1
|
Dissanayake WC, Sorrenson B, Cognard E, Hughes WE, Shepherd PR. β-catenin is important for the development of an insulin responsive pool of GLUT4 glucose transporters in 3T3-L1 adipocytes. Exp Cell Res 2018. [PMID: 29540328 DOI: 10.1016/j.yexcr.2018.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
GLUT4 is unique among specialized glucose transporters in being exclusively expressed in muscle and adipocytes. In the absence of insulin the distribution of GLUT4 is preferentially intracellular and insulin stimulation results in the movement of GLUT4 containing vesicles to the plasma membrane. This process is responsible for the insulin stimulation of glucose uptake in muscle and fat. While signalling pathways triggering the translocation of GLUT4 are well understood, the mechanisms regulating the intracellular retention of GLUT4 are less well understood. Here we report a role for β-catenin in this process. In 3T3-L1 adipocytes in which β-catenin is depleted, the levels of GLUT4 at and near the plasma membrane rise in unstimulated cells while the subsequent increase in GLUT4 at the plasma membrane upon insulin stimulation is reduced. Small molecule approaches to acutely activate or inhibit β-catenin give results that support the results obtained with siRNA and these changes are accompanied by matching changes in glucose transport into these cells. Together these results indicate that β-catenin is a previously unrecognized regulator of the mechanisms that control the insulin sensitive pool of GLUT4 transporters inside these adipocyte cells.
Collapse
Affiliation(s)
- Waruni C Dissanayake
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Brie Sorrenson
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Emmanuelle Cognard
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - William E Hughes
- Department of Medicine, St. Vincent's Hospital, Victoria Street, Sydney 2010, Australia; The Garvan Institute of Medical Research, 384 Victoria Street, Sydney 2010, Australia
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
2
|
Funaki M, Benincasa K, Randhawa PK. Peptide rescues GLUT4 recruitment, but not GLUT4 activation, in insulin resistance. Biochem Biophys Res Commun 2007; 360:891-6. [PMID: 17631270 DOI: 10.1016/j.bbrc.2007.06.153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 06/29/2007] [Indexed: 11/30/2022]
Abstract
Insulin-stimulated GLUT4 recruitment to the plasma membrane is impaired in insulin resistance. We recently reported that a cell permeable phosphoinositide-binding peptide induces GLUT4 recruitment as potently as insulin, but does not activate GLUT4 to initiate glucose uptake. Here we investigated whether the peptide-induced GLUT4 recruitment is intact in insulin resistance. The expression levels of GLUT1 and GLUT4 were unaffected by chronically treating 3T3-L1 adipocytes with insulin. GLUT4 recruitment by acute insulin stimulation after chronic insulin treatment was significantly reduced, but was fully restored by the peptide treatment. However, subsequent acute insulin stimulation to activate GLUT4 failed to increase glucose uptake in peptide-pretreated cells. Insulin-stimulated GLUT1 recruitment was unaffected by the peptide pretreatment. These results suggest that the GLUT4 recruitment signal caused by the peptide is intact in insulin resistance, but GLUT4 activation that occurs subsequent to recruitment is not rescued by the peptide treatment.
Collapse
Affiliation(s)
- Makoto Funaki
- Department of Physiology, Institute for Medicine & Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
3
|
Funaki M, DiFransico L, Janmey PA. PI 4,5-P2 stimulates glucose transport activity of GLUT4 in the plasma membrane of 3T3-L1 adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:889-99. [PMID: 16828894 PMCID: PMC3118463 DOI: 10.1016/j.bbamcr.2006.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 05/08/2006] [Accepted: 05/09/2006] [Indexed: 12/16/2022]
Abstract
Insulin-stimulated glucose uptake through GLUT4 plays a pivotal role in maintaining normal blood glucose levels. Glucose transport through GLUT4 requires both GLUT4 translocation to the plasma membrane and GLUT4 activation at the plasma membrane. Here we report that a cell-permeable phosphoinositide-binding peptide, which induces GLUT4 translocation without activation, sequestered PI 4,5-P2 in the plasma membrane from its binding partners. Restoring PI 4,5-P2 to the plasma membrane after the peptide treatment increased glucose uptake. No additional glucose transporters were recruited to the plasma membrane, suggesting that the increased glucose uptake was attributable to GLUT4 activation. Cells overexpressing phosphatidylinositol-4-phosphate 5-kinase treated with the peptide followed by its removal exhibited a higher level of glucose transport than cells stimulated with a submaximal level of insulin. However, only cells treated with submaximal insulin exhibited translocation of the PH-domains of the general receptor for phosphoinositides (GRP1) to the plasma membrane. Thus, PI 4,5-P2, but not PI 3,4,5-P3 converted from PI 4,5-P2, induced GLUT4 activation. Inhibiting F-actin remodeling after the peptide treatment significantly impaired GLUT4 activation induced either by PI 4,5-P2 or by insulin. These results suggest that PI 4,5-P2 in the plasma membrane acts as a second messenger to activate GLUT4, possibly through F-actin remodeling.
Collapse
Affiliation(s)
- Makoto Funaki
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, 1080 Vagelos Research Laboratories, 3340 Smith Walk, Philadelphia, 19104, USA.
| | | | | |
Collapse
|
4
|
Antonescu CN, Huang C, Niu W, Liu Z, Eyers PA, Heidenreich KA, Bilan PJ, Klip A. Reduction of insulin-stimulated glucose uptake in L6 myotubes by the protein kinase inhibitor SB203580 is independent of p38MAPK activity. Endocrinology 2005; 146:3773-81. [PMID: 15947002 DOI: 10.1210/en.2005-0404] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Insulin increases glucose uptake through translocation of the glucose transporter GLUT4 to the plasma membrane. We previously showed that insulin activates p38MAPK, and inhibitors of p38MAPKalpha and p38MAPKbeta (e.g. SB203580) reduce insulin-stimulated glucose uptake without affecting GLUT4 translocation. This observation suggested that insulin may increase GLUT4 activity via p38alpha and/or p38beta. Here we further explore the possible participation of p38MAPK through a combination of molecular strategies. SB203580 reduced insulin stimulation of glucose uptake in L6 myotubes overexpressing an SB203580-resistant p38alpha (drug-resistant p38alpha) but barely affected phosphorylation of the p38 substrate MAPK-activated protein kinase-2. Expression of dominant-negative p38alpha or p38beta reduced p38MAPK phosphorylation by 70% but had no effect on insulin-stimulated glucose uptake. Gene silencing via isoform-specific small interfering RNAs reduced expression of p38alpha or p38beta by 60-70% without diminishing insulin-stimulated glucose uptake. SB203580 reduced photoaffinity labeling of GLUT4 by bio-LC-ATB-BMPA only in the insulin-stimulated state. Unless low levels of p38MAPK suffice to regulate glucose uptake, these results suggest that the inhibition of insulin-stimulated glucose transport by SB203580 is likely not mediated by p38MAPK. Instead, changes experienced by insulin-stimulated GLUT4 make it susceptible to inhibition by SB203580.
Collapse
Affiliation(s)
- C N Antonescu
- Programme in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Renström F, Burén J, Eriksson JW. Insulin receptor substrates-1 and -2 are both depleted but via different mechanisms after down-regulation of glucose transport in rat adipocytes. Endocrinology 2005; 146:3044-51. [PMID: 15845625 DOI: 10.1210/en.2004-1675] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alterations in muscle and adipose tissue insulin receptor substrate (IRS)-1 and IRS-2 are associated with, and commonly believed to contribute to, development of insulin resistance. In this study, we investigated the mechanisms behind previously observed reductions in IRS levels due to high concentrations of glucose and insulin and their significance in the impairment of glucose uptake capacity in primary rat adipocytes. Semiquantitative RT-PCR analysis showed that insulin (10(4) microU/ml) alone or in combination with glucose (15 mm) markedly suppressed IRS-2 gene expression, whereas IRS-1 mRNA was unaffected by the culture conditions. The negative effect of a high glucose/high insulin setting on IRS-1 protein level was still exerted when protein synthesis was inhibited with cycloheximide. Impairment of glucose uptake capacity after treatment with high glucose and insulin was most pronounced after 3 h, whereas IRS-1 and IRS-2 protein levels were unaffected up to 6 h but were reduced after 16 h. Moreover, impaired glucose uptake capacity could only partially be reversed by subsequent incubation at physiological conditions. These novel results suggest that: 1) in a high glucose/high insulin setting depletion of IRS-1 and IRS-2 protein, respectively, occurs via different mechanisms, and IRS-2 gene expression is suppressed, whereas IRS-1 depletion is due to posttranslational mechanisms; 2) IRS-1 and IRS-2 protein depletion is a secondary event in the development of insulin resistance in this model of hyperglycemia/hyperinsulinemia; and 3) depletion of cellular IRS in adipose tissue may be a consequence rather than a cause of insulin resistance and hyperinsulinemia in type 2 diabetes.
Collapse
Affiliation(s)
- Frida Renström
- Department of Medicine, Umeå University Hospital, SE-901 85 Umeå, Sweden
| | | | | |
Collapse
|
6
|
Sadagurski M, Weingarten G, Rhodes CJ, White MF, Wertheimer E. Insulin Receptor Substrate 2 Plays Diverse Cell-specific Roles in the Regulation of Glucose Transport. J Biol Chem 2005; 280:14536-44. [PMID: 15705592 DOI: 10.1074/jbc.m410227200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The insulin receptor substrate 2 (IRS-2) protein is one of the major insulin-signaling substrates. In the present study, we investigated the role of IRS-2 in skin epidermal keratinocytes and dermal fibroblasts. Although skin is not a classical insulin target tissue, we have previously demonstrated that insulin, via the insulin receptor, is essential for normal skin cell physiology. To identify the role of IRS-2 in skin cells, we studied cells isolated from IRS-2 knock-out (KO) mice. Whereas proliferation and differentiation were not affected in the IRS-2 KO cells, a striking effect was observed on glucose transport. In IRS-2 KO keratinocytes, the lack of IRS-2 resulted in a dramatic increase in basal and insulin-stimulated glucose transport. The increase in glucose transport was associated with an increase in total phosphatidylinositol (PI) 3-kinase and Akt activation. In contrast, fibroblasts lacking IRS-2 exhibited a significant decrease in basal and insulin-induced glucose transport. We identified the point of divergence, leading to these differences between keratinocytes and fibroblasts, at the IRS-PI 3-kinase association step. In epidermal keratinocytes, PI 3-kinase is associated with and activated by only the IRS-1 protein. On the other hand, in dermal fibroblasts, PI 3-kinase is exclusively associated with and activated by the IRS-2 protein. These observations suggest that IRS-2 functions as a negative or positive regulator of glucose transport in a cell-specific manner. Our results also show that IRS-2 function depends on its cell-specific association with PI 3-kinase.
Collapse
Affiliation(s)
- Marianna Sadagurski
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
7
|
Geiger PC, Wright DC, Han DH, Holloszy JO. Activation of p38 MAP kinase enhances sensitivity of muscle glucose transport to insulin. Am J Physiol Endocrinol Metab 2005; 288:E782-8. [PMID: 15585585 DOI: 10.1152/ajpendo.00477.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Muscle contractile activity is followed by an increase in the sensitivity of glucose transport to insulin. There is evidence suggesting that activation of p38 MAP kinase (p38) is involved in the stimulation of glucose transport by insulin and contractions. Exercise results in an increase in p38 phosphorylation that lasts for hours. In this context, we tested the hypothesis that activation of p38 results in an increase in insulin sensitivity. Muscles were exposed to anisomycin for 30 min to activate p38. Anisomycin increased p38 phosphorylation approximately 2.5-fold and glucose transport activity 2- to 3-fold. Three hours after anisomycin treatment, by which time the acute effect on glucose transport had partially worn off, sensitivity of muscle glucose transport to 60 microU/ml insulin was markedly increased. Both the activation of p38 and the increase in insulin sensitivity induced by anisomycin were completely prevented by pretreatment of muscles with the p38 inhibitor SB-202190. However, in contrast to the finding with anisomycin, inhibition of p38 activation did not prevent the contraction-induced increase in insulin sensitivity. Thus our results show that activation of p38 is followed by an increase in insulin sensitivity of muscle glucose transport. However, activation of p38 is not necessary for induction of an increase in muscle insulin sensitivity by contractions. This finding provides evidence that contractions have an additional effect that makes p38 activation unnecessary for enhancement of insulin sensitivity by contractile activity.
Collapse
Affiliation(s)
- Paige C Geiger
- Departemnt of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
8
|
Zhou QL, Park JG, Jiang ZY, Holik JJ, Mitra P, Semiz S, Guilherme A, Powelka AM, Tang X, Virbasius J, Czech MP. Analysis of insulin signalling by RNAi-based gene silencing. Biochem Soc Trans 2004; 32:817-21. [PMID: 15494023 DOI: 10.1042/bst0320817] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Using siRNA-mediated gene silencing in cultured adipocytes, we have dissected the insulin-signalling pathway leading to translocation of GLUT4 glucose transporters to the plasma membrane. RNAi (RNA interference)-based depletion of components in the putative TC10 pathway (CAP, CrkII and c-Cbl plus Cbl-b) or the phospholipase Cγ pathway failed to diminish insulin signalling to GLUT4. Within the phosphoinositide 3-kinase pathway, loss of the 5′-phosphatidylinositol 3,4,5-trisphosphate phosphatase SHIP2 was also without effect, whereas depletion of the 3′-phosphatase PTEN significantly enhanced insulin action. Downstream of phosphatidylinositol 3,4,5-trisphosphate and PDK1, silencing the genes encoding the protein kinases Akt1/PKBα, or CISK(SGK3) or protein kinases Cλ/ζ had little or no effect, but loss of Akt2/PKBβ significantly attenuated GLUT4 regulation by insulin. These results show that Akt2/PKBβ is the key downstream intermediate within the phosphoinositide 3-kinase pathway linked to insulin action on GLUT4 in cultured adipocytes, whereas PTEN is a potent negative regulator of this pathway.
Collapse
Affiliation(s)
- Q L Zhou
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Funaki M, Randhawa P, Janmey PA. Separation of insulin signaling into distinct GLUT4 translocation and activation steps. Mol Cell Biol 2004; 24:7567-77. [PMID: 15314166 PMCID: PMC507006 DOI: 10.1128/mcb.24.17.7567-7577.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
GLUT4 (glucose transporter 4) plays a pivotal role in insulin-induced glucose uptake to maintain normal blood glucose levels. Here, we report that a cell-permeable phosphoinositide-binding peptide induced GLUT4 translocation to the plasma membrane without inhibiting IRAP (insulin-responsive aminopeptidase) endocytosis. However, unlike insulin treatment, the peptide treatment did not increase glucose uptake in 3T3-L1 adipocytes, indicating that GLUT4 translocation and activation are separate events. GLUT4 activation can occur at the plasma membrane, since insulin was able to increase glucose uptake with a shorter time lag when inactive GLUT4 was first translocated to the plasma membrane by pretreating the cells with this peptide. Inhibition of phosphatidylinositol (PI) 3-kinase activity failed to inhibit GLUT4 translocation by the peptide but did inhibit glucose uptake when insulin was added following peptide treatment. Insulin, but not the peptide, stimulated GLUT1 translocation. Surprisingly, the peptide pretreatment inhibited insulin-induced GLUT1 translocation, suggesting that the peptide treatment has both a stimulatory effect on GLUT4 translocation and an inhibitory effect on insulin-induced GLUT1 translocation. These results suggest that GLUT4 requires translocation to the plasma membrane, as well as activation at the plasma membrane, to initiate glucose uptake, and both of these steps normally require PI 3-kinase activation.
Collapse
Affiliation(s)
- Makoto Funaki
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, 1080 Vagelos Research Laboratories, 3340 Smith Walk, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
10
|
Niu W, Huang C, Nawaz Z, Levy M, Somwar R, Li D, Bilan PJ, Klip A. Maturation of the regulation of GLUT4 activity by p38 MAPK during L6 cell myogenesis. J Biol Chem 2003; 278:17953-62. [PMID: 12637564 DOI: 10.1074/jbc.m211136200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin stimulates glucose uptake in skeletal muscle cells and fat cells by promoting the rapid translocation of GLUT4 glucose transporters to the plasma membrane. Recent work from our laboratory supports the concept that insulin also stimulates the intrinsic activity of GLUT4 through a signaling pathway that includes p38 MAPK. Here we show that regulation of GLUT4 activity by insulin develops during maturation of skeletal muscle cells into myotubes in concert with the ability of insulin to stimulate p38 MAPK. In L6 myotubes expressing GLUT4 that carries an exofacial myc-epitope (L6-GLUT4myc), insulin-stimulated GLUT4myc translocation equals in magnitude the glucose uptake response. Inhibition of p38 MAPK with SB203580 reduces insulin-stimulated glucose uptake without affecting GLUT4myc translocation. In contrast, in myoblasts, the magnitude of insulin-stimulated glucose uptake is significantly lower than that of GLUT4myc translocation and is insensitive to SB203580. Activation of p38 MAPK by insulin is considerably higher in myotubes than in myoblasts, as is the activation of upstream kinases MKK3/MKK6. In contrast, the activation of all three Akt isoforms and GLUT4 translocation are similar in myoblasts and myotubes. Furthermore, GLUT4myc translocation and phosphorylation of regulatory sites on Akt in L6-GLUT4myc myotubes are equally sensitive to insulin, whereas glucose uptake and phosphorylation of regulatory sites on p38 MAPK show lower sensitivity to the hormone. These observations draw additional parallels between Akt and GLUT4 translocation and between p38 MAPK and GLUT4 activation. Regulation of GLUT4 activity by insulin develops upon muscle cell differentiation and correlates with p38 MAPK activation by insulin.
Collapse
Affiliation(s)
- Wenyan Niu
- Programme in Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Somwar R, Koterski S, Sweeney G, Sciotti R, Djuric S, Berg C, Trevillyan J, Scherer PE, Rondinone CM, Klip A. A dominant-negative p38 MAPK mutant and novel selective inhibitors of p38 MAPK reduce insulin-stimulated glucose uptake in 3T3-L1 adipocytes without affecting GLUT4 translocation. J Biol Chem 2002; 277:50386-95. [PMID: 12393894 DOI: 10.1074/jbc.m205277200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Participation of p38 mitogen-activated protein kinase (p38) in insulin-induced glucose uptake was suggested using pyridinylimidazole p38 inhibitors (e.g. SB203580). However, the role of p38 in insulin action remains controversial. We further test p38 participation in glucose uptake using a dominant-negative p38 mutant and two novel pharmacological p38 inhibitors related to but different from SB203580. We present the structures and activities of the azaazulene pharmacophores A291077 and A304000. p38 kinase activity was inhibited in vitro by A291077 and A304000 (IC(50) = 0.6 and 4.7 microm). At higher concentrations A291077 but not A304000 inhibited JNK2alpha (IC(50) = 3.5 microm). Pretreatment of 3T3-L1 adipocytes and L6 myotubes expressing GLUT4myc (L6-GLUT4myc myotubes) with A291077, A304000, SB202190, or SB203580 reduced insulin-stimulated glucose uptake by 50-60%, whereas chemical analogues inert toward p38 were ineffective. Expression of an inducible, dominant-negative p38 mutant in 3T3-L1 adipocytes reduced insulin-stimulated glucose uptake. GLUT4 translocation to the cell surface, immunodetected on plasma membrane lawns of 3T3-L1 adipocytes or on intact L6-GLUT4myc myotubes, was not altered by chemical or molecular inhibition of p38. We propose that p38 contributes to enhancing GLUT4 activity, thereby increasing glucose uptake. In addition, the azaazulene class of inhibitors described will be useful to decipher cellular actions of p38 and JNK.
Collapse
Affiliation(s)
- Romel Somwar
- Programme in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Konrad D, Bilan PJ, Nawaz Z, Sweeney G, Niu W, Liu Z, Antonescu CN, Rudich A, Klip A. Need for GLUT4 activation to reach maximum effect of insulin-mediated glucose uptake in brown adipocytes isolated from GLUT4myc-expressing mice. Diabetes 2002; 51:2719-26. [PMID: 12196464 DOI: 10.2337/diabetes.51.9.2719] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There is a need to understand whether the amount of GLUT4 at the cell surface determines the extent of glucose uptake in response to insulin. Thus, we created a heterozygous mouse expressing modest levels of myc-tagged GLUT4 (GLUT4myc) in insulin-sensitive tissues under the control of the human GLUT4 promoter. Insulin stimulated 2-deoxyglucose uptake 6.5-fold in isolated brown adipocytes. GLUT1 did not contribute to the insulin response. The stimulation by insulin was completely blocked by wortmannin and partly (55 +/- 2%) by the p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580. Insulin increased surface exposure of GLUT4myc twofold (determined by fluorescent or enzyme-linked myc immunodetection in intact adipocytes). Such increase was completely blocked by wortmannin but insensitive to SB203580. Insulin increased the kinase activity of the p38 MAPK beta-isoform 1.9-fold without affecting p38-alpha. In summary, the GLUT4myc mouse is a promising model for measuring GLUT4 translocation in intact primary cells. It affords direct comparison between GLUT4 translocation and glucose uptake in similar cell preparations, allowing one to study the regulation of GLUT4 activity. Using this animal model, we found that stimulation of glucose uptake into brown adipocytes involves both GLUT4 translocation and activation.
Collapse
Affiliation(s)
- Daniel Konrad
- Programme in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Barnes K, Ingram JC, Porras OH, Barros LF, Hudson ER, Fryer LGD, Foufelle F, Carling D, Hardie DG, Baldwin SA. Activation of GLUT1 by metabolic and osmotic stress: potential involvement of AMP-activated protein kinase (AMPK). J Cell Sci 2002; 115:2433-42. [PMID: 12006627 DOI: 10.1242/jcs.115.11.2433] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the rat liver epithelial cell line Clone 9, the Vmax for glucose uptake is actuely increased by inhibition of oxidative phosphorylation and by osmotic stress. By using a membrane-impermeant photoaffinity labelling reagent together with an isoform-specific antibody, we have, for the first time, provided direct evidence for the involvement of the GLUT1 glucose transporter isoform in this response. Transport stimulation was found to be associated with enhanced accessibility of GLUT1 to its substrate and with photolabelling of formerly `cryptic' exofacial substrate binding sites in GLUT1 molecules. The total amount of cell surface GLUT1 remained constant. The precise mechanism for this binding site `unmasking' is unclear but appears to involve AMP-activated protein kinase: in the current study, osmotic and metabolic stresses were found to result in activation of the α1 isoform of AMP-activated protein kinase, and transport stimulation could be mimicked both by 5-aminoimidazole-4-carboxamide ribonucleoside and by infection of cells with a recombinant adenovirus encoding constitutively active AMP-activated protein kinase. The effect of 5-aminoimidazole-4-carboxamide ribonucleoside, as for metabolic stress, was on the Vmax rather than on the Km for transport and did not affect the cell-surface concentration of GLUT1. The relevant downstream target(s) of AMP-activated protein kinase have not yet been identified, but stimulation of transport by inhibition of oxidative phosphorylation or by 5-aminoimidazole-4-carboxamide ribonucleoside was not prevented by either inhibitors of conventional and novel protein kinase C isoforms or inhibitors of nitric oxide synthase. These enzymes, which have been implicated in stress-regulated pathways in other cell types, are therefore unlikely to play a role in transport regulation by stress in Clone 9 cells.
Collapse
Affiliation(s)
- Kay Barnes
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Somwar R, Niu W, Kim DY, Sweeney G, Randhawa VK, Huang C, Ramlal T, Klip A. Differential effects of phosphatidylinositol 3-kinase inhibition on intracellular signals regulating GLUT4 translocation and glucose transport. J Biol Chem 2001; 276:46079-87. [PMID: 11598141 DOI: 10.1074/jbc.m109093200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol (PI) 3-kinase is required for insulin-stimulated translocation of GLUT4 to the surface of muscle and fat cells. Recent evidence suggests that the full stimulation of glucose uptake by insulin also requires activation of GLUT4, possibly via a p38 mitogen-activated protein kinase (p38 MAPK)-dependent pathway. Here we used L6 myotubes expressing Myc-tagged GLUT4 to examine at what level the signals regulating GLUT4 translocation and activation bifurcate. We compared the sensitivity of each process, as well as of signals leading to GLUT4 translocation (Akt and atypical protein kinase C) to PI 3-kinase inhibition. Wortmannin inhibited insulin-stimulated glucose uptake with an IC(50) of 3 nm. In contrast, GLUT4myc appearance at the cell surface was less sensitive to inhibition (IC(50) = 43 nm). This dissociation between insulin-stimulated glucose uptake and GLUT4myc translocation was not observed with LY294002 (IC(50) = 8 and 10 microm, respectively). The sensitivity of insulin-stimulated activation of PKC zeta/lambda, Akt1, Akt2, and Akt3 to wortmannin (IC(50) = 24, 30, 35, and 60 nm, respectively) correlated closely with inhibition of GLUT4 translocation. In contrast, insulin-dependent p38 MAPK phosphorylation was efficiently reduced in cells pretreated with wortmannin, with an IC(50) of 7 nm. Insulin-dependent p38 alpha and p38 beta MAPK activities were also markedly reduced by wortmannin (IC(50) = 6 and 2 nm, respectively). LY294002 or transient expression of a dominant inhibitory PI 3-kinase construct (Delta p85), however, did not affect p38 MAPK phosphorylation. These results uncover a striking correlation between PI 3-kinase, Akt, PKC zeta/lambda, and GLUT4 translocation on one hand and their segregation from glucose uptake and p38 MAPK activation on the other, based on their wortmannin sensitivity. We propose that a distinct, high affinity target of wortmannin, other than PI 3-kinase, may be necessary for activation of p38 MAPK and GLUT4 in response to insulin.
Collapse
Affiliation(s)
- R Somwar
- Programme in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Klip A, Marette A. Regulation of Glucose Transporters by Insulin and Exercise: Cellular Effects and Implications for Diabetes. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Konrad D, Somwar R, Sweeney G, Yaworsky K, Hayashi M, Ramlal T, Klip A. The antihyperglycemic drug alpha-lipoic acid stimulates glucose uptake via both GLUT4 translocation and GLUT4 activation: potential role of p38 mitogen-activated protein kinase in GLUT4 activation. Diabetes 2001; 50:1464-71. [PMID: 11375349 DOI: 10.2337/diabetes.50.6.1464] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The cofactor of mitochondrial dehydrogenase complexes and potent antioxidant alpha-lipoic acid has been shown to lower blood glucose in diabetic animals. alpha-Lipoic acid enhances glucose uptake and GLUT1 and GLUT4 translocation in 3T3-L1 adipocytes and L6 myotubes, mimicking insulin action. In both cell types, insulin-stimulated glucose uptake is reduced by inhibitors of p38 mitogen-activated protein kinase (MAPK). Here we explore the effect of alpha-lipoic acid on p38 MAPK, phosphatidylinositol (PI) 3-kinase, and Akt1 in L6 myotubes. alpha-Lipoic acid (2.5 mmol/l) increased PI 3-kinase activity (31-fold) and Akt1 (4.9-fold). Both activities were inhibited by 100 nmol/l wortmannin. alpha-Lipoic acid also stimulated p38 MAPK phosphorylation by twofold within 10 min. The phosphorylation persisted for at least 30 min. Like insulin, alpha-lipoic acid increased the kinase activity of the alpha (2.8-fold) and beta (2.1-fold) isoforms of p38 MAPK, measured by an in vitro kinase assay. Treating cells with 10 micromol/l of the p38 MAPK inhibitors SB202190 or SB203580 reduced the alpha-lipoic acid-induced stimulation of glucose uptake by 66 and 55%, respectively. In contrast, SB202474, a structural analog that does not inhibit p38 MAPK, was without effect on glucose uptake. In contrast to 2-deoxyglucose uptake, translocation of GLUT4myc to the cell surface by either alpha-lipoic acid or insulin was unaffected by 20 micromol/l of SB202190 or SB203580. The results suggest that inhibition of 2-deoxyglucose uptake in response to alpha-lipoic acid by inhibitors of p38 MAPK is independent of an effect on GLUT4 translocation. Instead, it is likely that regulation of transporter activity is sensitive to these inhibitors.
Collapse
Affiliation(s)
- D Konrad
- Programme in Cell Biology, the Hospital for Sick Children, 555 University Ave., Toronto, Ontario, M5G 1X8, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Budihardjo II, Boerner SA, Eckdahl S, Svingen PA, Rios R, Ames MM, Kaufmann SH. Effect of 6-aminonicotinamide and other protein synthesis inhibitors on formation of platinum-DNA adducts and cisplatin sensitivity. Mol Pharmacol 2000; 57:529-38. [PMID: 10692493 DOI: 10.1124/mol.57.3.529] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The present study was undertaken to examine the mechanistic basis for the recent observation that the pyridine nucleotide derivative 6-aminonicotinamide (6AN, NSC 21206) enhances the accumulation and resulting cytotoxicity of cisplatin in a variety of tumor cell lines. When A549 lung cancer cells or K562 leukemia cells were treated with 62.5 microM 6AN for 21 h and then pulse-labeled with [(35)S]methionine for 1 h, increased labeling of five polypeptides, one of which corresponded to a M(r) approximately 78,000 glucose-regulated protein (GRP78), was observed. Two subsequent observations, however, suggested that up-regulation of these polypeptides was unlikely to explain the interaction between 6AN and cisplatin: 1) the concentration of 6AN required to induce GRP78 was 4-fold higher than the dose required to sensitize cells to cisplatin; and 2) simultaneous treatment of cells with 6AN and cycloheximide prevented the increase in GRP78 but not the sensitizing effect of 6AN. On the contrary, treatment with the protein synthesis inhibitors cycloheximide, anisomycin, or puromycin as well as prolonged exposure to the RNA synthesis inhibitor actinomycin D mimicked the biochemical modulating effects of 6AN on cisplatin action. Conversely, 6AN inhibited protein synthesis, whereas 18 6AN analogs that failed to enhance Pt-DNA adducts and cisplatin cytotoxicity failed to inhibit protein synthesis. These observations are consistent with a model in which 6AN and other inhibitors of protein synthesis act as modulating agents by increasing cisplatin accumulation, thereby enhancing the formation of Pt-DNA adducts and subsequent cisplatin-induced cell death.
Collapse
Affiliation(s)
- I I Budihardjo
- Division of Oncology Research, Mayo Medical School, Rochester, Minnesota, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Subtil A, Lampson MA, Keller SR, McGraw TE. Characterization of the insulin-regulated endocytic recycling mechanism in 3T3-L1 adipocytes using a novel reporter molecule. J Biol Chem 2000; 275:4787-95. [PMID: 10671512 DOI: 10.1074/jbc.275.7.4787] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endocytic trafficking of the GLUT4 glucose transporter and the insulin-regulated aminopeptidase (IRAP) are regulated by insulin. We have used a chimera between the intracellular domain of IRAP and the extracellular and transmembrane domains of the transferrin receptor (vpTR) to characterize IRAP-like trafficking in 3T3-L1 adipocytes. Our data demonstrate that the cytoplasmic domain of IRAP is sufficient to target vpTR to the insulin-regulated, slow recycling pathway in adipocytes and that the dynamic retention of vpTR is dependent on a di-leucine motif. Our kinetic analysis demonstrates that vpTR recycles as a single kinetic pool and that vpTR is very efficiently sorted from endosomes to the insulin-regulated recycling pathway. An implication of these findings is that the key step in the dynamic retention of vpTR occurs within the early endosomal system. We have previously shown that vpTR is trafficked by an insulin-regulated pathway in Chinese hamster ovary cells (Johnson, A. O., Subtil, A., Petrush, R., Kobylarz, K., Keller, S., and Mc Graw, T. E. (1998) J. Biol. Chem. 273, 17968-17977). The behavior of vpTR in Chinese hamster ovary cells is similar to its behavior in 3T3-L1 adipocytes. The main difference is that insulin has a larger effect on the trafficking of vpTR in the adipocytes. We concluded that the insulin-regulated slow recycling endocytic mechanism is expressed in many different cell types and therefore is not a unique characteristic of cells that express GLUT4.
Collapse
Affiliation(s)
- A Subtil
- Department of Biochemistry, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
19
|
Fladeby C, Serck-Hanssen G. Stress-induced glucose uptake in bovine chromaffin cells: a comparison of the effect of arsenite and anisomycin. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1452:313-21. [PMID: 10590320 DOI: 10.1016/s0167-4889(99)00145-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of the toxic chemical Na-arsenite and the protein synthesis inhibitor anisomycin on glucose transport in primary cultures of bovine chromaffin cells was compared using the effect of insulin-like growth factor I (IGF-I) as a reference. The enhanced uptake of glucose obtained in response to arsenite and anisomycin reached maximum after 60 min, with the response to anisomycin being delayed in onset relative to that of arsenite. At maximal doses the arsenite effect was consistently higher than that of anisomycin and comparable to the approximately 2-fold effect produced by IGF-I. The selective inhibitor of stress-activated protein kinase 2 (SAPK2), SB 203580, inhibited completely anisomycin-induced glucose uptake but only partly suppressed uptake stimulated by arsenite. Both substances, in concentrations producing maximal effects on glucose transport, led to a strong phosphorylation of SAPK2. In contrast to the effect on glucose transport, the arsenite-induced phosphorylation of SAPK2 was relatively slow compared to the anisomycin-induced activation. The results indicate that glucose uptake induced by the two types of cellular stress are mediated by at least two different signaling pathways, which also differ from that activated by IGF-I.
Collapse
Affiliation(s)
- C Fladeby
- Department of Physiology, University of Bergen, Arstadveien 19, 5009, Bergen, Norway.
| | | |
Collapse
|
20
|
Hausdorff SF, Fingar DC, Morioka K, Garza LA, Whiteman EL, Summers SA, Birnbaum MJ. Identification of wortmannin-sensitive targets in 3T3-L1 adipocytes. DissociationoOf insulin-stimulated glucose uptake and glut4 translocation. J Biol Chem 1999; 274:24677-84. [PMID: 10455135 DOI: 10.1074/jbc.274.35.24677] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The current studies investigated the contribution of phosphatidylinositol 3-kinase (PI3-kinase) isoforms to insulin-stimulated glucose uptake and glucose transporter 4 (GLUT4) translocation. Experiments involving the microinjection of antibodies specific for the p110 catalytic subunit of class I PI3-kinases demonstrated an absolute requirement for this form of the enzyme in GLUT4 translocation. This finding was confirmed by the demonstration that the PI3-kinase antagonist wortmannin inhibits GLUT4 and insulin-responsive aminopeptidase translocation with a dose response identical to that required to inhibit another class I PI3-kinase-dependent event, activation of pp70 S6-kinase. Interestingly, wortmannin inhibited insulin-stimulated glucose uptake at much lower doses, suggesting the existence of a second, higher affinity target of the drug. Subsequent removal of wortmannin from the media shifted this dose-response curve to one resembling that for GLUT4 translocation and pp70 S6-kinase. This is consistent with the lower affinity target being p110, which is irreversibly inhibited by wortmannin. Wortmannin did not reduce glucose uptake in cells stably expressing Myr-Akt, which constitutively induced GLUT4 translocation to the plasma membrane; this demonstrates that wortmannin does not inhibit the transporters directly. In addition to elucidating a second wortmannin-sensitive pathway in 3T3-L1 adipocytes, these studies suggest that the presence of GLUT4 on the plasma membrane is not sufficient for activation of glucose uptake.
Collapse
Affiliation(s)
- S F Hausdorff
- Howard Hughes Medical Institute, the Cox Institute, and the Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Hansen PA, Wang W, Marshall BA, Holloszy JO, Mueckler M. Dissociation of GLUT4 translocation and insulin-stimulated glucose transport in transgenic mice overexpressing GLUT1 in skeletal muscle. J Biol Chem 1998; 273:18173-9. [PMID: 9660777 DOI: 10.1074/jbc.273.29.18173] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of the human GLUT1 glucose transporter protein in skeletal muscle of transgenic mice results in large increases in basal glucose transport and metabolism, but impaired stimulation of glucose transport by insulin, contractions, or hypoxia (Gulve, E. A., Ren, J.-M., Marshall, B. A., Gao, J., Hansen, P. A., Holloszy, J. O. , and Mueckler, M. (1994) J. Biol. Chem. 269, 18366-18370). This study examined the relationship between glucose transport and cell-surface glucose transporter content in isolated skeletal muscle from wild-type and GLUT1-overexpressing mice using 2-deoxyglucose, 3-O-methylglucose, and the 2-N-[4-(1-azi-2,2, 2-trifluoroethyl)benzoyl]-1,3-bis(D-mannos-4-yloxy)-2-propyl amine exofacial photolabeling technique. Insulin (2 milliunits/ml) stimulated a 3-fold increase in 2-deoxyglucose uptake in extensor digitorum longus muscles of control mice (0.47 +/- 0.07 micromol/ml/20 min in basal muscle versus 1.44 micromol/ml/20 min in insulin-stimulated muscle; mean +/- S.E.). Insulin failed to increase 2-deoxyglucose uptake above basal rates in muscles overexpressing GLUT1 (4.00 +/- 0.40 micromol/ml/20 min in basal muscle versus 3.96 +/- 0.37 micromol/ml/20 min in insulin-stimulated muscle). A similar lack of insulin stimulation in muscles overexpressing GLUT1 was observed using 3-O-methylglucose. However, the magnitude of the insulin-stimulated increase in cell-surface GLUT4 photolabeling was nearly identical (approximately 3-fold) in wild-type and GLUT1-overexpressing muscles. This apparently normal insulin-stimulated translocation of GLUT4 in GLUT1-overexpressing muscle was confirmed by immunoelectron microscopy. Our findings suggest that GLUT4 activity at the plasma membrane can be dissociated from the plasma membrane content of GLUT4 molecules and thus suggest that the intrinsic activity of GLUT4 is subject to regulation.
Collapse
Affiliation(s)
- P A Hansen
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
22
|
Acute Regulation of Glucose Transport After Activation of Human Peripheral Blood Neutrophils by Phorbol Myristate Acetate, fMLP, and Granulocyte-Macrophage Colony-Stimulating Factor. Blood 1998. [DOI: 10.1182/blood.v91.2.649.649_649_655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of human peripheral blood neutrophils by pathogens or by phorbol myristate acetate (PMA), fMLP, or myeloid growth factors generates a respiratory burst in which superoxide production plays an important role in killing invading microorganisms. Although the increased energy demands of activated neutrophils would be expected to be associated with increased glucose uptake and utilization, previous studies have shown that PMA inhibits 2-deoxyglucose (2-DOG) uptake. In this study, we show that PMA activation of neutrophils, isolated by methods not involving hypotonic lysis, increases the rate of 2-DOG uptake and results in a 1.6-fold to 2.1-fold increase in transporter affinity for glucose without changing Vmax. Increased transporter affinity in response to PMA was also observed with 3-O-methyglucose, which is not phosphorylated, and inclusion of glucose in the activation medium further increased respiratory burst activity. Increased 2-DOG uptake and increased transporter affinity for glucose were also observed with the peptide activator, fMLP, and with granulocyte-macrophage colony-stimulating factor (GM-CSF). The protein kinase C (PKC) inhibitor, calphostin C, and the tyrosine kinase inhibitor, genistein, inhibited both PMA- and fMLP-stimulated 2-DOG uptake. In contrast, genistein inhibited fMLP-induced superoxide production, but had little effect on the PMA-induced response, while staurosporine differentially inhibited PMA-induced superoxide production. These results show that neutrophil activation involves increased glucose transport and intrinsic activation of glucose transporter molecules. Both tyrosine kinases and PKC are implicated in the activation process.
Collapse
|
23
|
Acute Regulation of Glucose Transport After Activation of Human Peripheral Blood Neutrophils by Phorbol Myristate Acetate, fMLP, and Granulocyte-Macrophage Colony-Stimulating Factor. Blood 1998. [DOI: 10.1182/blood.v91.2.649] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractActivation of human peripheral blood neutrophils by pathogens or by phorbol myristate acetate (PMA), fMLP, or myeloid growth factors generates a respiratory burst in which superoxide production plays an important role in killing invading microorganisms. Although the increased energy demands of activated neutrophils would be expected to be associated with increased glucose uptake and utilization, previous studies have shown that PMA inhibits 2-deoxyglucose (2-DOG) uptake. In this study, we show that PMA activation of neutrophils, isolated by methods not involving hypotonic lysis, increases the rate of 2-DOG uptake and results in a 1.6-fold to 2.1-fold increase in transporter affinity for glucose without changing Vmax. Increased transporter affinity in response to PMA was also observed with 3-O-methyglucose, which is not phosphorylated, and inclusion of glucose in the activation medium further increased respiratory burst activity. Increased 2-DOG uptake and increased transporter affinity for glucose were also observed with the peptide activator, fMLP, and with granulocyte-macrophage colony-stimulating factor (GM-CSF). The protein kinase C (PKC) inhibitor, calphostin C, and the tyrosine kinase inhibitor, genistein, inhibited both PMA- and fMLP-stimulated 2-DOG uptake. In contrast, genistein inhibited fMLP-induced superoxide production, but had little effect on the PMA-induced response, while staurosporine differentially inhibited PMA-induced superoxide production. These results show that neutrophil activation involves increased glucose transport and intrinsic activation of glucose transporter molecules. Both tyrosine kinases and PKC are implicated in the activation process.
Collapse
|
24
|
Barros LF, Young M, Saklatvala J, Baldwin SA. Evidence of two mechanisms for the activation of the glucose transporter GLUT1 by anisomycin: p38(MAP kinase) activation and protein synthesis inhibition in mammalian cells. J Physiol 1997; 504 ( Pt 3):517-25. [PMID: 9401960 PMCID: PMC1159956 DOI: 10.1111/j.1469-7793.1997.517bd.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. Inhibitors of protein synthesis stimulate sugar transport in mammalian cells through activation of plasma membrane GLUT1, the housekeeping isoform of the glucose transporter. However, it has been reported that some of these compounds, in addition to their effect on protein synthesis, also activate protein kinases. 2. In the present study we have explored the role of these two effects on GLUT1 activation. In 3T3-L1 adipocytes and Clone 9 cells, stimulation of sugar transport by puromycin, a translational inhibitor that does not activate kinases, was not detectable until 90 min after exposure. In contrast, stimulation by anisomycin, a potent Jun-NH2-terminal kinase (JNK) agonist, exhibited no lag phase. An intermediate response was observed to emetine and cycloheximide, weak activators of JNK. 3. The potency of anisomycin to stimulate transport acutely (30 min of exposure) was 5- to 10-fold greater than for its chronic stimulation of transport, measured after 4 h of exposure. The stimulation of transport by a low concentration of anisomycin (0.3 microM) was transient, peaked at 30-60 min and it was inhibited (IC50 < 1 microM) by SB203580, which indicates that its mediator is not JNK, but the homologous p38(MAP kinase) (p38(MAPK)). In contrast, the responses to 4 h exposure to 300 microM anisomycin or puromycin were refractory to SB203580. 4. Exposure to anisomycin resulted in rapid activation of p38(MAPK). Activation of both p38(MAPK) and GLUT1 by 0.3 microM anisomycin was cancelled by puromycin. 5. We conclude that the activation of GLUT1 in response to anisomycin includes two components: a delayed component involving translational inhibition and a fast, puromycin-inhibitable component that is secondary to activation of p38(MAPK).
Collapse
Affiliation(s)
- L F Barros
- Department of Biochemistry and Molecular Biology, University of Leeds, UK.
| | | | | | | |
Collapse
|
25
|
Binder C, Binder L, Kroemker M, Schulz M, Hiddemann W. Influence of cycloheximide-mediated downregulation of glucose transport on TNF alpha-induced apoptosis. Exp Cell Res 1997; 236:223-30. [PMID: 9344602 DOI: 10.1006/excr.1997.3718] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Enhancement of cellular sensitivity to TNF alpha-induced apoptosis by cycloheximide (CX) has been attributed to its quality as an inhibitor of protein synthesis, presumably by prevention of the synthesis of short-lived death antagonists. CX is also known to interfere with glucose transport, which in turn influences cell death. Hexose uptake, expression of glucose transporter (Glut) mRNAs and proteins, and other related factors were therefore examined upon induction of apoptosis with TNF alpha and CX in breast cancer cell lines. In the early phase of apoptosis, a dramatic decrease in glucose transport was observed, preceded by stimulation of Glut 1 and 3 mRNAs. Transport downregulation was also detectable upon incubation with CX alone, albeit to a lesser extent. With the doses used, TNF alpha had no such effect. Protein synthesis was inhibited to the same degree in TNF alpha/CX-treated apoptotic cells compared to viable CX-treated cells. Diminished hexose uptake was associated with decreased Vmax, while Glut affinity remained unaffected. As there was no evidence for changes in total cellular Glut content or for Glut translocation from the plasma membrane, a diminished intrinsic activity of Gluts must be postulated. In conclusion, CX is proposed to contribute to TNF alpha-induced apoptosis predominantly by interference with glucose transport; the exact nature of this effect remains to be elucidated.
Collapse
Affiliation(s)
- C Binder
- Department of Haematology/Oncology, Georg-August-University, Göttingen, Germany
| | | | | | | | | |
Collapse
|
26
|
Abstract
Elevated serum-free fatty acid (FFA) levels induce insulin resistance in whole animals and humans. To understand the direct mechanism by which FFAs impact insulin-responsive tissue, we have used our previously developed in vitro model of long-chain saturated fatty acids (LCSFA)-induced insulin resistance in adipocytes. In addition to explanted rat adipocytes, we now demonstrate that overnight exposure of 3T3-L1 adipocytes to 1 mM individually of the LCSFA palmitate, myristate, and stearate, leads to an approximately 50% inhibition of insulin-induced glucose transport. Insulin resistance can be accomplished at 0.3 mM palmitate, which is within the range ofpalmitate found in diabetic and obese individuals. This inhibition was noted within 4 h of exposure to FFA, which is comparable to in vivo lipid infusion studies. Initial LCSFA-induced resistance is specific to glucose transport and does not affect insulin stimulation of glucose incorporation into glycogen. In 3T3-L1 adipocytes overexpressing the EGF receptor, LCSFA exposure also specifically inhibited EGF-induced GLUT4-mediated glucose transport, but not EGF-induced glycogen synthesis. We find that LCSFA treatment did not impair insulin stimulation of GLUT4 translocation or exofacial presentation on the cell surface as determined by trypsin accessibility. Our results suggest that the initial direct effect of elevated LCSFA is to impair activation of GLUT4 transporter activity and that this effect is specific for glucose transport.
Collapse
Affiliation(s)
- M Van Epps-Fung
- Department of Pathology, University of Alabama at Birmingham, 35294-0007, USA
| | | | | | | |
Collapse
|
27
|
Li WM, McNeill JH. Quantitative methods for measuring the insulin-regulatable glucose transporter (Glut4). J Pharmacol Toxicol Methods 1997; 38:1-10. [PMID: 9339410 DOI: 10.1016/s1056-8719(97)00036-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This review article describes various quantitation methods for the insulin-regulatable glucose transporter (Glut4). Several methods including reconstituted glucose transport, cytochalasin B binding assays, immunocytochemistry, immunoblots, ELISA, and the more recently developed exofacial labels are discussed. Since Glut4 translocates from an intracellular compartment to the plasma membrane in response to the action of insulin, it is of particular interest to measure Glut4 changes in the membrane fractions. Hence, the measurement of Glut4 commonly involves the isolation of cell membranes using subcellular fractionation in combination with one of the quantitation methods. The limitations of each quantitation method due to the use of subcellular fractionation are discussed in this article. As well, the advantages and disadvantages in terms of isoform specificity and technical difficulties of each method are presented.
Collapse
Affiliation(s)
- W M Li
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
28
|
McCoy KD, Ahmed N, Tan AS, Berridge MV. The hemopoietic growth factor, interleukin-3, promotes glucose transport by increasing the specific activity and maintaining the affinity for glucose of plasma membrane glucose transporters. J Biol Chem 1997; 272:17276-82. [PMID: 9211864 DOI: 10.1074/jbc.272.28.17276] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Most mammalian cells rely on an external supply of glucose for survival, proliferation, and function. Glucose enters cells through specific transporter molecules at the plasma membrane by a facilitative process that does not expend energy. Regulation of glucose transport into cells is thought to occur largely through transporter expression at the cell surface, but the extent to which the intrinsic properties of glucose transporters are regulated is at present controversial. Using a bone marrow-derived cell line that responds to the hemopoietic growth factor, interleukin-3 (IL-3), we investigated IL-3 regulation of glucose transport. IL-3 significantly increased 2-deoxyglucose (2-DOG) uptake within 1 h (26 +/- 8.0%, n = 11) with a maximum 73% increase after 6 h. Withdrawal of IL-3 resulted in decreased uptake within 1 h and this continued to decline to 43% of initial uptake by 16 h. To determine whether these changes in 2-DOG uptake were associated with corresponding changes in glucose transporter expression, subtype-specific antisera against Glut-1 and Glut-3 were used. Little change in membrane expression of these transporters was observed prior to 16 h. Fractionation of cell membranes on Nycodenz gradients showed that the majority of each transporter subtype was associated with the plasma membrane (63-93%) and that transporter distribution did not change markedly in response to addition or withdrawal of IL-3. These results demonstrate that IL-3 regulates glucose uptake by modulating the intrinsic transporting ability of glucose transporters. Decreased transporter affinity for 2-DOG and 3-O-methylglucose was observed following IL-3 withdrawal. Similar affinity changes were observed with 2-DOG following exposure of IL-3-stimulated cells to the protein kinase inhibitors, genistein and staurosporine. In contrast, the tyrosine phosphatase inhibitor, vanadate, acted like IL-3 to increase transporter affinity for glucose. Together these results demonstrate that IL-3 acts to maintain the intrinsic transport properties of glucose transporters without markedly affecting their expression or translocation.
Collapse
Affiliation(s)
- K D McCoy
- Malaghan Institute of Medical Research, Wellington School of Medicine, P. O. Box 7060, Wellington South 6002, New Zealand
| | | | | | | |
Collapse
|
29
|
Vera JC, Reyes AM, Cárcamo JG, Velásquez FV, Rivas CI, Zhang RH, Strobel P, Iribarren R, Scher HI, Slebe JC. Genistein is a natural inhibitor of hexose and dehydroascorbic acid transport through the glucose transporter, GLUT1. J Biol Chem 1996; 271:8719-24. [PMID: 8621505 DOI: 10.1074/jbc.271.15.8719] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Genistein is a dietary-derived plant product that inhibits the activity of protein-tyrosine kinases. We show here that it is a potent inhibitor of the mammalian facilitative hexose transporter GLUT1. In human HL-60 cells, which express GLUT1, genistein inhibited the transport of dehydroascorbic acid, deoxyglucose, and methylglucose in a dose-dependent manner. Transport was not affected by daidzein, an inactive genistein analog that does not inhibit protein-tyrosine kinase activity, or by the general protein kinase inhibitor staurosporine. Genistein inhibited the uptake of deoxyglucose and dehydroascorbic acid in Chinese hamster ovary (CHO) cells overexpressing GLUT1 in a similar dose-dependent manner. Genistein also inhibited the uptake of deoxyglucose in human erythrocytes indicating that its effect on glucose transporter function is cell-independent. The inhibitory action of genistein on transport was instantaneous, with no additional effect observed in cells preincubated with it for various periods of time. Genistein did not alter the uptake of leucine by HL-60 cells, indicating that its inhibitory effect was specific for the glucose transporters. The inhibitory effect of genistein was of the competitive type, with a Ki of approximately 12 microM for inhibition of the transport of both methylglucose and deoxyglucose. Binding studies showed that genistein inhibited glucose-displaceable binding of cytochalasin B to GLUT1 in erythrocyte ghosts in a competitive manner, with a Ki of 7 microM. These data indicate that genistein inhibits the transport of dehydroascorbic acid and hexoses by directly interacting with the hexose transporter GLUT1 and interfering with its transport activity, rather than as a consequence of its known ability to inhibit protein-tyrosine kinases. These observations indicate that some of the many effects of genistein on cellular physiology may be related to its ability to disrupt the normal cellular flux of substrates through GLUT1, a hexose transporter universally expressed in cells, and is responsible for the basal uptake of glucose.
Collapse
Affiliation(s)
- J C Vera
- Program in Molecular Pharmacology and Therapeutics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lu Z, Xia L, Mesmer OT, Lo TC. Use of hexose transport mutants to examine the expression and properties of the rat myoblast GLUT 1 transport process. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1234:155-65. [PMID: 7696290 DOI: 10.1016/0005-2736(94)00279-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Rat L6 myoblasts were recently shown to possess the GLUT 1, 3 and 4 transporters, and not the GLUT 2 isoform [1]. This investigation examined the expression and properties of the GLUT 1 isoform. GLUT 1 transcript level was significantly reduced in cells grown at high densities and during myogenic differentiation. A comparison of the GLUT 1 and 4 transcript levels in myogenesis-competent and impaired cells revealed an inverse relationship between these two isoforms. This relationship was confirmed by studies using two independent spontaneous GLUT 3- GLUT 4- mutants, M1 and M3. These mutants possessed very high level of the GLUT 1 isoform, but negligible amount of the GLUT 3 and 4 isoforms. GLUT 1 expression was also subject to positive regulation. Glucose starvation was found to increase not only the levels of the GLUT 1 transcript and transporter, but also the intrinsic activity of the GLUT 1 transporter. Studies with M1 and M3 mutants revealed that the GLUT 1 transporter was not functional in glucose-grown cells, even though it was present at a very high level in the plasma membrane. This transporter became functional when cells were starved for glucose. The functional GLUT 1 transporter had an apparent Km value of around 0.9 mM, and was sensitive to cytochalasin B, phloretin, phlorizin and pCMBS.
Collapse
Affiliation(s)
- Z Lu
- Department of Biochemistry, University of Western Ontario, London, Canada
| | | | | | | |
Collapse
|
31
|
|
32
|
Garvey WT, Birnbaum MJ. Cellular insulin action and insulin resistance. BAILLIERE'S CLINICAL ENDOCRINOLOGY AND METABOLISM 1993; 7:785-873. [PMID: 8304915 DOI: 10.1016/s0950-351x(05)80237-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- W T Garvey
- Section of Endocrinology, Indianapolis Veterans Administration Medical Center, IN
| | | |
Collapse
|
33
|
Nishimura H, Zarnowski M, Simpson I. Glucose transporter recycling in rat adipose cells. Effects of potassium depletion. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36506-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
Satoh S, Nishimura H, Clark A, Kozka I, Vannucci S, Simpson I, Quon M, Cushman S, Holman G. Use of bismannose photolabel to elucidate insulin-regulated GLUT4 subcellular trafficking kinetics in rat adipose cells. Evidence that exocytosis is a critical site of hormone action. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46778-0] [Citation(s) in RCA: 199] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
35
|
Czech M, Buxton J. Insulin action on the internalization of the GLUT4 glucose transporter in isolated rat adipocytes. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)98333-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
Nishimura H, Pallardo F, Seidner G, Vannucci S, Simpson I, Birnbaum M. Kinetics of GLUT1 and GLUT4 glucose transporters expressed in Xenopus oocytes. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)52905-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
37
|
Diamond D, Carruthers A. Metabolic control of sugar transport by derepression of cell surface glucose transporters. An insulin-independent recruitment-independent mechanism of regulation. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53271-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
38
|
Kitzman H, McMahon R, Williams M, Frost S. Effect of glucose deprivation of GLUT 1 expression in 3T3-L1 adipocytes. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54077-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
39
|
Suzuki Y, Shibata H, Inoue S, Kojima I. Stimulation of glucose transport by guanine nucleotides in permeabilized rat adipocytes. Biochem Biophys Res Commun 1992; 189:572-80. [PMID: 1449505 DOI: 10.1016/0006-291x(92)91596-i] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Effects of guanine nucleotides on glucose transport were studied in permeabilized rat epididymal fat cells. GTP gamma S and Gpp(NH)p, but not App(NH)p, stimulated 3-O-methylglucose transport. Effect of GTP gamma S was dose-dependent, being detectable at 0.1 mM, and 1.0 mM GTP gamma S stimulated glucose transport to the same extent as insulin. GTP gamma S (0.3 mM) enhanced insulin-stimulated glucose transport while 1 mM GTP gamma S did not affect insulin-mediated transport. GDP beta S had no effect on glucose transport by itself but rather enhanced insulin action. NaF, which is known to activate trimeric G proteins, increased glucose transport to the same extent as insulin. Likewise, mastoparan augmented glucose transport. These results indicate that a certain type of trimeric G protein(s) is involved in the regulation of glucose transport.
Collapse
Affiliation(s)
- Y Suzuki
- Cell Biology Research Unit Institute of Endocrinology, Gunma University, Japan
| | | | | | | |
Collapse
|
40
|
Czech MP, Clancy BM, Pessino A, Woon CW, Harrison SA. Complex regulation of simple sugar transport in insulin-responsive cells. Trends Biochem Sci 1992; 17:197-201. [PMID: 1595129 DOI: 10.1016/0968-0004(92)90266-c] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Facilitated sugar entry into mammalian cells is catalysed by multiple isoforms of the glucose transporter and regulated by hormonal stimuli, nutritional status and oncogenesis. A large reserve of latent glucose transport capacity must be maintained by muscle and adipose cells that are sensitive to insulin, the primary activator of sugar uptake after feeding. Intracellular sequestration of sugar transporters accounts for a large part of this latent capacity, but new findings suggest that there is also reversible suppression of intrinsic catalytic activity of those glucose transporters residing at the cell surface. The mechanism of this suppression appears to be occlusion or disruption of the exofacial sugar-binding sites on the glucose-transporter proteins.
Collapse
Affiliation(s)
- M P Czech
- Program in Molecular Medicine, University of Massachusetts Medical Center, Worcester 01605
| | | | | | | | | |
Collapse
|