1
|
Leone FA, Fabri LM, Costa MIC, Moraes CM, Garçon DP, McNamara JC. Differential effects of cobalt ions in vitro on gill (Na +, K +)-ATPase kinetics in the Blue crab Callinectes danae (Decapoda, Brachyura). Comp Biochem Physiol C Toxicol Pharmacol 2023; 274:109757. [PMID: 37741603 DOI: 10.1016/j.cbpc.2023.109757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
We used the gill (Na+, K+)-ATPase as a molecular marker to provide a comprehensive kinetic analysis of the effects of Co2+in vitro on the modulation of K+-phosphatase activity in the Blue crab Callinectes danae. Co2+ can stimulate or inhibit K+-phosphatase activity. With Mg2+, K+-phosphatase activity is almost completely inhibited by Co2+. Co2+ stimulates K+-phosphatase activity similarly to Mg2+ although with a ≈4.5-fold greater affinity. At saturating Mg2+ concentrations, Mg2+ displaces bound Co2+ from the Mg2+-binding site in a concentration dependent manner, but Co2+ cannot displace Mg2+ from its binding site even at millimolar concentrations. Saturation by Co2+ of the Mg2+ binding site does not affect pNPP recognition by the enzyme. Substitution of Mg2+ by Co2+ slightly increases enzyme affinity for K+ and NH4+. Independently of Mg2+, inhibition by ouabain or sodium ions is unaffected by Co2+. Investigation of gill (Na+, K+)-ATPase K+-phosphatase activity provides a reliable tool to examine the kinetic effects of Co2+ with and without Na+ and ATP. Given that the toxic effects of Co2+ at the molecular level are poorly understood, these findings advance our knowledge of the mechanism of action of Co2+ on the crustacean gill (Na+, K+)-ATPase.
Collapse
Affiliation(s)
- Francisco A Leone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Leonardo M Fabri
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Brazil
| | - Maria I C Costa
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Cintya M Moraes
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Brazil
| | | | - John C McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil; Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, Brazil. https://twitter.com/@maracoani
| |
Collapse
|
2
|
Ramírez-Silva L, Oria-Hernández J. Selectivity of pyruvate kinase for Na+ and K+ in water/dimethylsulfoxide mixtures. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2377-85. [PMID: 12755692 DOI: 10.1046/j.1432-1033.2003.03605.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In aqueous media, muscle pyruvate kinase is highly selective for K+ over Na+. We now studied the selectivity of pyruvate kinase in water/dimethylsulfoxide mixtures by measuring the activation and inhibition constants of K+ and Na+, i.e. their binding to the monovalent and divalent cation binding sites of pyruvate kinase, respectively [Melchoir J.B. (1965) Biochemistry 4, 1518-1525]. In 40% dimethylsulfoxide the K0.5 app for K+ and Na+ were 190 and 64-fold lower than in water. Ki app for K+ and Na+ decreased 116 and 135-fold between 20 and 40% dimethylsulfoxide. The ratios of Ki app/K0.5 app for K+ and Na+ were 34-3.5 and 3.3-0.2, respectively. Therefore, dimethylsulfoxide favored the partition of K+ and Na+ into the monovalent and divalent cation binding sites of the enzyme. The kinetics of the enzyme at subsaturating concentrations of activators show that K+ and Mg2+ exhibit high selectivity for their respective cation binding sites, whereas when Na+ substitutes K+, Na+ and Mg2+ bind with high affinity to their incorrect sites. This is evident by the ratio of the affinities of Mg2+ and K+ for the monovalent cation binding site, which is close to 200. For Na+ and Mg2+ this ratio is approximately 20. Therefore, the data suggest that K+ induces conformational changes that prevent the binding of Mg2+ to the monovalent cation binding site. Circular dichroism spectra of the enzyme and the magnitude of the transfer and apparent binding energies of K+ and Na+ indicate that structural arrangements of the enzyme induced by dimethylsulfoxide determine the affinities of pyruvate kinase for K+ and Na+.
Collapse
Affiliation(s)
- Leticia Ramírez-Silva
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México.
| | | |
Collapse
|
3
|
Furriel RP, McNamara JC, Leone FA. Nitrophenylphosphate as a tool to characterize gill Na(+), K(+)-ATPase activity in hyperregulating Crustacea. Comp Biochem Physiol A Mol Integr Physiol 2001; 130:665-76. [PMID: 11691603 DOI: 10.1016/s1095-6433(01)00400-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The kinetic properties of a gill Na(+), K(+)-ATPase from the freshwater shrimp Macrobrachium olfersii were studied using p-nitrophenylphosphate (PNPP) as a substrate. Sucrose gradient centrifugation of the microsomal fraction revealed a single protein fraction that hydrolyzed PNPP. The Na(+), K(+)-ATPase hydrolyzed PNPP (K(+)-phosphatase activity) obeying Michaelis-Menten kinetics with K(M)=1.72+/-0.06 mmol l(-1) and V(max)=259.1+/-11.6 U mg(-1). ATP was a competitive inhibitor of K(+)-phosphatase activity with a K(i)=50.1+/-2.5 micromol l(-1). A cooperative effect for the stimulation of the enzyme by potassium (K(0.5)=3.62+/-0.18 mmol l(-1); n(H)=1.5) and magnesium ions (K(0.5)=0.61+/-0.02 mmol l(-1), n(H)=1.3) was found. Sodium ions had no effect on K(+)-phosphatase activity up to 1.0 mmol l(-1), but above 80 mmol l(-1) inhibited the original activity by approximately 75%. In the range of 0-10 mmol l(-1), sodium ions did not affect stimulation of the K(+)-phosphatase activity by potassium ions. Ouabain (K(i)=762.4+/-26.7 micromol l(-1)) and orthovanadate (K(i)=0.25+/-0.01 micromol l(-1)) completely inhibited the K(+)-phosphatase activity, while thapsigargin, oligomycin, sodium azide and bafilomycin were without effect. These data demonstrate that the activity measured corresponds to that of the K(+)-phosphatase activity of the Na(+), K(+)-ATPase alone and suggest that the use of PNPP as a substrate to characterize K(+)-phosphatase activity may be a useful technique in comparative osmoregulatory studies of Na(+), K(+)-ATPase activities in crustacean gill tissues, and for consistent comparisons with well known mechanistic properties of the vertebrate enzyme.
Collapse
Affiliation(s)
- R P Furriel
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | | | | |
Collapse
|
4
|
Robinson JD, Pratap PR. Indicators of conformational changes in the Na+/K(+)-ATPase and their interpretation. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1154:83-104. [PMID: 8389590 DOI: 10.1016/0304-4157(93)90018-j] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- J D Robinson
- Department of Pharmacology State University of New York Health Science Center, Syracuse 13210
| | | |
Collapse
|
5
|
Matsuda T, Iwata H. Difference between neuronal and nonneuronal (Na+ + K+)-ATPases in their conformational equilibrium. Arch Biochem Biophys 1988; 263:323-33. [PMID: 2837150 DOI: 10.1016/0003-9861(88)90643-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Several experiments were carried out to study the difference between two isozymes (alpha(+) and alpha) of (Na+ + K+)-ATPase in the conformational equilibrium. Rat brain (Na+ + K+)-ATPase was much more thermolabile than the kidney enzyme. Both enzymes were protected from heat inactivation not only by Na+ and K+, but also by choline in varying degrees, though there was a difference between the two enzymes in the protection by the ligands. The brain enzyme was partially protected from N-ethylmaleimide (NEM) inactivation by both Na+ and K+, but the effects of the ligands on NEM inactivation of the kidney enzyme were more complex. Though ligands differentially affected the thermostability and NEM sensitivity of the two enzymes, the effects were not simply related to the conformational states. The sensitivity of phosphoenzyme (EP) formed in the presence of ATP, Na+, and Mg2+ to ADP or K+ and K+-p-nitrophenyl phosphatase (pNPPase) was then studied as a probe of the differences in the conformational equilibrium between the two isozymes. The EP of the brain enzyme was partially sensitive to ADP, while those of the heart and kidney enzymes were not. At physiological Na+ concentrations the percentages of E1P formed by the brain and kidney enzymes were determined to be about 40-50 and 10-20% of the total EP, respectively. The hydrolytic activity of pNPP in the presence of Li+, a selective activator at catalytic sites of the reaction, was much higher in the kidney enzyme than in the brain enzyme. The inhibition of K+-stimulated pNPPase by ATP and Na+ was greater in the latter enzyme than in the former. These results suggest that neuronal and nonneuronal (Na+ + K+)-ATPases differ in their conformational equilibrium: the E1 or E1P may be more stable in the alpha(+) than in the alpha during the turnover, and conversely the E2 or E2P may be more stable in the latter than in the former.
Collapse
Affiliation(s)
- T Matsuda
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Osaka University, Japan
| | | |
Collapse
|
6
|
Plesner L, Plesner IW. Distinction between the intermediates in Na+-ATPase and Na+,K+-ATPase reactions. I. Exchange and hydrolysis kinetics at millimolar nucleotide concentrations. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 937:51-62. [PMID: 2825808 DOI: 10.1016/0005-2736(88)90226-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Parallel measurements in steady-state of ATP hydrolysis rate (vhydr) and the simultaneous reverse reaction, i.e., the ADP-ATP exchange rate (vexch), allowed the determination of a kinetic parameter, KE, containing only the four rate constants needed to characterize the enzyme intermediates involved in the sequence (Formula: see text). In order to compare the properties of these enzyme intermediates under different sets of conditions, KE was measured at varying K+ and Na+ concentrations in the presence of millimolar concentrations of ATP, ADP and MgATP, using an enzyme preparation that was partially purified from bovine brain. (1) In the presence of Na+ (150 mM), K+ (20-150 mM) was found to increase the exchange rate and decrease the ATP hydrolysis rate at steady-state. As a result, KE increased at increasing K+. However, the value of KE found by extrapolation to K+ = 0 was 7-times lower than the value actually measured in the absence of K+. This finding indicates that one of the intermediates, EATP or EP, or both, when formed in the presence of Na+ alone, are different from the corresponding intermediate(s) formed in the presence of Na+ + K+ (at millimolar substrate concentration). (2) In the presence of 150 mM K+, Na+ (5-30 mM) was found to increase the ADP/ATP exchange as well as the ATP hydrolysis rate at steady-state. The ratio of the two rates was constant. This finding, when interpreted in terms of KE, indicates that Na+ does not have to leave the enzyme for ATP release to be accelerated by K+ in the backward reaction. This also is in opposition to the usual versions of the Albers-Post model, which does not have simultaneous presence of Na+ and K+.
Collapse
Affiliation(s)
- L Plesner
- Institute of Biophysics, University of Aarhus, Denmark
| | | |
Collapse
|
7
|
Swann AC. Brain Na+,K+-ATPase: alteration of ligand affinities and conformation by chronic ethanol and noradrenergic stimulation in vivo. J Neurochem 1986; 47:707-14. [PMID: 3016182 DOI: 10.1111/j.1471-4159.1986.tb00669.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
These experiments examined effects of chronic ethanol, repeated noradrenergic stimulation or inhibition, and ethanol combined with the noradrenergic treatments on regulation of Na+,K+-ATPase. Chronic treatment with ethanol reduced the sensitivity of K+-p-nitrophenyl-phosphatase to ethanol, increased affinity for K+, reduced the sensitivity of K+ affinity to ATP or ethanol, and reduced delta H and delta S for K+ activation and for the E1-E2 transition. These effects were all opposite to those of ethanol added in vitro. Treatment with yohimbine had the opposite effects on ethanol sensitivity, K+ affinity, K+ interactions with ethanol and ATP, and thermodynamic parameters for cation activation or conformational change. These effects were similar to those of norepinephrine in vitro. The effects of yohimbine treatment were eliminated or reduced in rats also treated with ethanol. Depletion of norepinephrine had effects opposite to those of yohimbine. These data are consistent with a reduction in membrane fluidity, at least in the vicinity of Na+,K+-ATPase, during ethanol tolerance. Exposure to norepinephrine, in vitro or in vivo, had effects on Na+,K+-ATPase that were similar to those of increased membrane fluidity.
Collapse
|
8
|
Divalent cations and the phosphatase activity of the (Na + K)-dependent ATPase. J Bioenerg Biomembr 1985; 17:183-200. [PMID: 2989260 DOI: 10.1007/bf00751061] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Phosphatase activity of a kidney (Na + K)-ATPase preparation was optimally active with Mg2+ plus K+. Mn2+ was less effective and Ca2+ could not substitute for Mg2+. However, adding Ca2+ with Mg2+ or substituting Mn2+ for Mg2+ activated it appreciably in the absence of added K+, and all three divalent cations decreased apparent affinity for K+. Inhibition by Na+ decreased with higher Mg2+ concentrations, when Ca2+ was added, and when Mn2+ was substituted for Mg2+. Dimethyl sulfoxide, which favors E2 conformations of the enzyme, increased apparent affinity for K+, whereas oligomycin, which favors E1 conformations, decreased it. These observations are interpretable in terms of activation through two cases of cation sites. (i) At divalent cation sites, Mg2+ and Mn2+, favoring (under these conditions) E2 conformations, are effective, whereas Ca2+, favoring E1, is not, and monovalent cations complete. (ii) At monovalent cation sites divalent cations compete with K+, while Na+ at these sites favors E1 conformations. K+ increases the Km for substrate, but both Ca2+ and Mn2+ decrease it, perhaps by competing with K+. On the other hand, phosphatase activity in the presence of Na+ plus K+ is stimulated by dimethyl sulfoxide, by higher concentrations of Mg2+ and Mn2+, but not by adding Ca2+; this is consistent with stimulation occurring through facilitation of an E1 to E2 transition, perhaps an E1-P to E2-P step like that in the (Na + K)-ATPase reaction sequence. However, oligomycin stimulates phosphatase activity with Mg2+ plus Na+ alone or Mg2+ plus low K+: this effect of oligomycin may reflect acceleration, in the absence of adequate K+, of an alternative E2-P to E1 pathway bypassing the monovalent cation-activated steps in the hydrolytic sequence.
Collapse
|
9
|
Robinson JD, Levine GM, Robinson LJ. A model for the reaction pathways of the K+-dependent phosphatase activity of the (Na+ + K+)-dependent ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 731:406-14. [PMID: 6305419 DOI: 10.1016/0005-2736(83)90035-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
(Na+ + K+)-dependent ATPase preparations from rat brain, dog kidney, and human red blood cells also catalyze a K+ -dependent phosphatase reaction. K+ activation and Na+ inhibition of this reaction are described quantitatively by a model featuring isomerization between E1 and E2 enzyme conformations with activity proportional to E2K concentration: (formula; see text) Differences between the three preparations in K0.5 for K+ activation can then be accounted for by differences in equilibria between E1K and E2K with dissociation constants identical. Similarly, reductions in K0.5 produced by dimethyl sulfoxide are attributable to shifts in equilibria toward E2 conformations. Na+ stimulation of K+ -dependent phosphatase activity of brain and red blood cell preparations, demonstrable with KCl under 1 mM, can be accounted for by including a supplementary pathway proportional to E1Na but dependent also on K+ activation through high-affinity sites. With inside-out red blood cell vesicles, K+ activation in the absence of Na+ is mediated through sites oriented toward the cytoplasm, while in the presence of Na+ high-affinity K+ -sites are oriented extracellularly, as are those of the (Na+ + K+)-dependent ATPase reaction. Dimethyl sulfoxide accentuated Na+ -stimulated K+ -dependent phosphatase activity in all three preparations, attributable to shifts from the E1P to E2P conformation, with the latter bearing the high-affinity, extracellularly oriented K+ -sites of the Na+ -stimulated pathway.
Collapse
|
10
|
Swann AC. (Na+,K+)-ATPase of mammalian brain: effects of temperatures on cation and ATP interactions regulating phosphatase activity. Arch Biochem Biophys 1983; 221:148-57. [PMID: 6299201 DOI: 10.1016/0003-9861(83)90131-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The effects of temperature on interactions between univalent cations or ATP and the p-nitrophenylphosphatase activity associated with brain (Na+,K+)-ATPase were examined. The apparent affinity for K+ activation under conditions favoring the moderate affinity site was temperature dependent, increasing with decreasing temperature. A comparison of univalent cations showed that the negative apparent delta H and delta S for cation binding increased with increasing apparent cation affinity. In contrast to the case with the moderate affinity sites, apparent affinity for the high affinity K+ site was independent of temperature. As temperature decreased, properties of moderate affinity site binding approached those of the high affinity site. The temperature dependence of ATP inhibition was opposite to that for K+ activation, with positive apparent delta H and delta S. The apparent delta H and delta S for cation binding approached those for the overall conformational change to K+-sensitive enzyme as cation affinity increased. These data suggest that E2, the K+-sensitive form of (Na+,K+)-ATPase, is stabilized by forces that require a decrease in entropy, explaining the predominant existence of E1 at physiologic temperatures. A conformational change leading to stabilization of E2 at higher temperatures can be produced by binding of univalent cations to a moderate affinity, presumably intracellular, site. This effect is counteracted by ATP. ATP also appears to alter the selectivity of this site to favor Na+ over K+ binding.
Collapse
|
11
|
Swann AC, Albers RW. Temperature effects on cation affinities of the (Na+, K+)-ATPase of mammalian brain. BIOCHIMICA ET BIOPHYSICA ACTA 1981; 644:36-40. [PMID: 6266463 DOI: 10.1016/0005-2736(81)90055-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Effects of temperature on the Na+-dependent ADP-ATP exchange and the p-nitrophenylphosphatase reactions catalysed by (Na+, K+)-ATPase were examined. Apparent Mg2+ affinity decreased with decreasing temperature. Arrhenius plots of p-nitrophenylphosphatase in the presence of Na+ and ATP had discontinuities similar to those previously reported for (Na+ + K+)-ATPase, while those of p-nitrophenylphosphatase measured without Na+ or ATP did not. The apparent activation energy for p-nitrophenylphosphatase was a function of the physical characteristics of the cation acting at the K+ site.
Collapse
|
12
|
Rodriguez HJ, Hogan WC, Sinha SK, Jacobson MP, Klahr S. The K+-dependent phosphatase of rat kidney. Its properties and the effects of maneuvers that modify (Na+ + K+)-ATPase activity. BIOCHIMICA ET BIOPHYSICA ACTA 1981; 641:36-54. [PMID: 6260182 DOI: 10.1016/0005-2736(81)90567-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Swann AC, Marini JL, Sheard MH, Maas JW. Effects of chronic dietary lithium on activity and regulation of (Na+,K+)-adenosine triphosphatase in rat brain. Biochem Pharmacol 1980; 29:2819-23. [PMID: 6254539 DOI: 10.1016/0006-2952(80)90017-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Abstract
We report on the interactions of Li+, a congener of K+ with the (Na+ + K+)-ATPase from E Electricus as measured by their effects on the rate of [3H]-ouabain binding to this enzyme. Like K+, Li+ slows ouabain binding under both Type I (Na+ + ATP) and Type II (P1) conditions, but with lower affinity. In contrast to K+, the Li+ inhibition curve is hyperbolic, suggesting interaction at an uncoupled site. Also differing from the complete inhibition by high K+, a residual ouabain-binding rate persists at high Li+. The interactions of Li+ and K+ are synergistic: the apparent K+ affinity increases 3 to 4-fold in presence of Li+. These results are consistent with the conclusion that Li+ interacts with only one of the two K+ sites and may be of interest in interpreting lithium pharmacology.
Collapse
|
15
|
Swann AC, Albers RW. (Na+,K+)-ATPase of mammalian brain: differential effects on cation affinities of phosphorylation by ATP and acetylphosphate. Arch Biochem Biophys 1980; 203:422-7. [PMID: 6250492 DOI: 10.1016/0003-9861(80)90195-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Interactions of K+ with (Na,K)-ATPase orientation of K+-phosphatase sites studied with inside-out red cell membrane vesicles. J Biol Chem 1980. [DOI: 10.1016/s0021-9258(19)43907-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Siegel G, Iyengar S, Fogt S. Electrophorus electricus (Na+ + K+)-ATPase. Evidence for simultaneous Na+ and K+ binding in the presence of Pb2+. J Biol Chem 1980. [DOI: 10.1016/s0021-9258(19)85616-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
(Na+ + K+)-adenosine triphosphatase of mammalian brain. Catalytic and regulatory K+ sites distinguishable by selectivity for Li+. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(17)30045-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
Shaffer E, Azari J, Dahms A. Properties of the Pi-oxygen exchange reaction catalyzed by (Na+,K+)-dependent adenosine triphosphatase. J Biol Chem 1978. [DOI: 10.1016/s0021-9258(17)30324-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Rossi B, Gache C, Lazdunski M. Specificity and interactions at the cationic sites of the axonal (Na+, K+)-activated adenosinetriphosphatase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1978; 85:561-70. [PMID: 148358 DOI: 10.1111/j.1432-1033.1978.tb12271.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Swann AC, Albers RW. Sodium and potassium ion-dependent adenosine triphosphatase of mammalian brain. Interactions of magnesium ions with the phosphatase site. BIOCHIMICA ET BIOPHYSICA ACTA 1978; 523:215-27. [PMID: 147107 DOI: 10.1016/0005-2744(78)90024-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Kinetic parameters are reported for Mg2+, Na+ and K+ as activators of the p-nitrophenylphosphatase activity associated with (Na+ + K+)-ATPase (ATP-phosphohydrolase, EC 3.6.1.3) of beef brain. In each case the phosphatase reaction is activated at low concentrations of the cation and inhibited by higher concentrations. The concentrations of cation that produced half-maximal activation and half-maximal inhibition are increased as the concentration of either of the other two cations is increased. These second ligand effects are all saturable functions. The apparent binding constant that characterizes the effect on activation is closely similar to that acting upon the inhibitory phase in each case.
Collapse
|
22
|
Liang S, Winter C. Digitonin-induced changes in subunit arrangement in relation to some in vitro activities of the (Na+,K+)-ATPase. J Biol Chem 1977. [DOI: 10.1016/s0021-9258(17)40968-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Gache C, Rossi B, Lazdunski M. (Na+, K+)-activated adenosinetriphosphatase of axonal membranes, cooperativity and control. Steady-state analysis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1976; 65:293-306. [PMID: 132350 DOI: 10.1111/j.1432-1033.1976.tb10417.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. The ATP sites. Homotropic interactions between ATP sites have been studied in a very large range of Na+ and K+ concentrations. The ( Na+, K+)-activated ATPase displays Michaelis-Menten kinetics for ATP under standard concentration conditions of Na+ (100 mM) and K+ (10 mM). The steady-state kinetics behavior changes at very low concentrations of K+ where negative cooperativity is observed. The existence of a high affinity and a low affinity site for ATP was clearly demonstrated from the study of the ATP stimulated hydrolysis of p-nitrophenylphosphate in the presence of Na+ and K+. The ratio of apparent affinities of high and low affinity sites for ATP is 86 at pH 7.5. 2. The Na+ sites. The binding of Na+ to its specific stimulatory sites (internal sites) is characterized by positive cooperativity with a Hill coefficient n(H(Na+))=2.0. Homotropic interactions between Na+ sites are unaffected by variations of the K+ concentration. 3. The K+ sites. (a) Binding of K+ to the (external) stimulatory site of the ATPase has been analyzed by following the (Na+, K+)-ATPase activity as well as the p-nitrophenylphosphatase activity in the presence of Na+ and K+ (with or without ATP). Binding is characterized by a Hill coefficient of 1.0 and a K(0.5(K+))=0.1 to 0.8 mM. The absence of positive or negative cooperativity persists between 5 mM and 100 mM Na+. (b) The analysis of the p-nitrophenylphosphatase or of the 2, 4 dinitrophenylphosphatase activity in the presence of K+ alone indicates the existence of low affinity sites for K+ with positive homotropic interactions. The characteristics of stimulation in that case are, K(0.5)=5 mM, n(H)=1.9. The properties of this family of site(s) are the following: firstly, saturation of the low affinity site(s) by K+ prevents ATP binding to its high affinity internal site. Secondly, saturation of the low affinity sites for K+ prevents binding of Na+ to its internal sites. Thirdly, this family of sites disappears in the presence of ATP, p-nitrophenylphosphate or of both substrates, when Na+ binds to its internal sites. Na+ binding to its specific stimulatory sites provokes the formation of the high affinity type of site for K+. 4. Mg2+ stimulation of the (Na+, K+)-ATPase is characterized by a Hill coefficient n(H(Mg2+))=1.0 and a K(0.5(Mg2+))=1 mM stimulation is essentially a V effect. Heterotropic effects between binding of Mg2+ and substrate to their respective sites are small. Heterotropic interactions between the Ms2+, Na+ and K+ sites are also small. 5. The fluidity of membrane lipids also controls the (Na+, K+)-ATPase activity. Phase transitions or separations in the membrane hardly affect recognition properties of substrates, Na+, K+ and Mg2+ for their respective sites on both sides of the membrane. Only the rate of the catalytic transformation is affected.
Collapse
|
24
|
Robinson JD. Mechanisms by which Li+ stimulates the (Na+ and K+)-dependent ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1975; 413:459-71. [PMID: 127624 DOI: 10.1016/0005-2736(75)90129-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The addition of LiCl stimulated the (Na+ + K+)-dependent ATPase activity of a rat brain enzyme preparation. Stimulation was greatest in high Na+/low K+ media and at low Mg-ATP concentrations. Apparent affinities for Li+ were estimated at the alpha-sites (moderate-affinity sites for K+ demonstrable in terms of activation of the associated K+-dependent phosphatase reaction), at the beta-sites (high-affinity sites for K+ demonstrable in terms of activation of the overall ATPase reaction), and at the Na+ sites for activation. The relative efficacy of Li+ was estimated in terms of the apparent maximal velocity of the phosphatase and ATPase reactions when Li+ was substituted for K+, and also in terms of the relative effect of Li+ on the apparent Km for Mg-ATP. With these data, and previously determined values for the apparent affinities of K+ and Na+ at these same sites, quantitative kinetic models for the stimulation were examined. A composite model is required in which Li+ stimulates by relieving inhibition due to K+ and Na+ (i) by competing with K+ for the alpha-sites on the enzyme through which K+ decreases the apparent affinity for Mg-ATP and (ii) by competing with Na+ at low-affinity inhibitory sites, which may represent the external sites at which Na+ is discharged by the membrane Na+/K pump that this enzyme represents. Both these sites of action for Li+ would thus lie, in vivo, on the cell exterior.
Collapse
|
25
|
Laget P, Gallois Y, Jallet P. [Effect of glycerol on monovalent cation interactions with (Na+-K+)-ATPase of human solubilized erythrocyte membranes]. Biochimie 1975; 57:969-72. [PMID: 130942 DOI: 10.1016/s0300-9084(75)80219-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
|
27
|
Swann AC, Albers W. Sodium + potassium-activated ATPase of mammalian brain. Regulation of phosphatase activity. BIOCHIMICA ET BIOPHYSICA ACTA 1975; 382:437-56. [PMID: 164910 DOI: 10.1016/0005-2736(75)90283-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. The K+-nitrophenylphosphatase activity associated with mammalian brain (Na+ + K+)-ATPase displays K+ activation curves that have intermediary plateaus and maxima in the presence of less than saturating concentrations of Na+. Zero Na+ and saturating Na+ produce sigmoid K+-activation curves with low and high K+ affinities respectively. 2. ATP inhibits K+-activated nitrophenylphosphatase through both competitive and non-competitive mechanisms. ATP is synergistic with Na+ in the mechanism which converts the enzyme from low to high K+ affinity. 3. The Na+ and K+ interactions can be accounted for by equations which describe a model with separate regulatory sites for Na+ and K+ and with K+- requiring catalytic site which is only accessible in one of the two principal conformational stages of the enzyme. 4. The effects of ATP can be accounted for by the same model through interactions at a single nucleotide binding site. Inhibition which is competitive with K+ and non-competitive with substrate arises from stabilization of the inactive enzyme conformation. Inhibition which is non-competitive with K+ and competitive with substrate results from interactions with the active enzyme conformation. The synergism between Na+ and ATP appears to arise as a consequence of the formation of phosphoryl enzyme. 5. A model for (Na+ + K+)-ATPase is discussed which involves in-phase coupling of subunit interactions as suggested by these studies.
Collapse
|
28
|
Albers RW, Koval GJ, Swann AC. Analysis of Na+, K+ and nucleotide interactions in terms of a heterotropic relaxation model for (Na+-K+)-ATPase. Ann N Y Acad Sci 1974; 242:268-79. [PMID: 4372924 DOI: 10.1111/j.1749-6632.1974.tb19096.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Skou JC. Effect of ATP on Na:K affinity and catalytic activity of (Na+ plus K+)-activated enzyme system. Ann N Y Acad Sci 1974; 242:168-84. [PMID: 4279586 DOI: 10.1111/j.1749-6632.1974.tb19089.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Jorgensen PL. Purification and characterization of (Na+ plus K+ )-ATPase. IV. Estimation of the purity and of the molecular weight and polypeptide content per enzyme unit in preparations from the outer medulla of rabbit kidney. BIOCHIMICA ET BIOPHYSICA ACTA 1974; 356:53-67. [PMID: 4276443 DOI: 10.1016/0005-2736(74)90293-4] [Citation(s) in RCA: 188] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Kaniike K, Erdmann E, Schoner W. Study on the differential modifications of (Na+ plus K+)-ATPase and its partial reactions by dimethylsulfoxide. BIOCHIMICA ET BIOPHYSICA ACTA 1974; 352:275-86. [PMID: 4276212 DOI: 10.1016/0005-2736(74)90219-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Abstract
A satisfactory understanding of the functions of the sodium pump, the system responsible for the active transport of sodium and potassium, require the isolation and characterization of its protein and lipid components which are integrated in the structure of the cell membrane. The enzyme system (Na++ K+)-ATPase, is located in membrane fragments and behaves in the test tube like the transport system in the intact cell membrane (Skou,1957) Purified preparations of this enzyme will contain some, if not all, of the components of the sodium pump.
Collapse
|
33
|
Skou J. Effect of ATP on the intermediary steps of the reaction of the (Na++K+)-dependent enzyme system. III. Effect on the p-nitrophenylphosphatase activity of the system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1974. [DOI: 10.1016/0005-2736(74)90323-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
|
35
|
Robinson JD. Cation sites of the (Na+ plus K+)-dependent ATPase: mechanisms for Na+-induced changes in K+ affinity of the phosphatase activity. BIOCHIMICA ET BIOPHYSICA ACTA 1973; 321:662-70. [PMID: 4271620 DOI: 10.1016/0005-2744(73)90210-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|