1
|
Jarczewska K, Kopeć M, Abramczyk H, Surmacki JM. Monitoring alterations of all- trans-retinal in human brain cancer cells by label-free confocal Raman imaging: regulation of the redox status of cytochrome c. RSC Adv 2024; 14:20982-20991. [PMID: 38962093 PMCID: PMC11220488 DOI: 10.1039/d4ra01542h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
This article has shown the impact of all-trans-retinal on human brain cancer, which is apparent in the shifts in the redox status of cytochrome c in a single cell. The connection between cytochrome c expression and its role in cancer development remains relatively unexplored. To assess this, we employed Raman spectroscopy and imaging to determine the redox state of the iron ion in cytochrome c across different cellular locations, including mitochondria, cytoplasm, lipid droplets, and the endoplasmic reticulum within human brain cancer cells. We have analyzed normal human astrocytes (NHA) and two brain cancer cell lines (astrocytoma - CRL-1718 and glioblastoma - U-87 MG) without and supplemented with all-trans-retinal. Our results confirmed that human brain cancer cells demonstrate varying redox status compared to normal cells based on the established correlation between the intensity of the cytochrome c Raman band at 1583 cm-1 and the malignancy grade of brain cancer cells. Our research unveiled that all-trans-retinal induces remarkable changes in the mitochondrial functional activity (redox status) of cancer cells, which were measured by confocal Raman spectroscopy and imaging.
Collapse
Affiliation(s)
- Karolina Jarczewska
- Lodz University of Technology, Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy Wroblewskiego 15 93-590 Lodz Poland +48 426313188
| | - Monika Kopeć
- Lodz University of Technology, Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy Wroblewskiego 15 93-590 Lodz Poland +48 426313188
| | - Halina Abramczyk
- Lodz University of Technology, Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy Wroblewskiego 15 93-590 Lodz Poland +48 426313188
| | - Jakub Maciej Surmacki
- Lodz University of Technology, Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy Wroblewskiego 15 93-590 Lodz Poland +48 426313188
| |
Collapse
|
2
|
Development and validation of a method to deliver vitamin A to macrophages. Methods Enzymol 2022; 674:363-389. [DOI: 10.1016/bs.mie.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Carazo A, Macáková K, Matoušová K, Krčmová LK, Protti M, Mladěnka P. Vitamin A Update: Forms, Sources, Kinetics, Detection, Function, Deficiency, Therapeutic Use and Toxicity. Nutrients 2021; 13:1703. [PMID: 34069881 PMCID: PMC8157347 DOI: 10.3390/nu13051703] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Vitamin A is a group of vital micronutrients widely present in the human diet. Animal-based products are a rich source of the retinyl ester form of the vitamin, while vegetables and fruits contain carotenoids, most of which are provitamin A. Vitamin A plays a key role in the correct functioning of multiple physiological functions. The human organism can metabolize natural forms of vitamin A and provitamin A into biologically active forms (retinol, retinal, retinoic acid), which interact with multiple molecular targets, including nuclear receptors, opsin in the retina and, according to the latest research, also some enzymes. In this review, we aim to provide a complex view on the present knowledge about vitamin A ranging from its sources through its physiological functions to consequences of its deficiency and metabolic fate up to possible pharmacological administration and potential toxicity. Current analytical methods used for its detection in real samples are included as well.
Collapse
Affiliation(s)
- Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic;
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic;
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic; (K.M.); (L.K.K.)
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic; (K.M.); (L.K.K.)
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Michele Protti
- The Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum–University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic;
| |
Collapse
|
4
|
Rzajew J, Radzik T, Rebas E. Calcium-Involved Action of Phytochemicals: Carotenoids and Monoterpenes in the Brain. Int J Mol Sci 2020; 21:ijms21041428. [PMID: 32093213 PMCID: PMC7073062 DOI: 10.3390/ijms21041428] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Neurodegenerative and mood disorders represent growing medical and social problems, many of which are provoked by oxidative stress, disruption in the metabolism of various neurotransmitters, and disturbances in calcium homeostasis. Biologically active plant compounds have been shown to exert a positive impact on the function of calcium in the central nervous system. Methods: The present paper reviews studies of naturally occurring terpenes and derivatives and the calcium-based aspects of their mechanisms of action, as these are known to act upon a number of targets linked to neurological prophylaxis and therapy. Results: Most of the studied phytochemicals possess anticancer, antioxidative, anti-inflammatory, and neuroprotective properties, and these have been used to reduce the risk of or treat neurological diseases. Conclusion: The neuroprotective actions of some phytochemicals may employ mechanisms based on regulation of calcium homeostasis and should be considered as therapeutic agents.
Collapse
|
5
|
Affiliation(s)
- Aharon Friedman
- Department of Animal Sciences, Faculty of Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot, Israel
| | - David Sklan
- Department of Animal Sciences, Faculty of Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot, Israel
| |
Collapse
|
6
|
Rotondo Dottore G, Ionni I, Menconi F, Casini G, Sellari-Franceschini S, Nardi M, Vitti P, Marcocci C, Marinò M. Antioxidant effects of β-carotene, but not of retinol and vitamin E, in orbital fibroblasts from patients with Graves' orbitopathy (GO). J Endocrinol Invest 2018; 41:815-820. [PMID: 29256181 DOI: 10.1007/s40618-017-0809-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Oxidative stress is involved in the pathogenesis of Graves' orbitopathy (GO) and several antioxidant agents, namely, selenium, quercetin, enalapril, vitamin C, N-acetyl-L-cysteine, and melatonin, have been shown to reduce oxidative stress and its consequences in primary culture of orbital fibroblasts. In addition, selenium is effective for the treatment of mild GO. Here, we investigated the action of three additional antioxidants in orbital fibroblasts, namely, retinol, β-carotene, and vitamin E. METHODS Primary cultures of orbital fibroblasts were established from GO patients and control subjects. To induce oxidative stress, cells were treated with H2O2, after which glutathione disulfide (GSSG) (a parameter of oxidative stress), cell proliferation, hyaluronic acid, TNFα, IFNγ, and IL1β were measured. RESULTS H2O2-dependent oxidative stress (augmented GSSG) was associated with increased cell proliferation and cytokine release. All the three antioxidant substances reduced GSSG in both GO and control fibroblasts. β-carotene reduced proliferation in GO, but not in control fibroblasts. IL1β was reduced by all three substances. Retinol reduced IFNγ in GO and control fibroblasts. CONCLUSIONS Our study supports an antioxidant role of retinol, β-carotene, and vitamin E in orbital fibroblasts from patients with GO and provides a basis for a possible clinical use these substances.
Collapse
Affiliation(s)
- G Rotondo Dottore
- Endocrinology Unit I, Department of Clinical and Experimental Medicine, University Hospital of Pisa, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - I Ionni
- Endocrinology Unit I, Department of Clinical and Experimental Medicine, University Hospital of Pisa, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - F Menconi
- Endocrinology Unit I, Department of Clinical and Experimental Medicine, University Hospital of Pisa, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - G Casini
- Ophthalmopathy Unit I, Department of Surgical, Medical and Molecular Pathology, University Hospital of Pisa, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - S Sellari-Franceschini
- ENT Unit I, Department of Surgical, Medical and Molecular Pathology, University Hospital of Pisa, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - M Nardi
- Ophthalmopathy Unit I, Department of Surgical, Medical and Molecular Pathology, University Hospital of Pisa, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - P Vitti
- Endocrinology Unit I, Department of Clinical and Experimental Medicine, University Hospital of Pisa, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - C Marcocci
- Endocrinology Unit I, Department of Clinical and Experimental Medicine, University Hospital of Pisa, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - M Marinò
- Endocrinology Unit I, Department of Clinical and Experimental Medicine, University Hospital of Pisa, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| |
Collapse
|
7
|
Ford JL, Green JB, Lietz G, Oxley A, Green MH. A Simple Plasma Retinol Isotope Ratio Method for Estimating β-Carotene Relative Bioefficacy in Humans: Validation with the Use of Model-Based Compartmental Analysis. J Nutr 2017; 147:1806-1814. [PMID: 28747484 DOI: 10.3945/jn.117.252361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/12/2017] [Accepted: 06/26/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Provitamin A carotenoids are an important source of dietary vitamin A for many populations. Thus, accurate and simple methods for estimating carotenoid bioefficacy are needed to evaluate the vitamin A value of test solutions and plant sources. β-Carotene bioefficacy is often estimated from the ratio of the areas under plasma isotope response curves after subjects ingest labeled β-carotene and a labeled retinyl acetate reference dose [isotope reference method (IRM)], but to our knowledge, the method has not yet been evaluated for accuracy.Objectives: Our objectives were to develop and test a physiologically based compartmental model that includes both absorptive and postabsorptive β-carotene bioconversion and to use the model to evaluate the accuracy of the IRM and a simple plasma retinol isotope ratio [(RIR), labeled β-carotene-derived retinol/labeled reference-dose-derived retinol in one plasma sample] for estimating relative bioefficacy.Methods: We used model-based compartmental analysis (Simulation, Analysis and Modeling software) to develop and apply a model that provided known values for β-carotene bioefficacy. Theoretical data for 10 subjects were generated by the model and used to determine bioefficacy by RIR and IRM; predictions were compared with known values. We also applied RIR and IRM to previously published data.Results: Plasma RIR accurately predicted β-carotene relative bioefficacy at 14 d or later. IRM also accurately predicted bioefficacy by 14 d, except that, when there was substantial postabsorptive bioconversion, IRM underestimated bioefficacy. Based on our model, 1-d predictions of relative bioefficacy include absorptive plus a portion of early postabsorptive conversion.Conclusion: The plasma RIR is a simple tracer method that accurately predicts β-carotene relative bioefficacy based on analysis of one blood sample obtained at ≥14 d after co-ingestion of labeled β-carotene and retinyl acetate. The method also provides information about the contributions of absorptive and postabsorptive conversion to total bioefficacy if an additional sample is taken at 1 d.
Collapse
Affiliation(s)
- Jennifer Lynn Ford
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA; and
| | - Joanne Balmer Green
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA; and
| | - Georg Lietz
- Human Nutrition Research Centre, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Anthony Oxley
- Human Nutrition Research Centre, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Michael H Green
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA; and
| |
Collapse
|
8
|
Sandkam BA, Deere-Machemer KA, Johnson AM, Grether GF, Helen Rodd F, Fuller RC. Exploring visual plasticity: dietary carotenoids can change color vision in guppies (Poecilia reticulata). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:527-34. [DOI: 10.1007/s00359-016-1097-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/14/2016] [Accepted: 05/27/2016] [Indexed: 01/19/2023]
|
9
|
Abstract
The beneficial effects of a high intake of tomatoes and tomato products on the risk of certain chronic diseases have been presented in many epidemiologic studies, with the suggestion that lycopene (a major carotenoid in tomatoes) is a micronutrient with important health benefits. Within the past few years, we have gained greater knowledge of the metabolism of lycopene and the biological effects of lycopene derivatives. In particular, the characterization and study of β-carotene 9',10'-oxygenase has shown that this enzyme can catalyze the excentric cleavage of both provitamin and non-provitamin A carotenoids to form apo-10'-carotenoids, including apo-10'-lycopenoids from lycopene. This raised an important question of whether the effect of lycopene on various cellular functions and signaling pathways is a result of the direct actions of intact lycopene or its derivatives. Several reports, including our own, support the notion that the biological activities of lycopene can be mediated by apo-10'-lycopenoids. More research is clearly needed to identify and characterize additional lycopene metabolites and their biological activities, which will potentially provide invaluable insights into the mechanisms underlying the effects of lycopene in humans.
Collapse
Affiliation(s)
- Xiang-Dong Wang
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
10
|
Amann PM, Luo C, Owen RW, Hofmann C, Freudenberger M, Schadendorf D, Eichmüller SB, Bazhin AV. Vitamin A metabolism in benign and malignant melanocytic skin cells: importance of lecithin/retinol acyltransferase and RPE65. J Cell Physiol 2012; 227:718-28. [PMID: 21465477 DOI: 10.1002/jcp.22779] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Disturbance in vitamin A metabolism seems to be an important attribute of cancer cells. Retinoids, particularly retinoic acid, have critical regulatory functions and appear to modulate tumor development and progression. The key step of vitamin A metabolism is the esterification of all-trans retinol, catalyzed by lecithin/retinol acyltransferase (LRAT). In this work, we show that malignant melanoma cells are able to esterify all-trans retinol and subsequently isomerize all-trans retinyl esters (RE) into 11-cis retinol, whereas their benign counterparts-melanocytes are not able to catalyze these reactions. Besides, melanoma cell lines express lecithin/retinol acyltranseferase both at the mRNA and protein levels. In contrast, melanocytes do not express this enzyme at the protein level, but mRNA of lecithin/retinol acyltransefrase could still be present at mRNA level. RPE65 is expressed in both melanocytic counterparts, and could be involved in the subsequent isomerization of RE produced by lecithin/retinol acyltransefrase to 11-cis retinol. Cellular retinol-binding protein 2 does not appear to be involved in the regulation of all-trans retinol esterification in these cells. Expression of LRAT and RPE65 can be modulated by retinoids. We propose that the post-transcriptional regulation of lecithin/retinol acyltransefrase could be involved in the differential expression of this enzyme. Besides, activities of LRAT and RPE65 may be important for removal of all-trans retinal which is the substrate for retinoic acid production in skin cells. Consequently, the decreasing cellular amount of retinoic acid and its precursor molecules could result in a change of gene regulation.
Collapse
Affiliation(s)
- Philipp M Amann
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Amann PM, Hofmann C, Freudenberger M, Holland-Cunz S, Eichmüller SB, Bazhin AV. Expression and activity of alcohol and aldehyde dehydrogenases in melanoma cells and in melanocytes. J Cell Biochem 2012; 113:792-9. [DOI: 10.1002/jcb.23406] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Spiegler E, Kim YK, Wassef L, Shete V, Quadro L. Maternal-fetal transfer and metabolism of vitamin A and its precursor β-carotene in the developing tissues. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:88-98. [PMID: 21621637 PMCID: PMC3184320 DOI: 10.1016/j.bbalip.2011.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/01/2011] [Accepted: 05/12/2011] [Indexed: 11/17/2022]
Abstract
The requirement of the developing mammalian embryo for retinoic acid is well established. Retinoic acid, the active form of vitamin A, can be generated from retinol and retinyl ester obtained from food of animal origin, and from carotenoids, mainly β-carotene, from vegetables and fruits. The mammalian embryo relies on retinol, retinyl ester and β-carotene circulating in the maternal bloodstream for its supply of vitamin A. The maternal-fetal transfer of retinoids and carotenoids, as well as the metabolism of these compounds in the developing tissues are still poorly understood. The existing knowledge in this field has been summarized in this review in reference to our basic understanding of the transport and metabolism of retinoids and carotenoids in adult tissues. The need for future research on the metabolism of these essential lipophilic nutrients during development is highlighted. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.
Collapse
Affiliation(s)
- Elizabeth Spiegler
- Department of Food Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | | | | | | | | |
Collapse
|
13
|
Animal models in carotenoids research and lung cancer prevention. Transl Oncol 2011; 4:271-81. [PMID: 21966544 DOI: 10.1593/tlo.11184] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 06/21/2011] [Accepted: 06/22/2011] [Indexed: 02/07/2023] Open
Abstract
Numerous epidemiological studies have consistently demonstrated that individuals who eat more fruits and vegetables (which are rich in carotenoids) and who have higher serum β-carotene levels have a lower risk of cancer, especially lung cancer. However, two human intervention trials conducted in Finland and in the United States have reported contrasting results with high doses of β-carotene supplementation increasing the risk of lung cancer among smokers. The failure of these trials to demonstrate actual efficacy has resulted in the initiation of animal studies to reproduce the findings of these two studies and to elucidate the mechanisms responsible for the harmful or protective effects of carotenoids in lung carcinogenesis. Although these studies have been limited by a lack of animal models that appropriately represent human lung cancer induced by cigarette smoke, ferrets and A/J mice are currently the most widely used models for these types of studies. There are several proposed mechanisms for the protective effects of carotenoids on cigarette smoke-induced lung carcinogenesis, and these include antioxidant/prooxidant effects, modulation of retinoic acid signaling pathway and metabolism, induction of cytochrome P450, and molecular signaling involved in cell proliferation and/or apoptosis. The technical challenges associated with animal models include strain-specific and diet-specific effects, differences in the absorption and distribution of carotenoids, and differences in the interactions of carotenoids with other antioxidants. Despite the problems associated with extrapolating from animal models to humans, the understanding and development of various animal models may provide useful information regarding the protective effects of carotenoids against lung carcinogenesis.
Collapse
|
14
|
Liu C, Bronson RT, Russell RM, Wang XD. β-Cryptoxanthin supplementation prevents cigarette smoke-induced lung inflammation, oxidative damage, and squamous metaplasia in ferrets. Cancer Prev Res (Phila) 2011; 4:1255-66. [PMID: 21421799 PMCID: PMC3151338 DOI: 10.1158/1940-6207.capr-10-0384] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In epidemiologic studies, high intake of β-cryptoxanthin has been associated with a decreased risk of lung cancer, particularly among current smokers. However, data are not available from well-controlled animal studies to examine the effects of β-cryptoxanthin on cigarette smoke-induced lung lesions, and the biological mechanisms by which β-cryptoxanthin might affect lung carcinogenesis. We evaluated the effects of β-cryptoxanthin supplementation on cigarette smoke-induced squamous metaplasia, inflammation, and changes in protein levels of proinflammatory cytokine [tumor necrosis factor alpha (TNFα)] and transcription factors [nuclear factor kappa B (NF-κB) and activator protein-1 (AP-1)], as well as on smoke-induced oxidative DNA damage [8-hydroxy-2'-deoxyguanosine (8-OHdG)] in the lung tissue of ferrets. Thirty-six male ferrets were assigned to cigarette smoke exposure or no exposure and to low-dose, or high-dose β-cryptoxanthin, or no dose (2 × 3 factorial design) for 3 months. β-Cryptoxanthin supplementation dose-dependently increased plasma and lung β-cryptoxanthin levels in ferrets, whereas cigarette smoke exposure lowered plasma and lung β-cryptoxanthin levels. β-Cryptoxanthin at both doses significantly decreased smoke-induced lung squamous metaplasia and inflammation. β-Cryptoxanthin also substantially reduced smoke-elevated TNFα levels in alveolar, bronchial, bronchiolar, and bronchial serous/mucous gland epithelial cells and in lung macrophages. Moreover, β-cryptoxanthin decreased smoke-induced activation of NF-κB, expression of AP-1 and levels of 8-OHdG. The beneficial effects of β-cryptoxanthin were stronger for high-dose β-cryptoxanthin than for low-dose β-cryptoxanthin. Data from this study indicate that β-cryptoxanthin provides a beneficial effect against cigarette smoke-induced inflammation, oxidative DNA damage and squamous metaplasia in the lungs.
Collapse
Affiliation(s)
- Chun Liu
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, USA.
| | | | | | | |
Collapse
|
15
|
Kim YK, Wassef L, Chung S, Jiang H, Wyss A, Blaner WS, Quadro L. β-Carotene and its cleavage enzyme β-carotene-15,15'-oxygenase (CMOI) affect retinoid metabolism in developing tissues. FASEB J 2011; 25:1641-52. [PMID: 21285397 DOI: 10.1096/fj.10-175448] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mammalian embryo relies on maternal circulating retinoids (vitamin A derivatives) for development. β-Carotene is the major human dietary provitamin A. β-Carotene-15,15'-oxygenase (CMOI) has been proposed as the main enzyme generating retinoid from β-carotene in vivo. CMOI is expressed in embryonic tissues, suggesting that β-carotene provides retinoids locally during development. We performed loss of CMOI function studies in mice lacking retinol-binding protein (RBP), an established model of embryonic vitamin A deficiency (VAD). We show that, unexpectedly, lack of CMOI in the developing tissues further exacerbates the severity of VAD and thus the embryonic malformations of RBP(-/-) mice. Since β-carotene was not present in any of the mouse diets, we unveiled a novel action of CMOI independent from its β-carotene cleavage activity. We also show for the first time that CMOI exerts an additional function on retinoid metabolism by influencing retinyl ester formation via modulation of lecithin:retinol acyltransferase (LRAT) activity, at least in developing tissues. Finally, we demonstrate unequivocally that β-carotene can serve as an alternative vitamin A source for the in situ synthesis of retinoids in developing tissues by the action of CMOI.
Collapse
Affiliation(s)
- Youn-Kyung Kim
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Mein JR, Dolnikowski GG, Ernst H, Russell RM, Wang XD. Enzymatic formation of apo-carotenoids from the xanthophyll carotenoids lutein, zeaxanthin and β-cryptoxanthin by ferret carotene-9',10'-monooxygenase. Arch Biochem Biophys 2011; 506:109-21. [PMID: 21081106 PMCID: PMC3026080 DOI: 10.1016/j.abb.2010.11.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/24/2010] [Accepted: 11/05/2010] [Indexed: 01/10/2023]
Abstract
Xanthophyll carotenoids, such as lutein, zeaxanthin and β-cryptoxanthin, may provide potential health benefits against chronic and degenerative diseases. Investigating pathways of xanthophyll metabolism are important to understanding their biological functions. Carotene-15,15'-monooxygenase (CMO1) has been shown to be involved in vitamin A formation, while recent studies suggest that carotene-9',10'-monooxygenase (CMO2) may have a broader substrate specificity than previously recognized. In this in vitro study, we investigated baculovirus-generated recombinant ferret CMO2 cleavage activity towards the carotenoid substrates zeaxanthin, lutein and β-cryptoxanthin. Utilizing HPLC, LC-MS and GC-MS, we identified both volatile and non-volatile apo-carotenoid products including 3-OH-β-ionone, 3-OH-α-ionone, β-ionone, 3-OH-α-apo-10'-carotenal, 3-OH-β-apo-10'-carotenal, and β-apo-10'-carotenal, indicating cleavage at both the 9,10 and 9',10' carbon-carbon double bond. Enzyme kinetic analysis indicated the xanthophylls zeaxanthin and lutein are preferentially cleaved over β-cryptoxanthin, indicating a key role of CMO2 in non-provitamin A carotenoid metabolism. Furthermore, incubation of 3-OH-β-apo-10'-carotenal with CMO2 lysate resulted in the formation of 3-OH-β-ionone. In the presence of NAD(+), in vitro incubation of 3-OH-β-apo-10'-carotenal with ferret hepatic homogenates formed 3-OH-β-apo-10'-carotenoic acid. Since apo-carotenoids serve as important signaling molecules in a variety of biological processes, enzymatic cleavage of xanthophylls by mammalian CMO2 represents a new avenue of research regarding vertebrate carotenoid metabolism and biological function.
Collapse
Affiliation(s)
- Jonathan R. Mein
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111
| | - Gregory G. Dolnikowski
- Mass Spectrometry Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111
| | - Hansgeorg Ernst
- Fine Chemicals and Biocatalysis Research, GVF/A-B009, BASF AG D-67056, Ludwigshafen, Germany
| | - Robert M. Russell
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111
| | - Xiang-Dong Wang
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111
| |
Collapse
|
17
|
Lietz G, Lange J, Rimbach G. Molecular and dietary regulation of β,β-carotene 15,15′-monooxygenase 1 (BCMO1). Arch Biochem Biophys 2010; 502:8-16. [DOI: 10.1016/j.abb.2010.06.032] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/25/2010] [Accepted: 06/28/2010] [Indexed: 11/28/2022]
|
18
|
|
19
|
|
20
|
Mein JR, Lian F, Wang XD. Biological activity of lycopene metabolites: implications for cancer prevention. Nutr Rev 2009; 66:667-83. [PMID: 19019036 DOI: 10.1111/j.1753-4887.2008.00120.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
While early studies focused on the potential roles in health and disease of provitamin A carotenoids, such as beta-carotene, research over the past decade has provided a framework for our understanding of the functions of non-provitamin A carotenoids such as lycopene, especially in regards to its association with a reduced risk of a number of chronic diseases, including cancer. Recent data suggests that lycopene metabolites may possess specific biological activities on several important cellular signaling pathways and molecular targets. Carotenoid metabolites may have more important biological roles than their parent compounds in human health and disease. This notion has been reinforced by the observation of both beneficial and detrimental effects of carotenoid metabolites in cancer prevention.
Collapse
Affiliation(s)
- Jonathan R Mein
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
21
|
Simões-Costa MS, Azambuja AP, Xavier-Neto J. The search for non-chordate retinoic acid signaling: lessons from chordates. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:54-72. [PMID: 17109394 DOI: 10.1002/jez.b.21139] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Signaling by retinoic acid (RA) is an important pathway in the development and homeostasis of vertebrate and invertebrate chordates, with a critical role in mesoderm patterning. Classical studies on the distribution of nuclear receptors of animals suggested that the family of RA receptors (RARs/NR1B) was restricted to chordates, while the family of RA X receptors (RXR/NR2B) was distributed from cnidarians to chordates. However, the accumulation of data from genome projects and studies in non-model species is questioning this traditional view. Here we discuss the evidence for non-chordate RA signaling systems in the light of recent advances in our understanding of carotene (pro-Vitamin A) metabolism and of the identification of potential RARs and members of the NR1 family in echinoderms and lophotrochozoan trematodes, respectively. We conclude, as have others before (Bertrand et al., 2004. Mol Biol Evol 21(10):1923-1937), that signaling by RA is more likely an ancestral feature of bilaterians than a chordate innovation.
Collapse
Affiliation(s)
- Marcos S Simões-Costa
- Laboratório de Genética e Cardiologia Molecular InCor--HC.FMUSP São Paulo-SP, Brazil
| | | | | |
Collapse
|
22
|
Abstract
Retinoids are natural and synthetic vitamin A derivatives. They are lipophilic molecules and easily penetrate the epidermis. Their biologically active forms can modulate the expression of genes involved in cellular differentiation and proliferation. Retinoic acid (tretinoin), its 13-cis isomer isotretinoin, as well as various synthetic retinoids are used for therapeutic purposes, whereas retinaldehyde, retinol, and retinyl esters, because of their controlled conversion to retinoic acid or their direct receptor-independent biologic action, can be used as cosmeceuticals. These natural retinoic acid precursors are thus expected to be helpful in (i) renewing epidermal cells, (ii) acting as UV filters, (iii) preventing oxidative stress, (iv) controlling cutaneous bacterial flora, and (v) improving skin aging and photoaging. Retinol and retinyl esters are not irritant, whereas demonstrating only a modest clinical efficiency. On the other hand, retinaldehyde, which is fairly well tolerated, seems to be the most efficient cosmeceutical retinoid; it has significant efficiency toward oxidative stress, cutaneous bacterial flora, epidermis renewing, and photoaging.
Collapse
Affiliation(s)
- Olivier Sorg
- Clinique de Dermatologie, Geneva University Hospital, Geneva, Switzerland.
| | | | | | | |
Collapse
|
23
|
Abstract
Retinoids (vitamin A) are crucial for most forms of life. In chordates, they have important roles in the developing nervous system and notochord and many other embryonic structures, as well as in maintenance of epithelial surfaces, immune competence, and reproduction. The ability of all-trans retinoic acid to regulate expression of several hundred genes through binding to nuclear transcription factors is believed to mediate most of these functions. The role of all-trans retinoic may extend beyond the regulation of gene transcription because a large number of noncoding RNAs also are regulated by retinoic acid. Additionally, extra-nuclear mechanisms of action of retinoids are also being identified. In organisms ranging from prokaryotes to humans, retinal is covalently linked to G protein-coupled transmembrane receptors called opsins. These receptors function as light-driven ion pumps, mediators of phototaxis, or photosensory pigments. In vertebrates phototransduction is initiated by a photochemical reaction where opsin-bound 11-cis-retinal is isomerized to all-trans-retinal. The photosensitive receptor is restored via the retinoid visual cycle. Multiple genes encoding components of this cycle have been identified and linked to many human retinal diseases. Central aspects of vitamin A absorption, enzymatic oxidation of all-trans retinol to all-trans retinal and all-trans retinoic acid, and esterification of all-trans retinol have been clarified. Furthermore, specific binding proteins are involved in several of these enzymatic processes as well as in delivery of all-trans retinoic acid to nuclear receptors. Thus, substantial progress has been made in our understanding of retinoid metabolism and function. This insight has improved our view of retinoids as critical molecules in vision, normal embryonic development, and in control of cellular growth, differentiation, and death throughout life.
Collapse
Affiliation(s)
- Rune Blomhoff
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | | |
Collapse
|
24
|
Gong X, Tsai SW, Yan B, Rubin LP. Cooperation between MEF2 and PPARgamma in human intestinal beta,beta-carotene 15,15'-monooxygenase gene expression. BMC Mol Biol 2006; 7:7. [PMID: 16504037 PMCID: PMC1526748 DOI: 10.1186/1471-2199-7-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 02/21/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vitamin A and its derivatives, the retinoids, are essential for normal embryonic development and maintenance of cell differentiation. beta, beta-carotene 15,15'-monooxygenase 1 (BCMO1) catalyzes the central cleavage of beta-carotene to all-trans retinal and is the key enzyme in the intestinal metabolism of carotenes to vitamin A. However, human and various rodent species show markedly different efficiencies in intestinal BCMO1-mediated carotene to retinoid conversion. The aim of this study is to identify potentially human-specific regulatory control mechanisms of BCMO1 gene expression. RESULTS We identified and functionally characterized the human BCMO1 promoter sequence and determined the transcriptional regulation of the BCMO1 gene in a BCMO1 expressing human intestinal cell line, TC-7. Several functional transcription factor-binding sites were identified in the human promoter that are absent in the mouse BCMO1 promoter. We demonstrate that the proximal promoter sequence, nt -190 to +35, confers basal transcriptional activity of the human BCMO1 gene. Site-directed mutagenesis of the myocyte enhancer factor 2 (MEF2) and peroxisome proliferator-activated receptor (PPAR) binding elements resulted in decreased basal promoter activity. Mutation of both promoter elements abrogated the expression of intestinal cell BCMO1. Electrophoretic mobility shift and supershift assays and transcription factor co-expression in TC-7 cells showed MEF2C and PPARgamma bind to their respective DNA elements and synergistically transactivate BCMO1 expression. CONCLUSION We demonstrate that human intestinal cell BCMO1 expression is dependent on the functional cooperation between PPARgamma and MEF2 isoforms. The findings suggest that the interaction between MEF2 and PPAR factors may provide a molecular basis for interspecies differences in the transcriptional regulation of the BCMO1 gene.
Collapse
Affiliation(s)
- Xiaoming Gong
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island and Brown Medical School, Providence, Rhode Island, USA
- Department of Cell Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Shu-Whei Tsai
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island and Brown Medical School, Providence, Rhode Island, USA
| | - Bingfang Yan
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Lewis P Rubin
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island and Brown Medical School, Providence, Rhode Island, USA
- Program in Fetal Medicine, Women and Infants' Hospital of Rhode Island and Brown Medical School, Providence, Rhode Island, USA
- Department of Cell Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
25
|
Vernet N, Dennefeld C, Rochette-Egly C, Oulad-Abdelghani M, Chambon P, Ghyselinck NB, Mark M. Retinoic acid metabolism and signaling pathways in the adult and developing mouse testis. Endocrinology 2006; 147:96-110. [PMID: 16210368 DOI: 10.1210/en.2005-0953] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
As a first step in investigating the role of retinoic acid (RA) in mouse testis, we analyzed the distribution pattern of the enzymes involved in vitamin A storage (lecithin:retinol acyltransferase), RA synthesis (beta-carotene 15,15'-monoxygenase and retinaldehyde dehydrogenases) and RA degradation (cytochrome P450 hydroxylases) as well as those of all isotypes of receptors transducing the RA signal [RA receptors (RARs) and rexinoid receptors (RXRs)]. Our data indicate that in adult testis 1) cytochrome P450 hydroxylase enzymes may generate in peritubular myoid cells a catabolic barrier that prevents circulating RA and RA synthesized by Leydig cells to enter the seminiferous epithelium; 2) the compartmentalization of RA synthesis within this epithelium may modulate, through paracrine mechanisms, the coupling between spermatogonia proliferation and spermatogenesis; 3) retinyl esters synthesized in round spermatids by lecithin:retinol acyltransferase may be transferred and stored in Sertoli cells, in the form of adipose differentiation-related protein-coated lipid droplets. We also show that RARalpha and RXRbeta are confined to Sertoli cells, whereas RARgamma is expressed in spermatogonia and RARbeta, RXRalpha, and RXRgamma are colocalized in step 7-8 spermatids. Correlating these expression patterns with the pathological phenotypes generated in response to RAR and RXR mutations and to postnatal vitamin A deficiency suggests that spermiation requires RXRbeta/RARalpha heterodimers in Sertoli cells, whereas spermatogonia proliferation involves, independently of RXR, two distinct RAR-mediated signaling pathways in both Sertoli cells and spermatogonia. Our data also suggest that the involvement of RA in testis development starts when primary spermatogonia first appear.
Collapse
Affiliation(s)
- Nadège Vernet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Université Louis Pasteur de Strasbourg (ULP)/Collège de France, 67404 Illkirch Cedex, Communauté Urbaine de Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
26
|
von Lintig J, Hessel S, Isken A, Kiefer C, Lampert JM, Voolstra O, Vogt K. Towards a better understanding of carotenoid metabolism in animals. Biochim Biophys Acta Mol Basis Dis 2004; 1740:122-31. [PMID: 15949678 DOI: 10.1016/j.bbadis.2004.11.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 11/08/2004] [Accepted: 11/22/2004] [Indexed: 11/24/2022]
Abstract
Vitamin A derivatives (retinoids) are essential components in vision; they contribute to pattern formation during development and exert multiple effects on cell differentiation with important clinical implications. All naturally occurring vitamin A derives by enzymatic oxidative cleavage from carotenoids with pro-vitamin A activity. To become biologically active, these plant-derived compounds must first be absorbed, then delivered to the site of action in the body, and metabolically converted to the real vitamin. Recently, molecular players of this pathway were identified by the analysis of blind Drosophila mutants. Similar genome sequences were found in vertebrates. Subsequently, these homologous genes were cloned and their gene products were functionally characterized. This review will summarize the advanced state of knowledge about the vitamin A biosynthetic pathway and will discuss biochemical, physiological, developmental and medical aspects of carotenoids and their numerous derivatives.
Collapse
Affiliation(s)
- Johannes von Lintig
- Institute of Biology I, Dept. of Animal Physiology and Neurobiology, University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
27
|
Irie T, Kajiwara S, Kojima N, Senoo H, Seki T. Retinal is the essential form of retinoid for storage and transport in the adult of the ascidian Halocynthia roretzi. Comp Biochem Physiol B Biochem Mol Biol 2004; 139:597-606. [PMID: 15581792 DOI: 10.1016/j.cbpc.2004.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Revised: 07/13/2004] [Accepted: 07/15/2004] [Indexed: 11/18/2022]
Abstract
Retinoids in the organs (gonad [GND], body wall muscle [BWM], hepatopancreas [HP], gill, hemolymph cells and hemolymph plasma) of the adult ascidian Halocynthia roretzi were analyzed by high performance liquid chromatography. Retinal (RAL) occurred in every organ examined, and most of RAL (>/=99%) was localized in the GND and BWM. None of the organs contained significant amounts of retinol (ROL) or retinyl ester (RE). Lipid droplets, which are characteristic of stellate cells (RE-storing cells of vertebrates), could not be found in the GND, BWM and HP by microscopic observations. These results indicate that this ascidian lacks the RE-storing mechanism, which is ubiquitous in adult vertebrates. The amount and localization of RAL showed the annual change in relation to the reproductive cycle. During summer, the growing season, RAL was present in both GND and BWM at a ratio of about 3:2. From summer to winter, RAL in the GND gradually increased, concomitant with the decrease of RAL in the BWM. In winter, the spawning season, most of RAL was present in the GND (ca. 98%). RAL appears to be accumulated first in the BWM and transported to oocytes accompanying yolk accumulation. ROL and RE were not implicated in the storage and transport of retinoids. The results in the present research strongly suggest that retinoic acid (RA) is produced by the two-step enzymatic reaction: carotenoid cleavage to RAL followed by RAL oxidation to RA and that the prevertebrate chordate lacks ROL-metabolizing systems.
Collapse
Affiliation(s)
- Toshiaki Irie
- Osaka Meijo Women's College, Kumatori-cho, Sennan-gun, Osaka 590-0493, Japan.
| | | | | | | | | |
Collapse
|
28
|
Wang XD. Carotenoid Oxidative/Degradative Products and Their Biological Activities. OXIDATIVE STRESS AND DISEASE 2004. [DOI: 10.1201/9780203026649.ch14] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Quadro L, Hamberger L, Colantuoni V, Gottesman ME, Blaner WS. Understanding the physiological role of retinol-binding protein in vitamin A metabolism using transgenic and knockout mouse models. Mol Aspects Med 2004; 24:421-30. [PMID: 14585313 DOI: 10.1016/s0098-2997(03)00038-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Retinoids (vitamin A and its derivatives) play an essential role in many biological functions. However mammals are incapable of de novo synthesis of vitamin A and must acquire it from the diet. In the intestine, dietary retinoids are incorporated in chylomicrons as retinyl esters, along with other dietary lipids. The majority of dietary retinoid is cleared by and stored within the liver. To meet vitamin A requirements of tissues, the liver secretes retinol (vitamin A alcohol) into the circulation bound to its sole specific carrier protein, retinol-binding protein (RBP). The single known function of this protein is to transport retinol from the hepatic stores to target tissues. Over the last few years, the generation of knockout and transgenic mouse models has significantly contributed to our understanding of RBP function in the metabolism of vitamin A. We discuss below the role of RBP in maintaining normal vision and a steady flux of retinol throughout the body in times of need.
Collapse
Affiliation(s)
- Loredana Quadro
- Institute of Cancer Research, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|
30
|
Lindqvist A, Andersson S. Cell type-specific expression of beta-carotene 15,15'-mono-oxygenase in human tissues. J Histochem Cytochem 2004; 52:491-9. [PMID: 15034000 DOI: 10.1177/002215540405200407] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We studied the cell type-specific expression of human beta-carotene 15,15'-mono-oxygenase (BCO1), an enzyme that catalyzes the first step in the conversion of dietary provitamin A carotenoids to vitamin A. Immunohistochemical analysis using two monoclonal antibodies against different epitopes of the protein revealed that BCO1 is expressed in epithelial cells in a variety of human tissues, including mucosa and glandular cells of stomach, small intestine, and colon, parenchymal cells in liver, cells that make up the exocrine glands in pancreas, glandular cells in prostate, endometrium, and mammary tissue, kidney tubules, and in keratinocytes of the squamous epithelium of skin. Furthermore, BCO1 is detected in steroidogenic cells in testis, ovary, and adrenal gland, as well as skeletal muscle cells. Epithelia in general are structures that are very sensitive to vitamin A deficiency, and although the extraintestinal function of BCO1 is unclear, the finding that the enzyme is expressed in all epithelia examined thus far leads us to suggest that BCO1 may be important for local synthesis of vitamin A, constituting a back-up pathway of vitamin A synthesis during times of insufficient dietary intake of vitamin A.
Collapse
Affiliation(s)
- Annika Lindqvist
- Department of Obstetrics-Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
31
|
Prakash P, Liu C, Hu KQ, Krinsky NI, Russell RM, Wang XD. Beta-carotene and beta-apo-14'-carotenoic acid prevent the reduction of retinoic acid receptor beta in benzo[a]pyrene-treated normal human bronchial epithelial cells. J Nutr 2004; 134:667-73. [PMID: 14988465 DOI: 10.1093/jn/134.3.667] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Low-dose beta-carotene (BC) supplementation, such as would be provided by daily consumption of approximately 5-9 servings of fruits and vegetables, has no apparent detrimental effects, but rather appears to have a protective effect against cigarette smoke-induced lung lesions in ferrets. In the present study, we investigated the effects of BC, beta-apo-14'-carotenoic acid (14'CA), or benzo[a]pyrene (BP; a primary lung carcinogen from cigarette smoke) treatments, either alone or in combination, on cell growth and expression of the retinoic acid receptor (RAR) of normal human bronchial epithelial (NHBE) cells. We found that both BC and 14'CA inhibited the growth of NHBE cells (P < 0.05) with or without BP. The level of RARbeta, a tumor suppressor, but not RARalpha or RARgamma, was reduced by 50% in the NHBE cells treated with BP. However, treatment with either BC or 14'CA significantly induced the expression of RARbeta in the NHBE cells, and prevented the reduction of RARbeta by BP. Furthermore, 14'CA transactivated the RARbeta promoter primarily via its conversion to retinoic acid (RA). In the presence of 3-mercaptopropionic acid, an inhibitor of fatty acid oxidation, both RA formation and transactivation activity from 14'CA were decreased. These observations indicate that the growth inhibitory effects of BC and beta-apo-carotenoic acid are through their conversion to RA and upregulation of RARbeta.
Collapse
Affiliation(s)
- Pankaj Prakash
- Nutrition and Cancer Biology Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, School of Medicine, Tufts University, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
32
|
von Lintig J, Vogt K. Vitamin A formation in animals: molecular identification and functional characterization of carotene cleaving enzymes. J Nutr 2004; 134:251S-6S. [PMID: 14704329 DOI: 10.1093/jn/134.1.251s] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vitamin A and its derivatives (retinoids) are essential components in vision; they contribute to pattern formation during development and exert multiple effects on cell differentiation. It has been known for 70 y that the key step in vitamin A biosynthesis is the oxidative cleavage of a carotenoid with provitamin A activity. While a detailed biochemical characterization of the respective enzymes could be achieved in cell-free homogenates, their molecular nature has remained elusive for a long time. Recent research led to the identification of genes encoding two different types of carotene oxygenases from animal species. The molecular cloning of these different types of animal carotene oxygenases establishes the existence of a family of carotenoid metabolizing enzymes in animals heretofore described in plants. With these tools in hands, old questions in vitamin A research can be definitively addressed on the molecular levels contributing to a mechanistic understanding of the regulation of vitamin A homeostasis or tissue specificity of vitamin A formation, with impact on animal physiology and human health.
Collapse
Affiliation(s)
- Johannes von Lintig
- University of Freiburg, Institute of Biology I, Animal Physiology and Neurobiology, Hauptstrasse 1, D-79104 Freiburg, Germany.
| | | |
Collapse
|
33
|
Russell RM. The enigma of beta-carotene in carcinogenesis: what can be learned from animal studies. J Nutr 2004; 134:262S-268S. [PMID: 14704331 DOI: 10.1093/jn/134.1.262s] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Beta-carotene and other carotenoids have been thought to have anti-cancer activity, either because of antioxidant activity or because of their ability to be converted to vitamin A. Nevertheless, two large scale intervention studies in humans using high doses of beta-carotene found that beta-carotene supplementation resulted in more lung cancer rather than less lung cancer among smoking and asbestos exposed populations. Studies conducted in the ferret have elucidated molecular mechanisms behind this observation, in that high-dose beta-carotene and smoke exposure in these animals leads to squamous metaplasia, a pre-cancerous lesion in the lung. High dose beta-carotene in the smoke exposed animals was found to give rise to a number of transient oxidative metabolites, which include P450 enzymes that result in the destruction of retinoic acid, and diminished retinoid signaling, and enhanced cell proliferation. In addition, eccentric cleavage beta-carotene metabolites facilitate the binding of smoke derived carcinogens to DNA. In other ferret studies low dose beta-carotene smoke exposure provided mild protection against squamous metaplasia. Thus, it appears that the explanation of the apparent paradoxical effects of beta-carotene on lung cancer is related to dose. The metabolism and breakdown of natural products should be thoroughly investigated in animal models before embarking on large scale intervention trials, particularly when using unusually high doses that greatly exceed normal dietary levels.
Collapse
Affiliation(s)
- Robert M Russell
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
34
|
Martucci RB, Ziulkoski AL, Fortuna VA, Guaragna RM, Guma FCR, Trugo LC, Borojevic R. ?-Carotene storage, conversion to retinoic acid, and induction of the lipocyte phenotype in hepatic stellate cells. J Cell Biochem 2004; 92:414-23. [PMID: 15108365 DOI: 10.1002/jcb.20073] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatic stellate cells (HSCs) are the major site of retinol (ROH) metabolism and storage. GRX is a permanent murine myofibroblastic cell line, derived from HSCs, which can be induced to display the fat-storing phenotype by treatment with retinoids. Little is known about hepatic or serum homeostasis of beta-carotene and retinoic acid (RA), although the direct biogenesis of RA from beta-carotene has been described in enterocytes. The aim of this study was to identify the uptake, metabolism, storage, and release of beta-carotene in HSCs. GRX cells were plated in 25 cm(2) tissue culture flasks, treated during 10 days with 3 micromol/L beta-carotene and subsequently transferred into the standard culture medium. beta-Carotene induced a full cell conversion into the fat-storing phenotype after 10 days. The total cell extracts, cell fractions, and culture medium were analyzed by reverse phase high-performance liquid chromatography for beta-carotene and retinoids. Cells accumulated 27.48 +/- 6.5 pmol/L beta-carotene/10(6) cells, but could not convert it to ROH nor produced retinyl esters (RE). beta-Carotene was directly converted to RA, which was found in total cell extracts and in the nuclear fraction (10.15 +/- 1.23 pmol/L/10(6) cells), promoting the phenotype conversion. After 24-h chase, cells contained 20.15 +/- 1.12 pmol/L beta-carotene/10(6) cells and steadily released beta-carotene into the medium (6.69 +/- 1.75 pmol/ml). We conclude that HSC are the site of the liver beta-carotene storage and release, which can be used for RA production as well as for maintenance of the homeostasis of circulating carotenoids in periods of low dietary uptake.
Collapse
Affiliation(s)
- Renata B Martucci
- Laboratório de Bioquímica Nutricional e de Alimentos, Instituto de Química, and Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
In early 1900s, based on indirect evidence, Steenbock and Morton independently predicted that beta-carotene could be the biological precursor of vitamin A, although this notion was contested by others. In the 1930s, Thomas Moore showed the in vivo formation of vitamin A from beta-carotene. But it was not until Jim Olson and DeWitt Goodman independently showed in 1965 the formation of retinal, the aldehyde form of vitamin A from beta-carotene in cell-free extracts of liver and intestine, that this vital pathway of beta-carotene was recognized. Despite compelling evidence in several experimental systems for the central cleavage of beta-carotene to retinal by many investigators, there were some careful independent studies by Glover et al., Ganguly et al., Hansen and Meret and Krinsky et al. showing the eccentric cleavage of beta-carotene resulting in the formation of apocarotenoids both in vivo and in vitro. In an attempt to resolve this controversial issue, we revisited this problem in 1989 and showed beyond doubt the formation of retinal as the sole enzymatic product of a cytosolic enzyme from rabbit and rat intestinal mucosa by mass spectrometry and tracer analysis of the crystallized product. This was confirmed in 1996 by Nagao using the pig intestinal extract. Yeum et al. confirmed in 2000 that retinal is the sole product of beta-carotene cleavage in the presence of alpha-tocopherol, and that the observed formation of apocarotenoids occurs only in the absence of an antioxidant like alpha-tocopherol. In the same year, Barua and Olson also concluded from their in vivo studies in rats that central cleavage is by far the major pathway for the formation of vitamin A from beta-carotene. Beta, beta-carotene 15,15'-dioxygenase (EC 1.13.11.21) is the key enzyme that cleaves beta-carotene into two molecules of retinal. It is a cytosolic enzyme primarily localized in the duodenal mucosa although it has been found in liver. It is a 66 kDa sulfhydryl protein, requires molecular oxygen and is activated by ferrous ions. It is highly specific for 15:15' ethylenic bond of carotenoids although it has fairly broad specificity towards a number of carotenoids with at least one intact beta-ionone ring. The dioxygenase was recently cloned from Drosophila melanogaster and from the chicken intestine. The recombinant protein was found to form retinal as the sole cleavage product of beta-carotene. No apo-carotenoids were formed. Therefore, it is unequivocally proven that the major, if not the sole, pathway of beta-carotene cleavage to vitamin A is by oxidative cleavage of the central ethylenic bond of beta-carotene to yield two molecules of retinal. Most recently, human dioxygenase has also been cloned. Thus, the wisdom, vision and epoch-making mission of Jim Olson in the science of beta-carotene metabolism have been accomplished. I have no doubt that the impact of his original discovery of the dioxygenase and its importance in vitamin A nutriture should be forthcoming in the near future.
Collapse
Affiliation(s)
- M R Lakshman
- Lipid Research Laboratory, VA Medical Center and the George Washington University, Washington, DC, USA.
| |
Collapse
|
36
|
Bachmann H, Desbarats A, Pattison P, Sedgewick M, Riss G, Wyss A, Cardinault N, Duszka C, Goralczyk R, Grolier P. Feedback regulation of beta,beta-carotene 15,15'-monooxygenase by retinoic acid in rats and chickens. J Nutr 2002; 132:3616-22. [PMID: 12468597 DOI: 10.1093/jn/132.12.3616] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
beta,beta-Carotene 15,15'-monooxygenase (formerly termed beta,beta-carotene 15,15'-dioxygenase, EC 1.13.11.21) catalyzes the conversion of provitamin A carotenoids to retinal in vertebrate tissues. In the present study, we investigated whether preformed vitamin A or beta-carotene and its direct metabolites can regulate the enzyme activity in vivo. We found dose-dependent decreases in intestinal beta,beta-carotene monooxygenase activity after oral administration to rats of retinyl acetate (up to -79%), beta-carotene (up to -79%), apo-8'-carotenal (up to -56%), all-trans retinoic acid (up to -88%), and 9-cis retinoic acid (up to -67%). Liver beta,beta-carotene 15,15'-monooxygenase (betaCMOOX) activity was not affected. Apo-12'carotenal and the retinoic acid receptor (RAR) alpha antagonist Ro 41-5253 significantly increased the intestinal enzyme activity by 55 and 94%, respectively. When beta-carotene was administered to rats pretreated with the two cytochrome P(450) (CYP) inducers, pentobarbital and naphthoflavone, the intestinal betaCMOOX activity increased by 39%. In a transcriptional study in chickens, treatment with retinoic acid resulted in low expression of the intestinal betaCMOOX. Our data suggest that retinoids and carotenoids might regulate betaCMOOX expression by a transcriptional feedback mechanism via interaction with members of the RAR family.
Collapse
Affiliation(s)
- Heinrich Bachmann
- Roche Vitamins, Human Nutrition and Health, Carotenoid Group, CH-4070 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Andersson E, Vahlquist A, Rosdahl I. Beta-carotene uptake and bioconversion to retinol differ between human melanocytes and keratinocytes. Nutr Cancer 2002; 39:300-6. [PMID: 11759295 DOI: 10.1207/s15327914nc392_21] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
beta-Carotene is one of the carotenoids that has been considered to play a role in the natural defense against ultraviolet-induced skin cancer. It is not known whether epidermal cells are able to accumulate beta-carotene and, subsequently, convert it to vitamin A. We used normal cultured human keratinocytes and melanocytes to study the uptake, and possible bioconversion to retinol, of authentic or [14C]beta-carotene. The uptake was much higher in melanocytes than in keratinocytes, corresponding to a fivefold difference in the intracellular fraction after two days of incubation. An increased level of cellular retinol was noted after one day of beta-carotene incubation. The conversion of [14C]beta-carotene to [14C]retinol peaked at 24 hours of incubation in keratinocytes and melanocytes. The results suggest that beta-carotene can function as a local supply of vitamin A in the skin and that melanocytes are especially likely to store beta-carotene.
Collapse
Affiliation(s)
- E Andersson
- Division of Dermatology, Department of Biomedicine and Surgery, Clinical Research Center, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | | | |
Collapse
|
38
|
Taibi G, Paganini A, Gueli MC, Ampola F, Nicotra CM. Xanthine oxidase catalyzes the synthesis of retinoic acid. JOURNAL OF ENZYME INHIBITION 2002; 16:275-85. [PMID: 11697048 DOI: 10.1080/14756360109162376] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Milk xanthine oxidase (xanthine: oxygen oxidoreductase; XO; EC 1.1.3.22) was found to catalyze the conversion of retinaldehyde to retinoic acid. The ability of XO to synthesize all trans-retinoic acid efficiently was assessed by its turnover number of 31.56 min-1, determined at pH 7.0 with 1 nM XO and all trans-retinaldehyde varying between 0.05 to 2 microM. The determination of both retinoid and purine content in milk was also considered in order to correlate their concentrations with kinetic parameters of retinaldehyde oxidase activity. The velocity of the reaction was dependent on the isomeric form of the substrate, the all trans- and 9-cis-forms being the preferred substrates rather than 13-cis-retinaldehyde. The enzyme was able to oxidize retinaldehyde in the presence of oxygen with NAD or without NAD addition. In this latter condition the catalytic efficiency of the enzyme was higher. The synthesis of retinoic acid was inhibited 87% and 54% by 4 microM and 2 microM allopurinol respectively and inhibited 48% by 10 microM xanthine in enzyme assays performed at 2 microM all trans-retinaldehyde. The Ki value determined for xanthine as an inhibitor of retinaldehyde oxidase activity was 4 microM.
Collapse
Affiliation(s)
- G Taibi
- Istituto di Chimica Biologica, Università di Palermo, 90127 Palermo, Italia.
| | | | | | | | | |
Collapse
|
39
|
Ponnamperuma RM, Shimizu Y, Kirchhof SM, De Luca LM. beta-Carotene fails to act as a tumor promoter, induces RAR expression, and prevents carcinoma formation in a two-stage model of skin carcinogenesis in male Sencar mice. Nutr Cancer 2001; 37:82-8. [PMID: 10965524 DOI: 10.1207/s15327914nc3701_11] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Clinical trials have shown a significant increase in incidence of lung cancer among smokers and asbestos workers supplemented with beta-carotene, suggesting a tumor-promoting activity for this agent. We set out to test possible tumor-promoting and chemopreventive activities of dietary and topical beta-carotene in the two-stage 7,12-dimethylbenz[a]anthracene-12-O-tetradecanoylphorbol 13-acetate (TPA) model of mouse skin carcinogenesis. In the first study, the effects of three levels of dietary beta-carotene (6, 60, and 600 micrograms/g purified diet containing no other retinoid or carotenoid) were assessed over a period of 42 weeks. Carcinoma yield was reduced by approximately 50% in the 600 micrograms/g diet group (mean 0.22 carcinomas/mouse) compared with the 6 micrograms/g diet group (mean 0.44 carcinomas/mouse, p = 0.003). The 60 micrograms/g diet group showed a pattern of inhibition similar to the 600 micrograms/g diet group. A protective effect (25% reduction) of beta-carotene (in the 600 micrograms/g diet group) on papilloma formation was also found. However, the intermediate 60 micrograms/g diet group showed the same incidence as the low 6 micrograms/g diet group. This points to a lack of correlation between papilloma and carcinoma incidence, as we also found in previous work on dietary retinoids and carotenoids. The purpose of the second study was to assess whether topical beta-carotene (2 micrograms) has tumor-promoting or chemopreventive activity in the two-stage protocol. In the absence of TPA, beta-carotene had no significant tumor-promoting activity. Instead, papilloma yield induced by TPA was decreased by topical beta-carotene from an average of 20 to approximately 10 papillomas/mouse (p = 2.5 x 10(-7)). The effect of topical beta-carotene persisted beyond the treatment period (Week 24) until the termination of the study at Week 42. Western blot analysis of mouse skin extracts showed that topical beta-carotene upregulated retinoic acid receptor-alpha and -gamma expression in the dorsal skin. This finding suggests that beta-carotene may work as a chemopreventive agent by upregulating the expression of retinoid receptors in mouse skin. In conclusion, our data show that beta-carotene prevents skin carcinoma formation, induces retinoic acid receptor expression, and fails to act as a tumor promoter in the two-stage model of skin tumorigenesis.
Collapse
Affiliation(s)
- R M Ponnamperuma
- Differentiation Control Section, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | | | | | | |
Collapse
|
40
|
Kiefer C, Hessel S, Lampert JM, Vogt K, Lederer MO, Breithaupt DE, von Lintig J. Identification and characterization of a mammalian enzyme catalyzing the asymmetric oxidative cleavage of provitamin A. J Biol Chem 2001; 276:14110-6. [PMID: 11278918 DOI: 10.1074/jbc.m011510200] [Citation(s) in RCA: 313] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vertebrates, symmetric versus asymmetric cleavage of beta-carotene in the biosynthesis of vitamin A and its derivatives has been controversially discussed. Recently we have been able to identify a cDNA encoding a metazoan beta,beta-carotene-15,15'-dioxygenase from the fruit fly Drosophila melanogaster. This enzyme catalyzes the key step in vitamin A biosynthesis, symmetrically cleaving beta-carotene to give two molecules of retinal. Mutations in the corresponding gene are known to lead to a blind, vitamin A-deficient phenotype. Orthologs of this enzyme have very recently been found also in vertebrates and molecularly characterized. Here we report the identification of a cDNA from mouse encoding a second type of carotene dioxygenase catalyzing exclusively the asymmetric oxidative cleavage of beta-carotene at the 9',10' double bond of beta-carotene and resulting in the formation of beta-apo-10'-carotenal and beta-ionone, a substance known as a floral scent from roses, for example. Besides beta-carotene, lycopene is also oxidatively cleaved by the enzyme. The deduced amino acid sequence shares significant sequence identity with the beta,beta-carotene-15,15'-dioxygenases, and the two enzyme types have several conserved motifs. To establish its occurrence in different vertebrates, we then attempted and succeeded in cloning cDNAs encoding this new type of carotene dioxygenase from human and zebrafish as well. As regards their possible role, the apocarotenals formed by this enzyme may be the precursors for the biosynthesis of retinoic acid or exert unknown physiological effects. Thus, in contrast to Drosophila, in vertebrates both symmetric and asymmetric cleavage pathways exist for carotenes, revealing a greater complexity of carotene metabolism.
Collapse
Affiliation(s)
- C Kiefer
- University of Freiburg, Instiute of Biology I, Animal Physiology and Neurobiology, Hauptstrasse 1, D-79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Redmond TM, Gentleman S, Duncan T, Yu S, Wiggert B, Gantt E, Cunningham FX. Identification, expression, and substrate specificity of a mammalian beta-carotene 15,15'-dioxygenase. J Biol Chem 2001; 276:6560-5. [PMID: 11092891 DOI: 10.1074/jbc.m009030200] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified from mouse the first mammalian beta-carotene 15,15'-dioxygenase (beta-CD), a crucial enzyme in development and metabolism that governs the de novo entry of vitamin A from plant-derived precursors. beta-CD is related to the retinal pigment epithelium-expressed protein RPE65 and belongs to a diverse family that includes the plant 9-cis-epoxycarotenoid dioxygenase and bacterial lignostilbene dioxygenases. beta-CD expression in Escherichia coli cells engineered to produce beta-carotene led to the accumulation of all-trans-retinal at the expense of beta-carotene, confirming that beta-CD catalyzed the central cleavage of this vitamin A precursor. Purified recombinant beta-CD protein cleaves beta-carotene in vitro with a V(max) of 36 pmol of retinal/mg of enzyme/min and a K(m) of 6 microm. Non-provitamin A carotenoids were also cleaved, although with much lower activity. By Northern analysis, a 2.4-kilobase (kb) message was observed in liver, kidney, small intestine, and testis, tissues important in retinoid/carotenoid metabolism. This message encoded a 63-kDa cytosolic protein expressed in these tissues. A shorter transcript of 1.8 kb was found in testis and skin. Developmentally, the 2.4-kb mRNA was abundant at embryonic day 7, with lower expression at embryonic days 11, 13, and 15, suggesting a critical role for this enzyme in gastrulation. Identification of beta-CD in an accessible model organism will create new opportunities to study vitamin A metabolism.
Collapse
Affiliation(s)
- T M Redmond
- Laboratory of Retinal Cell and Molecular Biology, NEI, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Development of a Topical Vaginal Microbicide. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001. [DOI: 10.1007/978-1-4615-1371-1_28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Yeum KJ, dos Anjos Ferreira AL, Smith D, Krinsky NI, Russell RM. The effect of alpha-tocopherol on the oxidative cleavage of beta-carotene. Free Radic Biol Med 2000; 29:105-14. [PMID: 10980399 DOI: 10.1016/s0891-5849(00)00296-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Two cleavage pathways of beta-carotene have been proposed, one by central cleavage and the other by random (excentric) cleavage. The central cleavage pathway involves the metabolism of beta-carotene at the central double bond (15, 15') to produce retinal by beta-carotene 15, 15'-dioxygenase (E.C.888990988). The random cleavage of beta-carotene produces beta-apo-carotenoids, but the mechanism is not clear. To understand the various mechanisms of beta-carotene cleavage, beta-carotene was incubated with the intestinal postmitochondrial fractions of 10-week-old male rats for 1 h, and cleavage products of beta-carotene were analyzed using reverse-phase, high-performance liquid chromatography (HPLC). We also studied the effects of alpha-tocopherol and NAD(+)/NADH on beta-carotene cleavage. In addition to beta-carotene, we used retinal and beta-apo-14'-carotenoic acid as substrates in these incubations. Beta-apo-14'-carotenoic acid is the two-carbon longer homologue of retinoic acid. In the presence of alpha-tocopherol, beta-carotene was converted exclusively to retinal, whereas in the absence of alpha-tocopherol, both retinal and beta-apo-carotenoids were formed. Retinoic acid was produced from both retinal and beta-apo-14'-carotenoic acid incubations only in the presence of NAD(+). Our data suggest that in the presence of an antioxidant such as alpha-tocopherol, beta-carotene is converted exclusively to retinal by central cleavage. In the absence of an antioxidant, beta-carotene is cleaved randomly by enzyme-related radicals to produce beta-apo-carotenoids, and these beta-apo-carotenoids can be oxidized further to retinoic acid via retinal.
Collapse
Affiliation(s)
- K J Yeum
- United States Department of Agriculture, Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | | | | | | | | |
Collapse
|
44
|
von Lintig J, Vogt K. Filling the gap in vitamin A research. Molecular identification of an enzyme cleaving beta-carotene to retinal. J Biol Chem 2000; 275:11915-20. [PMID: 10766819 DOI: 10.1074/jbc.275.16.11915] [Citation(s) in RCA: 333] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin A and its derivatives (retinoids) are essential components in vision; they contribute to pattern formation during development and exert multiple effects on cell differentiation with important clinical implications. It has been known for 50 years that the key step in the formation of vitamin A is the oxidative cleavage of beta-carotene; however, this enzymatic step has resisted molecular analysis. A novel approach enabled us to clone and identify a beta-carotene dioxygenase from Drosophila melanogaster, expressing it into the background of a beta-carotene (provitamin A)-synthesizing and -accumulating Escherichia coli strain. The carotene-cleaving enzyme, identified here for the first time on the molecular level, is the basis of the numerous branches of vitamin A action and links plant and animal carotene metabolism.
Collapse
Affiliation(s)
- J von Lintig
- Albert-Ludwig Universität Freiburg, Institut für Biologie I, Neurobiologie und Tierphysiologie, D-79104 Freiburg, Germany
| | | |
Collapse
|
45
|
Abstract
A large body of observational epidemiologic studies has consistently demonstrated that individuals who eat more fruits and vegetables, which are rich in carotenoids, and people who have higher serum beta-carotene levels have a lower risk of cancer, particularly lung cancer. In contrast to these observations, two human intervention studies that used high-dose beta-carotene supplements reported an increased risk for lung cancer among smokers. Recently, in vitro and in vivo studies have shed light on the present conundrum regarding the potential chemopreventive activity of beta-carotene; that is, beta-carotene itself may act as an anticarcinogen, but its oxidized products may facilitate carcinogenesis. These studies support the hypothesis that the carcinogenic response to high-dose beta-carotene supplementation reported in the human intervention trials is related to the instability of the beta-carotene molecule in the free radical-rich environment in the lungs of cigarette smokers. This is especially possible because smoke also causes decreased tissue levels of other antioxidants, such as ascorbate and alpha-tocopherol, which normally have a stabilizing effect on the unoxidized form of beta-carotene. Nutritional intervention using a combination of antioxidants (beta-carotene, alpha-tocopherol, and vitamin C) as anticarcinogenic agents could be an appropriate way to rationally and realistically reduce cancer risk.
Collapse
Affiliation(s)
- X D Wang
- Jean Mayer USDA Human Nutrition Research Center on Aging, Boston, MA, USA
| | | |
Collapse
|
46
|
Abstract
All vertebrate embryos require retinoic acid (RA) for fulfilment of the developmental program encoded in the genome. In mammals, maternal homeostatic mechanisms minimize variation of retinoid levels reaching the embryo. Retinol is transported as a complex with retinol-binding protein (RBP): transplacental transfer of retinol and its uptake by the embryonic tissues involves binding to an RBP receptor at the cell surface. Embryonic tissues in which this receptor is present also contain the retinol-binding protein CRBP I and the enzymes involved in RA synthesis; the same tissues are particularly vulnerable to vitamin A deficiency. In the nucleus, the RA signal is transduced by binding to a heterodimeric pair of retinoid receptors (RAR/RXR). In general, the receptors show functional plasticity, disruption of one RAR or RXR gene having minor or no effects on embryogenesis. However, genetic studies indicate that RXR alpha is essential for normal development of the heart and eye. Excess RA causes abnormalities of many systems; altered susceptibility to RA excess in mice lacking RAR gamma or RXR alpha suggests that the teratogenic signal is transduced through different receptors compared with physiological RA function in the same tissue.
Collapse
Affiliation(s)
- G M Morriss-Kay
- Department of Human Anatomy and Genetics, University of Oxford, United Kingdom
| | | |
Collapse
|
47
|
Dolk HM, Nau H, Hummler H, Barlow SM. Dietary vitamin A and teratogenic risk: European Teratology Society discussion paper. Eur J Obstet Gynecol Reprod Biol 1999; 83:31-6. [PMID: 10221607 DOI: 10.1016/s0301-2115(98)00228-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review discusses the predictive value of animal models in assessment of possible risk from excess vitamin A consumption during pregnancy and the human evidence concerning risk of congenital malformations from excess vitamin A in the diet, consumed either as a constituent of normal foods or in the form of dietary vitamin supplements. Other sources of exposure to vitamin A include medicines (dermal and oral preparations) and cosmetics, but these are not further considered here. Conservative estimates of the likely safe intake of vitamin A during pregnancy are available, based on results from scientific research to date. However, current uncertainties are such that further research is needed to more clearly define intakes which may be on the borderline between those which are beneficial and those which may pose a risk to the developing embryo and fetus.
Collapse
Affiliation(s)
- H M Dolk
- Environmental Epidemiology Unit, London School of Hygiene and Tropical Medicine, UK
| | | | | | | |
Collapse
|
48
|
Palace VP, Khaper N, Qin Q, Singal PK. Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease. Free Radic Biol Med 1999; 26:746-61. [PMID: 10218665 DOI: 10.1016/s0891-5849(98)00266-4] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite being one of the first vitamins to be discovered, the full range of biological activities for vitamin A remains to be defined. Structurally similar to vitamin A, carotenoids are a group of nearly 600 compounds. Only about 50 of these have provitamin A activity. Recent evidence has shown vitamin A, carotenoids and provitamin A carotenoids can be effective antioxidants for inhibiting the development of heart disease. Vitamin A must be obtained from the diet: green and yellow vegetables, dairy products, fruits and organ meats are some of the richest sources. Within the body, vitamin A can be found as retinol, retinal and retinoic acid. Because all of these forms are toxic at high concentrations, they are bound to proteins in the extracellular fluids and inside cells. Vitamin A is stored primarily as long chain fatty esters and as provitamin carotenoids in the liver, kidney and adipose tissue. The antioxidant activity of vitamin A and carotenoids is conferred by the hydrophobic chain of polyene units that can quench singlet oxygen , neutralize thiyl radicals and combine with and stabilize peroxyl radicals. In general, the longer the polyene chain, the greater the peroxyl radical stabilizing ability. Because of their structures, vitamin A and carotenoids can autoxidize when O2 tension increases, and thus are most effective antioxidants at low oxygen tensions that are typical of physiological levels found in tissues. Overall, the epidemiological evidence suggests that vitamin A and carotenoids are important dietary factors for reducing the incidence of heart disease. Although there is considerable discrepancy in the results from studies in humans regarding this relationship, carefully controlled experimental studies continue to indicate that these compounds are effective for mitigating and defending against many forms of cardiovascular disease. More work, especially concerning the relevance of how tissue concentrations, rather than plasma levels, relate to the progression of tissue damage in heart disease is required. This review assembles information regarding the basic structure and metabolism of vitamin A and carotenoids as related to their antioxidant activities. Epidemiological, intervention trials and experimental evidence about the effectiveness of vitamin A and carotenoids for reducing cardiovascular disease is also reviewed.
Collapse
Affiliation(s)
- V P Palace
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Center, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
49
|
Affiliation(s)
- X D Wang
- Gastrointestinal Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | | |
Collapse
|
50
|
Hurst RE, Waliszewski P, Waliszewska M, Bonner RB, Benbrook DM, Dar A, Hemstreet GP. Complexity, Retinoid-Responsive Gene Networks, and Bladder Carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 462:449-67. [PMID: 10599447 DOI: 10.1007/978-1-4615-4737-2_35] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Carcinogenesis involves inactivation or subversion of the normal controls of proliferation, differentiation, and apoptosis. However, these controls are robust, redundant, and interlinked at the gene expression levels, regulation of mRNA lifetimes, transcription, and recycling of proteins. One of the central systems of control of proliferation, differentiation and apoptosis is retinoid signaling. The hRAR alpha nuclear receptor occupies a central position with respect to induction of gene transcription in that when bound to appropriate retinoid ligands, its homodimers and heterodimers with hRXR alpha regulate the transcription of a number of retinoid-responsive genes. These include genes in other signaling pathways, so that the whole forms a complex network. In this study we showed that simple, cause-effect interpretations in terms of hRAR alpha gene transcription being the central regulatory event would not describe the retinoid-responsive gene network. A set of cultured bladder-derived cells representing different stages of bladder tumorigenesis formed a model system. It consisted of 2 immortalized bladder cell lines (HUC-BC and HUC-PC), one squamous cell carcinoma cell line (SCaBER), one papilloma line (RT4), and 4 transitional cell carcinomas (TCC-Sup, 5637, T24, J82) of varying stages and grades. This set of cells were used to model the range of behaviors of bladder cancers. Relative gene expression before (constitutive) and after treatment with 10 microM all-trans-retinoic acid (aTRA) was measured for androgen and estrogen receptor; a set of genes involved with retinoid metabolism and action, hRAR alpha nd beta, hRXR alpha and beta CRBP, CRABP I and II; and for signaling genes that are known to be sensitive to retinoic acid, EGFR, cytokine MK, ICAM I and transglutaminase. The phenotype for inhibition of proliferation and for apoptotic response to both aTRA and the synthetic retinoid 4-HPR was determined. Transfection with a CAT-containing plasmid containing an aTRA-sensitive promoter was used to determine if the common retinoic acid responsive element (RARE)-dependent pathway for retinoid regulation of gene expression was active. Each of the genes selected is known from previous studies to react to aTRA in a certain way, either by up- or down-regulation of the message and protein. A complex data set not readily interpretable by simple cause and effect was observed. While all cell lines expressed high levels of the mRNAs for hRXR alpha and beta that were not altered by treatment with exogenous aTRA, constitutive and stimulated responses of the other genes varied widely among the cell lines. For example, CRABP I was not expressed by J82, T24, 5637 and RT4, but was expressed at low levels that did not change in SCaBER and at moderate levels that decreased, increased, or decreased sharply in HUC-BC, TCC-Sup and HUC-PC, respectively. The expression of hRAR alpha, which governs the expression of many retinoid-sensitive genes, was expressed at moderate to high levels in all cell lines, but in some it was sharply upregulated (TCC-Sup, HUC-PC and J82), remained constant (5637 and HUC-BC), or was down-regulated (SCaBER, T24 and RT4). The phenotypes for inhibition of proliferation showed no obvious relationship to the expression of any single gene, but cell lines that were inhibited by aTRA (HUC-BC and TCC-Sup) were not sensitive to 4-HPR, and vice versa. One line (RT4) was insensitive to either retinoid. Transfection showed very little retinoid-stimulated transfection of the CAT reporter gene with RT4 or HUC-PC. About 2-fold enhancement transactivation was observed with SCaBER, HUC-BC, J82 and T24 cells and 3-8 fold with 5637, TCC-Sup cells. In HUC-BC, a G to T point mutation was found at position 606 of the hRAR alpha gene. This mutation would substitute tyrosine for asparagine in a highly conserved domain. These data indicate that retinoid signaling is probably a frequent target of inactivation in bladder carcinogenesis. (ABSTRAC
Collapse
Affiliation(s)
- R E Hurst
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City 73190, USA
| | | | | | | | | | | | | |
Collapse
|