1
|
Exploration of variations in proteome and metabolome for predictive diagnostics and personalized treatment algorithms: Innovative approach and examples for potential clinical application. J Proteomics 2018; 188:30-40. [DOI: 10.1016/j.jprot.2017.08.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/06/2017] [Accepted: 08/25/2017] [Indexed: 12/20/2022]
|
2
|
Seligmann H. Natural mitochondrial proteolysis confirms transcription systematically exchanging/deleting nucleotides, peptides coded by expanded codons. J Theor Biol 2016; 414:76-90. [PMID: 27899286 DOI: 10.1016/j.jtbi.2016.11.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 11/11/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022]
Abstract
Protein sequences have higher linguistic complexities than human languages. This indicates undeciphered multilayered, overprinted information/genetic codes. Some superimposed genetic information is revealed by detections of transcripts systematically (a) exchanging nucleotides (nine symmetric, e.g. A<->C, fourteen asymmetric, e.g. A->C->G->A, swinger RNAs) translated according to tri-, tetra- and pentacodons, and (b) deleting mono-, dinucleotides after each trinucleotide (delRNAs). Here analyses of two independent proteomic datasets considering natural proteolysis confirm independently translation of these non-canonical RNAs, also along tetra- and pentacodons, increasing coverage of putative, cryptically encoded proteins. Analyses assuming endoproteinase GluC and elastase digestions (cleavages after residues D, E, and A, L, I, V, respectively) detect additional peptides colocalizing with detected non-canonical RNAs. Analyses detect fewer peptides matching GluC-, elastase- than trypsin-digestions: artificial trypsin-digestion outweighs natural proteolysis. Results suggest occurrences of complete proteins entirely matching non-canonical, superimposed encoding(s). Protein-coding after bijective transformations could explain genetic code symmetries, such as along Rumer's transformation.
Collapse
Affiliation(s)
- Hervé Seligmann
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, Faculté de Médecine, URMITE CNRS-IRD 198 UMER 6236, IHU (Institut Hospitalo-Universitaire), Aix-Marseille University, Marseille, France.
| |
Collapse
|
3
|
Morelos RM, Ramírez JL, García-Gasca A, Ibarra AM. Expression of the myostatin gene in the adductor muscle of the Pacific lion-paw scallop Nodipecten subnodosus in association with growth and environmental conditions. ACTA ACUST UNITED AC 2015; 323:239-55. [PMID: 25731876 DOI: 10.1002/jez.1914] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/07/2014] [Accepted: 12/27/2014] [Indexed: 12/25/2022]
Abstract
The cDNA sequence of the myostatin gene in the Pacific lion-paw Nodipecten subnodosus (Ns-mstn) was characterized, and the temporal expression during grow-out was analyzed for the first time in a scallop. Ns-mstn encodes a 459-amino-acid protein in which two propeptide proteolytic sites were identified, the previously recognized (RSKR) and a second one at position 266-269 aa (RRKR). The alternative furin cleavage site could be related with post-translational processing, or it could be a tissue-specific mechanism for signaling activity. The Ns-mstn transcript was located by in situ hybridization in sarcomeres and around the nucleus of muscle fibers. The temporal expression analysis by qPCR in the adductor muscle showed that Ns-mstn expression was significantly different (P < 0.05) between months during the grow-out period, increasing largely during the summer months when both biomass and muscle weight did not increase or even decreased; muscle fiber size and number were found to decrease significantly. Exogenous and endogenous factors such as high temperature and low food availability, as well as gametogenesis and reproduction, can be associated with the growth pattern and Ns-mstn expression changes. Our results indicate that MSTN is involved in adductor muscle growth regulation in N. subnodosus as it occurs in vertebrate skeletal muscle although Ns-mstn expression in non-muscle organs/tissues suggests additional functions.
Collapse
Affiliation(s)
- Rosa M Morelos
- Aquaculture Genetics and Breeding Laboratory, Centro de Investigaciones Biológicas del Noroeste S.C., La Paz, Mexico
| | | | | | | |
Collapse
|
4
|
Lee HA, Cho HM, Lee DY, Kim KC, Han HS, Kim IK. Tissue-Specific Upregulation of Angiotensin-Converting Enzyme 1 in Spontaneously Hypertensive Rats Through Histone Code Modifications. Hypertension 2012; 59:621-6. [DOI: 10.1161/hypertensionaha.111.182428] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The renin-angiotensin system has been implicated in the development of hypertension and damages several organs. The expressions of the components of a local renin-angiotensin system (RAS) in the hypertensive rats differ from those of the normotensive rats. We hypothesized that local tissue-specific upregulation of angiotensin-converting enzyme 1 (ACE1) in hypertension is caused by epigenetic changes. Adrenal gland, aorta, heart, kidney, liver, and lung tissues were excised from normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs).
Ace1
mRNA and protein expressions were measured by real-time PCR and Western blot, respectively. Promoter methylation was revealed by bisulfite sequencing. Histone modifications, such as histone 3 acetylation (H3Ac), fourth lysine trimethylation (H3K4me3), and ninth lysine dimethylation (H3K9me2), were quantified by chromatin immunoprecipitation (ChIP), followed by real-time PCR. The expressions and associations of chromatin remodeling genes were analyzed by real-time PCR and ChIP, respectively. Local tissues from SHRs showed higher expressions of
Ace1
mRNA and protein than those from the WKY rats.
Ace1
promoter was mostly unmethylated in all of the tissues from both strains. The
Ace1
promoter regions of SHR tissues were more enriched with H3Ac and H3K4me3, except in the lungs. The adrenal glands, hearts, and kidneys of SHRs showed less enrichment with H3K9me2. Valsartan treatment in SHRs decreased local
Ace1
mRNA and protein expressions, which were accompanied by higher H3K9me2, as well as less H3Ac and H3K4me3. In conclusion, ACE1 is upregulated in local tissues of SHRs via histone code modifications.
Collapse
Affiliation(s)
- Hae-Ahm Lee
- From the Department of Pharmacology (H.-A.L., H.-M.C., D.-Y.L., I.K.K.), Cardiovascular Research Institute (H.-A.L., K.-C.K., I.K.K.), Department of Physiology (H.S.H.), and Cell and Matrix Research Institute (H.-A.L., I.K.K.), Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Hyun-Min Cho
- From the Department of Pharmacology (H.-A.L., H.-M.C., D.-Y.L., I.K.K.), Cardiovascular Research Institute (H.-A.L., K.-C.K., I.K.K.), Department of Physiology (H.S.H.), and Cell and Matrix Research Institute (H.-A.L., I.K.K.), Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Dong-Youb Lee
- From the Department of Pharmacology (H.-A.L., H.-M.C., D.-Y.L., I.K.K.), Cardiovascular Research Institute (H.-A.L., K.-C.K., I.K.K.), Department of Physiology (H.S.H.), and Cell and Matrix Research Institute (H.-A.L., I.K.K.), Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Kee-Chul Kim
- From the Department of Pharmacology (H.-A.L., H.-M.C., D.-Y.L., I.K.K.), Cardiovascular Research Institute (H.-A.L., K.-C.K., I.K.K.), Department of Physiology (H.S.H.), and Cell and Matrix Research Institute (H.-A.L., I.K.K.), Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Hyung Soo Han
- From the Department of Pharmacology (H.-A.L., H.-M.C., D.-Y.L., I.K.K.), Cardiovascular Research Institute (H.-A.L., K.-C.K., I.K.K.), Department of Physiology (H.S.H.), and Cell and Matrix Research Institute (H.-A.L., I.K.K.), Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - In Kyeom Kim
- From the Department of Pharmacology (H.-A.L., H.-M.C., D.-Y.L., I.K.K.), Cardiovascular Research Institute (H.-A.L., K.-C.K., I.K.K.), Department of Physiology (H.S.H.), and Cell and Matrix Research Institute (H.-A.L., I.K.K.), Kyungpook National University School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
5
|
Su Z, Chen L, Liu Y, He X, Zhou Y, Xie Q, Yao S. 35MHz quartz crystal microbalance and surface plasmon resonance studies on the binding of angiotensin converting enzyme with lisinopril. Biosens Bioelectron 2011; 26:3240-5. [DOI: 10.1016/j.bios.2010.12.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/12/2010] [Accepted: 12/21/2010] [Indexed: 11/25/2022]
|
6
|
Kim SK, Wijesekara I. Development and biological activities of marine-derived bioactive peptides: A review. J Funct Foods 2010. [DOI: 10.1016/j.jff.2010.01.003] [Citation(s) in RCA: 510] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
7
|
Schlüter H, Apweiler R, Holzhütter HG, Jungblut PR. Finding one's way in proteomics: a protein species nomenclature. Chem Cent J 2009; 3:11. [PMID: 19740416 PMCID: PMC2758878 DOI: 10.1186/1752-153x-3-11] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 09/09/2009] [Indexed: 01/23/2023] Open
Abstract
Our knowledge of proteins has greatly improved in recent years, driven by new technologies in the fields of molecular biology and proteome research. It has become clear that from a single gene not only one single gene product but many different ones - termed protein species - are generated, all of which may be associated with different functions. Nonetheless, an unambiguous nomenclature for describing individual protein species is still lacking. With the present paper we therefore propose a systematic nomenclature for the comprehensive description of protein species. The protein species nomenclature is flexible and adaptable to every level of knowledge and of experimental data in accordance with the exact chemical composition of individual protein species. As a minimum description the entry name (gene name + species according to the UniProt knowledgebase) can be used, if no analytical data about the target protein species are available.
Collapse
|
8
|
Simunic J, Soyez D, Kamech N. Characterization of a membrane-bound angiotensin-converting enzyme isoform in crayfish testis and evidence for its release into the seminal fluid. FEBS J 2009; 276:4727-38. [PMID: 19656189 DOI: 10.1111/j.1742-4658.2009.07169.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present study, an isoform of angiotensin-converting enzyme was characterized from the testis of a decapod crustacean, the crayfish Astacus leptodactylus. Angiotensin-converting enzyme cDNA, obtained by 3'- to 5' RACE of testis RNAs, codes for a predicted one-domain protein similar to the mammalian germinal isoform of angiotensin-converting enzyme. All amino acid residues involved in enzyme activity are highly conserved, and a potential C-terminus transmembrane anchor may be predicted from the sequence. Comparison of this testicular isoform with angiotensin-converting enzyme from other crustaceans, namely Carcinus maenas, Homarus americanus (both reconstituted for this study from expressed-sequence tag data) and Daphnia pulex, suggests that membrane-bound angiotensin-converting enzyme occurs widely in crustaceans, conversely to other invertebrate groups where angiotensin-converting enzyme is predominantly a soluble protein. In situ hybridization and immunohistochemistry performed on testis sections show that angiotensin-converting enzyme mRNA is mainly localized in spermatogonias, whereas protein is present in spermatozoids. By contrast, in vas deferens, immunoreactivity is detected in the seminal fluid rather than in germ cells. Accordingly, angiotensin-converting enzyme activity assays of testis and vas deferens extracts demonstrate that the enzyme is present in the membrane fraction in testis, but in the soluble fraction in vas deferens. Taken together, the results obtained in the present study suggest that, during the migration of spermatozoids from testis to vas deferens, the enzyme is cleaved from the membrane of the germ cells and released into the seminal fluid. To our knowledge, this present study is the first to report such a maturation process for angiotensin-converting enzyme outside of mammals.
Collapse
Affiliation(s)
- Juraj Simunic
- Equipe Biogenèse des Signaux Peptidiques, ER3, Université Pierre et Marie Curie, Paris, France
| | | | | |
Collapse
|
9
|
Sabatini RA, Bersanetti PA, Farias SL, Juliano L, Juliano MA, Casarini DE, Carmona AK, Paiva ACM, Pesquero JB. Determination of angiotensin I-converting enzyme activity in cell culture using fluorescence resonance energy transfer peptides. Anal Biochem 2007; 363:255-62. [PMID: 17320031 DOI: 10.1016/j.ab.2007.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 01/13/2007] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
An assay using fluorescence resonance energy transfer peptides was developed to assess angiotensin I-converting enzyme (ACE) activity directly on the membrane of transfected Chinese hamster ovary cells (CHO) stably expressing the full-length somatic form of the enzyme. The advantage of the new method is the possibility of using selective substrates for the two active sites of the enzyme, namely Abz-FRK(Dnp)P-OH for somatic ACE, Abz-SDK(Dnp)P-OH for the N domain, and Abz-LFK(Dnp)-OH for the C domain. Hydrolysis of a peptide bond between the donor/acceptor pair (Abz/Dnp) generates detectable fluorescence, allowing quantitative measurement of the enzymatic activity. The kinetic parameter K(m) for the hydrolysis of the three substrates by ACE in this system was also determined and the values are comparable to those obtained using the purified enzyme in solution. The specificity of the activity was demonstrated by the complete inhibition of the hydrolysis by the ACE inhibitor lisinopril. Therefore, the results presented in this work show for the first time that determination of ACE activity directly on the surface of intact CHO cells is feasible and that the method is reliable and sensitive. In conclusion, we describe a methodology that may represent a new tool for the assessment of ACE activity which will open the possibility to study protein interactions in cells in culture.
Collapse
Affiliation(s)
- R A Sabatini
- Department of Biophysics, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lemeire E, Van Camp J, Smagghe G. Presence of angiotensin converting enzyme isoforms in larval lepidoptera (Spodoptera littoralis). Peptides 2007; 28:119-26. [PMID: 17161503 DOI: 10.1016/j.peptides.2006.08.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 08/09/2006] [Accepted: 08/09/2006] [Indexed: 10/23/2022]
Abstract
In this research the presence of angiotensin converting enzyme (ACE) in larvae of the lepidopteran Spodoptera littoralis was evaluated. Making use of the substrate Abz-FRK-(Dnp)P-OH and the specific inhibitor captopril at 10 microM, ACE activity was determined in a fluorescence assay for intact larvae, hemolymph, head, midgut and dorsal tissue. In dorsal tissue and hemolymph, ACE activity was highest. These data are consistent with a possible role for ACE in contractions of the dorsal vessel and metabolism of circulating peptide hormones in the hemolymph. After the presence of ACE was confirmed, a sequential procedure of anion exchange and size exclusion chromatography was applied to purify ACE from whole wandering larvae (last stage). With this procedure, three different ACE pools were collected that cleaved the fluorogenic substrate Abz-FRK-(Dnp)P-OH. Activity could be inhibited by a final concentration of 2.5 microM captopril. In addition, two out of three samples eluted at different salt concentration and thus ACE 1, 2 and 3 represent at least two different ACE isoforms. These data reveal that ACE is present in S. littoralis and that at least two out of three isolated ACE forms are truly isoforms.
Collapse
Affiliation(s)
- E Lemeire
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | | | | |
Collapse
|
11
|
Woodman ZL, Schwager SLU, Redelinghuys P, Chubb AJ, van der Merwe EL, Ehlers MRW, Sturrock ED. Homologous substitution of ACE C-domain regions with N-domain sequences: effect on processing, shedding, and catalytic properties. Biol Chem 2006; 387:1043-51. [PMID: 16895474 DOI: 10.1515/bc.2006.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Angiotensin-converting enzyme (ACE) exists as two isoforms: somatic ACE (sACE), comprised of two homologous N and C domains, and testis ACE (tACE), comprised of the C domain only. The N and C domains are both active, but show differences in substrate and inhibitor specificity. While both isoforms are shed from the cell surface via a sheddase-mediated cleavage, tACE is shed much more efficiently than sACE. To delineate the regions of tACE that are important in catalytic activity, intracellular processing, and regulated ectodomain shedding, regions of the tACE sequence were replaced with the corresponding N-domain sequence. The resultant chimeras C1-163Ndom-ACE, C417-579Ndom-ACE, and C583-623Ndom-ACE were processed to the cell surface of transfected Chinese hamster ovary (CHO) cells, and were cleaved at the identical site as that of tACE. They also showed acquisition of N-domain-like catalytic properties. Homology modelling of the chimeric proteins revealed structural changes in regions required for tACE-specific catalytic activity. In contrast, C164-416Ndom-ACE and C191-214Ndom-ACE demonstrated defective intracellular processing and were neither enzymatically active nor shed. Therefore, critical elements within region D164-V416 and more specifically I191-T214 are required for the processing, cell-surface targeting, and enzyme activity of tACE, and cannot be substituted for by the homologous N-domain sequence.
Collapse
Affiliation(s)
- Zenda L Woodman
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | | | | | | | | | | | | |
Collapse
|
12
|
Kessler SP, Senanayake PD, Gaughan C, Sen GC. Vascular expression of germinal ACE fails to maintain normal blood pressure in ACE-/- mice. FASEB J 2006; 21:156-66. [PMID: 17135368 DOI: 10.1096/fj.06-6678com] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Maintenance of normal blood pressure is critical for preserving the integrity of the cardiovascular system. Angiotensin 1-converting enzyme (ACE) regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-aldosterone system (RAAS) and the renal tubuloglomerular feedback response. Although the two structurally related isozymic forms of ACE both generate the vasoactive octapeptide angiotensin II (Ang II) with equal efficiency, both are expressed in a nonoverlapping tissue-restricted fashion. To discriminate the precise physiological role of each ACE in its requisite tissue in vivo, we expressed one ACE isoform exclusively in a single cell type of an Ace null mouse. Previously, we demonstrated that vascular endothelial cell-specific expression of transgenic somatic ACE (sACE) could restore normal blood pressure of Ace-null mice. In this current study, we expressed germinal ACE (gACE) in the vascular endothelial cells of the Ace null mouse. These mice exhibited correct renal structure, renal function, and normal growth rates. Although the mice had elevated levels of gACE bound to vascular endothelial cells and high levels of gACE and Ang II in the circulating serum, blood pressure was restored only partially. This study demonstrated that gACE, even when expressed in the vasculature, could not functionally substitute for sACE.
Collapse
Affiliation(s)
- Sean P Kessler
- Department of Molecular Genetics, Lerner Research Institute, 9500 Euclid Ave., Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
13
|
Abstract
Since the first identification of renin by Tigerstedt and Bergmann in 1898, the renin-angiotensin system (RAS) has been extensively studied. The current view of the system is characterized by an increased complexity, as evidenced by the discovery of new functional components and pathways of the RAS. In recent years, the pathophysiological implications of the system have been the main focus of attention, and inhibitors of the RAS such as angiotensin-converting enzyme (ACE) inhibitors and angiotensin (ANG) II receptor blockers have become important clinical tools in the treatment of cardiovascular and renal diseases such as hypertension, heart failure, and diabetic nephropathy. Nevertheless, the tissue RAS also plays an important role in mediating diverse physiological functions. These focus not only on the classical actions of ANG on the cardiovascular system, namely, the maintenance of cardiovascular homeostasis, but also on other functions. Recently, the research efforts studying these noncardiovascular effects of the RAS have intensified, and a large body of data are now available to support the existence of numerous organ-based RAS exerting diverse physiological effects. ANG II has direct effects at the cellular level and can influence, for example, cell growth and differentiation, but also may play a role as a mediator of apoptosis. These universal paracrine and autocrine actions may be important in many organ systems and can mediate important physiological stimuli. Transgenic overexpression and knock-out strategies of RAS genes in animals have also shown a central functional role of the RAS in prenatal development. Taken together, these findings may become increasingly important in the study of organ physiology but also for a fresh look at the implications of these findings for organ pathophysiology.
Collapse
Affiliation(s)
- Martin Paul
- Institute of Clinical Pharmacology and Toxicology, Campus Benjamin Franklin, Charité-University Medicine Berlin, Berlin, Germany
| | | | | |
Collapse
|
14
|
Hubert C, Savary K, Gasc JM, Corvol P. The hematopoietic system: a new niche for the renin–angiotensin system. ACTA ACUST UNITED AC 2006; 3:80-5. [PMID: 16446776 DOI: 10.1038/ncpcardio0449] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 09/28/2005] [Indexed: 11/10/2022]
Abstract
The role of the renin-angiotensin system was previously thought to be restricted to the cardiovascular system. It now appears that this system also has important functions in other tissues. Hematopoiesis can be affected by inhibitors of the renin system in patients and in various experimental models. The renin system, particularly angiotensin II, has a role in different stages of hematopoiesis, notably during the first wave in the chick embryo (primitive hematopoiesis) and in the human adult (definitive hematopoiesis). In addition, the renin-angiotensin system in mice is involved in reconstitutive hematopoiesis following experimental irradiation; inhibition of this system improved the hematopoietic recovery in this situation. The clinical relevance and therapeutic applications of these findings offer a new area of clinical research. In this article, we review the evidence for a role for the renin system in the control of hematopoiesis at its different stages.
Collapse
|
15
|
Kohlstedt K, Kellner R, Busse R, Fleming I. Signaling via the angiotensin-converting enzyme results in the phosphorylation of the nonmuscle myosin heavy chain IIA. Mol Pharmacol 2006; 69:19-26. [PMID: 16186248 DOI: 10.1124/mol.105.016733] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The phosphorylation of the short C-terminal cytoplasmic domain of the somatic angiotensin-converting enzyme (ACE) is involved in the regulation of enzyme shedding. We determined whether the phosphorylation of the cytoplasmic domain of ACE (ACEct) on Ser1270 regulates the cleavage/secretion of the enzyme by affecting its association with other proteins. ACE was associated with beta-actin and the nonmuscle myosin heavy chain IIA (MYH9) in endothelial cells, as determined by coimmunoprecipitation experiments as well as an ACEct affinity column. The ACE-associated MYH9 immunoprecipitated from (32)P-labeled endothelial cells was basally phosphorylated and cell stimulation with ACE inhibitors, or with bradykinin, increased the phosphorylation of MYH9. Casein kinase 2 (CK2) but not protein kinase C phosphorylated MYH9 in vitro, CK2 coprecipitated with MYH9 from endothelial cells and the phosphorylation of MYH9 in intact cells paralleled the phosphorylation of ACE on Ser1270 by CK2. The CK2 inhibitor 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole attenuated the phosphorylation of ACE and MYH9, disrupted their association, and enhanced the cleavage/secretion of ACE from the plasma membrane. Cytochalasin D decreased the interaction between ACE and MYH9 and stimulated ACE shedding. Although MYH9 was still able to associate with residual amounts of a nonphosphorylatable S1270A ACE mutant, no ACE inhibitor-induced increase in MYH9 phosphorylation could be detected in S1270A-expressing cells. These data indicate that the interaction of ACE with MYH9 determines ACE shedding and is modulated by phosphorylation processes. Furthermore, because ACE inhibitors affect the phosphorylation of MYH9, the phosphorylation of this class II myosin might contribute to the phenomenon of ACE signaling in endothelial cells.
Collapse
Affiliation(s)
- Karin Kohlstedt
- Vascular Signaling Group, Institut für Kardiovaskuläre Physiologie, Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
16
|
Chattopadhyay S, Santhamma KR, Sengupta S, McCue B, Kinter M, Sen GC, Sen I. Calmodulin binds to the cytoplasmic domain of angiotensin-converting enzyme and regulates its phosphorylation and cleavage secretion. J Biol Chem 2005; 280:33847-55. [PMID: 16096279 DOI: 10.1074/jbc.m501718200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rate of cleavage secretion of the enzymatically active ectodomain of angiotensin-converting enzyme (ACE) is regulated by tyrosine phosphorylation of the protein and by the phorbol ester, phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C. Here, we report that both calmodulin inhibitor (CaMI) and calmodulin kinase inhibitor could also enhance cleavage secretion of ACE. This effect was accompanied by the dissociation of calmodulin from a specific region within the cytoplasmic domain of ACE to which it had been bound. The same domain of ACE was phosphorylated, and both CaMI and PMA caused dephosphorylation of ACE as well. Mass spectrometric and mutational analyses identified Ser730 as the only phosphorylated residue in the cytoplasmic domain of ACE. The Ser730 --> Ala mutant of ACE was not phosphorylated, but it still bound calmodulin, and its cleavage secretion was enhanced by both CaMI and PMA. Similarly, when Ser730 was replaced by the phosphoserine mimetic, Asp, cleavage secretion of the resultant mutant remained susceptible to the enhancing effect of CaMI and PMA. These results demonstrate that, although CaMI and PMA can enhance both cleavage secretion of ACE and its dephosphorylation, the two effects are not mutually interdependent.
Collapse
Affiliation(s)
- Saurabh Chattopadhyay
- Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Theoretical Study of Gas-Phase Acidities of Selected Angiotensin-Converting Enzyme Inhibitors. Struct Chem 2005. [DOI: 10.1007/s11224-005-6348-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
|
19
|
Kessler SP, deS. Senanayake P, Scheidemantel TS, Gomos JB, Rowe TM, Sen GC. Maintenance of Normal Blood Pressure and Renal Functions Are Independent Effects of Angiotensin-converting Enzyme. J Biol Chem 2003. [DOI: 10.1074/jbc.m302347200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
20
|
Pauls K, Metzger R, Steger K, Klonisch T, Danilov S, Franke FE. Isoforms of angiotensin I-converting enzyme in the development and differentiation of human testis and epididymis. Andrologia 2003; 35:32-43. [PMID: 12558527 DOI: 10.1046/j.1439-0272.2003.00535.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Angiotensin I-converting enzyme (ACE; CD143, Kininase II, EC 3.4.15.1) is known to be crucial for male fertility in animal models. We therefore studied its testicular (tACE) and somatic (sACE) isoforms in foetal and adult human testis and epididymis using monoclonal antibodies and cRNA probes. During spermatogenesis, tACE was found only in differentiating germ cells and was the only isoform within the seminiferous tubules of adult men. Although tACE mRNA was present in spermatocytes, tACE protein was initially found in post-meiotic step 3 spermatids and increased markedly during further differentiation. The enzyme was strictly confined to the adluminal membrane site of elongating spermatids and was localized at the neck and midpiece region of released and ejaculated spermatozoa. In contrast, sACE was expressed heterogeneously in Leydig cells and endothelial cells of the testicular interstitium, and homogeneously along the luminal surface of epithelial cells lining the ductuli efferents, corpus and cauda of epididymis, and vas deferens. The cell- and site-restricted pattern of sACE corresponded to that found in foetal tissues except an additional and transient expression of sACE in foetal germ cells and foetal Sertoli cells. Our study documents for the first time in humans the regulation and unique cellular distribution of ACE isoforms during the ontogenesis of the lower male genital tract.
Collapse
Affiliation(s)
- K Pauls
- Department of Internal Medicine, Ludwig Maximilians University, Munich, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Kohlstedt K, Shoghi F, Müller-Esterl W, Busse R, Fleming I. CK2 phosphorylates the angiotensin-converting enzyme and regulates its retention in the endothelial cell plasma membrane. Circ Res 2002; 91:749-56. [PMID: 12386153 DOI: 10.1161/01.res.0000038114.17939.c8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soluble angiotensin-converting enzyme (ACE) is derived from the membrane-bound form by proteolytic cleavage of its C-terminal domain. Because intracellular events might be involved in the regulation of the cleavage process, we determined whether the cytoplasmic tail of ACE is phosphorylated and whether this process regulates secretion. Immunoprecipitation of ACE (180 kDa) from (32)P-labeled endothelial cells revealed that ACE is phosphorylated. Phosphorylation was not observed in endothelial cells overexpressing a mutant form of ACE (ACEDeltaS, all five cytoplasmic serine residues replaced by alanine). CK2 coprecipitated with ACE from endothelial cells, and CK2 phosphorylated both ACE and a peptide corresponding to the cytoplasmic tail. Mutation of serine(1270) within the CK2 consensus sequence almost abolished ACE phosphorylation. In ACE-overexpressing endothelial cells, ACE was mostly localized to the plasma membrane. However, no ACE was detected in the plasma membrane of ACEDeltaS-overexpressing cells, although a precursor ACE (170 kDa) was prominent in the endoplasmic reticulum and the cell supernatant contained substantial amounts of the soluble protein (175 kDa). A correlation between ACE-phosphorylation and secretion was confirmed in endothelial cells treated with the CK2-inhibitor, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole, which time-dependently decreased the phosphorylation of ACE and increased its shedding. These results indicate that the CK2-mediated phosphorylation of ACE regulates its retention in the plasma membrane and may determine plasma ACE levels.
Collapse
Affiliation(s)
- Karin Kohlstedt
- Institut für Kardiovaskuläre Physiologie, Klinikum der J.W.G.-Universität, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
22
|
Kessler SP, Gomos JB, Scheidemantel TS, Rowe TM, Smith HL, Sen GC. The germinal isozyme of angiotensin-converting enzyme can substitute for the somatic isozyme in maintaining normal renal structure and functions. J Biol Chem 2002; 277:4271-6. [PMID: 11723129 DOI: 10.1074/jbc.m109474200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The angiotensin-converting enzyme (ACE) gene encodes two structurally related isozymes, somatic ACE and germinal ACE, that are uniquely expressed in discrete locations in the body. The importance of ACE in these cell types was revealed by generating Ace -/- mice, which exhibit multiple abnormalities including renal structural defects and functions, hypotension, and male sterility. To test the hypothesis that specific physiological functions of ACE are mediated by isozyme-specific and tissue-specific expression patterns, we have used a transgenic approach to develop mouse strains that express just one ACE isoform in the target tissue of Ace -/- mice. The mice described in this report produce germinal ACE in sperm and serum. These mice were as healthy as wild type mice, and the males were fertile. Interestingly, they had normal kidney structure, fluid homeostasis, and partially restored urine concentration despite having low blood pressure. This result demonstrated that circulating germinal ACE is sufficient for maintaining normal kidney structure and fluid homeostasis but insufficient for restoring blood pressure to normal levels.
Collapse
Affiliation(s)
- Sean P Kessler
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
23
|
Tabacova SA, Kimmel CA. Enalapril: pharmacokinetic/dynamic inferences for comparative developmental toxicity. A review. Reprod Toxicol 2001; 15:467-78. [PMID: 11780954 DOI: 10.1016/s0890-6238(01)00161-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enalapril is an antihypertensive drug of the class of angiotensin-converting enzyme inhibitors (ACEI) used in pregnancy for treatment of pre-existing or pregnancy-induced hypertension. The use of ACE inhibitors (drugs that act directly on the renin-angiotensin system) during the second and third trimester of pregnancy in humans is associated with specific fetal and neonatal injury. The syndrome, termed "ACEI fetopathy" in humans, does not appear to have a similar counterpart in experimental animals. The present paper reviews pharmacokinetic and pharmacodynamic aspects of enalapril that are physiologically important during pregnancy and intrauterine development in humans and in experimental animal species with the aim of better understanding the comparability of the manifestations of enalapril developmental toxicity in animals and humans. The human fetus is at a disadvantage with regard to in utero enalapril exposure in comparison to some of the animal species for which gestational pharmacokinetic data are available. Important reasons for the higher vulnerability of the human fetus are its accessibility by enalapril and the earlier (relative to animal species) intrauterine development of organ systems that are specific targets of ACEI pharmacologic effect (the kidney and the renin-angiotensin system). In humans, these systems develop prior to calcarial ossification at the end of first trimester of pregnancy. The specific pharmacodynamic action of enalapril on these systems during fetal life is the chief determinant of the etiology and pathogenesis of ACEI fetopathy in humans. In contrast, in most of the studied animal species, these target systems are not developed until close to term when the fetus is relatively more mature (and therefore less vulnerable), so that the window of vulnerability is narrower in comparison to the human. Among animal species, the best concordance in fetal pharmacodynamics to the human is seen in the rhesus monkey, but further studies are necessary to determine if similar developmental pathology is induced in this animal model upon repeated administration of the drug during the relevant period of intrauterine development. Animal-human concordance of developmental toxicity is least likely in the rat because of greater disparities in enalapril availability to the fetus and the relative development of the kidney and skeletal ossification compared to that in humans.
Collapse
Affiliation(s)
- S A Tabacova
- National Center for Toxicological Research, US Food and Drug Administration, Rockville, MD 20857, USA.
| | | |
Collapse
|
24
|
Kleene KC. A possible meiotic function of the peculiar patterns of gene expression in mammalian spermatogenic cells. Mech Dev 2001; 106:3-23. [PMID: 11472831 DOI: 10.1016/s0925-4773(01)00413-0] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This review focuses on the striking differences in the patterns of transcription and translation in somatic and spermatogenic cells in mammals. In early haploid cells, mRNA translation evidently functions to restrict the synthesis of certain proteins, notably protamines, to transcriptionally inert late haploid cells. However, this does not explain why a substantial proportion of virtually all mRNA species are sequestered in translationally inactive free-messenger ribonucleoprotein particles (free-mRNPs) in meiotic cells, since most mRNAs undergo little or no increase in translational activity in transcriptionally active early haploid cells. In addition, most mRNAs in meiotic cells appear to be overexpressed because they are never fully loaded on polysomes and the levels of the corresponding protein are often much lower than the mRNA and are sometimes undetectable. A large number of genes are expressed at grossly higher levels in meiotic and/or early haploid spermatogenic cells than in somatic cells, yet they too are translated inefficiently. Many genes utilize alternative promoters in somatic and spermatogenic cells. Some of the resulting spermatogenic cell-altered transcripts (SCATs) encode proteins with novel functions, while others contain features in their 5'-UTRs, secondary structure or upstream reading frames, that are predicted to inhibit translation. This review proposes that the transcriptional machinery is modified to provide access to specific DNA sequences during meiosis, which leads to mRNA overexpression and creates a need for translational fine-tuning to prevent deleterious consequences of overproducing proteins.
Collapse
Affiliation(s)
- K C Kleene
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125-3393, USA..
| |
Collapse
|
25
|
Alhenc‐Gelas F, Corvol P. Molecular and Physiological Aspects of Angiotensin I Converting Enzyme. Compr Physiol 2000. [DOI: 10.1002/cphy.cp070303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Kessler SP, Rowe TM, Gomos JB, Kessler PM, Sen GC. Physiological non-equivalence of the two isoforms of angiotensin-converting enzyme. J Biol Chem 2000; 275:26259-64. [PMID: 10831599 DOI: 10.1074/jbc.m004006200] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structurally related somatic and germinal isoforms of angiotensin-converting enzyme (ACE) contain the same catalytic active center and are encoded by the same gene, whose disruption causes renal atrophy, hypotension, and male sterility. The reason for the evolutionary conservation of both isozymes is an enigma, because, in vitro, they have very similar enzymatic properties. Despite the common enzymatic properties, discrete expression of both isoforms is maintained in alternate cell types. We have previously shown that sperm-specific expression of transgenic germinal ACE in Ace -/- male mice restores fertility without curing their other abnormalities (Ramaraj, P., Kessler, S. P., Colmenares, C. & Sen, G. C. (1998) J. Clin. Invest. 102, 371-378). In this report we tested the biological equivalence of somatic ACE and germinal ACE utilizing an in vivo isozymic substitution approach. Here we report that restoration of male fertility was not achieved by the transgenic expression of enzymatically active, somatic ACE in the sperm of Ace -/- mice. Therefore, the requisite physiological functions of the two tissue-specific isozymes of ACE are not interchangeable.
Collapse
Affiliation(s)
- S P Kessler
- Departments of Molecular Biology and Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
27
|
Santhamma KR, Sen I. Specific cellular proteins associate with angiotensin-converting enzyme and regulate its intracellular transport and cleavage-secretion. J Biol Chem 2000; 275:23253-8. [PMID: 10783385 DOI: 10.1074/jbc.m000593200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) is an extensively glycosylated type I ectoprotein anchored in the plasma membrane by a hydrophobic transmembrane domain. In tissue culture as well as in vivo, the extracellular domain of ACE is released into the culture medium by a regulated proteolytic cleavage. To identify the cellular proteins that regulate ACE processing and cleavage-secretion, ACE-bound proteins were purified by affinity chromatography and characterized by microsequencing and Western blotting. One protein was identified as ribophorin and another as immunoglobulin-binding protein (BiP), a chaperone. Metabolic labeling and immunoprecipitation of ACE confirmed its interaction with BiP. Overexpression of BiP inhibited ACE secretion, an effect accentuated by the expression of an enzymatically inactive mutant BiP. This inhibition was caused by the retention of ACE precursors by BiP in the endoplasmic reticulum, as revealed by immunoprecipitation and immunofluorescence experiments. However, treatment with a phorbol ester, phorbol 12-myristate 13-acetate, enhanced ACE secretion even from cells overexpressing BiP. Western blot analysis of ACE-associated proteins with antibodies to protein kinase C (PKC) revealed the presence of its specific isozymes. Treatment with phorbol 12-myristate 13-acetate caused marked reduction in ACE association of selective PKC species. Thus, our studies have identified PKC and BiP as two proteins that directly interact with ACE and modulate its cell-surface expression and cleavage-secretion.
Collapse
Affiliation(s)
- K R Santhamma
- Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
28
|
Miano A, Gobbetti A, Zerani M, Quassinti L, Maccari E, Murri O, Amici D, Bramucci M. Different modulation of aromatase activity in frog testis in vitro by ACE and ANG II. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:R1261-7. [PMID: 10564195 DOI: 10.1152/ajpregu.1999.277.5.r1261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present research was to study the role of angiotensin-converting enzyme (ACE) and ANG II in amphibian (Rana esculenta) testicular steroidogenesis and prostaglandin production. Hormonal effects of ACE, ACE inhibitors, synthetic bullfrog ANG I, and [Val(5)]ANG II were determined in frog testis of prereproductive period. Production of 17beta-estradiol, progesterone, androgens, and PGE(2) and PGF(2alpha) was determined by incubating frog testes with ACE (2.5 mU/ml), captopril (0.1 mM), lisinopril (0.1 mM), [Val(5)]ANG II (1 microM), and synthetic bullfrog ANG I (1 microM). The analysis of the data showed an independent modulation of 17beta-estradiol and androgen production by ACE and ANG II. The ACE pathway caused a decrease of 17beta-estradiol production and an increase of androgen production in frog testes; on the other hand, the ANG II pathway increased 17beta-estradiol production and decreased androgen production. The determination of testicular aromatase activity showed a positive regulation by ANG II and a negative regulation by ACE. As for prostaglandin production, only ANG II influenced PGF(2alpha). These results suggest a new physiological role of ACE and ANG II in modulating steroidogenesis and prostaglandin production.
Collapse
Affiliation(s)
- A Miano
- Department of Molecular, University of Camerino, I-62032 Camerino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Schaufelberger M, Drexler H, Schieffer E, Swedberg K. Angiotensin-converting enzyme gene expression in skeletal muscle in patients with chronic heart failure. J Card Fail 1998; 4:185-91. [PMID: 9754589 DOI: 10.1016/s1071-9164(98)80005-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Skeletal muscle factors may influence functional limitation in patients with heart failure. The renin-angiotensin system is activated in chronic heart failure. Treatment with angiotensin-converting enzyme (ACE) inhibitors improve symptoms and prognosis. The goal of this study was to quantify and localize skeletal muscle ACE-mRNA in patients with chronic heart failure and in control subjects, and to elucidate skeletal muscle fiber area and capillary density. METHODS AND RESULTS Biopsies from the lateral vastus muscle were taken from 9 patients before and after treatment with enalapril and in 10 control subjects. ACE-mRNA was quantified with reverse transcription polymerase chain reaction. Immunohistochemistry was used to localize ACE within skeletal muscle. No difference in ACE-mRNA transcripts between patients and control subjects was detected, nor did ACE gene expression change after treatment with enalapril. The number of ACE-mRNA transcripts was related to muscle fiber area, whereas an inverse relationship between the number of ACE transcripts and capillary density was found. ACE was detected in the endothelial cells of capillaries in skeletal muscle. CONCLUSION ACE is expressed in skeletal muscle and is confined to endothelial cells. The close relationship between capillary density and number of ACE transcripts indicate that activation of the renin-angiotensin system has an impact on capillary growth.
Collapse
Affiliation(s)
- M Schaufelberger
- Department of Medicine, Sahlgrenska University Hospital/Ostra, Göteborg University, Sweden
| | | | | | | |
Collapse
|
31
|
Kessler SP, Rowe TM, Blendy JA, Erickson RP, Sen GC. A cyclic AMP response element in the angiotensin-converting enzyme gene and the transcription factor CREM are required for transcription of the mRNA for the testicular isozyme. J Biol Chem 1998; 273:9971-5. [PMID: 9545342 DOI: 10.1074/jbc.273.16.9971] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The angiotensin-converting enzyme (ACE) gene produces two mRNA species from tissue-specific promoters. The transcription start site of the mRNA for the smaller testicular isozyme (ACET) is located within an intron of the larger transcription unit that encodes the pulmonary isozyme (ACEP).We have previously demonstrated that a 298-base pair DNA fragment, 5' to the rabbit ACET mRNA transcription initiation site, can activate the testicular expression of a transgenic reporter gene. In the current study, using the same transgenic reporter system, we identified a putative cyclic AMP response element present within this DNA fragment to be absolutely essential for transcriptional activation. Moreover, we observed that ACET mRNA was not expressed in the testes of mice homozygous for a null mutation in the transcription factor CREM. However, in the same mice, ACEP mRNA was abundantly expressed in the lung. Our observations indicate that ACET mRNA expression in the testes is regulated by the putative cyclic AMP response element present 5' to the transcription start site and the corresponding transcription factor CREM.
Collapse
Affiliation(s)
- S P Kessler
- Department of Molecular Biology, The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
32
|
Deddish PA, Marcic B, Jackman HL, Wang HZ, Skidgel RA, Erdös EG. N-domain-specific substrate and C-domain inhibitors of angiotensin-converting enzyme: angiotensin-(1-7) and keto-ACE. Hypertension 1998; 31:912-7. [PMID: 9535414 DOI: 10.1161/01.hyp.31.4.912] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We used the isolated N- and C-domains of the angiotensin 1-converting enzyme (N-ACE and C-ACE; ACE; kininase II) to investigate the hydrolysis of the active 1-7 derivative of angiotensin (Ang) II and inhibition by 5-S-5-benzamido-4-oxo-6-phenylhexanoyl-L-proline (keto-ACE). Ang-(1-7) is both a substrate and an inhibitor; it is cleaved by N-ACE at approximately one half the rate of bradykinin but negligibly by C-ACE. It inhibits C-ACE, however, at an order of magnitude lower concentration than N-ACE; the IC50 of C-ACE with 100 micromol/L Ang I substrate was 1.2 micromol/L and the Ki was 0.13. While searching for a specific inhibitor of a single active site of ACE, we found that keto-ACE inhibited bradykinin and Ang I hydrolysis by C-ACE in approximately a 38- to 47-times lower concentration than by N-ACE; IC50 values with C-ACE were 0.5 and 0.04 micromol/L. Furthermore, we investigated how Ang-(1-7) acts via bradykinin and the involvement of its B2 receptor. Ang-(1-7) was ineffective directly on the human bradykinin B2 receptor transfected and expressed in Chinese hamster ovary cells. However, Ang-(1-7) potentiated arachidonic acid release by an ACE-resistant bradykinin analogue (1 micromol/L), acting on the B2 receptor when the cells were cotransfected with cDNAs of both B2 receptor and ACE and the proteins were expressed on the plasma membrane of Chinese hamster ovary cells. Thus like other ACE inhibitors, Ang-(1-7) can potentiate the actions of a ligand of the B2 receptor indirectly by binding to the active site of ACE and independent of blocking ligand hydrolysis. This potentiation of kinins at the receptor level can explain some of the well-documented kininlike actions of Ang-(1-7).
Collapse
Affiliation(s)
- P A Deddish
- University of Illinois College of Medicine, Chicago 60612-7344, USA
| | | | | | | | | | | |
Collapse
|
33
|
Sadhukhan R, Sen GC, Ramchandran R, Sen I. The distal ectodomain of angiotensin-converting enzyme regulates its cleavage-secretion from the cell surface. Proc Natl Acad Sci U S A 1998; 95:138-43. [PMID: 9419342 PMCID: PMC18152 DOI: 10.1073/pnas.95.1.138] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/1997] [Indexed: 02/05/2023] Open
Abstract
Angiotensin-converting enzyme (ACE) is a type I ectoprotein that is cleaved off the cell surface by a plasma membrane-bound metalloprotease. However, CD4, another type I ectoprotein does not undergo such cleavage-secretion. In this study, we investigated the structural determinants of the ACE protein that regulate the cleavage-secretion process. Substitution and deletion mutations revealed that the cytoplasmic domain, the transmembrane domain, and the juxtamembrane region encompassing the major and the minor cleavage sites of ACE do not regulate its cleavage. Moreover, a chimeric protein containing the distal extracellular domain of CD4 and the juxtamembrane, transmembrane, and the cytoplasmic domains of ACE, although transported to the cell surface, was not cleavage-secreted. In contrast, the distal extracellular domain of ACE was shown to be the important determinant: a protein containing the distal extracellular domain of ACE and the juxtamembrane, transmembrane, and cytoplasmic domain of CD4 was efficiently cleaved off the cell surface. The chimeric protein was cleaved within the CD4 sequence and the responsible enzymatic activity was inhibited by Compound 3, a relatively specific inhibitor of the ACE secretase activity. These results demonstrate that, in a chimeric protein, the distal extracellular domain of a cleavable protein, such as ACE, can induce a proteolytic cleavage within the juxtamembrane domain of an uncleaved protein such as CD4.
Collapse
Affiliation(s)
- R Sadhukhan
- Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
34
|
Gnessi L, Fabbri A, Spera G. Gonadal peptides as mediators of development and functional control of the testis: an integrated system with hormones and local environment. Endocr Rev 1997; 18:541-609. [PMID: 9267764 DOI: 10.1210/edrv.18.4.0310] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- L Gnessi
- Dipartimento di Fisiopatologia Medica, Università di Roma La Sapienza, Italy
| | | | | |
Collapse
|
35
|
Abstract
The identification of the presence of prorenin, renin, angiotensinogen, angiotensin-converting enzyme, angiotensin II (Ang II), and Ang II receptors in the ovary suggests that there is a functional ovarian renin-angiotensin system (RAS). It could play a significant role in such areas of ovarian physiology as follicular development, steroidogenesis, oocyte maturation, ovulation, and follicle atresia. Expression of the ovarian RAS is regulated by gonadotropins. Ang II, a bioactive octapeptide of RAS, has important effects as a paracrine/autocrine regulator at different stages of the reproductive cycle. Ang II modulates ovarian steroidogenesis and formation of the corpus luteum and also stimulates oocyte maturation and ovulation via Ang II receptors on granulosa cells. In addition, increasing evidence demonstrates that Ang II is a major factor in regulating the function of atretic follicles. In any physiologic system, aberrations result in the development of pathologic states. Disturbances in the ovarian RAS can be the cause or the result of such reproductive disorders as polycystic ovary syndrome, ovarian hyperstimulation syndrome, ovarian tumors, and ectopic pregnancy. Data support the concept of an active and regulated RAS in ovarian follicles. Species differences observed in the expression of ovarian RAS suggest varying functional roles among species with respect to ovarian physiology.
Collapse
Affiliation(s)
- Y Yoshimura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
36
|
Deddish PA, Jackman HL, Skidgel RA, Erdös EG. Differences in the hydrolysis of enkephalin congeners by the two domains of angiotensin converting enzyme. Biochem Pharmacol 1997; 53:1459-63. [PMID: 9260873 DOI: 10.1016/s0006-2952(97)00087-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The hydrolysis of enkephalin (Enk) congeners by the isolated N- (N-ACE) and C-domain of angiotensin I converting enzyme (ACE) and by the two-domain somatic ACE was investigated. Both Leu5- and Met5-Enk were cleaved faster by the C-domain than by N-ACE; rates with somatic ACE were 1600 and 2500 nmol/min/nmol enzyme with both active sites being involved. Substitution of Gly2 by D-Ala2 reduced the rate to 1/3rd to 1/7th of that of the Enks. N-ACE cleaved Met5-Enk-Arg6-Phe7 faster than the C-domain, probably with the highest turnover number of any naturally occurring ACE substrate (7600 min(-1)). This heptapeptide is also hydrolyzed in the absence of Cl-, but the activation by Cl- is unique; Cl- enhances the hydrolysis of the heptapeptide by N-ACE but inhibits it by the C-domain, yielding about a 5-fold difference in the turnover number at physiological pH. This difference may result in the predominant role of the N-domain in converting Met5-Enk-Arg6-Phe7 to Enk in vivo.
Collapse
Affiliation(s)
- P A Deddish
- University of Illinois College of Medicine at Chicago, Department of Pharmacology, 60612, U.S.A
| | | | | | | |
Collapse
|
37
|
Taylor CA, Coates D, Shirras AD. The Acer gene of Drosophila codes for an angiotensin-converting enzyme homologue. Gene 1996; 181:191-7. [PMID: 8973330 DOI: 10.1016/s0378-1119(96)00503-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mammalian angiotensin-converting enzyme (ACE) exists as two forms, somatic (sACE), controlling blood pressure via angiotensin II, and testicular (tACE), whose function is unknown. The former has two highly homologous N- and C-terminal Zn2+ metallopeptidase active sites, whereas the latter only has one, which is identical to the C-terminal domain of sACE. We have sequenced 2452 bases of a 3.1-kb mRNA whose predicted translation product shows 40% identity with mammalian testicular ACE, and 48% identity with an already identified Drosophila homologue of ACE (Ance). We have termed this gene Acer (Angiotensin converting enzyme-related). Acer mRNA is found in the developing dorsal vessel (heart) during embryogenesis. Phylogenetic analysis indicates that duplication of an ancestral ACE gene occurred in the lineage leading to the arthropods, independently of the duplication which gave rise to the two domain somatic ACE of mammals.
Collapse
Affiliation(s)
- C A Taylor
- Division of Biological Sciences, Lancaster University, UK
| | | | | |
Collapse
|
38
|
Bevilacqua M, Vago T, Rogolino A, Conci F, Santoli E, Norbiato G. Affinity of angiotensin I-converting enzyme (ACE) inhibitors for N- and C-binding sites of human ACE is different in heart, lung, arteries, and veins. J Cardiovasc Pharmacol 1996; 28:494-9. [PMID: 8891872 DOI: 10.1097/00005344-199610000-00003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Angiotensin-converting enzyme (ACE) has two enzymatically active domains: a C-domain in the carboxy terminal region and an N-domain in the amino terminal region. We based the pharmacologic characterization of these sites on the rat testis-lung model. In testis, only a truncate form of ACE is present (C-site), whereas both N- and C-sites are present in lung. In this model, captopril was shown to be N-selective and delaprilat to be C-selective. Ro 31-8472, a cilazapril derivative, and enalaprilat proved to be not site selective. We used these drugs to evaluate the affinity of C and N sites in various human tissues involved in the cardiovascular actions of ACE and used [125I]Ro31-8472 as ligand. The number and affinity of ACE binding sites were 17,680 +/- 2,345 fmol/mg protein (Kd = 0.32 +/- 0.04 nM) in lung, 560 +/- 65 (Kd = 0.36 +/- 0.05 nM) in heart, 237 +/- 51 (Kd = 0.37 +/- 0.06 nM) in coronary artery, 236 +/- 63 (Kd = 0.14 +/- 0.05 nM) in saphenous vein, and 603 +/- 121 (Kd = 0.50 +/- 0.06 nM) in mammary artery. The affinity (pKi) of captopril for the N sites ranged from 9.40 +/- 0.14 (lung) to 8.41 +/- 0.10 (coronary artery). The affinity for the C-site by delaprilat ranged from 9.97 +/- 0.15 (coronary artery) to 9.10 +/- 0.14 (mammary artery). Therefore, the affinity of C- and N-sites of ACE for ACE inhibitor (ACEI) drugs is different according to the organ involved. Because ACE is a glycosylated enzyme and glycosylation is organ dependent, we suggest that organ-specific glycosylation affects the binding characteristics of ACE inhibitors to N- or C-site of human tissular ACE.
Collapse
Affiliation(s)
- M Bevilacqua
- Endocrinology Department, L Sacco Hospital (Vialba), Milan, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Rousseau-Plasse A, Lenfant M, Potier P. Catabolism of the hemoregulatory peptide N-Acetyl-Ser-Asp-Lys-Pro: a new insight into the physiological role of the angiotensin-I-converting enzyme N-active site. Bioorg Med Chem 1996; 4:1113-9. [PMID: 8831983 DOI: 10.1016/0968-0896(96)00104-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The tetrapeptide N-Acetyl-Ser-Asp-Lys-Pro (AcSDKP) was first isolated from bone marrow extracts and shown to be involved in the negative control of hematopoiesis by preventing the recruitment of primitive stem cells into S-phase. In vitro studies on AcSDKP catabolism in human plasma revealed that AcSDKP was cleaved by plasmatic angiotensin-I converting enzyme (ACE). The evaluation of the respective involvement of the two active sites of ACE in AcSDKP degradation in vitro revealed that the N-active site was preferentially involved in this catabolism. Moreover, an in vivo study on healthy volunteers of the catalytic efficiency of ACE towards AcSDKP after administration of Captopril demonstrated that AcSDKP was a physiological substrate of ACE. AcSDKP might represent the first natural specific substrate of the N-active site of the enzyme. These results pose the question of a potential role of ACE in the control of hematopoiesis as well as possible applications of ACE inhibitors to cope with dysfunctions in which AcSDKP might exert physiological control.
Collapse
Affiliation(s)
- A Rousseau-Plasse
- Centre National de la Recherche Scientifique, Institut de Chimie de Substances Naturelles, Gif sur Yvette, France
| | | | | |
Collapse
|
40
|
Sadhukhan R, Sen I. Different glycosylation requirements for the synthesis of enzymatically active angiotensin-converting enzyme in mammalian cells and yeast. J Biol Chem 1996; 271:6429-34. [PMID: 8626443 DOI: 10.1074/jbc.271.11.6429] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
For facilitating crystallization and structural studies of the testicular isozyme of angiotensin-converting enzyme (ACE,), we attempted the production of enzymatically active ACET proteins which are unglycosylated or underglycosylated. Expression in Escherichia coli of the rabbit ACET cDNA resulted in the synthesis of an unglycosylated but inactive protein. Similarly, unglycosylated ACET synthesized in HeLa cells, by using a cDNA in which all five potential N-glycosylation sites had been mutated, was inactive and rapidly degraded. Several ACET variants carrying mutations in one or more of the potential N-glycosylation sites were used to examine the role of glycosylation at specific sites on ACET synthesis, transport to the cell surface, cleavage processing, and enzyme activity. These experiments demonstrated that allowing glycosylation only at the first or the second site, as counted from the NH2 terminus, was sufficient for normal synthesis and processing of active ACET. In contrast, ACETg3, which had only the third glycosylation site available, was unglycosylated, enzymatically inactive and rapidly degraded. N-Glycosylated ACET could also be produced in yeast. Surprisingly, the mutant ACETg3 was synthesized, N-glycosylated, and properly transported in yeast. Wild type and mutant ACE proteins were cleavage-secreted from yeast and enzymatically active.
Collapse
Affiliation(s)
- R Sadhukhan
- Department of Molecular Cardiology, Research Institute, The Cleveland Clinic Foundation, Ohio 44195, USA
| | | |
Collapse
|
41
|
Yang B, Ma T, Verkman AS. cDNA cloning, gene organization, and chromosomal localization of a human mercurial insensitive water channel. Evidence for distinct transcriptional units. J Biol Chem 1995; 270:22907-13. [PMID: 7559426 DOI: 10.1074/jbc.270.39.22907] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Two distinct cDNAs encoding a human mercurial insensitive water channel (hMIWC) were cloned from a fetal brain cDNA library. The longest open reading frame of cDNA clone hMIWC1 encoded 301 amino acids with 94% identity to rat MIWC (Hasegawa, H., Ma, T., Skach, W., Matthay, M. M., and Verkman, A. S. (1994) J. Biol. Chem. 269, 5497-5500). A second cDNA (hMIWC2) had a distinct 5'-sequence upstream from base pair (bp) -34 in clone hMIWC1 and contained two additional inframe translation start codons. Expression of hMIWC cRNAs in Xenopus oocytes increased osmotic water permeability by 10-20-fold in a mercurial insensitive manner. Cell-free translation in a reticulocyte lysate/microsome system generated single protein bands at 30 kDa (hMIWC1) and 32-34 kDa (hMIWC2) without glycosylation. Northern blot and polymerase chain reaction/Southern blot analysis showed expression of mRNA encoding hMIWC in human brain - muscle >> heart, kidney, lung, and trachea. Analysis of hMIWC genomic clones indicated two distinct but overlapping transcription units from which multiple hMIWC mRNAs are transcribed. The promoter region of hMIWC1 was identified and contained TATA, CAAT, AP-1, and other regulatory elements. Primer extension revealed hMIWC1 transcription initiation at 46 bp downstream from the TATA box. There were three introns (lengths 0.9, 0.2, and 6 kilobases) in the hMIWC1 coding sequence at bp 381, 546, and 627. A distinct 5'-sequence in clone hMIWC2 suggested an alternative upstream transcription initiation site. Two alternatively spliced, nonfunctional hMIWC transcripts with exon 3 deletion and partial exon 4 deletion were identified. A poly(A)+ signal sequence was identified at 138 bp downstream of the translation stop codon. Genomic Southern blot analysis indicated the presence of a single copy hMIWC gene; chromosome-specific polymerase chain reaction and in situ hybridization localized hMIWC to human chromosome 18q22. The structural organization of the hMIWC gene represents a first step in definition of hMIWC differential expression, regulation, and possible role in human disease.
Collapse
Affiliation(s)
- B Yang
- Department of Medicine, University of California, San Francisco 94143-0521, USA
| | | | | |
Collapse
|
42
|
Goraya TY, Kessler SP, Stanton P, Hanson RW, Sen GC. The cyclic AMP response elements of the genes for angiotensin converting enzyme and phosphoenolpyruvate carboxykinase (GTP) can mediate transcriptional activation by CREM tau and CREM alpha. J Biol Chem 1995; 270:19078-85. [PMID: 7642572 DOI: 10.1074/jbc.270.32.19078] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The potential of the CREM family of proteins to activate transcription of the genes encoding the testis-specific isozyme of angiotensin converting enzyme (ACET) and the gluconeogenic enzyme, phosphoenolpyruvate carboxykinase (GTP) (PEPCK) (EC 4.1.1.32) were investigated. Both CREM tau and CREM alpha bind efficiently to the putative cyclic AMP response element (CRE) present in the ACET gene (CRET) and to the CRE in the PEPCK gene. In HepG2 cells, the CRE was required for the strong stimulation by CREM tau of the expression of a chimeric PEPCK (-210 to +73)-chloramphenicol acetyl transferase (CAT) gene. The CRE could be mutated to the CRET sequence without losing the stimulatory effects of CREM tau. However, a similar chimeric gene driven by the regulatory region of the ACET gene, which contains the CRET site, could only be stimulated by CREM tau when its imperfect TATA element was mutated to an authentic TATA. Surprisingly, CREM alpha, an alleged inhibitor of CRE-mediated transcription, stimulated the expression of both PEPCK-CAT and ACET-CAT genes in HepG2 cells, a process which required the presence of the CRE and the CRET sites, respectively. In contrast, when the same CRE elements were used to drive the transcription of a chimeric gene containing the thymidine kinase promoter linked to the CAT structural gene, CREM alpha inhibited its expression in HepG2 and JEG3 cells. The expression of the same chimeric gene, however, was stimulated by CREM alpha in F9 embryonal carcinoma cells. These results demonstrated that the nature of the transcriptional effects of CREM isoforms on CRE-mediated transcription depends on the specific gene, the specific cell type and the promoter context of the CRE site.
Collapse
Affiliation(s)
- T Y Goraya
- Department of Molecular Biology, Cleveland Clinic Foundation, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
43
|
Cornell MJ, Williams TA, Lamango NS, Coates D, Corvol P, Soubrier F, Hoheisel J, Lehrach H, Isaac RE. Cloning and expression of an evolutionary conserved single-domain angiotensin converting enzyme from Drosophila melanogaster. J Biol Chem 1995; 270:13613-9. [PMID: 7775412 DOI: 10.1074/jbc.270.23.13613] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mammalian somatic angiotensin converting enzyme (EC 3.4.15.1, ACE) consists of two highly homologous (N- and C-) domains encoded by a duplicated gene. We have identified an apparent single-domain (67 kDa) insect angiotensin converting enzyme (AnCE) in embryos of Drosophila melanogaster which converts angiotensin I to angiotensin II (Km, 365 microM), removes Phe-Arg from the C terminus of bradykinin (Km, 22 microM), and is inhibited by ACE inhibitors, captopril (IC50 = 1.1 x 10(-9) M) and trandolaprilat (IC50 = 1.6 x 10(-8) M). We also report the cloning and expression of a Drosophila AnCE cDNA which codes for a single-domain 615-amino acid protein with a predicted 17-amino acid signal peptide and regions with high levels of homology to both the N- and C-domains of mammalian somatic ACE, especially around the active site consensus sequence. Northern analysis identified a single 2.1-kilobase mRNA in Drosophila embryos, and Southern analysis of Drosophila genomic DNA indicates that the insect gene is not duplicated. When expressed in COS-7 cells, the AnCE protein is a secreted enzyme, which converts angiotensin I to angiotensin II and is inhibited by captopril (IC50 = 5.6 x 10(-9) M) and trandolaprilat (IC50 = 2 x 10(-8) M). The evolutionary significance of these results is discussed.
Collapse
Affiliation(s)
- M J Cornell
- Department of Pure & Applied Biology, University of Leeds, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
We report the isolation and characterization of a putative angiotensin converting enzyme (ACE) in Drosophila, called Race. General interest in mammalian ACE stems from its association with high blood pressure; ACE has also been implicated in a variety of other physiological processes including the processing of neuropeptides and gut peristalsis. Mammalian ACE is a membrane associated zinc binding protease that converts angiotensin I (A I) into angiotensin II (A II). A II functions as a potent vasoconstrictor by triggering a G-coupled receptor system in the smooth muscles that line blood vessels. Drosophila Race is composed of 615 amino acid residues, and shares extensive sequence identity with mammalian ACE over its entire length (over 42% overall identity and greater than 60% similarity). Evidence is presented that Race might correspond to a target of the homeobox regulatory gene, zerknullt (zen). Soon after zen expression is restricted to the dorsal-most regions of the embryonic ectoderm, Race is activated in a coincident pattern and becomes associated with the amnioserosa during germ band elongation, shortening and heart morphogenesis. After germ band elongation, Race is also expressed in both the anterior and posterior midgut, where it persists throughout embryogenesis. Race expression is lost from the dorsal ectoderm in either zen- or dpp- mutants, although gut expression is unaffected. P-transformation assays and genetic complementation tests suggest that Race corresponds to a previously characterized lethal complementation group, 1(2)34Eb. Mutants die during larval/pupal development, and transheterozygotes for two different lethal alleles exhibit male sterility. We propose that Race might play a role in the contractions of the heart, gut, or testes and also suggest that Hox genes might be important for coordinating both developmental and physiological processes.
Collapse
Affiliation(s)
- K Tatei
- Department of Biology, UCSD, La Jolla 92093-0322, USA
| | | | | | | |
Collapse
|
45
|
Thekkumkara TJ, Du J, Dostal DE, Motel TJ, Thomas WG, Baker KM. Stable expression of a functional rat angiotensin II (AT1A) receptor in CHO-K1 cells: rapid desensitization by angiotensin II. Mol Cell Biochem 1995; 146:79-89. [PMID: 7651382 DOI: 10.1007/bf00926885] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The octapeptide angiotensin II mediates the physiological actions of the renin-angiotensin system through activation of several angiotensin II receptor subtypes; in particular the AT1. In many tissues, the presence of multiple angiotensin II receptor subtypes, together with a low number of receptors, makes it difficult to study biological responses to physiological concentrations (10(-11)-10(-9) M) of angiotensin II. Also, cultured cells show diminished angiotensin II receptor binding with respect to time in culture and passage number. To address these problems, we expressed the recombinant AT1A receptor in CHO-K1 cells. The stably transfected receptor was characterized using radioligand binding studies and functional coupling to cytosolic free calcium. Radioligand binding of [125I] angiotensin II to the angiotensin II receptor was specific, saturable, reversible and modulated by guanine nucleotides. Like the endogenous AT1A receptor, reported in a variety of tissues, the specific, noncompetitive, nonpeptide AII receptor antagonist, EXP3174, blocked binding of [125I] angiotensin II to the transfected receptor. Scatchard analysis demonstrated that the transfected receptor had a dissociation constant of 1.9 nM with a density of 3.4 pmol/mg protein. An important feature of many of the responses to angiotensin II is the rapid desensitization that occurs following agonist occupancy and the development of tachyphylaxis. In AT1A receptor transfected CHO-K1 cells, angiotensin II (10(-9) M) stimulated a rapid increase in cytosolic free calcium that was completely desensitized within 50 sec following receptor occupancy. Agonist induced desensitization was unaffected when receptor internalization was blocked by pretreatment with concanavalin A or incubation at 4 degrees C, and no changes in AT1A receptor affinity or number were observed. Receptor desensitization was also unaffected by inhibition or activation of protein kinase C. Thus, we have established a permanent, high-level transfectant of the AT1A receptor in CHO-K1 cells and have shown that these receptors rapidly desensitize following exposure to physiological concentrations of agonist. The mechanism of rapid desensitization is not related to receptor sequestration, internalization or controlled by PKC phosphorylation. This provides an excellent model for studying AII actions mediated through a specific receptor subtype, at subnanomolar concentrations.
Collapse
Affiliation(s)
- T J Thekkumkara
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822, USA
| | | | | | | | | | | |
Collapse
|
46
|
Rousseau A, Michaud A, Chauvet MT, Lenfant M, Corvol P. The hemoregulatory peptide N-acetyl-Ser-Asp-Lys-Pro is a natural and specific substrate of the N-terminal active site of human angiotensin-converting enzyme. J Biol Chem 1995; 270:3656-61. [PMID: 7876104 DOI: 10.1074/jbc.270.8.3656] [Citation(s) in RCA: 250] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Angiotensin I-converting enzyme (ACE) is a zinc-dipeptidyl carboxypeptidase, which contains two similar domains, each possessing a functional active site. Respective involvement of each active site in the degradation of the circulating peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), a negative regulator of hematopoietic stem cell proliferation, was studied by using wild-type recombinant ACE and two full-length mutants containing a single functional site. Both the N- and C-active sites of ACE exhibit dipeptidyl activity toward AcSDKP, with Km values of 31 and 39 microM, respectively. However, the N-active site hydrolyzes the peptide 50 times faster compared with the C-active site, with kcat/Km values of 0.5 and 0.01 microM-1.s-1, respectively. The predominant role of the N-active site in AcSDKP hydrolysis was confirmed by the inhibition of hydrolysis using a monoclonal antibody specifically directed against the N-active site. The N-domain specificity for AcSDKP will aid the identification of specific inhibitors for this domain. This is the first report of a highly specific substrate for the N-active site of ACE, with kinetic constants in the range of physiological substrates, suggesting that ACE might be involved via its N-terminal active site in the in vivo regulation of the local concentration of this hemoregulatory peptide.
Collapse
Affiliation(s)
- A Rousseau
- Centre National de la Recherche Scientifique, Institut de Chimie des Substances Naturelles, Gif-Yvette, France
| | | | | | | | | |
Collapse
|
47
|
Falkenhahn M, Franke F, Bohle RM, Zhu YC, Stauss HM, Bachmann S, Danilov S, Unger T. Cellular distribution of angiotensin-converting enzyme after myocardial infarction. Hypertension 1995; 25:219-26. [PMID: 7531176 DOI: 10.1161/01.hyp.25.2.219] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We studied the cellular distribution of angiotensin-converting enzyme (ACE) in the heart related to the cell types involved in left ventricular repair and remodeling before and after myocardial infarction by immunohistochemical techniques using monoclonal and polyclonal antibodies. In noninfarcted myocardium of both human and rat, ACE expression was confined to endothelial cells and subendocardial cell layers of the aortic valve. ACE was prominent in endothelia of small arteries and arterioles, whereas only half the coronary capillaries were immunoreactive and venous vessels were almost completely devoid of the enzyme. In a rat model of myocardial infarction, ACE distribution was determined 1, 3, and 7 days and 2, 3, and 6 weeks after coronary occlusion. Three and 7 days after infarction, endothelial cells of sprouting capillaries and macrophages in the marginal zone of necrosis revealed ACE expression. In both human and rat with the onset of fibrosis, intense staining of the enzyme was found in the marginal zone of the repair tissue. In situ hybridization for collagen type I in the rat revealed that zones with high collagen content had almost no ACE immunoreactivity. Vascular smooth muscle cells and cardiomyocytes revealed no ACE expression throughout the study. We conclude that endothelial cells are the principal source for the expression of ACE after myocardial infarction. The observed induction of ACE with the onset of fibrosis suggests a role of this enzyme that is related to tissue repair and remodeling.
Collapse
Affiliation(s)
- M Falkenhahn
- Department of Pharmacology, University of Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Corvol P, Jeunemaitre X, Charru A, Kotelevtsev Y, Soubrier F. Role of the renin-angiotensin system in blood pressure regulation and in human hypertension: new insights from molecular genetics. RECENT PROGRESS IN HORMONE RESEARCH 1995; 50:287-308. [PMID: 7740162 DOI: 10.1016/b978-0-12-571150-0.50017-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- P Corvol
- INSERUM U 36, Collège de France, Paris
| | | | | | | | | |
Collapse
|
49
|
Mukhopadhyay AK, Cobilanschi J, Brunswig-Spickenheier B, Leidenberger FA. Relevance of the tissue prorenin-renin-angiotensin system to male reproductive physiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 377:269-77. [PMID: 7484428 DOI: 10.1007/978-1-4899-0952-7_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- A K Mukhopadhyay
- Institute for Hormone and Fertility Research, University of Hamburg, Germany
| | | | | | | |
Collapse
|
50
|
Corvol P, Williams TA, Soubrier F. Peptidyl dipeptidase A: angiotensin I-converting enzyme. Methods Enzymol 1995; 248:283-305. [PMID: 7674927 DOI: 10.1016/0076-6879(95)48020-x] [Citation(s) in RCA: 176] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- P Corvol
- Institut National de la Santé et de la Recherche Medicale, Collége de France, Paris
| | | | | |
Collapse
|