type I (COL1A1) and type III (COL3A1) in a dose-dependent manner; these effects were more pronounced in leiomyoma smooth muscle cells compared with myometrial smooth muscle cell spheroids. CONCLUSION(S) These results underscore the physiological significance of the tryptophan degradation pathway in the pathogenesis of leiomyomas and the potential utility of anti-TDO2 drugs for treatment of leiomyomas.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- Department of Obstetrics and Gynecology, Harbor-University of California-Los Angeles Medical Center and The Lundquist Institute, Torrance, California
| | - Derek Quintanilla
- Department of Obstetrics and Gynecology, Harbor-University of California-Los Angeles Medical Center and The Lundquist Institute, Torrance, California
| | - Drake Boos
- Department of Obstetrics and Gynecology, Harbor-University of California-Los Angeles Medical Center and The Lundquist Institute, Torrance, California
| | - Omid Khorram
- Department of Obstetrics and Gynecology, Harbor-University of California-Los Angeles Medical Center and The Lundquist Institute, Torrance, California.
| |
Collapse
|
5
|
Boros FA, Vécsei L. Immunomodulatory Effects of Genetic Alterations Affecting the Kynurenine Pathway. Front Immunol 2019; 10:2570. [PMID: 31781097 PMCID: PMC6851023 DOI: 10.3389/fimmu.2019.02570] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Several enzymes and metabolites of the kynurenine pathway (KP) have immunomodulatory effects. Modulation of the activities and levels of these molecules might be of particular importance under disease conditions when the amelioration of overreacting immune responses is desired. Results obtained by the use of animal and tissue culture models indicate that by eliminating or decreasing activities of key enzymes of the KP, a beneficial shift in disease outcome can be attained. This review summarizes experimental data of models in which IDO, TDO, or KMO activity modulation was achieved by interventions affecting enzyme production at a genomic level. Elimination of IDO activity was found to improve the outcome of sepsis, certain viral infections, chronic inflammation linked to diabetes, obesity, aorta aneurysm formation, and in anti-tumoral processes. Similarly, lack of TDO activity was advantageous in the case of anti-tumoral immunity, while KMO inhibition was found to be beneficial against microorganisms and in the combat against tumors, as well. On the other hand, the complex interplay among KP metabolites and immune function in some cases requires an increase in a particular enzyme activity for the desired immune response modulation, as was shown by the exacerbation of liver fibrosis due to the elimination of IDO activity and the detrimental effects of TDO inhibition in a mouse model of autoimmune gastritis. The relevance of these studies concerning possible human applications are discussed and highlighted. Finally, a brief overview is presented on naturally occurring genetic variants affecting immune functions via modulation of KP enzyme activity.
Collapse
Affiliation(s)
- Fanni A. Boros
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group of the Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
- Department of Neurology, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
6
|
Badawy AAB. Kynurenine pathway and human systems. Exp Gerontol 2019; 129:110770. [PMID: 31704347 DOI: 10.1016/j.exger.2019.110770] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/30/2023]
Abstract
The essential amino acid L-tryptophan (Trp) appears to play an important role in aging by acting as a general regulator of protein homeostasis. The major route of Trp degradation, the kynurenine pathway (KP), produces a range of biologically active metabolites that can impact or be impacted by a variety of body systems, including the endocrine, haemopoietic, immune, intermediary metabolism and neuronal systems, with the end product of the KP, NAD+, being essential for vital cellular processes. An account of the pathway, its regulation and functions is presented in relation to body systems with a summary of previous studies of the impact of aging on the pathway enzymes and metabolites. A low-grade inflammatory environment characterized by elevation of cytokines and other immune modulators and consequent disturbances in KP activity develops with aging. The multifactorial nature of the aging process necessitates assessment of factors determining the progression of this mild dysfunction to age-related diseases and developing strategies aimed at arresting and reversing this progression.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, Wales, UK.
| |
Collapse
|
7
|
Gasperi V, Sibilano M, Savini I, Catani MV. Niacin in the Central Nervous System: An Update of Biological Aspects and Clinical Applications. Int J Mol Sci 2019; 20:ijms20040974. [PMID: 30813414 PMCID: PMC6412771 DOI: 10.3390/ijms20040974] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Niacin (also known as "vitamin B₃" or "vitamin PP") includes two vitamers (nicotinic acid and nicotinamide) giving rise to the coenzymatic forms nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP). The two coenzymes are required for oxidative reactions crucial for energy production, but they are also substrates for enzymes involved in non-redox signaling pathways, thus regulating biological functions, including gene expression, cell cycle progression, DNA repair and cell death. In the central nervous system, vitamin B₃ has long been recognized as a key mediator of neuronal development and survival. Here, we will overview available literature data on the neuroprotective role of niacin and its derivatives, especially focusing especially on its involvement in neurodegenerative diseases (Alzheimer's, Parkinson's, and Huntington's diseases), as well as in other neuropathological conditions (ischemic and traumatic injuries, headache and psychiatric disorders).
Collapse
Affiliation(s)
- Valeria Gasperi
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| | - Matteo Sibilano
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| | - Isabella Savini
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| | - Maria Valeria Catani
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
8
|
de Oliveira FR, Fantucci MZ, Adriano L, Valim V, Cunha TM, Louzada-Junior P, Rocha EM. Neurological and Inflammatory Manifestations in Sjögren's Syndrome: The Role of the Kynurenine Metabolic Pathway. Int J Mol Sci 2018; 19:ijms19123953. [PMID: 30544839 PMCID: PMC6321004 DOI: 10.3390/ijms19123953] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022] Open
Abstract
For decades, neurological, psychological, and cognitive alterations, as well as other glandular manifestations (EGM), have been described and are being considered to be part of Sjögren's syndrome (SS). Dry eye and dry mouth are major findings in SS. The lacrimal glands (LG), ocular surface (OS), and salivary glands (SG) are linked to the central nervous system (CNS) at the brainstem and hippocampus. Once compromised, these CNS sites may be responsible for autonomic and functional disturbances that are related to major and EGM in SS. Recent studies have confirmed that the kynurenine metabolic pathway (KP) can be stimulated by interferon-γ (IFN-γ) and other cytokines, activating indoleamine 2,3-dioxygenase (IDO) in SS. This pathway interferes with serotonergic and glutamatergic neurotransmission, mostly in the hippocampus and other structures of the CNS. Therefore, it is plausible that KP induces neurological manifestations and contributes to the discrepancy between symptoms and signs, including manifestations of hyperalgesia and depression in SS patients with weaker signs of sicca, for example. Observations from clinical studies in acquired immune deficiency syndrome (AIDS), graft-versus-host disease, and lupus, as well as from experimental studies, support this hypothesis. However, the obtained results for SS are controversial, as discussed in this study. Therapeutic strategies have been reexamined and new options designed and tested to regulate the KP. In the future, the confirmation and application of this concept may help to elucidate the mosaic of SS manifestations.
Collapse
Affiliation(s)
- Fabíola Reis de Oliveira
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Marina Zilio Fantucci
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Leidiane Adriano
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Valéria Valim
- Espírito Santo Federal University, Vitoria, ES 29075-910, Brazil.
| | - Thiago Mattar Cunha
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Paulo Louzada-Junior
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Eduardo Melani Rocha
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| |
Collapse
|
9
|
Sharma R, Razdan K, Bansal Y, Kuhad A. Rollercoaster ride of kynurenines: steering the wheel towards neuroprotection in Alzheimer's disease. Expert Opin Ther Targets 2018; 22:849-867. [PMID: 30223691 DOI: 10.1080/14728222.2018.1524877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is associated with cerebral cognitive deficits exhibiting two cardinal hallmarks: accruement of extracellular amyloid plaques and intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein. The currently accessible therapeutic armamentarium merely provides symptomatic relief. Therefore, the cry for prospective neuroprotective strategies seems to be the need of the hour. Areas covered: This review comprehensively establishes correlation between kynurenine pathway (KP) metabolites and AD with major emphasis on its two functionally contrasting neuroactive metabolites i.e. kynurenic acid (KYNA) and quinolinic acid (QUIN) and enlists various clinical studies which hold a potential for future therapeutics in AD. Also, major hypotheses of AD and mechanisms underlying them have been scrutinized with the aim to brush up the readers with basic pathology of AD. Expert opinion: KP is unique in itself as it holds two completely different domains i.e. neurotoxic QUIN and neuroprotective KYNA and disrupted equilibrium between the two has a hand in neurodegeneration. KYNA has long been demonstrated to be neuroprotective but lately being disparaged for cognitive side effects. But we blaze a trail by amalgamating the pharmacological mechanistic studies of KYNA in kinship with α7nAChRs, NMDARs and GABA which lends aid in favour of KA.
Collapse
Affiliation(s)
- Radhika Sharma
- a Pharmacology Research Laboratory , University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University , Chandigarh , India
| | - Karan Razdan
- b Pharmaceutics division , University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University , Chandigarh , India
| | - Yashika Bansal
- a Pharmacology Research Laboratory , University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University , Chandigarh , India
| | - Anurag Kuhad
- a Pharmacology Research Laboratory , University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University , Chandigarh , India
| |
Collapse
|
10
|
Chou C, Lin C, Chiu DT, Chen I, Chen S. Tryptophan as a surrogate prognostic marker for diabetic nephropathy. J Diabetes Investig 2018; 9:366-374. [PMID: 28646618 PMCID: PMC5835459 DOI: 10.1111/jdi.12707] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/11/2017] [Accepted: 06/21/2017] [Indexed: 01/01/2023] Open
Abstract
AIMS/INTRODUCTION Diabetic nephropathy is one of the leading causes of end-stage renal disease. Unfortunately, reliable surrogate markers for predicting the prognostic outcome of diabetic nephropathy are as yet absent. In order to find new markers in predicting the progression of diabetic nephropathy, we carried out a prospective study by investigating the correlation between serum metabolites and the annual change of estimated glomerular filtration rate (eGFR). MATERIALS AND METHODS From September 2013 to September 2015, 52 diabetes patients at various stages of chronic kidney disease were enrolled. While serum levels of 175 metabolites were measured by AbsoluteIDQ™ p180 kit, only those with a significant difference in advancing chronic kidney disease stages were selected. After then, serial renal function change of these patients was followed up for 12 months, the outcome of renal function with each selected metabolite was compared according to the occurrence of a rapid decline (sustained annual decrement rate ≥5%) of eGFR. RESULTS A total of 26 metabolites were found to be significantly associated with the severity of chronic kidney disease. Tryptophan (Trp) showed a significant association with the event of rapid decline in eGFR (P = 0.036). Serum concentration of Trp <44.20 μmol/L showed the most valuable predictive value with 55.6% sensitivity and 87% specificity. CONCLUSIONS A lower level of Trp, especially <44.20 μmol/L, was related to a rapid decline in eGFR. Accordingly, Trp might be regarded as a potential prognostic marker for diabetic nephropathy.
Collapse
Affiliation(s)
- Chien‐An Chou
- Division of Endocrinology and MetabolismDepartment of Internal MedicineChang Gung Memorial HospitalChang Gung UniversityTaoyuanTaiwan
- Present address:
Division of Endocrinology and Metabolism Chang‐Gung Memorial HospitalNo. 5, Fuxing St.Guishan Dist, Taoyuan City 333Taiwan
| | - Chia‐Ni Lin
- Department of Laboratory MedicineChang Gung Memorial Hospital Linkou BranchChang Gung UniversityTaoyuanTaiwan
- Department of Medical Biotechnology and Laboratory ScienceCollege of MedicineChang Gung UniversityTaoyuanTaiwan
- Present address:
Division of Endocrinology and Metabolism Chang‐Gung Memorial HospitalNo. 5, Fuxing St.Guishan Dist, Taoyuan City 333Taiwan
| | - Daniel Tsun‐Yee Chiu
- Department of Medical Biotechnology and Laboratory ScienceCollege of MedicineChang Gung UniversityTaoyuanTaiwan
- Healthy Aging Research CenterChang Gung UniversityTaoyuanTaiwan
- Department of Pediatric HematologyChang Gung Memorial HospitalLin‐KouTaiwan
| | - I‐Wen Chen
- Division of Endocrinology and MetabolismDepartment of Internal MedicineChang Gung Memorial HospitalChang Gung UniversityTaoyuanTaiwan
| | - Szu‐Tah Chen
- Division of Endocrinology and MetabolismDepartment of Internal MedicineChang Gung Memorial HospitalChang Gung UniversityTaoyuanTaiwan
- Present address:
Division of Endocrinology and Metabolism Chang‐Gung Memorial HospitalNo. 5, Fuxing St.Guishan Dist, Taoyuan City 333Taiwan
| |
Collapse
|
11
|
Dostal CR, Carson Sulzer M, Kelley KW, Freund GG, M cCusker RH. Glial and tissue-specific regulation of Kynurenine Pathway dioxygenases by acute stress of mice. Neurobiol Stress 2017; 7:1-15. [PMID: 29520368 PMCID: PMC5840960 DOI: 10.1016/j.ynstr.2017.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/10/2017] [Accepted: 02/07/2017] [Indexed: 01/11/2023] Open
Abstract
Stressors activate the hypothalamic-pituitary-adrenal (HPA) axis and immune system eliciting changes in cognitive function, mood and anxiety. An important link between stress and altered behavior is stimulation of the Kynurenine Pathway which generates neuroactive and immunomodulatory kynurenines. Tryptophan entry into this pathway is controlled by rate-limiting indoleamine/tryptophan 2,3-dioxygenases (DOs: Ido1, Ido2, Tdo2). Although implicated as mediating changes in behavior, detecting stress-induced DO expression has proven inconsistent. Thus, C57BL/6J mice were used to characterize DO expression in brain-regions, astrocytes and microglia to characterize restraint-stress-induced DO expression. Stress increased kynurenine in brain and plasma, demonstrating increased DO activity. Of three Ido1 transcripts, only Ido1-v1 expression was increased by stress and within astrocytes, not microglia, indicating transcript- and glial-specificity. Stress increased Ido1-v1 only in frontal cortex and hypothalamus, indicating brain-region specificity. Of eight Ido2 transcripts, Ido2-v3 expression was increased by stress, again only within astrocytes. Likewise, stress increased Tdo2-FL expression in astrocytes, not microglia. Interestingly, Ido2 and Tdo2 transcripts were not correspondingly induced in Ido1-knockout (Ido1KO) mice, suggesting that Ido1 is necessary for the central DO response to acute stress. Unlike acute inflammatory models resulting in DO induction within microglia, only astrocyte DO expression was increased by acute restraint-stress, defining their unique role during stress-dependent activation of the Kynurenine Pathway.
Collapse
Affiliation(s)
- Carlos R. Dostal
- Neuroscience Program, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Medical Scholars Program, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
| | - Megan Carson Sulzer
- School of Molecular and Cellular Biology, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
| | - Keith W. Kelley
- Neuroscience Program, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Department of Animal Sciences, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Department of Pathology, University of Illinois at Urbana-Champaign, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
| | - Gregory G. Freund
- Neuroscience Program, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Department of Animal Sciences, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Department of Pathology, University of Illinois at Urbana-Champaign, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
| | - Robert H. McCusker
- Neuroscience Program, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Department of Animal Sciences, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
- Department of Pathology, University of Illinois at Urbana-Champaign, 250 Edward R Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Van der Leek AP, Yanishevsky Y, Kozyrskyj AL. The Kynurenine Pathway As a Novel Link between Allergy and the Gut Microbiome. Front Immunol 2017; 8:1374. [PMID: 29163472 PMCID: PMC5681735 DOI: 10.3389/fimmu.2017.01374] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022] Open
Abstract
In the past few decades, the indoleamine 2,3 dioxygenase (IDO) subset of the kynurenine (KYN) pathway of tryptophan (TRP) metabolism has been the subject of much research in the area of immune tolerance. In this review, we aim to incorporate new findings on this pathway in relation to allergy and the gut microbiome, while providing a comprehensive overview of the pathway itself. Stimulated by interferon gamma, IDO acts as a tolerogenic, immunosuppressive enzyme to attenuate allergic responses by the induction of the KYN-IDO pathway, resultant depletion of TRP, and elevation in KYN metabolites. Acting through the aryl hydrocarbon receptor, KYN metabolites cause T-cell anergy and apoptosis, proliferation of Treg and Th17 cells, and deviation of the Th1/Th2 response, although the outcome is highly dependent on the microenvironment. Moreover, new evidence from germ-free mice and human infants shows that gut microbiota and breast milk are key in determining the functioning of the KYN-IDO pathway. As such, we recommend further research on how this pathway may be a critical link between the microbiome and development of allergy.
Collapse
Affiliation(s)
| | | | - Anita L Kozyrskyj
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.,Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada.,Department of Public Health Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
13
|
Alwashih MA, Stimson RH, Andrew R, Walker BR, Watson DG. Acute interaction between hydrocortisone and insulin alters the plasma metabolome in humans. Sci Rep 2017; 7:11488. [PMID: 28904371 PMCID: PMC5597623 DOI: 10.1038/s41598-017-10200-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/07/2017] [Indexed: 12/30/2022] Open
Abstract
With the aim of identifying biomarkers of glucocorticoid action and their relationship with biomarkers of insulin action, metabolomic profiling was carried out in plasma samples from twenty healthy men who were administered either a low or medium dose insulin infusion (n = 10 each group). In addition, all subjects were given metyrapone (to inhibit adrenal cortisol secretion) + /− hydrocortisone (HC) in a randomised crossover design to produce low, medium and high glucocorticoid levels. The clearest effects of insulin were to reduce plasma levels of the branched chain amino acids (BCAs) leucine/isoleucine and their deaminated metabolites, and lowered free fatty acids and acylcarnitines. The highest dose of hydrocortisone increased plasma BCAs in both insulin groups but increased free fatty acids only in the high insulin group, however hydrocortisone did not affect the levels of acyl carnitines in either group. The clearest interaction between HC and insulin was that hydrocortisone produced an elevation in levels of BCAs and their metabolites which were lowered by insulin. The direct modulation of BCAs by glucocorticoids and insulin may provide the basis for improved in vivo monitoring of glucocorticoid and insulin action.
Collapse
Affiliation(s)
- Mohammad A Alwashih
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK.,General Directorate of Medical Services, Ministry of Interior, Riyadh, 13321, Saudi Arabia
| | - Roland H Stimson
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Scotland, UK
| | - Ruth Andrew
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Scotland, UK
| | - Brian R Walker
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Scotland, UK
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK.
| |
Collapse
|
14
|
Baumgartner R, Forteza MJ, Ketelhuth DFJ. The interplay between cytokines and the Kynurenine pathway in inflammation and atherosclerosis. Cytokine 2017; 122:154148. [PMID: 28899580 DOI: 10.1016/j.cyto.2017.09.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 12/20/2022]
Abstract
The kynurenine pathway (KP) is the major metabolic route of tryptophan (Trp) metabolism. Indoleamine 2,3-dioxygenase (IDO1), the enzyme responsible for the first and rate-limiting step in the pathway, as well as other enzymes in the pathway, have been shown to be highly regulated by cytokines. Hence, the KP has been implicated in several pathologic conditions, including infectious diseases, psychiatric disorders, malignancies, and autoimmune and chronic inflammatory diseases. Additionally, recent studies have linked the KP with atherosclerosis, suggesting that Trp metabolism could play an essential role in the maintenance of immune homeostasis in the vascular wall. This review summarizes experimental and clinical evidence of the interplay between cytokines and the KP and the potential role of the KP in cardiovascular diseases.
Collapse
Affiliation(s)
- Roland Baumgartner
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute and Karolinska University Hospital, SE-17176 Stockholm, Sweden.
| | - Maria J Forteza
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute and Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Daniel F J Ketelhuth
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute and Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
15
|
Yu CP, Song YL, Zhu ZM, Huang B, Xiao YQ, Luo DY. Targeting TDO in cancer immunotherapy. Med Oncol 2017; 34:73. [PMID: 28357780 DOI: 10.1007/s12032-017-0933-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/25/2017] [Indexed: 12/21/2022]
Abstract
Tryptophan-2,3-dioxygenase (TDO) is a homotetrameric heme-containing protein catalyzing the initial step in the kynurenine pathway, which oxidates the 2,3-double bond of the indole ring in L-tryptophan and catalyzes it into kynurenine (KYN). The upregulation of TDO results in a decrease in tryptophan and the accumulation of KYN and its metabolites. These metabolites can affect the proliferation of T cells. Increasing evidence demonstrates that TDO is a promising therapeutic target in the anti-tumor process. Despite its growing popularity, there are only a few reviews focusing on TDO in tumors. Hence, we herein review the biological features and regulatory mechanisms of TDO. Additionally, we focus on the role of TDO in the anti-tumor immune response in different tumors. Finally, we also provide our viewpoint regarding the future developmental directions of TDO in cancer research, especially in relation to the development and application of TDO inhibitors as novel cancer treatments.
Collapse
Affiliation(s)
- Cheng-Peng Yu
- The Second Clinic Medical College, School of Medicine, Nanchang University, Nanchang, China
| | - Yun-Lei Song
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Zheng-Ming Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bo Huang
- Department of Pathology, The Affiliated Infectious Diseases Hospital of Nanchang University, Nanchang, China
| | - Ying-Qun Xiao
- Department of Pathology, The Affiliated Infectious Diseases Hospital of Nanchang University, Nanchang, China
| | - Da-Ya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China. .,Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang, China.
| |
Collapse
|
16
|
Badawy AAB. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int J Tryptophan Res 2017; 10:1178646917691938. [PMID: 28469468 PMCID: PMC5398323 DOI: 10.1177/1178646917691938] [Citation(s) in RCA: 683] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/11/2017] [Indexed: 12/21/2022] Open
Abstract
Regulatory and functional aspects of the kynurenine (K) pathway (KP) of tryptophan (Trp) degradation are reviewed. The KP accounts for ~95% of dietary Trp degradation, of which 90% is attributed to the hepatic KP. During immune activation, the minor extrahepatic KP plays a more active role. The KP is rate-limited by its first enzyme, Trp 2,3-dioxygenase (TDO), in liver and indoleamine 2,3-dioxygenase (IDO) elsewhere. TDO is regulated by glucocorticoid induction, substrate activation and stabilization by Trp, cofactor activation by heme, and end-product inhibition by reduced nicotinamide adenine dinucleotide (phosphate). IDO is regulated by IFN-γ and other cytokines and by nitric oxide. The KP disposes of excess Trp, controls hepatic heme synthesis and Trp availability for cerebral serotonin synthesis, and produces immunoregulatory and neuroactive metabolites, the B3 “vitamin” nicotinic acid, and oxidized nicotinamide adenine dinucleotide. Various KP enzymes are undermined in disease and are targeted for therapy of conditions ranging from immunological, neurological, and neurodegenerative conditions to cancer.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
17
|
Abstract
Tryptophan-2, 3-dioxygenase (TDO) is a heme-containing protein catalyzing the first reaction in the kynurenine pathway, which incorporates oxygen into the indole moiety of tryptophan and catalyzes it into kynurenine (KYN). The activation of TDO results in the depletion of tryptophan and the accumulation of kynurenine and its metabolites. These metabolites can affect the function of neurons and inhibit the proliferation of T cells. Increasing evidence demonstrates that TDO is a potential therapeutic target in the treatment of brain diseases as well as in the antitumor and transplant fields. Despite its growing popularity, there are few reviews only focusing on TDO. Hence, we herein review TDO by providing a comprehensive overview of TDO, including its biological functions as well as the evolution, structure and catalytic process of TDO. Additionally, this review will focus on the role of TDO in the pathology of three groups of brain diseases: Schizophrenia, Alzheimer's disease (AD) and Glioma. Finally, we will also provide an opinion regarding the future developmental directions of TDO in brain diseases, especially whether TDO has a potential role in other brain diseases as well as the development and applications of TDO inhibitors as treatments.
Collapse
Affiliation(s)
- Cheng-Peng Yu
- The Second Clinic Medical College, School of Medicine, Nanchang University, Nanchang, China
| | - Ze-Zheng Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Da-Ya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China.
| |
Collapse
|
18
|
Remus JL, Dantzer R. Inflammation Models of Depression in Rodents: Relevance to Psychotropic Drug Discovery. Int J Neuropsychopharmacol 2016; 19:pyw028. [PMID: 27026361 PMCID: PMC5043641 DOI: 10.1093/ijnp/pyw028] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/23/2016] [Indexed: 01/06/2023] Open
Abstract
Inflammation and depression are closely inter-related; inflammation induces symptoms of depression and, conversely, depressed mood and stress favor an inflammatory phenotype. The mechanisms that mediate the ability of inflammation to induce symptoms of depression are intensively studied at the preclinical level. This review discusses how it has been possible to build animal models of inflammation-induced depression based on clinical data and to explore critical mechanisms downstream of inflammation. Namely, we focus on the ability of inflammation to increase the activity of the tryptophan-degrading enzyme, indoleamine 2,3 dioxygenase, which leads to the production of kynurenine and downstream neuroactive metabolites. By acting on glutamatergic neurotransmission, these neuroactive metabolites play a key role in the development of depression-like behaviors. An important outcome of the preclinical research on inflammation-induced depression is the identification of potential novel targets for antidepressant treatments, which include targeting the kynurenine system and production of downstream metabolites, altering transport of kynurenine into the brain, and modulating glutamatergic transmission.
Collapse
Affiliation(s)
- Jennifer L Remus
- Laboratory of Neuroimmunology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Robert Dantzer
- Laboratory of Neuroimmunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
19
|
Urschel KL, Escobar J, McCutcheon LJ, Geor RJ. Insulin infusion stimulates whole-body protein synthesis and activates the upstream and downstream effectors of mechanistic target of rapamycin signaling in the gluteus medius muscle of mature horses. Domest Anim Endocrinol 2014; 47:92-100. [PMID: 24315755 DOI: 10.1016/j.domaniend.2013.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/16/2013] [Accepted: 11/05/2013] [Indexed: 01/10/2023]
Abstract
Little is known about the role insulin plays in regulating whole-body and muscle protein metabolism in horses. The objective of this study was to determine the effects of graded rates of insulin infusion on plasma amino acid concentrations and the activation of factors in the mechanistic target of rapamycin signaling pathway in the skeletal muscle of horses. Isoglycemic, hyperinsulinemic clamp procedures were conducted in 8 mature, thoroughbred mares receiving 4 rates of insulin infusion: 0 mU · kg(-1) · min(-1) (CON), 1.2 mU · kg(-1) · min(-1) (LOWINS), 3 mU · kg(-1) · min(-1) (MEDINS), and 6 mU · kg(-1) · min(-1) (HIGHINS). Blood samples were taken throughout the clamp procedures to measure plasma amino acid concentrations, and a biopsy from the gluteus medius muscle was collected at the end of the 2-h clamp to measure phosphorylation of protein kinase B, eukaryotic initiation factor 4E-binding protein 1, and riboprotein S6. Plasma concentrations of most of the essential amino acids decreased (P < 0.05) after 120 min of insulin infusion in horses receiving the LOWINS, MEDINS, and HIGHINS treatments, with the largest decreases occurring in horses receiving the MEDINS and HIGHINS treatments. Phosphorylation of protein kinase B, 4E-binding protein 1, and riboprotein S6 increased with all 3 rates of insulin infusion (P > 0.05), relative to CON, with maximum phosphorylation achieved with MEDINS and HIGHINS treatments. These results indicate that insulin stimulates whole-body and muscle protein synthesis in mature horses.
Collapse
Affiliation(s)
- K L Urschel
- Middleburg Agricultural Research and Extension Center, Middleburg, VA 20117, USA; Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - J Escobar
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - L J McCutcheon
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA; Marion duPont Scott Equine Medical Center, Virginia Tech, Leesburg, VA 20177, USA
| | - R J Geor
- Middleburg Agricultural Research and Extension Center, Middleburg, VA 20117, USA; Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
20
|
da Silva VR, Rios-Avila L, Lamers Y, Ralat MA, Midttun Ø, Quinlivan EP, Garrett TJ, Coats B, Shankar MN, Percival SS, Chi YY, Muller KE, Ueland PM, Stacpoole PW, Gregory JF. Metabolite profile analysis reveals functional effects of 28-day vitamin B-6 restriction on one-carbon metabolism and tryptophan catabolic pathways in healthy men and women. J Nutr 2013; 143:1719-27. [PMID: 23966327 PMCID: PMC3796343 DOI: 10.3945/jn.113.180588] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/19/2013] [Accepted: 08/02/2013] [Indexed: 12/16/2022] Open
Abstract
Suboptimal vitamin B-6 status, as reflected by low plasma pyridoxal 5'-phosphate (PLP) concentration, is associated with increased risk of vascular disease. PLP plays many roles, including in one-carbon metabolism for the acquisition and transfer of carbon units and in the transsulfuration pathway. PLP also serves as a coenzyme in the catabolism of tryptophan. We hypothesize that the pattern of these metabolites can provide information reflecting the functional impact of marginal vitamin B-6 deficiency. We report here the concentration of major constituents of one-carbon metabolic processes and the tryptophan catabolic pathway in plasma from 23 healthy men and women before and after a 28-d controlled dietary vitamin B-6 restriction (<0.35 mg/d). liquid chromatography-tandem mass spectrometry analysis of the compounds relevant to one-carbon metabolism showed that vitamin B-6 restriction yielded increased cystathionine (53% pre- and 76% postprandial; P < 0.0001) and serine (12% preprandial; P < 0.05), and lower creatine (40% pre- and postprandial; P < 0.0001), creatinine (9% postprandial; P < 0.05), and dimethylglycine (16% postprandial; P < 0.05) relative to the vitamin B-6-adequate state. In the tryptophan pathway, vitamin B-6 restriction yielded lower kynurenic acid (22% pre- and 20% postprandial; P < 0.01) and higher 3-hydroxykynurenine (39% pre- and 34% postprandial; P < 0.01). Multivariate ANOVA analysis showed a significant global effect of vitamin B-6 restriction and multilevel partial least squares-discriminant analysis supported this conclusion. Thus, plasma concentrations of creatine, cystathionine, kynurenic acid, and 3-hydroxykynurenine jointly reveal effects of vitamin B-6 restriction on the profiles of one-carbon and tryptophan metabolites and serve as biomarkers of functional effects of marginal vitamin B-6 deficiency.
Collapse
Affiliation(s)
- Vanessa R. da Silva
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences
| | - Luisa Rios-Avila
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences
| | - Yvonne Lamers
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences
| | - Maria A. Ralat
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences
| | | | - Eoin P. Quinlivan
- Biomedical Mass Spectrometry Laboratory, Clinical and Translational Science Institute
| | - Timothy J. Garrett
- Division of Endocrinology and Metabolism, Department of Medicine, College of Medicine
| | - Bonnie Coats
- Division of Endocrinology and Metabolism, Department of Medicine, College of Medicine
| | | | - Susan S. Percival
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences
| | | | | | - Per Magne Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Peter W. Stacpoole
- Division of Endocrinology and Metabolism, Department of Medicine, College of Medicine
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL
| | - Jesse F. Gregory
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences
| |
Collapse
|
21
|
Rios-Avila L, Nijhout HF, Reed MC, Sitren HS, Gregory JF. A mathematical model of tryptophan metabolism via the kynurenine pathway provides insights into the effects of vitamin B-6 deficiency, tryptophan loading, and induction of tryptophan 2,3-dioxygenase on tryptophan metabolites. J Nutr 2013; 143:1509-19. [PMID: 23902960 PMCID: PMC3743279 DOI: 10.3945/jn.113.174599] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/02/2013] [Accepted: 06/26/2013] [Indexed: 01/17/2023] Open
Abstract
Vitamin B-6 deficiency is associated with impaired tryptophan metabolism because of the coenzyme role of pyridoxal 5'-phosphate (PLP) for kynureninase and kynurenine aminotransferase. To investigate the underlying mechanism, we developed a mathematical model of tryptophan metabolism via the kynurenine pathway. The model includes mammalian data on enzyme kinetics and tryptophan transport from the intestinal lumen to liver, muscle, and brain. Regulatory mechanisms and inhibition of relevant enzymes were included. We simulated the effects of graded reduction in cellular PLP concentration, tryptophan loads and induction of tryptophan 2,3-dioxygenase (TDO) on metabolite profiles and urinary excretion. The model predictions matched experimental data and provided clarification of the response of metabolites in various extents of vitamin B-6 deficiency. We found that moderate deficiency yielded increased 3-hydroxykynurenine and a decrease in kynurenic acid and anthranilic acid. More severe deficiency also yielded an increase in kynurenine and xanthurenic acid and more pronounced effects on the other metabolites. Tryptophan load simulations with and without vitamin B-6 deficiency showed altered metabolite concentrations consistent with published data. Induction of TDO caused an increase in all metabolites, and TDO induction together with a simulated vitamin B-6 deficiency, as has been reported in oral contraceptive users, yielded increases in kynurenine, 3-hydroxykynurenine, and xanthurenic acid and decreases in kynurenic acid and anthranilic acid. These results show that the model successfully simulated tryptophan metabolism via the kynurenine pathway and can be used to complement experimental investigations.
Collapse
Affiliation(s)
- Luisa Rios-Avila
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL; and
| | | | | | - Harry S. Sitren
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL; and
| | - Jesse F. Gregory
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL; and
| |
Collapse
|
22
|
Funakoshi H, Kanai M, Nakamura T. Modulation of Tryptophan Metabolism, Promotion of Neurogenesis and Alteration of Anxiety-Related Behavior in Tryptophan 2,3-Dioxygenase-Deficient Mice. Int J Tryptophan Res 2011. [PMCID: PMC3195223 DOI: 10.4137/ijtr.s5783] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although tryptophan (Trp) and its metabolites, such as serotonin (5-HT) and kynurenines (KYNs), are strong modulators of emotional behavior, the metabolic pathway(s) responsible for this physiological modulation is not fully understood. Two of the initial rate-limiting enzymes of the kynurenine pathway for Trp metabolism are known: tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO). Based on our comparison of tdo-deficient (Tdo−/−) mice with their wild-type littermates, we report that TDO is the physiological modulator of systemic Trp, brain Trp and serotonin (5-HT), and, therefore, anxiety-related behavior. Tdo−/− mice showed increased plasma concentrations of Trp (about 10-fold) and its metabolites 5-hydroxyindoleacetic acid (5-HIAA) and kynurenine, as well as increased levels of Trp (about 20-fold), 5-HT and 5-HIAA in the hippocampus and midbrain. The Tdo−/− mice also showed anxiolytic modulation in the elevated plus maze and open field tests, and increased neurogenesis during adulthood, as evidenced by double staining with 5-bromo-2′-deoxyuridine (BrdU) and neural progenitor/neuronal markers. TDO also plays a role in the maintenance of brain morphology in adult animals by regulating neurogenesis in the hippocampus and subventricular zone. Collectively, our results in Tdo−/− mice indicate a direct molecular link between Trp metabolism and mental status in mice. Tdo−/− mice will likely prove useful both in identifying the physiological role of Trp metabolism in normal brain function and in psychiatric disorders and in developing new therapeutic interventions for mental disorders. In addition, the potential role(s) and molecular mechanisms of TDO in metabolic mental disease(s) and in emotional behavior are discussed.
Collapse
Affiliation(s)
- Hiroshi Funakoshi
- Division of Molecular Regenerative Medicine, Department of Biochemistry and Molecular Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Microbiology and Immunology, Osaka 565-0871, Japan
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Midorigaoka, Asahikawa 078-8510, Japan
| | - Masaaki Kanai
- Division of Molecular Regenerative Medicine, Department of Biochemistry and Molecular Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Microbiology and Immunology, Osaka 565-0871, Japan
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Midorigaoka, Asahikawa 078-8510, Japan
| | - Toshikazu Nakamura
- Kringle Pharma Joint Research Division for Regenerative Drug Discovery, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Kanai M, Funakoshi H, Nakamura T. Implication of Tryptophan 2,3-Dioxygenase and its Novel Variants in the Hippocampus and Cerebellum during the Developing and Adult Brain. Int J Tryptophan Res 2010. [DOI: 10.4137/ijtr.s4372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Tryptophan 2,3-dioxygenase (TDO) is a first and rate-limiting enzyme for the kynurenine pathway of tryptophan metabolism. Using Tdo−/− mice, we have recently shown that TDO plays a pivotal role in systemic tryptophan metabolism and brain serotonin synthesis as well as emotional status and adult neurogenesis. However, the expression of TDO in the brain has not yet been well characterized, in contrast to its predominant expression in the liver. To further examine the possible role of local TDO in the brain, we quantified the levels of tdo mRNA in various nervous tissues, using Northern blot and quantitative real-time RT-PCR. Higher levels of tdo mRNA expression were detected in the cerebellum and hippocampus. We also identified two novel variants of the tdo gene, termed tdo variant1 and variant2, in the brain. Similar to the known TDO form (TDO full-form), tetramer formation and enzymatic activity were obtained when these variant forms were expressed in vitro. While quantitative real-time RT-PCR revealed that the tissue distribution of these variants was similar to that of tdo full-form, the expression patterns of these variants during early postnatal development in the hippocampus and cerebellum differed. Our findings indicate that in addition to hepatic TDO, TDO and its variants in the brain might function in the developing and adult nervous system. Given the previously reported associations of tdo gene polymorphisms in the patients with autism and Tourette syndrome, the expression of TDO in the brain suggests the possible influence of TDO on psychiatric status. Potential functions of TDOs in the cerebellum, hippocampus and cerebral cortex under physiological and pathological conditions are discussed.
Collapse
Affiliation(s)
- Masaaki Kanai
- Division of Molecular Regenerative Medicine, Department of Biochemistry and Molecular Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Hiroshi Funakoshi
- Division of Molecular Regenerative Medicine, Department of Biochemistry and Molecular Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Toshikazu Nakamura
- Kringle Pharma Joint Research Division for Regenerative Drug Discovery, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
24
|
Nakamura T, Mizuno S. The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:588-610. [PMID: 20551596 PMCID: PMC3081175 DOI: 10.2183/pjab.86.588] [Citation(s) in RCA: 355] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
It has been more than 25 years since HGF was discovered as a mitogen of hepatocytes. HGF is produced by stromal cells, and stimulates epithelial cell proliferation, motility, morphogenesis and angiogenesis in various organs via tyrosine phosphorylation of its receptor, c-Met. In fetal stages, HGF-neutralization, or c-Met gene destruction, leads to hypoplasia of many organs, indicating that HGF signals are essential for organ development. Endogenous HGF is required for self-repair of injured livers, kidneys, lungs and so on. In addition, HGF exerts protective effects on epithelial and non-epithelial organs (including the heart and brain) via anti-apoptotic and anti-inflammatory signals. During organ diseases, plasma HGF levels significantly increased, while anti-HGF antibody infusion accelerated tissue destruction in rodents. Thus, endogenous HGF is required for minimization of diseases, while insufficient production of HGF leads to organ failure. This is the reason why HGF supplementation produces therapeutic outcomes under pathological conditions. Moreover, emerging studies delineated key roles of HGF during tumor metastasis, while HGF-antagonism leads to anti-tumor outcomes. Taken together, HGF-based molecules, including HGF-variants, HGF-fragments and c-Met-binders are available as regenerative or anti-tumor drugs. Molecular analysis of the HGF-c-Met system could provide bridges between basic biology and clinical medicine.
Collapse
Affiliation(s)
- Toshikazu Nakamura
- Kringle Pharma Joint Research Division for Regenerative Drug Discovery, Center for Advanced Science and Innovation, Osaka University, Osaka, Japan.
| | | |
Collapse
|
25
|
Abstract
Acute and chronic alcohol (ethanol) intake and subsequent withdrawal exert major effects on tryptophan (Trp) metabolism and disposition in human subjects and experimental animals. In rats, activity of the rate-limiting enzyme of Trp degradation, liver Trp pyrrolase (TP), is enhanced by acute, but inhibited after chronic, ethanol administration, then enhanced during withdrawal. These changes lead to alterations in brain serotonin synthesis and turnover mediated by corresponding changes in circulating Trp availability to the brain. A low brain-serotonin concentration characterizes the alcohol-preferring C57BL/6J mouse strain and many alcohol-preferring rat lines. In this mouse strain, liver TP enhancement causes the serotonin decrease. In man, acute ethanol intake inhibits brain serotonin synthesis by activating liver TP. This may explain alcohol-induced depression, aggression and loss of control in susceptible individuals. Chronic alcohol intake in dependent subjects may be associated with liver TP inhibition and a consequent enhancement of brain serotonin synthesis, whereas subsequent withdrawal may induce the opposite effects. The excitotoxic Trp metabolite quinolinate may play a role in the behavioural disturbances of the alcohol-withdrawal syndrome. Some abstinent alcoholics may have a central serotonin deficiency, which they correct by liver TP inhibition through drinking. Further studies of the Trp and serotonin metabolic status in long-term abstinence in general and in relation to personality characteristics, alcoholism typology and genetic factors in particular may yield important information which should facilitate the development of more effective screening, and preventative and therapeutic strategies in this area of mental health.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- Cardiff and Vale NHS Trust, Biomedical Research Laboratory, Whitchurch Hospital, Cardiff CF14 7XB, UK.
| |
Collapse
|
26
|
Schmidt SK, Müller A, Heseler K, Woite C, Spekker K, MacKenzie CR, Däubener W. Antimicrobial and immunoregulatory properties of human tryptophan 2,3-dioxygenase. Eur J Immunol 2009; 39:2755-64. [PMID: 19637229 DOI: 10.1002/eji.200939535] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In mammals, the regulation of local tryptophan concentrations by the IFN-gamma-i inducible enzyme IDO is a prominent antimicrobial and immunoregulatory effector mechanism. Here, we show for the first time that another tryptophan-degrading enzyme, the liver-specific tryptophan 2,3-dioxygenase (TDO), is also capable of mediating antimicrobial and immunoregulatory effects. Using a tetracycline inducible eukaryotic system, we were able to express recombinant TDO protein, which exhibits functional properties of native TDO. We found that HeLa cells expressing recombinant TDO were capable of inhibiting the growth of bacteria (Staphylococcus aureus), parasites (Toxoplasma gondii) and viruses (herpes simplex virus). These TDO-mediated antimicrobial effects could be blocked by the addition of tryptophan. In addition, we observed that, similar to IDO-positive cells, TDO-positive cells were capable of inhibiting anti CD3-driven T-cell proliferation and IFN-gamma production. Furthermore, TDO-positive cells also restricted alloantigen-induced T-cell activation. Here, we describe for the first time that TDO mediates antimicrobial and immunoregulatory effects and suggest that TDO-dependent inhibition of T-cell growth might be involved in the immunotolerance observed in vivo during allogeneic liver transplantation.
Collapse
Affiliation(s)
- Silvia K Schmidt
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Kanai M, Funakoshi H, Takahashi H, Hayakawa T, Mizuno S, Matsumoto K, Nakamura T. Tryptophan 2,3-dioxygenase is a key modulator of physiological neurogenesis and anxiety-related behavior in mice. Mol Brain 2009; 2:8. [PMID: 19323847 PMCID: PMC2673217 DOI: 10.1186/1756-6606-2-8] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 03/27/2009] [Indexed: 04/19/2023] Open
Abstract
Although nutrients, including amino acids and their metabolites such as serotonin (5-HT), are strong modulators of anxiety-related behavior, the metabolic pathway(s) responsible for this physiological modulation is not fully understood. Regarding tryptophan (Trp), the initial rate-limiting enzymes for the kynurenine pathway of tryptophan metabolism are tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO). Here, we generated mice deficient for tdo (Tdo-/-). Compared with wild-type littermates, Tdo-/- mice showed increased plasma levels of Trp and its metabolites 5-hydroxyindoleacetic acid (5-HIAA) and kynurenine, as well as increased levels of Trp, 5-HT and 5-HIAA in the hippocampus and midbrain. These mice also showed anxiolytic modulation in the elevated plus maze and open field tests, and increased adult neurogenesis, as evidenced by double staining of BrdU and neural progenitor/neuronal markers. These findings demonstrate a direct molecular link between Trp metabolism and neurogenesis and anxiety-related behavior under physiological conditions.
Collapse
Affiliation(s)
- Masaaki Kanai
- Division of Molecular Regenerative Medicine, Department of Biochemistry and Molecular Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Kanai M, Nakamura T, Funakoshi H. Identification and characterization of novel variants of the tryptophan 2,3-dioxygenase gene: differential regulation in the mouse nervous system during development. Neurosci Res 2009; 64:111-7. [PMID: 19428689 DOI: 10.1016/j.neures.2009.02.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 02/01/2009] [Accepted: 02/02/2009] [Indexed: 01/07/2023]
Abstract
Tryptophan 2,3-dioxygenase (TDO), an initial and rate-limiting enzyme for the kynurenine pathway of tryptophan (Trp) metabolism, is thought to play an important role in systemic Trp metabolism as well as in emotional and psychiatric status. In contrast to its predominant expression in the liver, expression of TDO in the brain is poorly understood. Here, we show that tdo mRNA is expressed in various nervous tissues, including the hippocampus, cerebellum, striatum and brainstem. During development, tdo mRNA was differentially regulated in brain tissues. Further, we identified two novel variants of the tdo gene, termed tdo variant1 and variant2. Similar tetramer formation and enzymatic activity were obtained when these forms were expressed in wheat germ and COS-7 cells, respectively. Quantitative real-time RT-PCR revealed that tdo variants were expressed in various nervous tissues, with high expression in the cerebellum and hippocampus, followed by the midbrain. tdo variant2 was the only variant expressed in the cerebellum from postnatal day 4 (P4) to P7, suggesting a unique role for this variant during early postnatal development. Our findings indicate that tdo and its novel variants may play an important role in not only the liver but also in local areas in developing and adult brain.
Collapse
Affiliation(s)
- Masaaki Kanai
- Division of Molecular Regenerative Medicine, Department of Biochemistry and Molecular Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | | | | |
Collapse
|
29
|
GATA4 inhibits expression of the tryptophan oxygenase gene by binding to the TATA box in fetal hepatocytes. Cytotechnology 2008; 57:123-8. [PMID: 19003156 DOI: 10.1007/s10616-007-9120-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 12/22/2007] [Indexed: 10/22/2022] Open
Abstract
The glucocorticoid receptor regulates liver-specific expression of the tryptophan oxygenase gene through glucocorticoid responsive elements located -0.45 and -1.2 kb from the transcription start site. However, the hormone-mediated induction is restricted to adult hepatocytes, and fetal hepatocytes are unable to express the gene even in the presence of the receptor and glucocorticoid hormone. The difference in sensitivity to the hormone between adult and fetal hepatocytes has not been well understood. In this study, we analyzed the structure of the tryptophan oxygenase gene's promoter. The promoter has two TATA boxes, and transcription starts from the downstream TATA box. We found that a transcription factor GATA4 bound to the downstream TATA box and may inhibit the binding of TATA-binding protein, resulting in transcriptional repression even in the presence of glucocorticoid in fetal hepatocytes.
Collapse
|
30
|
Ribarac-Stepić N, Vulović M, Korićanac G, Isenović E. Basal and glucocorticoid induced changes of hepatic glucocorticoid receptor during aging: relation to activities of tyrosine aminotransferase and tryptophan oxygenase. Biogerontology 2005; 6:113-31. [PMID: 16034679 DOI: 10.1007/s10522-005-3498-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2005] [Indexed: 11/27/2022]
Abstract
The characteristics of glucocorticoid receptors, their sensitivity to glucocorticoid as well as the basal and glucocorticoid induced thyrosine aminotranferase (TAT) and tryptophan oxygenase (TO) activities were studied in rat liver during aging. The concentration (N) and dissociation constant (K(d)) of glucocorticoid receptor (GR) significantly change during the aging both in untreated and dexamethasone treated animals. The level of receptors was lower in dexamethasone treated rats of all analyzed aged groups compared to untreated animals. In comparison to untreated groups, there was no correlation between the changes of N and K(d) during the lifespan. According to immunochemical analysis, the decline of receptor protein content occurs during lifespan. Dexamethasone treatment reduced the level of receptor protein compare to respective age group of untreated rats. The glucocorticoid-receptor (G-R) complexes from both untreated and treated animals underwent thermal activation, although the extent of activation was more pronounced in the case of untreated groups compared to treated animals. The magnitude of heat activation of receptor complexes was more pronounced in the liver of the youngest untreated rats compared to elderly ones, while the receptor activation between treated groups of studied ages has shown less significant differences. Besides, basal as well as induced TAT and TO activities after dexamethasone injection also showed age-related alterations. The observed alterations in GR might play a role in the changes of the cell responses to glucocorticoid during the age. This presumption is supported by detected changes in basal and dexamethasone induced TAT and TO activities during aging.
Collapse
Affiliation(s)
- Nevena Ribarac-Stepić
- Department for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, Serbia and Montenegro.
| | | | | | | |
Collapse
|
31
|
Ohashi H, Saito K, Fujii H, Wada H, Furuta N, Takemura M, Maeda S, Seishima M. Changes in quinolinic acid production and its related enzymes following D-galactosamine and lipopolysaccharide-induced hepatic injury. Arch Biochem Biophys 2004; 428:154-9. [PMID: 15246871 DOI: 10.1016/j.abb.2004.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 05/24/2004] [Indexed: 11/23/2022]
Abstract
Increases in quinolinic acid (QUIN), a neurotoxic L-tryptophan metabolite, have been observed in human serum and cerebrospinal fluid and in animal models of severe hepatic injury. The aim of this study was to evaluate the changes in QUIN accumulation and its related enzymes after acute hepatic injury induced by D-galactosamine and endotoxin. Gerbils were given an intraperitoneal injection of pyrogen-free saline alone as control, lipopolysaccharide (LPS) alone (150 ng/kg), D-galactosamine alone (500 mg/kg) or a combination of D-galactosamine with LPS. Concentrations of QUIN, its related metabolites, and related enzyme activities were determined. D-Galactosamine treatment significantly decreased activities of hepatic aminocarboxymuconate-semialdehyde decarboxylase (ACMSDase) resulting in increased QUIN concentrations in serum and tissues. The magnitude of QUIN responses was markedly increased by endotoxin due to the increased availability of L-kynurenine, a rate-limiting substrate for QUIN synthesis. Further, infiltration of monocytes/macrophages, which is a possible major source of QUIN production in the liver, was shown by immunohistochemistry after hepatic injury induced by D-galactosamine and endotoxin. Increased serum QUIN concentrations are probably due to the increased substrate availability and the decreased activity of aminocarboxymuconate-semialdehyde decarboxylase in the liver, accompanying the increased monocyte/macrophage infiltration into the liver after hepatic injury.
Collapse
Affiliation(s)
- Hazuki Ohashi
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Saito K, Fujigaki S, Heyes MP, Shibata K, Takemura M, Fujii H, Wada H, Noma A, Seishima M. Mechanism of increases in L-kynurenine and quinolinic acid in renal insufficiency. Am J Physiol Renal Physiol 2000; 279:F565-72. [PMID: 10966936 DOI: 10.1152/ajprenal.2000.279.3.f565] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Marked increases in metabolites of the L-tryptophan-kynurenine pathway, L-kynurenine and quinolinic acid (Quin), were observed in serum and cerebrospinal fluid (CSF) of both the rat and human with renal insufficiency. The mechanisms responsible for their accumulation after renal insufficiency were investigated. In patients with chronic renal insufficiency, elevated levels of serum L-kynurenine and Quin were reduced by hemodialysis. In renal-insufficient rats, Quin and L-kynurenine levels in serum, brain, and CSF were also increased parallel to the severity of renal insufficiency. Urinary excretion of Quin (3.5-fold) and L-kynurenine (2.8-fold) was also increased. Liver L-tryptophan 2,3-dioxygenase activity (TDO), a rate-limiting enzyme of the kynurenine pathway, was increased in proportion to blood urea nitrogen and creatinine levels. Kynurenine 3-hydroxylase and quinolinic acid phosphoribosyltransferase were unchanged, but the activities of kynureninase, 3-hydroxyanthranilate dioxygenase, and aminocarboxymuconate-semialdehyde decarboxylase (ACMSDase) were significantly decreased. Systemic administrations of pyrazinamide (ACMSDase inhibitor) increased serum Quin concentrations in control rats, demonstrating that changes in body ACMSDase activities in response to renal insufficiency are important factors for the determination of serum Quin concentrations. We hypothesize the following ideas: that increased serum L-kynurenine concentrations are mainly due to the increased TDO and decreased kynureninase activities in the liver and increased serum Quin concentrations are due to the decreased ACMSDase activities in the body after renal insufficiency. The accumulation of CSF L-kynurenine is caused by the entry of increased serum L-kynurenine, and the accumulation of CSF Quin is secondary to Quin from plasma and/or Quin precursor into the brain.
Collapse
Affiliation(s)
- K Saito
- Department of Laboratory Medicine, Gifu University School of Medicine, Gifu 500-8705, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Espey MG, Namboodiri MA. Selective metabolism of kynurenine in the spleen in the absence of indoleamine 2,3-dioxygenase induction. Immunol Lett 2000; 71:67-72. [PMID: 10709788 DOI: 10.1016/s0165-2478(99)00179-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The kynurenine pathway of L-tryptophan degradation is differentially regulated dependent on the level of immune system activation. During inflammation and disease, activity of the hepatocellular enzyme tryptophan 2,3-dioxygenase (TDO) decreases and a second enzyme, indoleamine 2,3-dioxygenase (IDO), is induced in extrahepatic sites. Substantial formation of a metabolise downstream of this step, quinolinic acid (Quin), subsequently occurs only in select regions of the lymphoid tissues, such as spleen, in a temporally restricted manner. The goal of this study was to determine the localization of Quin in unstimulated mice under conditions where rate-limiting control of the pathway by both TDO and IDO was by-passed. Supplementation of drinking water with L-kynurenine, a pathway intermediate that lies between tryptophan and Quin, resulted in a dose-dependent increase in Quin immunoreactivity in the follicles and discontinuous regions of the marginal zones of the spleen. Strongly immunoreactive cells in the periarteriole lymphoid sheaths adopted a highly reactive morphology despite the lack of immunostimulation and IDO induction. In contrast, a patchy to diffuse pallor of staining was observed in the liver parenchyma with 1 and 10 mM L-kynurenine ingestion, respectively. These data show that selective tryptophan metabolism can occur in discrete subcompartments of the lymphoid tissues beyond the level of IDO. In vivo manipulation of Quin synthesis in the absence of IDO induction may serve as a model for studying regulation and function of the kynurenine pathway activation in the immune system.
Collapse
Affiliation(s)
- M G Espey
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
34
|
Iwamoto Y, Lee IS, Tsubaki M, Kido R. Tryptophan 2,3-dioxygenase in Saccharomyces cerevisiae. Can J Microbiol 1995; 41:19-26. [PMID: 7728653 DOI: 10.1139/m95-003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The tryptophan pyrrole-ring cleavage enzyme (TPCE) was detected in the yeast Saccharomyces cerevisiae. TPCE activity existed constitutively and was markedly induced by culturing the cells in a medium containing 0.1% (w/v) L-tryptophan. We purified partially the enzyme from the L-tryptophan-induced cells by phospho-cellulose column chromatography. The partially purified enzyme was stimulated solely by L-ascorbic acid, a nonspecific reductant, suggesting that the yeast TPCE is not indoleamine 2,3-dioxygenase, but rather tryptophan 2,3-dioxygenase. The enzyme metabolized L-tryptophan preferentially, and D-tryptophan slightly. KCN and NaN3, exogenous ligands of heme, inhibited the enzyme activity drastically, indicating that yeast tryptophan 2,3-dioxygenase contains heme(s) in its active site. The optimal pH of the enzyme was 6.5. Upon two-dimensional polyacrylamide gel electrophoresis, a protein staining spot was identified that was induced by L-tryptophan and whose intensity changed in correlation with the tryptophan 2,3-dioxygenase activity after phospho-cellulose column chromatography. This protein, exhibiting a molecular weight of approximately 38,000 and an isoelectric point of approximately pH 8.0, may be identified as a subunit of yeast tryptophan 2,3-dioxygenase.
Collapse
Affiliation(s)
- Y Iwamoto
- Department of Biochemistry, Wakayama Medical College, Japan
| | | | | | | |
Collapse
|
35
|
Haber R, Bessette D, Hulihan-Giblin B, Durcan MJ, Goldman D. Identification of tryptophan 2,3-dioxygenase RNA in rodent brain. J Neurochem 1993; 60:1159-62. [PMID: 7679723 DOI: 10.1111/j.1471-4159.1993.tb03269.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The gene for tryptophan 2,3-dioxygenase (TDO) heretofore was believed to be expressed only in liver. The data presented here demonstrate that RNA encoding TDO is present in rodent brain. Oligonucleotide primers based on the rat liver TDO cDNA sequence were synthesized and used to amplify RNA derived from mouse whole brain and liver and rat brain regions by the RNA-PCR. Reaction products were purified and subjected to DNA sequencing. Identical sequences were obtained when mouse whole brain and liver RNAs were amplified, and these sequences were shown to be 96% identical to the published rat liver tryptophan TDO cDNA sequence. In addition, TDO sequences were found in RNA derived from rat brainstem, cerebellum, cortex, hypothalamus, and the remainder of the brain.
Collapse
Affiliation(s)
- R Haber
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
36
|
Nakagawa K, Miyazaki M, Okui K, Kato N, Moriyama Y, Fujimura S. N1-methylnicotinamide level in the blood after nicotinamide loading as further evidence for malignant tumor burden. Jpn J Cancer Res 1991; 82:1277-83. [PMID: 1836457 PMCID: PMC5918329 DOI: 10.1111/j.1349-7006.1991.tb01793.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nicotinamide methyltransferase (Nmd CH3transferase) activity increased in the liver of mice after i.p. transplantation of Ehrlich ascites tumor (ascitic form), but not in the liver of mice with acute inflammation induced by the i.p. administration of D-galactosamine, and it rather showed a decrease together with necrosis after carbon tetrachloride administration. When Nmd CH3transferase activity of rat hepatocytes in primary culture was investigated with the addition of dexamethasone, epidermal growth factor, transforming growth factor-beta, tumor necrosis factor-alpha and N1-methylnicotinamide (1-CH3Nmd), changes in activity were not correlated with DNA synthesis, suggesting that the increase of this enzyme activity in the tumor host liver was not directly related to liver cell proliferation. Thus, in order to make use of the increase of this enzyme activity as a tumor burden marker, a procedure for its estimation by measuring the blood level of 1-CH3Nmd, a metabolite of Nmd produced by Nmd CH3transferase, was established. The 1-CH3Nmd level in the blood of mice bearing Ehrlich ascites tumor 4 h after s.c. loading of Nmd (500 mg/kg body weight) was closely correlated with this enzyme activity in the liver (r = 0.835, P less than 0.00001) from the early to the terminal stage of tumor development. Furthermore, similar correlations were seen in the animal groups bearing various other tumors, such as s.c. implanted Ehrlich ascites tumor (solid form) and i.p. implanted sarcoma S-180, hepatoma MH-134, Yoshida ascites sarcoma and leukemia L-1210, but not solid tumors such as Lewis lung carcinoma and melanoma B-16, although almost all of the animals bearing these tumors showed a higher enzyme activity than their control normal animals.
Collapse
Affiliation(s)
- K Nakagawa
- Department of Surgery, Chiba University School of Medicine
| | | | | | | | | | | |
Collapse
|
37
|
Francavilla A, Starzl TE, Porter K, Foglieni CS, Michalopoulos GK, Carrieri G, Trejo J, Azzarone A, Barone M, Zeng QH. Screening for candidate hepatic growth factors by selective portal infusion after canine Eck's fistula. Hepatology 1991. [PMID: 1916668 DOI: 10.1002/hep.1840140415] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Completely diverting portacaval shunt (Eck's fistula) in dogs causes hepatocyte atrophy, disruption of hepatocyte organelles, fatty infiltration and low-grade hyperplasia. The effect of hepatic growth regulatory substances on these changes was assessed by constantly infusing test substances for four postoperative days after Eck's fistula into the detached left protal vein above the shunt. The directly infused left lobes were compared histopathologically with the untreated right lobes. In what has been called an hepatotrophic effect, stimulatory substances prevented the atrophy and increased hepatocyte mitoses. Of the hormones tested, only insulin was strongly hepatotrophic; T3 had a minor effect, and glucagon, prolactin, angiotensin II, vasopressin, norepinephrine and estradiol were inert. Insulin-like growth factor, hepatic stimulatory substance, transforming growth factor-alpha and hepatocyte growth factor (also known as hematopoietin A) were powerfully hepatotrophic, but epidermal growth factor had a barely discernible effect. Transforming growth factor-beta was inhibitory, but tamoxifen, interleukin-1 and interleukin-2 had no effect. The hepatotrophic action of insulin was not altered when the insulin infusate was mixed with transforming growth factor-beta or tamoxifen. These experiments show the importance of in vivo in addition to in vitro testing of putative growth control factors. They illustrate how Eck's fistula model can be used to screen for such substances and possibly to help delineate their mechanisms of action.
Collapse
Affiliation(s)
- A Francavilla
- Department of Surgery, University Health Center of Pittsburgh, Pennsylvania 15213
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Broqua P, Baudrie V, Laude D, Guezennec Y, Chaouloff F. In vivo evidence that insulin does not inhibit hepatic tryptophan pyrrolase activity in rats. Biochem Pharmacol 1990; 40:759-63. [PMID: 2201300 DOI: 10.1016/0006-2952(90)90312-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Previous reports have indicated that insulin administration triggers an early increase in plasma tryptophan (TRP) levels in fasted rats. Then, the present study was undertaken to investigate the putative role of liver tryptophan pyrrolase (TPO) in this short-term effect of insulin. In 24 hr fasted rats, doses of insulin that triggered an increase in plasma TRP levels (i.e., 2-3 I.U./kg, 1 hr) did not alter either holoenzyme or total enzyme activity. In another series of experiments, the administration of insulin (2 I.U./kg) to 24 hr fasted rats promoted biphasic time effects on plasma TRP levels and liver TPO activity. Thus, insulin initially triggered a rise in plasma TRP (without any change in liver TPO activity) and then increased liver TPO activity whilst plasma TRP returned toward control levels. In addition, hypercorticosteronemia was evidenced throughout the first phasis. Lastly, the influence of insulin administration (2 I.U./kg) on fasting-induced TPO induction was analysed. Whereas fasting increased liver TPO activity in a time-dependent manner, insulin administration (2 I.U./kg, 30 min) did not modify either plasma TRP or liver TPO activity. The data reported herein bring evidence that the effect of insulin administration on circulating TRP is not mediated by an inhibition of hepatic TPO.
Collapse
Affiliation(s)
- P Broqua
- Laboratoire de Pharmacologie, INSERM U7, CHU Necker - E.M., Paris, France
| | | | | | | | | |
Collapse
|
39
|
Maezono K, Tashiro K, Nakamura T. Deduced primary structure of rat tryptophan-2,3-dioxygenase. Biochem Biophys Res Commun 1990; 170:176-81. [PMID: 2372286 DOI: 10.1016/0006-291x(90)91256-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The complete amino acid sequence of the tryptophan 2,3-dioxygenase (TO) of rat liver was determined from the nucleotide sequence of a full length TO cDNA isolated from a rat liver cDNA library and determined its primary structure. TO was encoded in a mRNA of about 1.7 kb containing an open reading frame of 1218 bp. According to the deduced amino acid sequence, the monomeric polypeptide of TO consisted of 406 amino acid residues with a calculated molecular weight of 47,796 daltons. It has twelve histidine residues around its hydrophobic region, which has homology with some heme proteins and oxygenase, suggesting that this hydrophobic region might to be the core of TO for the activity.
Collapse
Affiliation(s)
- K Maezono
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
40
|
Cake MH, Ho KK, Shelly L, Milward E, Yeoh GC. Insulin antagonism of dexamethasone induction of tyrosine aminotransferase in cultured fetal hepatocytes. A correlation between enzyme activity, synthesis, level of messenger RNA and transcription. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 182:429-35. [PMID: 2567669 DOI: 10.1111/j.1432-1033.1989.tb14849.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Previous studies have shown that insulin depresses the induction of tyrosine aminotransferase by glucocorticoids in cultured fetal rat hepatocytes. However, the site at which this inhibitory effect is exerted was not elucidated, since only enzyme activity was determined in such studies. Therefore, the effect of insulin on tyrosine aminotransferase synthesis, the level of its mRNA as well as the rate of transcription of the gene in isolated nuclei have been determined. The results obtained indicate that in cultures exposed to dexamethasone, Bt2cAMP, insulin and combinations of these additives, there is an excellent correlation between the enzyme activity, enzyme synthesis and the level of mRNA. Run-on transcription experiments indicate that the reduction in the level of mRNA by insulin in dexamethasone-supplemented cultures is the result of a diminished rate of gene transcription.
Collapse
Affiliation(s)
- M H Cake
- School of Biological and Environmental Sciences, Murdoch University, Western Australia
| | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Y Miura
- Department of Biochemical Engineering, Faculty of Pharmaceutical Sciences, Osaka University, Japan
| | | | | |
Collapse
|
42
|
Horio Y, Fukui H, Taketoshi M, Tanaka T, Wada H. Induction of cytosolic aspartate aminotransferase by glucagon in primary cultured rat hepatocytes. Biochem Biophys Res Commun 1988; 153:410-6. [PMID: 2837211 DOI: 10.1016/s0006-291x(88)81239-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The activity and the mRNA content of cytosolic aspartate aminotransferase (EC 2.6.1.1) were examined in cultured rat hepatocytes. Addition of glucagon (1 x 10(-7) M) in the presence of dexamethasone (1 x 10(-7) M) caused about 2-fold increase in the activity and mRNA content. Dibutyryl cAMP (1 x 10(-4) M) could replace glucagon for this effect. Maximal induction of cytosolic aspartate aminotransferase mRNA was observed 8 h after their additions. Insulin (1 x 10(-7) M) did not inhibit the enzyme induction by glucagon or dibutyryl cAMP. These results suggest that the cytosolic aspartate aminotransferase gene is regulated by cAMP, and not by insulin.
Collapse
Affiliation(s)
- Y Horio
- Department of Pharmacology II, Osaka University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
43
|
Kitagawa Y. Hormonal regulation of carbamoyl-phosphate synthetase I synthesis in primary cultured hepatocytes and Reuber hepatoma H-35. Defective regulation in hepatoma cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 167:19-25. [PMID: 3040399 DOI: 10.1111/j.1432-1033.1987.tb13299.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Regulation of carbamoyl-phosphate synthetase I (CPS) synthesis by various hormones was compared in primary cultured hepatocytes from adult rat and in Reuber hepatoma H-35 by pulse labeling of the cells with [35S]methionine. CPS synthesis in hepatocytes was stimulated 8-fold and 5-fold by dexamethasone and glucagon respectively. CPS synthesis in hepatocytes was synergically (about 50-fold) stimulated by a combination of dexamethasone and glucagon. Less synergic stimulation was observed by combining dexamethasone with N6, O2'-dibutyryladenosine 3',5'-monophosphate (dibutyryl-cAMP) or with isoproterenol. The basal level of CPS synthesis in hepatoma cells was higher than that in hepatocytes. CPS synthesis in hepatoma cells was stimulated by dexamethasone and dibutyryl-cAMP but the extent was only 3-fold and 1.8-fold respectively. The synergic effect of combination of dexamethasone and dibutyryl-cAMP was not observed in hepatoma cells. Neither glucagon nor isoproterenol exhibited an appreciable effect on CPS synthesis in hepatoma cells. Insulin and epinephrine suppressed CPS synthesis both in hepatocytes and hepatoma cells. The effect of epinephrine was indicated to be through alpha-adrenergic receptors. The effects of insulin and epinephrine were additive on CPS synthesis both in hepatocytes and hepatoma cells.
Collapse
|
44
|
Nakamura T, Niimi S, Nawa K, Noda C, Ichihara A, Takagi Y, Anai M, Sakaki Y. Multihormonal regulation of transcription of the tryptophan 2,3-dioxygenase gene in primary cultures of adult rat hepatocytes with special reference to the presence of a transcriptional protein mediating the action of glucocorticoids. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(19)75845-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
45
|
|
46
|
Miura Y, Akimoto T, Kanazawa H, Yagi K. Synthesis and secretion of protein by hepatocytes entrapped within calcium alginate. Artif Organs 1986; 10:460-5. [PMID: 2879525 DOI: 10.1111/j.1525-1594.1986.tb02604.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The ability of entrapped hepatocytes to secrete plasma proteins was examined for the purpose of developing a biological artificial liver. Hepatocytes were isolated from adult rat liver by perfusion with collagenase. Isolated hepatocytes were entrapped within calcium alginate. The entrapped cells induced tyrosine aminotransferase (TAT) in the presence of dexamethasone and dibutyryl-cyclic AMP and retained the ability to induce TAT for 7 days. Moreover, entrapped cells could synthesize and secrete a biologically active form of coagulation Factor II, prothrombin. Two plasma proteins, lecithin: cholesterol acyltransferase and cholinesterase, were also secreted into the medium. Thus, hepatocytes within calcium alginate showed liver-specific characteristics, and these activities were almost comparable with those of monolayer-cultured cells.
Collapse
|
47
|
SCHUBART ULRICHK. Effect of Insulin on the Expression of Genes Encoding Tyrosine Aminotransferase, Tryptophan Oxygenase, and Phosphoenolpyruvate Carboxykinase in Cultured Rat Hepatocytes. Ann N Y Acad Sci 1986. [DOI: 10.1111/j.1749-6632.1986.tb15550.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Sawai Y, Suma Y, Tsukada K. Induction of S-adenosylmethionine synthetase isozymes in primary cultures of adult rat hepatocytes. Life Sci 1986; 38:1975-80. [PMID: 3713433 DOI: 10.1016/0024-3205(86)90227-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The activities of S-adenosylmethionine synthetase isozymes were studied using adult rat hepatocytes in primary culture. Hepatocytes from adult rats were isolated and cultured for several days. The activities of the synthetase isozymes did not change during primary culture. The activity of the alpha-form increased with increasing ethionine plus adenine or methionine in the medium, and reached about 5 fold after 2 days. However, the increased activity of the beta-form showed less than twice.
Collapse
|
49
|
Noda C, Tomomura M, Nakamura T, Ichihara A. Molecular cloning of DNA complementary to mRNA of rat liver serine dehydratase. Biochem Biophys Res Commun 1985; 132:232-9. [PMID: 3904746 DOI: 10.1016/0006-291x(85)91012-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A cDNA clone containing sequences complementary to the mRNA cording for rat hepatic serine dehydratase was isolated to study the multihormonal regulation of this enzyme. Serine dehydratase mRNA was partially purified (50-fold enrichment, 8.2% of the total mRNA activity) from the liver of rats fed high protein diet by polysome immunoadsorption followed by oligo(dT)-cellulose column chromatography. This preparation was used as template for synthesis of cDNA. Double-stranded cDNA sequences were inserted into the plasmid pBR322 and cloned in Escherichia coli DH1. Of 860 transformants screened, 6 clones containing DNA complementary to serine dehydratase mRNA were identified by differential colony hybridization and hybrid-selected translation. The length of serine dehydratase mRNA was estimated to be 1,500 bases by Northern blot analysis. One cloned cDNA comprised about 1,000 base pairs, or 65% of the length of the mRNA. The amount of the mRNA was greatly increased in the liver of rats given high protein diet.
Collapse
|
50
|
|