1
|
Latoscha A, Wörmann ME, Tschowri N. Nucleotide second messengers in Streptomyces. MICROBIOLOGY-SGM 2020; 165:1153-1165. [PMID: 31535967 DOI: 10.1099/mic.0.000846] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibiotic producing Streptomyces sense and respond to environmental signals by using nucleotide second messengers, including (p)ppGpp, cAMP, c-di-GMP and c-di-AMP. As summarized in this review, these molecules are important message carriers that coordinate the complex Streptomyces morphological transition from filamentous growth to sporulation along with the secondary metabolite production. Here, we provide an overview of the enzymes that make and break these second messengers and suggest candidates for (p)ppGpp and cAMP enzymes to be studied. We highlight the target molecules that bind these signalling molecules and elaborate individual functions that they control in the context of Streptomyces development. Finally, we discuss open questions in the field, which may guide future studies in this exciting research area.
Collapse
Affiliation(s)
- Andreas Latoscha
- Department of Biology / Microbiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Mirka E Wörmann
- Department of Biology / Microbiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Natalia Tschowri
- Department of Biology / Microbiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
2
|
González-Velasco Ó, De Las Rivas J, Lacal J. Proteomic and Transcriptomic Profiling Identifies Early Developmentally Regulated Proteins in Dictyostelium Discoideum. Cells 2019; 8:cells8101187. [PMID: 31581556 PMCID: PMC6830349 DOI: 10.3390/cells8101187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cyclic AMP acts as a secondary messenger involving different cellular functions in eukaryotes. Here, proteomic and transcriptomic profiling has been combined to identify novel early developmentally regulated proteins in eukaryote cells. These proteomic and transcriptomic experiments were performed in Dictyostelium discoideum given the unique advantages that this organism offers as a eukaryotic model for cell motility and as a nonmammalian model of human disease. By comparing whole-cell proteome analysis of developed (cAMP-pulsed) wild-type AX2 cells and an independent transcriptomic analysis of developed wild-type AX4 cells, our results show that up to 70% of the identified proteins overlap in the two independent studies. Among them, we have found 26 proteins previously related to cAMP signaling and identified 110 novel proteins involved in calcium signaling, adhesion, actin cytoskeleton, the ubiquitin-proteasome pathway, metabolism, and proteins that previously lacked any annotation. Our study validates previous findings, mostly for the canonical cAMP-pathway, and also generates further insight into the complexity of the transcriptomic changes during early development. This article also compares proteomic data between parental and cells lacking glkA, a GSK-3 kinase implicated in substrate adhesion and chemotaxis in Dictyostelium. This analysis reveals a set of proteins that show differences in expression in the two strains as well as overlapping protein level changes independent of GlkA.
Collapse
Affiliation(s)
- Óscar González-Velasco
- Bioinformatics and Functional Genomics Research Group. Cancer Research Center (CIC-IBMCC, CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Research Group. Cancer Research Center (CIC-IBMCC, CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Jesus Lacal
- Department of Microbiology and Genetics, Faculty of Biology, University of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
3
|
Lacal Romero J, Shen Z, Baumgardner K, Wei J, Briggs SP, Firtel RA. The Dictyostelium GSK3 kinase GlkA coordinates signal relay and chemotaxis in response to growth conditions. Dev Biol 2018; 435:56-72. [PMID: 29355521 DOI: 10.1016/j.ydbio.2018.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/21/2022]
Abstract
GSK3 plays a central role in orchestrating key biological signaling pathways, including cell migration. Here, we identify GlkA as a GSK3 family kinase with functions that overlap with and are distinct from those of GskA. We show that GlkA, as previously shown for GskA, regulates the cell's cytoskeleton through MyoII assembly and control of Ras and Rap1 function, leading to aberrant cell migration. However, there are both qualitative and quantitative differences in the regulation of Ras and Rap1 and their downstream effectors, including PKB, PKBR1, and PI3K, with glkA- cells exhibiting a more severe chemotaxis phenotype than gskA- cells. Unexpectedly, the severe glkA- phenotypes, but not those of gskA-, are only exhibited when cells are grown attached to a substratum but not in suspension, suggesting that GlkA functions as a key kinase of cell attachment signaling. Using proteomic iTRAQ analysis we show that there are quantitative differences in the pattern of protein expression depending on the growth conditions in wild-type cells. We find that GlkA expression affects the cell's proteome during vegetative growth and development, with many of these changes depending on whether the cells are grown attached to a substratum or in suspension. These changes include key cytoskeletal and signaling proteins known to be essential for proper chemotaxis and signal relay during the aggregation stage of Dictyostelium development.
Collapse
Affiliation(s)
- Jesus Lacal Romero
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | - Zhouxin Shen
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | - Kimberly Baumgardner
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | - Jing Wei
- JadeBio, Inc., 505 Coast Boulevard South Suite 206, La Jolla, CA 92037, USA
| | - Steven P Briggs
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | - Richard A Firtel
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA.
| |
Collapse
|
4
|
Schulte J, Baumgart M, Bott M. Identification of the cAMP phosphodiesterase CpdA as novel key player in cAMP-dependent regulation in Corynebacterium glutamicum. Mol Microbiol 2016; 103:534-552. [PMID: 27862445 DOI: 10.1111/mmi.13574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2016] [Indexed: 02/03/2023]
Abstract
The second messenger cyclic AMP (cAMP) plays an important role in the metabolism of Corynebacterium glutamicum, as the global transcriptional regulator GlxR requires complex formation with cAMP to become active. Whereas a membrane-bound adenylate cyclase, CyaB, was shown to be involved in cAMP synthesis, enzymes catalyzing cAMP degradation have not been described yet. In this study we identified a class II cAMP phosphodiesterase named CpdA (Cg2761), homologs of which are present in many Actinobacteria. The purified enzyme has a Kmapp value of 2.5 ± 0.3 mM for cAMP and a Vmaxapp of 33.6 ± 4.3 µmol min-1 mg-1 . A ΔcpdA mutant showed a twofold increased cAMP level on glucose and reduced growth rates on all carbon sources tested. A transcriptome comparison revealed 247 genes with a more than twofold altered mRNA level in the ΔcpdA mutant, 82 of which are known GlxR targets. Expression of cpdA was positively regulated by GlxR, thereby creating a negative feedback loop allowing to counteract high cAMP levels. The results show that CpdA plays a key role in the control of the cellular cAMP concentration and GlxR activity and is crucial for optimal metabolism and growth of C. glutamicum.
Collapse
Affiliation(s)
- Julia Schulte
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, 52425, Germany
| | - Meike Baumgart
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, 52425, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, 52425, Germany
| |
Collapse
|
5
|
Gross I, Durner J. In Search of Enzymes with a Role in 3', 5'-Cyclic Guanosine Monophosphate Metabolism in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:576. [PMID: 27200049 PMCID: PMC4858519 DOI: 10.3389/fpls.2016.00576] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/14/2016] [Indexed: 05/07/2023]
Abstract
In plants, nitric oxide (NO)-mediated 3', 5'-cyclic guanosine monophosphate (cGMP) synthesis plays an important role during pathogenic stress response, stomata closure upon osmotic stress, the development of adventitious roots and transcript regulation. The NO-cGMP dependent pathway is well characterized in mammals. The binding of NO to soluble guanylate cyclase enzymes (GCs) initiates the synthesis of cGMP from guanosine triphosphate. The produced cGMP alters various cellular responses, such as the function of protein kinase activity, cyclic nucleotide gated ion channels and cGMP-regulated phosphodiesterases. The signal generated by the second messenger is terminated by 3', 5'-cyclic nucleotide phosphodiesterase (PDEs) enzymes that hydrolyze cGMP to a non-cyclic 5'-guanosine monophosphate. To date, no homologues of mammalian cGMP-synthesizing and degrading enzymes have been found in higher plants. In the last decade, six receptor proteins from Arabidopsis thaliana have been reported to have guanylate cyclase activity in vitro. Of the six receptors, one was shown to be a NO dependent guanylate cyclase enzyme (NOGC1). However, the role of these proteins in planta remains to be elucidated. Enzymes involved in the degradation of cGMP remain elusive, albeit, PDE activity has been detected in crude protein extracts from various plants. Additionally, several research groups have partially purified and characterized PDE enzymatic activity from crude protein extracts. In this review, we focus on presenting advances toward the identification of enzymes involved in the cGMP metabolism pathway in higher plants.
Collapse
Affiliation(s)
- Inonge Gross
- Nitric Oxide Production and Signalling Group, Institute of Biochemical Plant Pathology, Helmholtz Center MunichGermany
- *Correspondence: Inonge Gross,
| | - Jörg Durner
- Nitric Oxide Production and Signalling Group, Institute of Biochemical Plant Pathology, Helmholtz Center MunichGermany
- Chair of Biochemical Plant Pathology, Technische Universität München, FreisingGermany
| |
Collapse
|
6
|
Dubravcic D, van Baalen M, Nizak C. An evolutionarily significant unicellular strategy in response to starvation in Dictyostelium social amoebae. F1000Res 2014; 3:133. [PMID: 25309731 PMCID: PMC4184345 DOI: 10.12688/f1000research.4218.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/01/2014] [Indexed: 02/04/2024] Open
Abstract
The social amoeba Dictyostelium discoideum is widely studied for its multicellular development program as a response to starvation. Aggregates of up to 10 (6) cells form fruiting bodies containing (i) dormant spores (~80%) that can persist for months in the absence of nutrients, and (ii) dead stalk cells (~20%) that promote the dispersion of the spores towards nutrient-rich areas. It is often overlooked that not all cells aggregate upon starvation. Using a new quantitative approach based on time-lapse fluorescence microscopy and a low ratio of reporting cells, we have quantified this fraction of non-aggregating cells. In realistic starvation conditions, up to 15% of cells do not aggregate, which makes this third cell fate a significant component of the population-level response of social amoebae to starvation. Non-aggregating cells have an advantage over cells in aggregates since they resume growth earlier upon arrival of new nutrients, but have a shorter lifespan under prolonged starvation. We find that phenotypic heterogeneities linked to cell nutritional state bias the representation of cells in the aggregating vs. non-aggregating fractions, and thus affect population partitioning. Next, we report that the fraction of non-aggregating cells depends on genetic factors that regulate the timing of starvation, signal sensing efficiency and aggregation efficiency. In addition, interactions between clones in mixtures of non-isogenic cells affect the partitioning of each clone into both fractions. We further build a numerical model to test the evolutionary significance of the non-aggregating cell fraction. The partitioning of cells into aggregating and non-aggregating fractions is optimal in fluctuating environments with an unpredictable duration of starvation periods. Our study highlights the unicellular component of the response of social amoebae to starvation, and thus extends its evolutionary and ecological framework.
Collapse
Affiliation(s)
- Darja Dubravcic
- CNRS, LIPHY, F-38000 Grenoble, France
- Laboratory of Ecology and Evolution, CNRS UMR7625, Ecole Normale Supérieure, Université Pierre et Marie Curie, Paris Universitas, CNRS, Paris, France
| | - Minus van Baalen
- Laboratory of Ecology and Evolution, CNRS UMR7625, Ecole Normale Supérieure, Université Pierre et Marie Curie, Paris Universitas, CNRS, Paris, France
| | - Clément Nizak
- CNRS, LIPHY, F-38000 Grenoble, France
- Laboratory of Biochemistry, UMR 8231 ESPCI ParisTech/CNRS, PSL Research University, Paris, France
| |
Collapse
|
7
|
Dubravcic D, van Baalen M, Nizak C. An evolutionarily significant unicellular strategy in response to starvation in Dictyostelium social amoebae. F1000Res 2014; 3:133. [PMID: 25309731 PMCID: PMC4184345 DOI: 10.12688/f1000research.4218.2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/01/2014] [Indexed: 11/20/2022] Open
Abstract
The social amoeba Dictyostelium discoideum is widely studied for its multicellular development program as a response to starvation. Aggregates of up to 10 (6) cells form fruiting bodies containing (i) dormant spores (~80%) that can persist for months in the absence of nutrients, and (ii) dead stalk cells (~20%) that promote the dispersion of the spores towards nutrient-rich areas. It is often overlooked that not all cells aggregate upon starvation. Using a new quantitative approach based on time-lapse fluorescence microscopy and a low ratio of reporting cells, we have quantified this fraction of non-aggregating cells. In realistic starvation conditions, up to 15% of cells do not aggregate, which makes this third cell fate a significant component of the population-level response of social amoebae to starvation. Non-aggregating cells have an advantage over cells in aggregates since they resume growth earlier upon arrival of new nutrients, but have a shorter lifespan under prolonged starvation. We find that phenotypic heterogeneities linked to cell nutritional state bias the representation of cells in the aggregating vs. non-aggregating fractions, and thus affect population partitioning. Next, we report that the fraction of non-aggregating cells depends on genetic factors that regulate the timing of starvation, signal sensing efficiency and aggregation efficiency. In addition, interactions between clones in mixtures of non-isogenic cells affect the partitioning of each clone into both fractions. We further build a numerical model to test the evolutionary significance of the non-aggregating cell fraction. The partitioning of cells into aggregating and non-aggregating fractions is optimal in fluctuating environments with an unpredictable duration of starvation periods. Our study highlights the unicellular component of the response of social amoebae to starvation, and thus extends its evolutionary and ecological framework.
Collapse
Affiliation(s)
- Darja Dubravcic
- CNRS, LIPHY, F-38000 Grenoble, France ; Laboratory of Ecology and Evolution, CNRS UMR7625, Ecole Normale Supérieure, Université Pierre et Marie Curie, Paris Universitas, CNRS, Paris, France
| | - Minus van Baalen
- Laboratory of Ecology and Evolution, CNRS UMR7625, Ecole Normale Supérieure, Université Pierre et Marie Curie, Paris Universitas, CNRS, Paris, France
| | - Clément Nizak
- CNRS, LIPHY, F-38000 Grenoble, France ; Laboratory of Biochemistry, UMR 8231 ESPCI ParisTech/CNRS, PSL Research University, Paris, France
| |
Collapse
|
8
|
Majumdar R, Sixt M, Parent CA. New paradigms in the establishment and maintenance of gradients during directed cell migration. Curr Opin Cell Biol 2014; 30:33-40. [PMID: 24959970 DOI: 10.1016/j.ceb.2014.05.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 11/16/2022]
Abstract
Directional guidance of migrating cells is relatively well explored in the reductionist setting of cell culture experiments. Here spatial gradients of chemical cues as well as gradients of mechanical substrate characteristics prove sufficient to attract single cells as well as their collectives. How such gradients present and act in the context of an organism is far less clear. Here we review recent advances in understanding how guidance cues emerge and operate in complex physiological settings.
Collapse
Affiliation(s)
- Ritankar Majumdar
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Michael Sixt
- IST Austria (Institute of Science and Technology Austria), 3400 Klostemeuburg, Austria
| | - Carole A Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
9
|
Masaki N, Fujimoto K, Honda-Kitahara M, Hada E, Sawai S. Robustness of self-organizing chemoattractant field arising from precise pulse induction of its breakdown enzyme: a single-cell level analysis of PDE expression in Dictyostelium. Biophys J 2013; 104:1191-202. [PMID: 23473502 DOI: 10.1016/j.bpj.2013.01.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 12/29/2012] [Accepted: 01/16/2013] [Indexed: 01/19/2023] Open
Abstract
The oscillation of chemoattractant cyclic AMP (cAMP) in Dictyostelium discoideum is a collective phenomenon that occurs when the basal level of extracellular cAMP exceeds a threshold and invokes cooperative mutual excitation of cAMP synthesis and secretion. For pulses to be relayed from cell to cell repetitively, secreted cAMP must be cleared and brought down to the subthreshold level. One of the main determinants of the oscillatory behavior is thus how much extracellular cAMP is degraded by extracellular phosphodiesterase (PDE). To date, the exact nature of PDE gene regulation remains elusive. Here, we performed live imaging analysis of mRNA transcripts for pdsA--the gene encoding extracellular PDE. Our analysis revealed that pdsA is upregulated during the rising phase of cAMP oscillations. Furthermore, by analyzing isolated cells, we show that expression of pdsA is strictly dependent on the presence of extracellular cAMP. pdsA is induced only at ∼1 nM extracellular cAMP, which is almost identical to the threshold concentration for the cAMP relay response. The observed precise regulation of PDE expression together with degradation of extracellular cAMP by PDE form a dual positive and negative feedback circuit, and model analysis shows that this sets the cAMP level near the threshold concentration for the cAMP relay response for a wide range of adenylyl cyclase activity. The overlap of the thresholds could allow oscillations of chemoattractant cAMP to self-organize at various starving conditions, making its development robust to fluctuations in its environment.
Collapse
Affiliation(s)
- Noritaka Masaki
- Exploratory Research for Advanced Technology (ERATO), Complex Systems Biology Project, Japan Science and Technology Agency (JST), Tokyo, Japan
| | | | | | | | | |
Collapse
|
10
|
Abstract
In general, growth and differentiation are mutually exclusive, but they are cooperatively regulated during the course of development. Thus, the process of a cell's transition from growth to differentiation is of general importance for the development of organisms, and terminally differentiated cells such as nerve cells never divide. Meanwhile, the growth rate speeds up when cells turn malignant. The cellular slime mold Dictyostelium discoideum grows and multiplies as long as nutrients are supplied, and its differentiation is triggered by starvation. A critical checkpoint (growth/differentiation transition or GDT point), from which cells start differentiating in response to starvation, has been precisely specified in the cell cycle of D. discoideum Ax-2 cells. Accordingly, integration of GDT point-specific events with starvation-induced events is needed to understand the mechanism regulating GDTs. A variety of intercellular and intracellular signals are involved positively or negatively in the initiation of differentiation, making a series of cross-talks. As was expected from the presence of the GDT point, the cell's positioning in cell masses and subsequent cell-type choices occur depending on the cell's phase in the cell cycle at the onset of starvation. Since novel and multiple functions of mitochondria in various respects of development including the initiation of differentiation have been directly realized in Dictyostelium cells, they are also reviewed in this article.
Collapse
Affiliation(s)
- Yasuo Maeda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan.
| |
Collapse
|
11
|
Das S, Rericha EC, Bagorda A, Parent CA. Direct biochemical measurements of signal relay during Dictyostelium development. J Biol Chem 2011; 286:38649-38658. [PMID: 21911494 DOI: 10.1074/jbc.m111.284182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon starvation, individual Dictyostelium discoideum cells enter a developmental program that leads to collective migration and the formation of a multicellular organism. The process is mediated by extracellular cAMP binding to the G protein-coupled cAMP receptor 1, which initiates a signaling cascade leading to the activation of adenylyl cyclase A (ACA), the synthesis and secretion of additional cAMP, and an autocrine and paracrine activation loop. The release of cAMP allows neighboring cells to polarize and migrate directionally and form characteristic chains of cells called streams. We now report that cAMP relay can be measured biochemically by assessing ACA, ERK2, and TORC2 activities at successive time points in development after stimulating cells with subsaturating concentrations of cAMP. We also find that the activation profiles of ACA, ERK2, and TORC2 change in the course of development, with later developed cells showing a loss of sensitivity to the relayed signal. We examined mutants in PKA activity that have been associated with precocious development and find that this loss in responsiveness occurs earlier in these mutants. Remarkably, we show that this loss in sensitivity correlates with a switch in migration patterns as cells transition from streams to aggregates. We propose that as cells proceed through development, the cAMP-induced desensitization and down-regulation of cAMP receptor 1 impacts the sensitivities of chemotactic signaling cascades leading to changes in migration patterns.
Collapse
Affiliation(s)
- Satarupa Das
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Erin C Rericha
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742
| | - Anna Bagorda
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Carole A Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
12
|
Zhang H, Liu K, Zhang X, Tang W, Wang J, Guo M, Zhao Q, Zheng X, Wang P, Zhang Z. Two phosphodiesterase genes, PDEL and PDEH, regulate development and pathogenicity by modulating intracellular cyclic AMP levels in Magnaporthe oryzae. PLoS One 2011; 6:e17241. [PMID: 21386978 PMCID: PMC3046207 DOI: 10.1371/journal.pone.0017241] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 01/22/2011] [Indexed: 01/02/2023] Open
Abstract
Cyclic AMP (cAMP) signaling plays an important role in regulating multiple cellular responses, such as growth, morphogenesis, and/or pathogenicity of eukaryotic organisms such as fungi. As a second messenger, cAMP is important in the activation of downstream effector molecules. The balance of intracellular cAMP levels depends on biosynthesis by adenylyl cyclases (ACs) and hydrolysis by cAMP phosphodiesterases (PDEases). The rice blast fungus Magnaporthe oryzae contains a high-affinity (PdeH/Pde2) and a low-affinity (PdeL/Pde1) PDEases, and a previous study showed that PdeH has a major role in asexual differentiation and pathogenicity. Here, we show that PdeL is required for asexual development and conidial morphology, and it also plays a minor role in regulating cAMP signaling. This is in contrast to PdeH whose mutation resulted in major defects in conidial morphology, cell wall integrity, and surface hydrophobicity, as well as a significant reduction in pathogenicity. Consistent with both PdeH and PdeL functioning in cAMP signaling, disruption of PDEH only partially rescued the mutant phenotype of ΔmagB and Δpka1. Further studies suggest that PdeH might function through a feedback mechanism to regulate the expression of pathogenicity factor Mpg1 during surface hydrophobicity and pathogenic development. Moreover, microarray data revealed new insights into the underlying cAMP regulatory mechanisms that may help to identify potential pathogenicity factors for the development of new disease management strategies.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | - Kaiyue Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | - Xing Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | - Wei Tang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | - Jiansheng Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | - Min Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | - Qian Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | - Ping Wang
- Department of Pediatrics and the Research Institute for Children, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
- * E-mail:
| |
Collapse
|
13
|
Enzymatic and mutational analyses of a class II 3',5'-cyclic nucleotide phosphodiesterase, PdeE, from Myxococcus xanthus. J Bacteriol 2011; 193:2053-7. [PMID: 21317337 DOI: 10.1128/jb.01250-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus PdeE, an enzyme homologous to class II 3',5'-cyclic nucleotide phosphodiesterases, hydrolyzed cyclic AMP (cAMP) and cGMP with K(m) values of 12 μM and 25 μM, respectively. A pdeE mutant exhibited delays in fruiting body and spore formation compared with the wild type when cultured on starvation medium.
Collapse
|
14
|
Wilson D, Fiori A, Brucker KD, Dijck PV, Stateva L. Candida albicans Pde1p and Gpa2p comprise a regulatory module mediating agonist-induced cAMP signalling and environmental adaptation. Fungal Genet Biol 2010; 47:742-52. [PMID: 20558315 DOI: 10.1016/j.fgb.2010.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 06/09/2010] [Accepted: 06/10/2010] [Indexed: 10/19/2022]
Abstract
Deletion of PDE2, but not of PDE1 has been shown to reduce invasion and virulence. However simultaneous deletion of PDE2 and PDE1 abolishes these processes completely, suggesting that although Pde1 has a secondary role it also contributes to virulence in Candida albicans. In the present study the roles of the two phosphodiesterases, as well as that of Gpa2, in agonist-induced cAMP signalling, growth, morphogenesis and response to some stresses have been investigated. Our biochemical evidence shows that Gpa2 stimulates cAMP signalling in response to intracellular acidification and that Pde1, but not Pde2, is responsible for down-regulation of cAMP signalling induced by glucose addition or intracellular acidification. Furthermore, the genetic interactions of PDE1 and in some cases PDE2, with GPA2 caused synthetic defects in growth, morphogenesis and responses to some stresses, suggesting that Gpa2 mediates its effects on these processes in a cAMP pathway-independent manner. Remarkably, the synthetic interactions involving PDE1, PDE2 and GPA2 are not observed in Saccharomyces cerevisiae suggesting that conserved components of the cAMP pathway are used for different purposes in different yeast species. We suggest that cAMP phosphodiesterases have species-specific differential roles, which make them attractive antifungal targets, for combinatorial treatment.
Collapse
|
15
|
Garcia GL, Rericha EC, Heger CD, Goldsmith PK, Parent CA. The group migration of Dictyostelium cells is regulated by extracellular chemoattractant degradation. Mol Biol Cell 2009; 20:3295-304. [PMID: 19477920 DOI: 10.1091/mbc.e09-03-0223] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Starvation of Dictyostelium induces a developmental program in which cells form an aggregate that eventually differentiates into a multicellular structure. The aggregate formation is mediated by directional migration of individual cells that quickly transition to group migration in which cells align in a head-to-tail manner to form streams. Cyclic AMP acts as a chemoattractant and its production, secretion, and degradation are highly regulated. A key protein is the extracellular phosphodiesterase PdsA. In this study we examine the role and localization of PdsA during chemotaxis and streaming. We find that pdsA(-) cells respond chemotactically to a narrower range of chemoattractant concentrations compared with wild-type (WT) cells. Moreover, unlike WT cells, pdsA(-) cells do not form streams at low cell densities and form unusual thick and transient streams at high cell densities. We find that the intracellular pool of PdsA is localized to the endoplasmic reticulum, which may provide a compartment for storage and secretion of PdsA. Because we find that cAMP synthesis is normal in cells lacking PdsA, we conclude that signal degradation regulates the external cAMP gradient field generation and that the group migration behavior of these cells is compromised even though their signaling machinery is intact.
Collapse
Affiliation(s)
- Gene L Garcia
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
16
|
Bader S, Kortholt A, Van Haastert P. Seven Dictyostelium discoideum phosphodiesterases degrade three pools of cAMP and cGMP. Biochem J 2007; 402:153-61. [PMID: 17040207 PMCID: PMC1783984 DOI: 10.1042/bj20061153] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Dictyostelium discoideum genome uncovers seven cyclic nucleotide PDEs (phosphodiesterases), of which six have been characterized previously and the seventh is characterized in the present paper. Three enzymes belong to the ubiquitous class I PDEs, common in all eukaryotes, whereas four enzymes belong to the rare class II PDEs that are present in bacteria and lower eukaryotes. Since all D. discoideum PDEs are now characterized we have calculated the contribution of each enzyme in the degradation of the three important pools of cyclic nucleotides: (i) extracellular cAMP that induces chemotaxis during aggregation and differentiation in slugs; (ii) intracellular cAMP that mediates development; and (iii) intracellular cGMP that mediates chemotaxis. It appears that each cyclic nucleotide pool is degraded by a combination of enzymes that have different affinities, allowing a broad range of substrate concentrations to be degraded with first-order kinetics. Extracellular cAMP is degraded predominantly by the class II high-affinity enzyme DdPDE1 and its close homologue DdPDE7, and in the multicellular stage also by the low-affinity transmembrane class I enzyme DdPDE4. Intracellular cAMP is degraded by the DdPDE2, a class I enzyme regulated by histidine kinase/phospho-relay, and by the cAMP-/cGMP-stimulated class II DdPDE6. Finally, basal intracellular cGMP is degraded predominantly by the high-affinity class I DdPDE3, while the elevated cGMP levels that arise after receptor stimulation are degraded predominantly by a cGMP-stimulated cGMP-specific class II DdPDE5. The analysis shows that the combination of enzymes is tuned to keep the concentration and lifetime of the substrate within a functional range.
Collapse
Affiliation(s)
- Sonya Bader
- Department of Molecular Cell Biology, University of Groningen, Kerklaan 30, 9751NN, Haren, The Netherlands
| | - Arjan Kortholt
- Department of Molecular Cell Biology, University of Groningen, Kerklaan 30, 9751NN, Haren, The Netherlands
| | - Peter J. M. Van Haastert
- Department of Molecular Cell Biology, University of Groningen, Kerklaan 30, 9751NN, Haren, The Netherlands
- To whom correspondence should be addressed (email )
| |
Collapse
|
17
|
Bader S, Kortholt A, Snippe H, Van Haastert PJM. DdPDE4, a novel cAMP-specific phosphodiesterase at the surface of dictyostelium cells. J Biol Chem 2006; 281:20018-26. [PMID: 16644729 DOI: 10.1074/jbc.m600040200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dictyostelium discoideum cells possess multiple cyclic nucleotide phosphodiesterases that belong either to class I enzymes that are present in all eukaryotes or to the rare beta-lactamase class II. We describe here the identification and characterization of DdPDE4, the third class I enzyme of Dictyostelium. The deduced amino acid sequence predicts that DdPDE4 has a leader sequence, two transmembrane segments, and an extracellular catalytic domain that exhibits a high degree of homology with human cAMP-specific PDE8. Expression of the catalytic domain of DdPDE4 shows that the enzyme is a cAMP-specific phosphodiesterase with a K(m) of 10 microm; cGMP is hydrolyzed at least 100-fold more slowly. The full-length protein is shown to be membrane-bound with catalytic activity exposed to the extracellular medium. Northern blots and activity measurements reveal that expression of DdPDE4 is low during single cell stages and increases at 9 h of starvation, corresponding with mound stage. A function during multicellular development is confirmed by the phenotype of ddpde4(-) knock-out strains, showing normal aggregation but impaired development from the mound stage on. These results demonstrate that DdPDE4 is a unique membrane-bound phosphodiesterase with an extracellular catalytic domain regulating intercellular cAMP during multicellular development.
Collapse
Affiliation(s)
- Sonya Bader
- Department of Molecular Cell Biology, University of Groningen, Kerklaan 30, 9751NN Haren, the Netherlands
| | | | | | | |
Collapse
|
18
|
Hicks JK, Bahn YS, Heitman J. Pde1 phosphodiesterase modulates cyclic AMP levels through a protein kinase A-mediated negative feedback loop in Cryptococcus neoformans. EUKARYOTIC CELL 2006; 4:1971-81. [PMID: 16339715 PMCID: PMC1317495 DOI: 10.1128/ec.4.12.1971-1981.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The virulence of the human pathogenic fungus Cryptococcus neoformans is regulated by a cyclic AMP (cAMP)-dependent protein kinase A (PKA) signaling cascade that promotes mating and the production of melanin and capsule. In this study, genes encoding homologs of the Saccharomyces cerevisiae low- and high-affinity phosphodiesterases, PDE1 and PDE2, respectively, were deleted in serotype A strains of C. neoformans. The resulting mutants exhibited moderately elevated levels of melanin and capsule production relative to the wild type. Epistasis experiments indicate that Pde1 functions downstream of the Galpha subunit Gpa1, which initiates cAMP-dependent signaling in response to an extracellular signal. Previous work has shown that the PKA catalytic subunit Pka1 governs cAMP levels via a negative feedback loop. Here we show that a pde1Delta pka1Delta mutant strain exhibits cAMP levels that are dramatically increased ( approximately 15-fold) relative to those in a pka1Delta single mutant strain and that a site-directed mutation in a consensus PKA phosphorylation site reduces Pde1 function. These data provide evidence that fluctuations in cAMP levels are modulated by both Pka1-dependent regulation of Pde1 and another target that comprise a robust negative feedback loop to tightly constrain intracellular cAMP levels.
Collapse
Affiliation(s)
- Julie K Hicks
- Department of Molecular Genetics and Microbiology, 322 CARL Bldg., Duke University Medical Center, Research Dr., Durham, NC 27710, USA
| | | | | |
Collapse
|
19
|
Liu CI, Cheng TL, Chen SZ, Huang YC, Chang WT. LrrA, a novel leucine-rich repeat protein involved in cytoskeleton remodeling, is required for multicellular morphogenesis in Dictyostelium discoideum. Dev Biol 2005; 285:238-51. [PMID: 16051212 DOI: 10.1016/j.ydbio.2005.05.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 05/07/2005] [Accepted: 05/25/2005] [Indexed: 12/17/2022]
Abstract
Cell sorting by differential cell adhesion and movement is a fundamental process in multicellular morphogenesis. We have identified a Dictyostelium discoideum gene encoding a novel protein, LrrA, which composes almost entirely leucine-rich repeats (LRRs) including a putative leucine zipper motif. Transcription of lrrA appeared to be developmentally regulated with robust expression during vegetative growth and early development. lrrA null cells generated by homologous recombination aggregated to form loose mounds, but subsequent morphogenesis was blocked without formation of the apical tip. The cells adhered poorly to a substratum and did not form tight cell-cell agglomerates in suspension; in addition, they were unable to polarize and exhibit chemotactic movement in the submerged aggregation and Dunn chamber chemotaxis assays. Fluorescence-conjugated phalloidin staining revealed that both vegetative and aggregation competent lrrA(-) cells contained numerous F-actin-enriched microspikes around the periphery of cells. Quantitative analysis of the fluorescence-stained F-actin showed that lrrA(-) cells exhibited a dramatically increase in F-actin as compared to the wild-type cells. When developed together with wild-type cells, lrrA(-) cells were unable to move to the apical tip and sorted preferentially to the rear and lower cup regions. These results indicate that LrrA involves in cytoskeleton remodeling, which is needed for normal chemotactic aggregation and efficient cell sorting during multicellular morphogenesis, particularly in the formation of apical tip.
Collapse
Affiliation(s)
- Chia-I Liu
- Department of Biochemistry, National Cheng Kung University Medical College, Tainan 701, Taiwan, ROC
| | | | | | | | | |
Collapse
|
20
|
Stepanovic V, Wessels D, Daniels K, Loomis WF, Soll DR. Intracellular role of adenylyl cyclase in regulation of lateral pseudopod formation during Dictyostelium chemotaxis. EUKARYOTIC CELL 2005; 4:775-86. [PMID: 15821137 PMCID: PMC1087821 DOI: 10.1128/ec.4.4.775-786.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyclic AMP (cAMP) functions as the extracellular chemoattractant in the aggregation phase of Dictyostelium development. There is some question, however, concerning what role, if any, it plays intracellularly in motility and chemotaxis. To test for such a role, the behavior of null mutants of acaA, the adenylyl cyclase gene that encodes the enzyme responsible for cAMP synthesis during aggregation, was analyzed in buffer and in response to experimentally generated spatial and temporal gradients of extracellular cAMP. acaA- cells were defective in suppressing lateral pseudopods in response to a spatial gradient of cAMP and to an increasing temporal gradient of cAMP. acaA- cells were incapable of chemotaxis in natural waves of cAMP generated by majority control cells in mixed cultures. These results indicate that intracellular cAMP and, hence, adenylyl cyclase play an intracellular role in the chemotactic response. The behavioral defects of acaA- cells were surprisingly similar to those of cells of null mutants of regA, which encodes the intracellular phosphodiesterase that hydrolyzes cAMP and, hence, functions opposite adenylyl cyclase A (ACA). This result is consistent with the hypothesis that ACA and RegA are components of a receptor-regulated intracellular circuit that controls protein kinase A activity. In this model, the suppression of lateral pseudopods in the front of a natural wave depends on a complete circuit. Hence, deletion of any component of the circuit (i.e., RegA or ACA) would result in the same chemotactic defect.
Collapse
Affiliation(s)
- Vesna Stepanovic
- W. M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
21
|
Alvarez-Curto E, Rozen DE, Ritchie AV, Fouquet C, Baldauf SL, Schaap P. Evolutionary origin of cAMP-based chemoattraction in the social amoebae. Proc Natl Acad Sci U S A 2005; 102:6385-90. [PMID: 15851658 PMCID: PMC1088387 DOI: 10.1073/pnas.0502238102] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Indexed: 11/18/2022] Open
Abstract
Phenotypic novelties can arise if integrated developmental pathways are expressed at new developmental stages and then recruited to serve new functions. We analyze the origin of a novel developmental trait of Dictyostelid amoebae: the evolution of cAMP as a developmental chemoattractant. We show that cAMP's role of attracting starving amoebae arose through recruitment of a pathway that originally evolved to coordinate fruiting body morphogenesis. Orthologues of the high-affinity cAMP receptor (cAR), cAR1, were identified in a selection of species that span the Dictyostelid phylogeny. The cAR1 orthologue from the basal species Dictyostelium minutum restored aggregation and development when expressed in an aggregation-defective mutant of the derived species Dictyostelium discoideum that lacks high-affinity cARs, thus demonstrating that the D. minutum cAR is a fully functional cAR. cAR1 orthologues from basal species are expressed during fruiting body formation, and only this process, and not aggregation, was disrupted by abrogation of cAR1 function. This is in contrast to derived species, where cAR1 is also expressed during aggregation and critically regulates this process. Our data show that coordination of fruiting body formation is the ancestral function of extracellular cAMP signaling, whereas its derived role in aggregation evolved by recruitment of a preexisting pathway to an earlier stage of development. This most likely occurred by addition of distal cis-regulatory regions to existing cAMP signaling genes.
Collapse
Affiliation(s)
- Elisa Alvarez-Curto
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | | | | | |
Collapse
|
22
|
Maeda Y. Regulation of growth and differentiation in Dictyostelium. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 244:287-332. [PMID: 16157183 DOI: 10.1016/s0074-7696(05)44007-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In general, growth and differentiation are mutually exclusive, but they are cooperatively regulated during the course of development. Thus, the process of a cell's transition from growth to differentiation is of general importance not only for the development of organisms but also for the initiation of malignant transformation, in which this process is reversed. The cellular slime mold Dictyostelium, a wonderful model organism, grows and multiplies as long as nutrients are supplied, and its differentiation is triggered by starvation. A strict checkpoint (growth/differentiation transition or GDT point), from which cells start differentiating in response to starvation, has been specified in the cell cycle of D. discoideum Ax-2 cells. Accordingly, integration of GDT point-specific events with starvation-induced events is needed to understand the mechanism regulating GDTs. A variety of intercellular and intracellular signals are involved positively or negatively in the initiation of differentiation, making a series of cross-talks. As was expected from the presence of GDT points, the cell's positioning in cell masses and subsequent cell-type choices occur depending on the cell's phase in the cell cycle at the onset of starvation. Since novel and somewhat unexpected multiple functions of mitochondria in cell movement, differentiation, and pattern formation have been well realized in Dictyostelium cells, they are reviewed in this article.
Collapse
Affiliation(s)
- Yasuo Maeda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
23
|
Abraham J, Lemmers B, Hande MP, Moynahan ME, Chahwan C, Ciccia A, Essers J, Hanada K, Chahwan R, Khaw AK, McPherson P, Shehabeldin A, Laister R, Arrowsmith C, Kanaar R, West SC, Jasin M, Hakem R. Eme1 is involved in DNA damage processing and maintenance of genomic stability in mammalian cells. EMBO J 2004; 22:6137-47. [PMID: 14609959 PMCID: PMC275438 DOI: 10.1093/emboj/cdg580] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Yeast and human Eme1 protein, in complex with Mus81, constitute an endonuclease that cleaves branched DNA structures, especially those arising during stalled DNA replication. We identified mouse Eme1, and show that it interacts with Mus81 to form a complex that preferentially cleaves 3'-flap structures and replication forks rather than Holliday junctions in vitro. We demonstrate that Eme1-/- embryonic stem (ES) cells are hypersensitive to the DNA cross-linking agents mitomycin C and cisplatin, but only mildly sensitive to ionizing radiation, UV radiation and hydroxyurea treatment. Mammalian Eme1 is not required for the resolution of DNA intermediates that arise during homologous recombination processes such as gene targeting, gene conversion and sister chromatid exchange (SCE). Unlike Blm-deficient ES cells, increased SCE was seen only following induced DNA damage in Eme1-deficient cells. Most importantly, Eme1 deficiency led to spontaneous genomic instability. These results reveal that mammalian Eme1 plays a key role in DNA repair and the maintenance of genome integrity.
Collapse
Affiliation(s)
- Jacinth Abraham
- Advanced Medical Discovery Institute, Ontario Cancer Institute, 620 University Avenue, Suite 706, Toronto, Ontario M5G 2C1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Meima ME, Weening KE, Schaap P. Characterization of a cAMP-stimulated cAMP phosphodiesterase in Dictyostelium discoideum. J Biol Chem 2003; 278:14356-62. [PMID: 12574165 DOI: 10.1074/jbc.m209648200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A cyclic nucleotide phosphodiesterase, PdeE, that harbors two cyclic nucleotide binding motifs and a binuclear Zn(2+)-binding domain was characterized in Dictyostelium. In other eukaryotes, the Dictyostelium domain shows greatest homology to the 73-kDa subunit of the pre-mRNA cleavage and polyadenylation specificity factor. The Dictyostelium PdeE gene is expressed at its highest levels during aggregation, and its disruption causes the loss of a cAMP-phosphodiesterase activity. The pdeE null mutants show a normal cAMP-induced cGMP response and a 1.5-fold increase of cAMP-induced cAMP relay. Overexpression of a PdeE-yellow fluorescent protein (YFP) fusion construct causes inhibition of aggregation and loss of the cAMP relay response, but the cells can aggregate in synergy with wild-type cells. The PdeE-YFP fusion protein was partially purified by immunoprecipitation and biochemically characterized. PdeE and its Dictyostelium ortholog, PdeD, are both maximally active at pH 7.0. Both enzymes require bivalent cations for activity. The common cofactors Zn(2+) and Mg(2+) activated PdeE and PdeD maximally at 10 mm, whereas Mn(2+) activated the enzymes to 4-fold higher levels, with half-maximal activation between 10 and 100 microm. PdeE is an allosteric enzyme, which is approximately 4-fold activated by cAMP, with half-maximal activation occurring at about 10 microm and an apparent K(m) of approximately 1 mm. cGMP is degraded at a 6-fold lower rate than cAMP. Neither cGMP nor 8-Br-cAMP are efficient activators of PdeE activity.
Collapse
Affiliation(s)
- Marcel E Meima
- School of Life Sciences, University of Dundee, MSI/WTB complex, Dow Street, United Kingdom
| | | | | |
Collapse
|
25
|
Weening KE, Wijk IVV, Thompson CR, Kessin RH, Podgorski GJ, Schaap P. Contrasting activities of the aggregative and late PDSA promoters in Dictyostelium development. Dev Biol 2003; 255:373-82. [PMID: 12648497 DOI: 10.1016/s0012-1606(02)00077-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Expression of the Dictyostelium PdsA gene from the aggregative (PdA) and late (PdL) promoter is essential for aggregation and slug morphogenesis, respectively. We studied the regulation of the PdA and PdL promoters in slugs using labile beta-galactosidase (gal) reporter enzymes. PdL was active in prestalk cells as was also found with stable gal. PdA activity decreased strongly in slugs from all cells, except those at the rear. This is almost opposite to PdA activity traced with stable gal, where slugs showed sustained activity with highest levels at the front. PdA was down-regulated after aggregation irrespective of stimulation with any of the factors known to control gene expression. PdL activity was induced in cell suspension by cAMP and DIF acting in synergy. However, a DIF-less mutant showed normal PdL activity during development, suggesting that DIF does not control PdL in vivo. Dissection of the PdL promoter showed that all sequences essential for correct spatiotemporal control of promoter activity are downstream of the transcription start site in a region between -383 and -19 nucleotides relative to the start codon. Removal of nucleotides to position -364 eliminated responsiveness to DIF and cAMP, but normal PdL activity in prestalk cells in slugs was retained. Further 5' deletions abolished all promoter activity. This result also indicates that the induction by DIF and cAMP as seen in cell suspensions is not essential for PdL activity in normal development.
Collapse
Affiliation(s)
- Karin E Weening
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
26
|
Bosgraaf L, Russcher H, Snippe H, Bader S, Wind J, Van Haastert PJM. Identification and characterization of two unusual cGMP-stimulated phoshodiesterases in dictyostelium. Mol Biol Cell 2002; 13:3878-89. [PMID: 12429832 PMCID: PMC133600 DOI: 10.1091/mbc.e02-05-0302] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recently, we recognized two genes, gbpA and gbpB, encoding putative cGMP-binding proteins with a Zn(2+)-hydrolase domain and two cyclic nucleotide binding domains. The Zn(2+)-hydrolase domains belong to the superfamily of beta-lactamases, also harboring a small family of class II phosphodiesterases from bacteria and lower eukaryotes. Gene inactivation and overexpression studies demonstrate that gbpA encodes the cGMP-stimulated cGMP-phosphodiesterase that was characterized biochemically previously and was shown to be involved in chemotaxis. cAMP neither activates nor is a substrate of GbpA. The gbpB gene is expressed mainly in the multicellular stage and seems to encode a dual specificity phosphodiesterase with preference for cAMP. The enzyme hydrolyses cAMP approximately 9-fold faster than cGMP and is activated by cAMP and cGMP with a K(A) value of approximately 0.7 and 2.3 microM, respectively. Cells with a deletion of the gbpB gene have increased basal and receptor stimulated cAMP levels and are sporogeneous. We propose that GbpA and GbpB hydrolyze the substrate in the Zn(2+)-hydrolase domain, whereas the cyclic nucleotide binding domains mediate activation. The human cGMP-stimulated cAMP/cGMP phosphodiesterase has similar biochemical properties, but a completely different topology: hydrolysis takes place by a class I catalytic domain and GAF domains mediate cGMP activation.
Collapse
Affiliation(s)
- Leonard Bosgraaf
- Department of Biochemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
27
|
Meima ME, Biondi RM, Schaap P. Identification of a novel type of cGMP phosphodiesterase that is defective in the chemotactic stmF mutants. Mol Biol Cell 2002; 13:3870-7. [PMID: 12429831 PMCID: PMC133599 DOI: 10.1091/mbc.e02-05-0285] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2002] [Revised: 07/08/2002] [Accepted: 08/19/2002] [Indexed: 11/11/2022] Open
Abstract
StmF mutants are chemotactic mutants that are defective in a cGMP phosphodiesterase (PDE) activity. We identified a novel gene, PdeD, that harbors two cyclic nucleotide-binding domains and a metallo-beta-lactamase homology domain. Similar to stmF mutants, pdeD-null mutants displayed extensively streaming aggregates, prolonged elevation of cGMP levels after chemotactic stimulation, and reduced cGMP-PDE activity. PdeD transcripts were lacking in stmF mutant NP377, indicating that this mutant carries a PdeD lesion. Expression of a PdeD-YFP fusion protein in pdeD-null cells restored the normal cGMP response and showed that PdeD resides in the cytosol. When purified by immunoprecipitation, the PdeD-YFP fusion protein displayed cGMP-PDE activity, which was retained in a truncated construct that contained only the metallo-beta-lactamase domain.
Collapse
Affiliation(s)
- Marcel E Meima
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | |
Collapse
|
28
|
Goldberg JM, Bosgraaf L, Van Haastert PJM, Smith JL. Identification of four candidate cGMP targets in Dictyostelium. Proc Natl Acad Sci U S A 2002; 99:6749-54. [PMID: 12011437 PMCID: PMC124474 DOI: 10.1073/pnas.102167299] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2001] [Accepted: 03/22/2002] [Indexed: 11/18/2022] Open
Abstract
In Dictyostelium, a transient increase in intracellular cGMP is important for cytoskeletal rearrangements during chemotaxis. There must be cGMP-binding proteins in Dictyostelium that regulate key cytoskeletal components after treatment with chemoattractants, but to date, no such proteins have been identified. Using a bioinformatics approach, we have found four candidate cGMP-binding proteins (GbpA-D). GbpA and -B have two tandem cGMP-binding sites downstream of a metallo beta-lactamase domain, a superfamily that includes cAMP phosphodiesterases. GbpC contains the following nine domains (in order): leucine-rich repeats, Ras, MEK kinase, Ras guanine nucleotide exchange factor N-terminal (RasGEF-N), DEP, RasGEF, cGMP-binding, GRAM, and a second cGMP-binding domain. GbpD is related to GbpC, but is much shorter; it begins with the RasGEF-N domain, and lacks the DEP domain. Disruption of the gbpC gene results in loss of all high-affinity cGMP-binding activity present in the soluble cellular fraction. GbpC mRNA levels increase dramatically 8 h after starvation is initiated. GbpA, -B, and -D mRNA levels show less dramatic changes, with gbpA mRNA levels highest 4 h into starvation, gbpB mRNA levels highest in vegetative cells, and gbpD levels highest at 8 h. The identification of these genes is the first step in a molecular approach to studying downstream effects of cGMP signaling in Dictyostelium.
Collapse
Affiliation(s)
- Jonathan M Goldberg
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472-2829, USA
| | | | | | | |
Collapse
|
29
|
Rascón A, Soderling SH, Schaefer JB, Beavo JA. Cloning and characterization of a cAMP-specific phosphodiesterase (TbPDE2B) from Trypanosoma brucei. Proc Natl Acad Sci U S A 2002; 99:4714-9. [PMID: 11930017 PMCID: PMC123713 DOI: 10.1073/pnas.002031599] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here we report the cloning, expression, and characterization of a cAMP-specific phosphodiesterase (PDE) from Trypanosoma brucei (TbPDE2B). Using a bioinformatic approach, two different expressed sequence tag clones were identified and used to isolate the complete sequence of two identical PDE genes arranged in tandem. Each gene consists of 2,793 bases that predict a protein of 930 aa with a molecular mass of 103.2 kDa. Two GAF (for cGMP binding and stimulated PDEs, Anabaena adenylyl cyclases, and Escherichia coli FhlA) domains, similar to those contained in many signaling molecules including mammalian PDE2, PDE5, PDE6, PDE10, and PDE11, were located N-terminal to a consensus PDE catalytic domain. The catalytic domain is homologous to the catalytic domain of all 11 mammalian PDEs, the Dictyostelium discoideum RegA, and a probable PDE from Caenorhabditis elegans. It is most similar to the T. brucei PDE2A (89% identity). TbPDE2B has substrate specificity for cAMP with a K(m) of 2.4 microM. cGMP is not hydrolyzed by TbPDE2B nor does this cyclic nucleotide modulate cAMP PDE activity. The nonselective PDE inhibitors 3-isobutyl-1-methylxanthine, papaverine and pentoxifyline are poor inhibitors of TbPDE2B. Similarly, PDE inhibitors selective for the mammalian PDE families 2, 3, 5, and 6 (erythro-9-[3-(2-hydroxynonyl)]-adenine, enoximone, zaprinast, and sildenafil) were also unable to inhibit this enzyme. However, dipyridamole was a reasonably good inhibitor of this enzyme with an IC50 of 27 microM. cAMP plays key roles in cell growth and differentiation in this parasite, and PDEs are responsible for the hydrolysis of this important second messenger. Therefore, parasite PDEs, including this one, have the potential to be attractive targets for selective drug design.
Collapse
Affiliation(s)
- Ana Rascón
- Instituto de Biología Experimental, Universidad Central de Venezuela, Apartado 47.069, Caracas 1041-A, Venezuela.
| | | | | | | |
Collapse
|
30
|
Richter W. 3',5' Cyclic nucleotide phosphodiesterases class III: members, structure, and catalytic mechanism. Proteins 2002; 46:278-86. [PMID: 11835503 DOI: 10.1002/prot.10049] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
3',5' Cyclic nucleotide phosphodiesterases (PDEs) comprise a superfamily of enzymes that were previously divided by their primary structure into two major classes: PDE class I and II. The 3',5' cyclic AMP phosphodiesterase from Escherichia coli encoded by the cpdA gene does not show any homology to either PDE class I or class II enzymes and, therefore, represents a new, third class of PDEs. Previously, information about essential structural elements, substrate and cofactor binding sites, and the mechanism of catalysis was unknown for this enzyme. The present study shows by computational analysis that the enzyme encoded by the E. coli cpdA gene belongs to a family of phosphodiesterases that closely resembles the catalytic machinery known from purple acid phosphatases and several other dimetallophosphoesterases. They share both the conserved sequence motif, D-(X)(n) GD-(X)(n)-GNH[E/D]-(X)(n)-H-(X)(n)-GHXH, which contains the invariant residues forming the active site of purple acid phosphatases, a binuclear Fe(3+)-Me(2+)-containing center, as well as a beta(alpha)beta(alpha)beta motif as a typical secondary structure signature. Furthermore, the known biochemical properties of the bacterial phosphodiesterase encoded by the cpdA gene, such as the requirement of iron ions and a reductant for maintaining its catalytic activity, support this hypothesis developed by computational analysis. In addition, the availability of atomic coordinates for several purple acid phosphatases and related proteins allowed the generation of a three-dimensional model for class III cyclic nucleotide phosphodiesterases.
Collapse
Affiliation(s)
- Wito Richter
- Division of Reproductive Biology, Department of Gynecology and Obstetrics, Stanford University School of Medicine, Stanford, California 94305-5317, USA.
| |
Collapse
|
31
|
Zoraghi R, Kunz S, Gong K, Seebeck T. Characterization of TbPDE2A, a novel cyclic nucleotide-specific phosphodiesterase from the protozoan parasite Trypanosoma brucei. J Biol Chem 2001; 276:11559-66. [PMID: 11134002 DOI: 10.1074/jbc.m005419200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study reports the identification and characterization of a cAMP-specific phosphodiesterase from the parasitic hemoflagellate Trypanosoma brucei. TbPDE2A is a class I phosphodiesterase. Its catalytic domain exhibits 30-40% sequence identity with those of all 11 mammalian phosphodiesterase (PDE) families, as well as with PDE2 from Saccharomyces cerevisiae, dunce from Drosophila melanogaster, and regA from Dictyostelium discoideum. The overall structure of TbPDE2A resembles that of human PDE11A in that its N-terminal region contains a single GAF domain. This domain is very similar to those of the mammalian PDE2, -5, -6, -10, and -11, where it constitutes a potential cGMP binding site. TbPDE2A can be expressed in S. cerevisiae, and it complements an S. cerevisiae PDE deletion strain. Recombinant TbPDE2A is specific for cAMP, with a K(m) of approximately 2 micrometer. It is entirely resistant to the nonselective PDE inhibitor 3-isobutyl-1-methylxanthine, but it is sensitive to trequinsin, dipyridamole, sildenafil, and ethaverine with IC(50) values of 5.4, 5.9, 9.4, and 14.2 micrometer, respectively. All four compounds inhibit proliferation of bloodstream form trypanosomes in culture, indicating that TbPDE2A is an essential enzyme.
Collapse
Affiliation(s)
- R Zoraghi
- Institute for Cell Biology, University of Bern, Baltzerstrasse 4, Berne CH-3012, Switzerland
| | | | | | | |
Collapse
|
32
|
Francis SH, Turko IV, Corbin JD. Cyclic nucleotide phosphodiesterases: relating structure and function. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 65:1-52. [PMID: 11008484 DOI: 10.1016/s0079-6603(00)65001-8] [Citation(s) in RCA: 289] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) comprise a superfamily of metallophosphohydrolases that specifically cleave the 3',5'-cyclic phosphate moiety of cAMP and/or cGMP to produce the corresponding 5'-nucleotide. PDEs are critical determinants for modulation of cellular levels of cAMP and/or cGMP by many stimuli. Eleven families of PDEs with varying selectivities for cAMP or cGMP have been identified in mammalian tissues. Within these families, multiple isoforms are expressed either as products of different genes or as products of the same gene through alternative splicing. Regulation of PDEs is important for controlling myriad physiological functions, including the visual response, smooth muscle relaxation, platelet aggregation, fluid homeostasis, immune responses, and cardiac contractility. PDEs are critically involved in feedback control of cellular cAMP and cGMP levels. Activities of the various PDEs are highly regulated by a panoply of processes, including phosphorylation events, interaction with small molecules such as cGMP or phosphatidic acid, subcellular localization, and association with specific protein partners. The PDE superfamily continues to be a major target for pharmacological intervention in a number of medically important maladies.
Collapse
Affiliation(s)
- S H Francis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
33
|
Rascón A, Viloria ME, De-Chiara L, Dubra ME. Characterization of cyclic AMP phosphodiesterases in Leishmania mexicana and purification of a soluble form. Mol Biochem Parasitol 2000; 106:283-92. [PMID: 10699257 DOI: 10.1016/s0166-6851(99)00224-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The cyclic AMP phosphodiesterase (PDE) activity in Leishmania mexicana is mainly located (>95%) in the soluble fraction of the cell. The intact parasite, as well as plasma membranes, showed PDE activity, probably indicating that at least part of the activity in the particulate fraction resides on the parasite cell surface, with its catalytic domain facing the extracellular moiety. For the first time, a highly specific cAMP phosphodiesterase (PDE) was purified from the soluble fraction to apparent homogeneity after a single step 2239-fold purification using pseudo-affinity chromatography on Cibacron Blue 3GA agarose. The enzyme was identified as a 61-kDa protein on SDS-PAGE, with a K(m) of 277 microM at 30 degrees C (optimum temperature). The native enzyme protein showed an apparent molecular size of approximately 200000 estimated by molecular sieve chromatography on Sephacryl S-300. Further characterization of the PDE activity present in the soluble fraction shows that the enzyme requires Mg(2+) for maximal activity. Furthermore, no activity was detected when assayed at pHs below 6.0, but above this value it increased dramatically, reaching the optimum at pH 7.2. On the basis of the K(m) and PDE activity in presence of specific drugs or modulators such as rolipram, OPC-3911, cGMP, IBMX, zaprinast, theophylline, caffeine and Ca(2+)/calmodulin, this enzyme does not seem to conform to any of the ten previously described Class I PDE families but to the PDE class II (or non-mammalian PDEs) similar to the those found in Candida albicans, Dictyostelium discoideum, Saccharomyces cerevisiae or Vibrio fischeri.
Collapse
Affiliation(s)
- A Rascón
- Laboratory of Cell Signaling, Instituto de Biología Experimental, Universidad Central de Venezuela, Apartado 47.069, Caracas, Venezuela.
| | | | | | | |
Collapse
|
34
|
Conti M, Jin SL. The molecular biology of cyclic nucleotide phosphodiesterases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 63:1-38. [PMID: 10506827 DOI: 10.1016/s0079-6603(08)60718-7] [Citation(s) in RCA: 352] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent progress in the field of cyclic nucleotides has shown that a large array of closely related proteins is involved in each step of the signal transduction cascade. Nine families of adenylyl cyclases catalyze the synthesis of the second messenger cAMP, and protein kinases A, the intracellular effectors of cAMP, are composed of four regulatory and three catalytic subunits. A comparable heterogeneity has been discovered for the enzymes involved in the inactivation of cyclic nucleotide signaling. In mammals, 19 different genes encode the cyclic nucleotide phosphodiesterases (PDEs), the enzymes that hydrolyze and inactivate cAMP and cGMP. This is only an initial level of complexity, because each PDE gene contains several distinct transcriptional units that give rise to proteins with subtle structural differences, bringing the number of the PDE proteins close to 50. The molecular biology of PDEs in Drosophila and Dictyostelium has shed some light on the role of PDE diversity in signaling and development. However, much needs to be done to understand the exact function of these enzymes, particularly during mammalian development and cell differentiation. With the identification and mapping of regulatory and targeting domains of the PDEs, modularity of the PDE structure is becoming an established tenet in the PDE field. The use of different transcriptional units and exon splicing of a single PDE gene generates proteins with different regulatory domains joined to a common catalytic domain, therefore expanding the array of isoforms with subtle differences in properties and sensitivities to different signals. The physiological context in which these different isoforms function is still largely unknown and undoubtedly will be a major area of expansion in the years to come.
Collapse
Affiliation(s)
- M Conti
- Department of Gynecology and Obstetrics, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
35
|
Thomason PA, Traynor D, Stock JB, Kay RR. The RdeA-RegA system, a eukaryotic phospho-relay controlling cAMP breakdown. J Biol Chem 1999; 274:27379-84. [PMID: 10488068 DOI: 10.1074/jbc.274.39.27379] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regA and rdeA gene products of Dictyostelium are involved in the regulation of cAMP signaling. The response regulator, RegA, is composed of an N-terminal receiver domain linked to a C-terminal cAMP-phosphodiesterase domain. RdeA may be a phospho-transfer protein that supplies phosphates to RegA. We show genetically that phospho-RegA is the activated form of the enzyme in vivo, in that the predicted site of aspartate phosphorylation is required for full activity. We show biochemically that RdeA and RegA communicate, as evidenced by phospho-transfer between the two proteins in vitro. Phospho-transfer is dependent on the presumed phospho-accepting amino acids, histidine 65 of RdeA and aspartate 212 of RegA, and occurs in both directions. Phosphorylation of RegA by a heterologous phospho-donor protein activates RegA phosphodiesterase activity at least 20-fold. Our results suggest that the histidine phosphotransfer protein, RdeA, and the response regulator, RegA, constitute two essential elements in a eukaryotic His-Asp phospho-relay network that regulates Dictyostelium development and fruiting body maturation.
Collapse
Affiliation(s)
- P A Thomason
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, United Kingdom.
| | | | | | | |
Collapse
|
36
|
Ma P, Wera S, Van Dijck P, Thevelein JM. The PDE1-encoded low-affinity phosphodiesterase in the yeast Saccharomyces cerevisiae has a specific function in controlling agonist-induced cAMP signaling. Mol Biol Cell 1999; 10:91-104. [PMID: 9880329 PMCID: PMC25156 DOI: 10.1091/mbc.10.1.91] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The yeast Saccharomyces cerevisiae contains two genes, PDE1 and PDE2, which respectively encode a low-affinity and a high-affinity cAMP phosphodiesterase. The physiological function of the low-affinity enzyme Pde1 is unclear. We show that deletion of PDE1, but not PDE2, results in a much higher cAMP accumulation upon addition of glucose or upon intracellular acidification. Overexpression of PDE1, but not PDE2, abolished the agonist-induced cAMP increases. These results indicate a specific role for Pde1 in controlling glucose and intracellular acidification-induced cAMP signaling. Elimination of a putative protein kinase A (PKA) phosphorylation site by mutagenesis of serine252 into alanine resulted in a Pde1(ala252) allele that apparently had reduced activity in vivo. Its presence in a wild-type strain partially enhanced the agonist-induced cAMP increases compared with pde1Delta. The difference between the Pde1(ala252) allele and wild-type Pde1 was strongly dependent on PKA activity. In a RAS2(val19) pde2Delta background, the Pde1(ala252) allele caused nearly the same hyperaccumulation of cAMP as pde1Delta, while its expression in a PKA-attenuated strain caused the same reduction in cAMP hyperaccumulation as wild-type Pde1. These results suggest that serine252 might be the first target site for feedback inhibition of cAMP accumulation by PKA. We show that Pde1 is rapidly phosphorylated in vivo upon addition of glucose to glycerol-grown cells, and this activation is absent in the Pde1(ala252) mutant. Pde1 belongs to a separate class of phosphodiesterases and is the first member shown to be phosphorylated. However, in vitro the Pde1(ala252) enzyme had the same catalytic activity as wild-type Pde1, both in crude extracts and after extensive purification. This indicates that the effects of the S252A mutation are not caused by simple inactivation of the enzyme. In vitro phosphorylation of Pde1 resulted in a modest and variable increase in activity, but only in crude extracts. This was absent in Pde1(ala252), and phosphate incorporation was strongly reduced. Apparently, phosphorylation of Pde1 does not change its intrinsic activity or affinity for cAMP but appears to be important in vivo for protein-protein interaction or for targeting Pde1 to a specific subcellular location. The PKA recognition site is conserved in the corresponding region of the Schizosaccharomyces pombe and Candida albicans Pde1 homologues, possibly indicating a similar control by phosphorylation.
Collapse
Affiliation(s)
- P Ma
- Laboratorium voor Moleculaire Celbiologie, Katholieke Universiteit Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium
| | | | | | | |
Collapse
|
37
|
Eichinger L, Bähler M, Dietz M, Eckerskorn C, Schleicher M. Characterization and cloning of a Dictyostelium Ste20-like protein kinase that phosphorylates the actin-binding protein severin. J Biol Chem 1998; 273:12952-9. [PMID: 9582328 DOI: 10.1074/jbc.273.21.12952] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
After receiving an external stimulus Dictyostelium amoebae are able to rearrange their actin cytoskeleton within seconds, and phosphorylation is a prime candidate for quick modification of cytoskeletal components. We isolated a kinase from cytosolic extracts that specifically phosphorylated severin, a Ca2+-dependent F-actin fragmenting protein. In gel filtration chromatography severin kinase eluted with a molecular mass of about 300 kDa and contained a 62-kDa component whose autophosphorylation caused a mobility shift in SDS-polyacrylamide gel electrophoresis and stimulated phosphorylation of severin. Severin kinase activity could be specifically precipitated with antibodies raised against the 62-kDa polypeptide. Phosphorylation of severin was strongly reduced in the presence of Ca2+, indicating additional regulation at the substrate level. Peptide sequencing and cloning of the cDNA demonstrated that the 62-kDa protein belongs to the Ste20p- or p21-activated protein kinase family. It is most closely related to the germinal center kinase subfamily with its N-terminal positioned catalytic domain followed by a presumptive regulatory domain at the C terminus. The presence of a Ste20-like severin kinase in Dictyostelium suggests a direct signal transduction from the plasma membrane to the cytoskeleton by phosphorylation of actin-binding proteins.
Collapse
Affiliation(s)
- L Eichinger
- Adolf-Butenandt-Institut/Zellbiologie, Ludwig-Maximilians-Universität, Schillerstrasse 42, 80336 München, Germany
| | | | | | | | | |
Collapse
|
38
|
Wera S, Ma P, Thevelein JM. Glucose exerts opposite effects on mRNA versus protein and activity levels of Pde1, the low-affinity cAMP phosphodiesterase from budding yeast, Saccharomyces cerevisiae. FEBS Lett 1997; 420:147-50. [PMID: 9459299 DOI: 10.1016/s0014-5793(97)01508-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In budding yeast (Saccharomyces cerevisiae), a low-affinity phosphodiesterase, Pde1, and a high-affinity phosphodiesterase, Pde2, are responsible for the degradation of cAMP. Addition of glucose to glycerol-grown yeast cells is known to cause a transient increase in the cAMP level and recent work has indicated a specific involvement of Pde1 in this response. In this work we show that glucose addition induces the accumulation to high levels of mRNA encoding Pde1. This increase continues for at least 8 hours and is due to enhanced transcription of the PDE1 gene, since glucose addition does not change the stability of the Pde1 mRNA. Surprisingly, using an assay method specific for Pde1, we observed that the activity of Pde1 remains constant and finally decreases several-fold during the same period. In addition, this activity profile closely follows the Pde1 protein level as judged from Western blotting with antibodies directed against Pde1. Experiments using cycloheximide, a general inhibitor of translation, allow to exclude the possibility of a futile cycle of Pde1 synthesis and degradation. Hence, glucose addition appears to trigger an increase in PDE1 gene transcription together with a specific inhibition of the translation of Pde1 mRNA.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/analysis
- 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
- 3',5'-Cyclic-GMP Phosphodiesterases/analysis
- 3',5'-Cyclic-GMP Phosphodiesterases/metabolism
- Amino Acid Sequence
- Blotting, Northern
- Blotting, Western
- Cyclic AMP/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 1
- Cycloheximide/pharmacology
- Glucose/pharmacology
- Molecular Sequence Data
- Phosphoric Diester Hydrolases
- Protein Biosynthesis/drug effects
- Protein Synthesis Inhibitors/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Saccharomyces cerevisiae/enzymology
- Sequence Alignment
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- S Wera
- Laboratorium voor Moleculaire Celbiologie, Katholieke Universiteit Leuven, Leuven-Heverlee, Belgium.
| | | | | |
Collapse
|
39
|
Sucgang R, Weijer CJ, Siegert F, Franke J, Kessin RH. Null mutations of the Dictyostelium cyclic nucleotide phosphodiesterase gene block chemotactic cell movement in developing aggregates. Dev Biol 1997; 192:181-92. [PMID: 9405107 DOI: 10.1006/dbio.1997.8720] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Extracellular cAMP is a critical messenger in the multicellular development of the cellular slime mold Dictyostelium discoideum. The levels of cAMP are controlled by a cyclic nucleotide phosphodiesterase (PDE) that is secreted by the cells. The PDE gene (pdsA) is controlled by three promoters that permit expression during vegetative growth, during aggregation, and in prestalk cells of the older structures. Targeted disruption of the gene aborts development, and complementation with a modified pdsA restores development. Two distinct promoters must be used for full complementation, and an inhibitory domain of the PDE must be removed. We took advantage of newly isolated PDE-null cells and the natural chimerism of the organism to ask whether the absence of PDE affected individual cell behavior. PDE-null cells aggregated with isogenic wild-type cells in chimeric mixtures, but could not move in a coordinated manner in mounds. The wild-type cells move inward toward the center of the mound, leaving many of the PDE-null cells at the periphery of the aggregate. During the later stages of development, PDE-null cells in the chimera segregate to regions which correspond to the prestalk region and the rear of the slug. Participation in the prespore/spore population returns with the restoration of a modified pdsA to the null cells.
Collapse
Affiliation(s)
- R Sucgang
- College of Physicians and Surgeons, Columbia University, 630 West 168 Street, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
Adenosine 3',5'-monophosphate (cAMP) and cAMP-dependent protein kinase (PKA) are regulators of development in many organisms. Dictyostelium uses cAMP as an extracellular chemoattractant and as an intracellular signal for differentiation. Cells that are mutant in adenylyl cyclase do not develop. Moderate expression of the catalytic subunit of PKA in adenylyl cyclase-null cells led to near-normal development without detectable accumulation of cAMP. These results suggest that all intracellular cAMP signaling is effected through PKA and that signals other than extracellular cAMP coordinate morphogenesis in Dictyostelium.
Collapse
Affiliation(s)
- B Wang
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
41
|
Shaulsky G, Escalante R, Loomis WF. Developmental signal transduction pathways uncovered by genetic suppressors. Proc Natl Acad Sci U S A 1996; 93:15260-5. [PMID: 8986798 PMCID: PMC26391 DOI: 10.1073/pnas.93.26.15260] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/1996] [Accepted: 10/08/1996] [Indexed: 02/03/2023] Open
Abstract
We have found conditions for saturation mutagenesis by restriction enzyme mediated integration that result in plasmid tagging of disrupted genes. Using this method we selected for mutations in genes that act at checkpoints downstream of the intercellular signalling system that controls encapsulation in Dictyostelium discoideum. One of these genes, mkcA, is a member of the mitogen-activating protein kinase cascade family while the other, regA is a novel bipartite gene homologous to response regulators in one part and to cyclic nucleotide phosphodiesterases in the other part. Disruption of either of these genes results in partial suppression of the block to spore formation resulting from the loss of the prestalk genes, tagB and tagC. The products of the tag genes have conserved domains of serine protease attached to ATP-driven transporters, suggesting that they process and export peptide signals. Together, these genes outline an intercellular communication system that coordinates organismal shape with cellular differentiation during development.
Collapse
Affiliation(s)
- G Shaulsky
- Department of Biology, University of California at San Diego, La Jolla 92093, USA
| | | | | |
Collapse
|
42
|
Alexander H, Lee SK, Yu SL, Alexander S. repE--the Dictyostelium homolog of the human xeroderma pigmentosum group E gene is developmentally regulated and contains a leucine zipper motif. Nucleic Acids Res 1996; 24:2295-301. [PMID: 8710499 PMCID: PMC145941 DOI: 10.1093/nar/24.12.2295] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have cloned and characterized the Dictyostelium discoideum repE gene, a homolog of the human xeroderma pigmentosum (XP) group E gene which encodes a UV-damaged DNA binding protein. The repE gene maps to chromosome 4 and it is the first gene identified in Dictyostelium that is homologous to those involved in nucleotide excision repair and their related XP diseases in humans. The predicted protein encodes a leucine zipper motif. The repE gene is not expressed by mitotically dividing cells, and repE mRNA is first detected during the aggregation phase of development when the cells have ceased dividing and replicating genomic DNA. The mRNA level plateaus by the time the developing cells have entered multicellular aggregates and remains at the same steady-state level for the remainder of development. In addition, we have demonstrated that the level of mRNA is very low in developing cells. These observations suggest that repE may play a regulatory role in development. The data indicate that potential developmental roles for XP-related genes can be profitably studied in this system.
Collapse
Affiliation(s)
- H Alexander
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
43
|
Dammann H, Hellstern S, Husain Q, Mutzel R. Primary structure, expression and developmental regulation of a Dictyostelium calcineurin A homologue. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 238:391-9. [PMID: 8681950 DOI: 10.1111/j.1432-1033.1996.0391z.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
cDNA clones for the catalytic subunit of Ca2+/calmodulin(CaM)-dependent protein phosphatase (calcineurin A, protein phosphatase 2B) from Dictyostelium discoideum were isolated by functional screening of a lambda gt11 lysogen expression library with labeled Dictyostelium CaM. A complete cDNA of 2146 bp predicts a protein of 623 amino acids with homology to calcineurin A from other organisms and a similar molecular architecture. However, the Dictyostelium protein contains N-terminal and C-terminal extra domains causing a significantly higher molecular mass than found in any of its known counterparts. Recombinant Dictyostelium calcineurin A was purified from Escherichia coli cells and shown to display similar enzymatic properties as the enzyme from other sources. On Western blots specific antibodies against the protein recognized a band of approximately 80 kDa that migrated with an endogenous CaM-binding activity. Both the mRNA for calcineurin A and the protein are expressed during the growth phase. During early development the abundance of the protein is reduced and then increases to peak after 10 h of starvation, when tight aggregates have formed.
Collapse
Affiliation(s)
- H Dammann
- Fakultät für Biologie, Universität Konstanz, Germany
| | | | | | | |
Collapse
|
44
|
Noben-Trauth K, Naggert JK, North MA, Nishina PM. A candidate gene for the mouse mutation tubby. Nature 1996; 380:534-8. [PMID: 8606774 DOI: 10.1038/380534a0] [Citation(s) in RCA: 230] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A mutation in the tub gene causes maturity-onset obesity, insulin resistance, and sensory deficits. In contrast to the rapid juvenile-onset weight gain seen in diabetes (db) and obese (ob) mice, obesity in tubby mice develops gradually, and strongly resembles the late-onset obesity seen in the human population. Excessive deposition of adipose tissue eventually leads to a twofold increase of body weight. Tubby mice also suffer retinal degeneration and neurosensory hearing loss. The tripartite character of the tubby phenotype shows striking similarity to human obesity syndromes, such as Alström and Bardet-Biedl. Here we report the identification of a G --> T transversion in a candidate gene that abolishes a donor splice site in the 3' coding region and results in a larger transcript containing the unspliced intron. This alteration is predicted to replace the 44-carboxyterminal amino acids with a 20-amino-acid sequence not found in the wide-type protein. Additionally, a second, prematurely truncated transcript with the unspliced intron is observed in testis messenger RNA and a 2-3-fold increase in brain mRNA is observed in tubby mice compared to B6. The phenotype features of tubby mice may be the result of cellular apoptosis triggered by expression of the mutuated tub gene.
Collapse
|
45
|
André B, Noegel AA, Schleicher M. Dictyostelium discoideum contains a family of calmodulin-related EF-hand proteins that are developmentally regulated. FEBS Lett 1996; 382:198-202. [PMID: 8612752 DOI: 10.1016/0014-5793(96)00176-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A full-length genomic DNA fragment that codes for a novel EF-hand protein Dictyostelium discoideum was cloned and sequenced. The protein is composed of 168 amino acids and contains four consensus sequences that are typical for (Ca2+)-binding EF-hand domains. The protein sequence exhibits only minor similarities to other calmodulin-type proteins from Dictyostelium. The genomic DNA harbors two short introns; their positions suggest that the gene is unrelated to the EF-hand proteins from the calmodulin group. Northern blot analysis showed that the mRNA level was significantly increased during development. Polyclonal antibodies raised against the recombinant protein recognized in Western blots a protein of about 20 kDa. Like the mRNA, also the protein was more abundant in developing cells. Overlay experiments with 45Ca2+ indicated that the EF-hands in fact have (Ca2+)-binding activity. The recent description of CBP1, another calmodulin-type Dictyostelium protein that is upregulated during development [Coukell et al. (1995) FEBS Lett. 362, 342-346], suggests that D. discoideum contains a family of EF-hand proteins that have specific functions during distinct steps of development. We therefore designate the protein described in this report as CBP2.
Collapse
Affiliation(s)
- B André
- Adolf-Butenandt-Institut/Zellbiologie, München, Germany
| | | | | |
Collapse
|
46
|
Schulkes C, Schaap P. cAMP-dependent protein kinase activity is essential for preaggregative gene expression in Dictyostelium. FEBS Lett 1995; 368:381-4. [PMID: 7628643 DOI: 10.1016/0014-5793(95)00676-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Constitutive inhibition of cAMP-dependent protein kinase (PKA) in Dictyostelium cells blocks cell aggregation and development. We investigated the cause of the aggregation defect in transformants overexpressing dominant-negative PKA regulatory subunits (PKA-RM) under an actin 15 promoter. These mutants could not relay pulses of the chemoattractant cAMP, due to a defect in expression of the aggregative adenylyl cyclase (ACA) gene. Unstimulated and cAMP pulse-induced expression of other aggregative genes encoding the cAMP receptor cAR1, adhesive contact sites A and cAMP-phosphodiesterase were also strongly reduced in the mutants. Additionally, the expression of the discoidin I gene, that is expressed early in development in response to cell density sensing factors, was almost completely absent. These data are in interesting contrast with observations that cAMP relay and aggregative gene expression are normal in null mutants for the PKA catalytic (C) subunit and suggest the presence of multiple C subunit genes in Dictyostelium and an almost universal requirement for PKA activity in developmental gene expression.
Collapse
Affiliation(s)
- C Schulkes
- Cell Biology Section, University of Leiden, The Netherlands
| | | |
Collapse
|
47
|
Wetterauer BW, Hamker U, von Haeseler A, MacWilliams HK, Simon MN, Veron M. A protein kinase from Dictyostelium discoideum with an unusual acidic repeat domain. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1265:97-101. [PMID: 7857991 DOI: 10.1016/0167-4889(94)00241-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DdKinX codes for 1093 amino acids which are organized in four regions: the N-terminal catalytic domain, a region containing 30% acidic amino acids, tandem repeats of the motif VKVEEPVEE and the C-terminus. Identity with other protein kinases is 25 to 30%. Descendent trees show that DdKinX does not belong to any of the known kinase branches.
Collapse
Affiliation(s)
- B W Wetterauer
- Zoologisches Institut, Ludwig-Maximilians-Universität, Munich, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Bäuerle A, Mutzel R. Nucleotide sequence of the gene for ribosomal protein S17 from Dictyostelium discoideum. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1260:223-6. [PMID: 7841201 DOI: 10.1016/0167-4781(94)00218-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nucleotide sequence of the gene for the Dictyostelium homologue of eukaryotic ribosomal protein S17 has been assembled from cDNA and genomic DNA clones. The predicted primary structure of the S17 protein displays a similar level of sequence identity with its counterparts from higher eukaryotes (53%) as other Dictyostelium ribosomal proteins. Although Dictyostelium genes usually are organized in a rather simple manner, the rps17 gene harbors two introns. One of them, located immediately 3' from the ATG initiator codon, appears to be ubiquitously conserved in eukaryotic rps17 genes.
Collapse
Affiliation(s)
- A Bäuerle
- Fakultät für Biologie, Universität Konstanz, Germany
| | | |
Collapse
|
49
|
Vambutas V, Wolgemuth DJ. Identification and characterization of the developmentally regulated pattern of expression in the testis of a mouse gene exhibiting similarity to the family of phosphodiesterases. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1217:203-6. [PMID: 7509194 DOI: 10.1016/0167-4781(94)90036-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A cDNA for a rat brain phosphodiesterase (PDE) was used to screen a mouse testis library to identify the murine PDEs which are expressed in this tissue. A clone of 981 bp, p4-6, was isolated and shown to exhibit limited identity at the amino acid level to the rat brain PDE (20%). The putative protein encoded by clone p4-6 also contains multiple potential modification sites, for phosphorylation, myristylation, and glycosylation, many of which are located at positions similar to those found for rat brain PDE. The gene identified by p4-6 yields 3 transcripts, an abundant 1.9 kb transcript, and less abundant transcripts of 3.8 and 6.7 kb. Of the nine tissues examined in this study, the expression of the corresponding gene was limited to the adult mouse testis. Furthermore, the expression in the testis was most abundant in the germ cell lineage, although low levels were detected in somatic cells of the testis as well. Analysis of RNA from testes at different stages of development suggested that the p4-6 gene is most abundantly expressed in germ cells that have completed the meiotic divisions.
Collapse
Affiliation(s)
- V Vambutas
- Center for Reproductive Sciences, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | | |
Collapse
|
50
|
Separate nuclear genes encode cytosolic and mitochondrial nucleoside diphosphate kinase in Dictyostelium discoideum. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74415-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|