1
|
Abu Zeid EH, El Sharkawy NI, Moustafa GG, Anwer AM, Al Nady AG. The palliative effect of camel milk on hepatic CYP1A1 gene expression and DNA damage induced by fenpropathrin oral intoxication in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111296. [PMID: 32949931 DOI: 10.1016/j.ecoenv.2020.111296] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/16/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
The present study investigated the alleviating role of camel milk (CM) in the mitigation of fenpropathrin (FNP) type II pyrethroid induced oxidative stress, alterations of hepatic (CYP1A1) mRNA expression pattern, and DNA damage using the alkaline comet assay (SCGE) in male rats. Sixty male Sprague-Dawley rats were separated into six groups (n = 10): 1st control (C), 2nd corn oil (CO), 3rd (CM): gavaged CM 2ml/rat, 4th (FNP): gavaged FNP 7.09 mg/kg body weight (BW), 5th (FNP pro/co-treated): gavaged CM firstly for 15 days, then CM + FNP by the same mentioned doses and route, 6th (FNP + CM co-treated): gavaged FNP firstly followed by CM by the same mentioned doses and route. Rats were orally gavaged three times per week, day after day for 60 days. FNP exposure significantly reduced serum glutathione (GSH) levels, but significantly increased serum levels of superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), protein carbonyl (PCO), and 8hydroxy2deoxyguanosine (8OH2dG). Additionally, FNP exposure significantly up-regulated the mRNA expression levels of hepatic CYP1A1 and increased the SCGE indices in whole blood, liver, and spleen tissues of exposed male rats. Administration of CM significantly regulated the FNP induced oxidative stress, reduced hepatic CYP1A1 mRNA expression levels and values of comet assay indices particularly in the (CM + FNP pro/co-treated) group compared to the (FNP + CM co-treated) group. In conclusion, our results indicate, for the first time, that FNP retains an in vivo genotoxic potential at a dose of (1/10 LD50) and up-regulated hepatic CYP1A1 mRNA expression in male rats. Additionally, CM supplements may improve the genotoxic outcomes, oxidative stress, and altered CYP1A1 mRNA expression induced by FNP particularly in the pro/concurrent-treatment compared to the concurrent treatment alone.
Collapse
Affiliation(s)
- Ehsan H Abu Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| | - Nabela I El Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt
| | - Gihan G Moustafa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt
| | - Abeer M Anwer
- Head Researcher of Immunity in Animal Reproduction Research Institute. Egypt
| | - Ahmed G Al Nady
- Veterinarian at the Central Administration of Veterinary Quarantine and Examinations, Egypt
| |
Collapse
|
2
|
Wang Z, Snyder M, Kenison JE, Yang K, Lara B, Lydell E, Bennani K, Novikov O, Federico A, Monti S, Sherr DH. How the AHR Became Important in Cancer: The Role of Chronically Active AHR in Cancer Aggression. Int J Mol Sci 2020; 22:ijms22010387. [PMID: 33396563 PMCID: PMC7795223 DOI: 10.3390/ijms22010387] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
For decades, the aryl hydrocarbon receptor (AHR) was studied for its role in environmental chemical toxicity i.e., as a quirk of nature and a mediator of unintended consequences of human pollution. During that period, it was not certain that the AHR had a “normal” physiological function. However, the ongoing accumulation of data from an ever-expanding variety of studies on cancer, cancer immunity, autoimmunity, organ development, and other areas bears witness to a staggering array of AHR-controlled normal and pathological activities. The objective of this review is to discuss how the AHR has gone from a likely contributor to genotoxic environmental carcinogen-induced cancer to a master regulator of malignant cell progression and cancer aggression. Particular focus is placed on the association between AHR activity and poor cancer outcomes, feedback loops that control chronic AHR activity in cancer, and the role of chronically active AHR in driving cancer cell invasion, migration, cancer stem cell characteristics, and survival.
Collapse
Affiliation(s)
- Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Megan Snyder
- Graduate Program in Genetics and Genomics, Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Jessica E. Kenison
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Kangkang Yang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Brian Lara
- Department of Environmental Health, Boston University, Boston, MA 02118, USA; (B.L.); (K.B.)
| | - Emily Lydell
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Kawtar Bennani
- Department of Environmental Health, Boston University, Boston, MA 02118, USA; (B.L.); (K.B.)
| | | | - Anthony Federico
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (A.F.); (S.M.)
| | - Stefano Monti
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (A.F.); (S.M.)
| | - David H. Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
- Correspondence: ; Tel.: +1-617-358-1707
| |
Collapse
|
3
|
Avilla MN, Bradfield CA, Glover E, Hahn ME, Malecki KMC, Stern PH, Wilson RH. Alan Poland, MS, MD: 1940-2020 Poisons as Probes of Biological Function. Chem Res Toxicol 2020; 34:1-4. [PMID: 33345537 DOI: 10.1021/acs.chemrestox.0c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Abstract
In honor of the 100th birthday of Dr. Herbert Tabor, JBC's Editor-in-Chief for 40 years, I will review here JBC's extensive coverage of the field of cytochrome P450 (P450) research. Research on the reactions catalyzed by these enzymes was published in JBC before it was even realized that they were P450s, i.e. they have a "pigment" with an absorption maximum at 450 nm. After the P450 pigment discovery, reported in JBC in 1962, the journal proceeded to publish the methods for measuring P450 activities and many seminal findings. Since then, the P450 field has grown extensively, with significant progress in characterizing these enzymes, including structural features, catalytic mechanisms, regulation, and many other aspects of P450 biochemistry. JBC has been the most influential journal in the P450 field. As with many other research areas, Dr. Tabor deserves a great deal of the credit for significantly advancing this burgeoning and important topic of research.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.
| |
Collapse
|
5
|
Ceyhun SB, Aksakal E, Kırım B, Atabeyoğlu K, Erdoğan O. Chronic toxicity of pesticides to the mRNA expression levels of metallothioneins and cytochrome P450 1A genes in rainbow trout. Toxicol Ind Health 2011; 28:162-9. [DOI: 10.1177/0748233711409482] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hazardous effects of pesticides on various metabolic pathways are a great problem for environmental health and should be well determined. In the present study, the authors treated rainbow trout with 0.6 μg/L deltamethrin for 28 days and 1.6 mg/L 2,2-dichlorovinyl dimethyl phosphate for 21 days. After this time period, the authors observed alterations in mRNA expression levels of MT-A, MT-B and CYP-1A. Chronic exposure to low levels of pesticides may have a more significant effect on fish populations than acute poisoning. While both pesticides caused a significant increase on mRNA levels of MT-A and CYP-1A, MT-B mRNA levels were increased significantly only upon deltamethin administration. The significant increase in mRNA levels of the corresponding genes may be considered as a defence mechanism in addition to the antioxidants against oxidative stress, as well as a detoxification mechanism against adverse effects of pesticides.
Collapse
Affiliation(s)
- Saltuk Buğrahan Ceyhun
- Hınıs Vocational Training School, Atatürk University, Erzurum, Turkey
- Biotechnology Application and Research Center, Atatürk University, Erzurum, Turkey
| | - Ercüment Aksakal
- Agriculture Faculty, Department of Agricultural Biotechnology, Atatürk University, Erzurum, Turkey
| | - Birsen Kırım
- Agriculture Faculty, Department of Aquaculture Engineering, Adnan Menderes University, Aydin, Turkey
| | - Kübra Atabeyoğlu
- Agriculture Faculty, Aquaculture Department, Atatürk University, Erzurum, Turkey
| | - Orhan Erdoğan
- Biotechnology Application and Research Center, Atatürk University, Erzurum, Turkey
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
| |
Collapse
|
6
|
Hassanain MA, Abdel-Rahman EH, Abo-Hegab S, Tawfik MAA, Abbas WT. Induction of cytochrome P450 1A1 as a biomarker of Benzo-a-pyrene pollution in Egyptian fresh water fish. Pak J Biol Sci 2007; 10:1161-1169. [PMID: 19069910 DOI: 10.3923/pjbs.2007.1161.1169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The activity of Ethoxyresorufin-o-dealkylase (EROD) in the liver of Oreochromis niloticus and Clarias gariepinus was evaluated as a response to experimental and natural contamination of water with Benzo-a-pyrene and/or cadmium. The activity was measured fluorimetrically in the hepatic S9 fraction while the content of the enzyme was measured by ELISA. The response appeared as early as six hours post exposure. This study also reveled that Oreochromis niloticus exhibits higher values of EROD activity than that of Clarias gariepinus. CYP450 1A1 content showed lower responsiveness when compared to EROD activity measurements. The present study also estimated the inhibitory effect of cadmium on CYP450 1A1 induction. The current results demonstrate that EROD activity reflects contamination of water with benzo-a-pyrene as a polycyclic aromatic hydrocarbon compound. Consequently it is a useful biomarker for monitoring this type of pollution.
Collapse
Affiliation(s)
- M A Hassanain
- Veterinary Research Division, National Research Center, Egypt
| | | | | | | | | |
Collapse
|
7
|
Rifkind AB. CYP1A in TCDD toxicity and in physiology-with particular reference to CYP dependent arachidonic acid metabolism and other endogenous substrates. Drug Metab Rev 2006; 38:291-335. [PMID: 16684662 DOI: 10.1080/03602530600570107] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Toxicologic and physiologic roles of CYP1A enzyme induction, the major biochemical effect of aryl hydrocarbon receptor activation by TCDD and other receptor ligands, are unknown. Evidence is presented that CYP1A exerts biologic effects via metabolism of endogenous substrates (i.e., arachidonic acid, other eicosanoids, estrogens, bilirubin, and melatonin), production of reactive oxygen, and effects on K(+) and Ca(2+) channels. These interrelated pathways may connect CYP1A induction to TCDD toxicities, including cardiotoxicity, vascular dysfunction, and wasting. They may also underlie homeostatic roles for CYP1A, especially when transiently induced by common chemical exposures and environmental conditions (i.e., tryptophan photoproducts, dietary indoles, and changes in oxygen tension).
Collapse
Affiliation(s)
- Arleen B Rifkind
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
8
|
Sissung TM, Price DK, Sparreboom A, Figg WD. Pharmacogenetics and regulation of human cytochrome P450 1B1: implications in hormone-mediated tumor metabolism and a novel target for therapeutic intervention. Mol Cancer Res 2006; 4:135-50. [PMID: 16547151 DOI: 10.1158/1541-7786.mcr-05-0101] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several of the hormone-mediated cancers (breast, endometrial, ovarian, and prostate) represent major cancers in both incidence and mortality rates. The etiology of these cancers is in large part modulated by the hormones estrogen and testosterone. As advanced disease develops, the common treatment for these cancers is chemotherapy. Thus, genes that can alter tissue response to hormones and alter clinical response to chemotherapy are of major interest. The cytochrome P450 1B1 (CYP1B1) may be involved in disease progression and modulate the treatment in the above hormone-mediated cancers. This review will focus on the pharmacogenetics of CYP1B1 in relation to hormone-mediated cancers and provide an assessment of cancer risk based on CYP1B1 polymorphisms and expression. In addition, it will provide a summary of CYP1B1 gene regulation and expression in normal and neoplastic tissue.
Collapse
Affiliation(s)
- Tristan M Sissung
- Clinical Pharmacology Research Core, National Cancer Institute, 9000 Rockville Pike, Building 10, Room 5A01, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
9
|
Peter Guengerich F, Martin MV, McCormick WA, Nguyen LP, Glover E, Bradfield CA. Aryl hydrocarbon receptor response to indigoids in vitro and in vivo. Arch Biochem Biophys 2004; 423:309-16. [PMID: 15001395 DOI: 10.1016/j.abb.2004.01.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 01/07/2004] [Indexed: 11/21/2022]
Abstract
Indigo and indirubin have been reported to be present at low levels in human urine. The possibility that indigoids are physiological ligands of the aryl hydrocarbon receptor (AhR) has been suggested by initial studies in yeast, where indirubin was found to be 50 times more potent than 2,3,7,8-tetrachlorodibenzo[p]dioxin (TCDD), and indigo was found to be equipotent. To demonstrate that these indigoids are bona fide agonists in mammalian systems, we employed a number of in vitro and in vivo measures of AhR agonist potency. In a hepatoma cell reporter system, indigo yielded an EC50 of approximately 5x10(-6)M (indirubin 3' -oxime EC50 approximately 5x10(-7)M, indirubin EC50 approximately 1x10(-7)M). A comparison of these EC50 values with that of 2,3,7,8-tetrachlorodibenzofuran (TCDBF) ( approximately 3x10(-9)M) indicated that these compounds are less potent than classic halogenated-dibenzofurans or -dibenzo-p-dioxins. Competitive binding assays for AhR occupancy showed similar IC50 values for indirubin and TCDBF ( approximately 2x10(-9) and 5x10(-9)M), with the IC50 values of indigo and indirubin 3' -oxime being approximately 10-fold higher. When rats were treated with these indigoids in the range of 1.5-50mg/kg, induction of hepatic cytochrome P450 1A1 was detected. Differences in the rank-order of potency observed in vivo and in vitro could, in part, be explained by metabolism. Although their biological potencies are not as high as has been previously suggested, collectively the results show that these indole-derived pigments are agonists of AhR in vivo. The in vivo results suggest that solubility, distribution, and metabolism influence the response to the compounds.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, 638 Robinson Research Building, 23rd and Pierce Avenues, Nashville, TN 37232-0146, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Massaad C, Entezami F, Massade L, Benahmed M, Olivennes F, Barouki R, Hamamah S. How can chemical compounds alter human fertility? Eur J Obstet Gynecol Reprod Biol 2002; 100:127-37. [PMID: 11750951 DOI: 10.1016/s0301-2115(01)00441-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of environmental toxins, such as pesticides, solvents and industrial waste, on human and animal health have caused much public fear. The suggested mechanism of action for these xenobiotics is their capacity to interact with steroid hormones receptors, in particular those for estrogens and androgens. Concern was reinforced by the "historical" example of diethylstilbestrol, an estradiol mimetic causing genital cancer in girls exposed in utero. The real harm of these environmental xenobiotics is controversial. Some authors estimate that they do not reach sufficiently high concentrations to do damage and much experimental work has been done. In this review, we summarise the latest findings on the molecular mechanisms of action of three environmental toxicants, xenohormones, dioxin and glycol ethers and compare animal and cell experimental model data with epidemiological studies.
Collapse
Affiliation(s)
- Charbel Massaad
- Laboratoire de Fécondation in vitro, Pavillon Jean d'Alsace, Antoine Béclère hospital, 157 rue de la porte de Trivaux, 92141, Clamart, France.
| | | | | | | | | | | | | |
Collapse
|
11
|
Hahn ME. The aryl hydrocarbon receptor: a comparative perspective. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1998; 121:23-53. [PMID: 9972449 DOI: 10.1016/s0742-8413(98)10028-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aryl hydrocarbon receptor (Ah receptor or AHR) is a ligand-activated transcription factor involved in the regulation of several genes, including those for xenobiotic-metabolizing enzymes such as cytochrome P450 1A and 1B forms. Ligands for the AHR include a variety of aromatic hydrocarbons, including the chlorinated dioxins and related halogenated aromatic hydrocarbons whose toxicity occurs through activation of the AHR. The AHR and its dimerization partner ARNT are members of the emerging bHLH-PAS family of transcriptional regulatory proteins. In this review, our current understanding of the AHR signal transduction pathway in non-mammalian and other non-traditional species is summarized, with an emphasis on similarities and differences in comparison to the AHR pathway in rodents and humans. Evidence and prospects for the presence of a functional AHR in early vertebrates and invertebrates are also examined. An overview of the bHLH-PAS family is presented in relation to the diversity of bHLH-PAS proteins and the functional and evolutionary relationships of the AHR and ARNT to the other members of this family. Finally, some of the most promising directions for future research on the comparative biochemistry and molecular biology of the AHR and ARNT are discussed.
Collapse
Affiliation(s)
- M E Hahn
- Biology Department, Woods Hole Oceanographic Institution, MA 02543-1049, USA.
| |
Collapse
|
12
|
Abbott BD, Birnbaum LS, Perdew GH. Developmental expression of two members of a new class of transcription factors: I. Expression of aryl hydrocarbon receptor in the C57BL/6N mouse embryo. Dev Dyn 1995; 204:133-43. [PMID: 8589437 DOI: 10.1002/aja.1002040204] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor with a basic region/helix-loop-helix (bHLH) motif. AhR has been sequenced and the functional domains defined and there is information on the formation of complexes with other peptides and interactions with DNA, although these areas continue to be investigated. AhR mediates many biological effects such as developmental toxicity, including induction of cleft palate and hydronephrosis. This regulatory protein is expressed in embryonic liver and has been immunohistochemically localized in cells of human and mouse secondary palate. The expression of AhR in embryonic tissues and its ability to disrupt development suggests a significant role for this protein in development. The present study examines the pattern of AhR expression in the C57BL/6N mouse embryo from gestation days (GD) 10-16, using in situ hybridization and immunohistochemical analysis. AhR mRNA was localized with 35S-RNA antisense riboprobe (cAh1 probe, 1.8 Kb amino terminal DNA). AhR protein was localized with purified monoclonal antibody (RPT-9) raised against the N-terminal peptide sequence. AhR mRNA and protein were expressed in GD 10-13 neuroepithelium, and as development progressed the levels in brain decreased. GD 10-12 embryos also showed AhR in branchial arches, heart, somites, and liver. AhR protein and mRNA in heart were highest at GD 10-11 and decreased with age. In liver, AhR mRNA and protein levels increased and nuclear localization became more pronounced with gestational age. In GD 14-16 embryos levels in liver and adrenal were highest, but AhR was present in ectoderm, bone, and muscle. AhR expression was specific for both cell type, organ/tissue, and developmental stage, suggesting that this novel ligand-activated transcriptional regulator may be important in normal embryonic development.
Collapse
Affiliation(s)
- B D Abbott
- Developmental Toxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | | |
Collapse
|
13
|
Sadek C, Allen-Hoffmann B. Cytochrome P450IA1 is rapidly induced in normal human keratinocytes in the absence of xenobiotics. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)33974-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
Belinsky M, Jaiswal AK. NAD(P)H:quinone oxidoreductase1 (DT-diaphorase) expression in normal and tumor tissues. Cancer Metastasis Rev 1993; 12:103-17. [PMID: 8375015 DOI: 10.1007/bf00689804] [Citation(s) in RCA: 197] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
NAD(P)H:Quinone Oxidoreductase1 (NQO1) also known as DT-diaphorase is a flavoprotein that catalyzes the two-electron reduction of quinones, quinone imines and azo-dyes and thereby protects cells against mutagenicity and carcinogenicity resulting from free radicals and toxic oxygen metabolites generated by the one-electron reductions catalyzed by cytochromes P450 and other enzymes. High levels of NQO1 gene expression have been observed in liver, lung, colon and breast tumors as compared to normal tissues of the same origin. The transcription of the NQO1 gene is activated in response to exposure to bifunctional (e.g. beta-naphthoflavone (beta-NF), 2, 3, 7, 8 tetrachorodibenzo-p-dioxin (TCDD)) and monofunctional (phenolic antioxidants/chemoprotectors e.g. 2(3)-tert-butyl-4-hydroxy-anisole (BHA)) inducers. The high level of expression of the NQO1 gene and its induction by beta-NF and BHA require the presence of an AP1 binding site contained within the human Antioxidant Response Element (hARE) and are mediated by products of proto-oncogenes, Jun and Fos. Induction of NQO1 gene expression involves transfer of a redox signal from xenobiotics to unknown 'redox protein(s)' which in turn, modify the Jun and Fos proteins for greater affinity towards the AP1 site of the NQO1 gene and activates transcription. The expression and regulation of the NQO1 gene is complex as many additional cis-elements have been identified in the promoter region and is a subject of great future interest. In addition to established tumors, NQO1 gene expression is also increased in developing tumors, indicating a role in cellular defense during tumorigenesis. It has been proposed that low molecular weight substance(s) can diffuse from tumor cells into surrounding normal cells and activate the expression of the NQO1 gene. Purification and characterization of such substance(s) may provide important information in regard to the mechanism of activation of NQO1 gene expression and the role of increased NQO1 expression in tumor development. In view of the general consensus that NQO1 is over-expressed in tumor cells and the realization that NQO1 may either activate or detoxify xenobiotics, it is important to establish the role of NQO1 in the activation, and the detoxification of xenobiotics and drugs and in the intrinsic sensitivity of tumors to bioreductive alkylating aziridinyl benzoquinones such as diaziquone (AZQ), mitomycin C (MMC), and indoloquinone EO9, as well as to the dinitrophenyl aziridine, CB1954, and the benzotriazine-di-N-oxide, SR 4233.
Collapse
Affiliation(s)
- M Belinsky
- Dept. of Pharmacology, Fox Chase Cancer Center, Philadelphia, PA 19111
| | | |
Collapse
|
15
|
Reyes H, Reisz-Porszasz S, Hankinson O. Identification of the Ah receptor nuclear translocator protein (Arnt) as a component of the DNA binding form of the Ah receptor. Science 1992; 256:1193-5. [PMID: 1317062 DOI: 10.1126/science.256.5060.1193] [Citation(s) in RCA: 563] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Ah (dioxin) receptor binds a number of widely disseminated environmental pollutants, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and polycyclic aromatic hydrocarbons, and mediates their carcinogenic effects. The ligand-bound receptor activates Cyp 1a1 gene transcription through interaction with specific DNA sequences, termed xenobiotic responsive elements (XREs). The Ah receptor nuclear translocator protein (Arnt) is required for Ah receptor function. Arnt is now shown to be a structural component of the XRE binding form of the Ah receptor. Furthermore, Arnt and the ligand-binding subunit of the receptor were extracted as a complex from the nuclei of cells treated with ligand. Arnt contains a basic helix-loop-helix motif, which may be responsible for interacting with both the XRE and the ligand-binding subunit.
Collapse
Affiliation(s)
- H Reyes
- Department of Pathology, University of California, Los Angeles 90024
| | | | | |
Collapse
|
16
|
Herrlich P, Ponta H, Rahmsdorf HJ. DNA damage-induced gene expression: signal transduction and relation to growth factor signaling. Rev Physiol Biochem Pharmacol 1992; 119:187-223. [PMID: 1604153 DOI: 10.1007/3540551921_7] [Citation(s) in RCA: 149] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- P Herrlich
- Kernforschungszentrum Karlsruhe, Institut für Genetik und Toxikologie, FRG
| | | | | |
Collapse
|
17
|
Aoki Y, Silbergeld EK, Max SR, Fowler BA. Alterations in protein synthesis in rat liver cells by in vitro and in vivo exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochem Pharmacol 1991; 42:1195-201. [PMID: 1888329 DOI: 10.1016/0006-2952(91)90254-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alterations in protein synthesis in rat liver cells were examined following in vitro and in vivo exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Primary cultured rat liver parenchymal cells were exposed to 1 nM TCDD for 23 and 47 hr. Synthesis of two proteins with molecular weights (Mr) of 26,000 and 39,000 (designated 26k-P and 39k-P, respectively), other than cytochrome P450, was increased markedly in the cells. These proteins did not have the same antigens as cytochromes P450IA1 and P450IA2. Synthesis of three proteins with Mrs of 24,000, 25,000 and 29,000, respectively, was decreased by TCDD. TCDD was administered to rats at a dose of 100 micrograms/kg body weight. The amount of five proteins (two proteins with Mr of 26,000, one of 36,000 and two of 39,000) was increased in TCDD-treated rat liver. However, the proteins increased in vivo by TCDD were distinguishable from 26k-P and 39k-P by two dimensional gel electrophoresis.
Collapse
Affiliation(s)
- Y Aoki
- National Institute for Environmental Studies, Ibaraki, Japan
| | | | | | | |
Collapse
|
18
|
Hoffman EC, Reyes H, Chu FF, Sander F, Conley LH, Brooks BA, Hankinson O. Cloning of a factor required for activity of the Ah (dioxin) receptor. Science 1991; 252:954-8. [PMID: 1852076 DOI: 10.1126/science.1852076] [Citation(s) in RCA: 685] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The aryl hydrocarbon (Ah) receptor binds various environmental pollutants, such as polycyclic aromatic hydrocarbons, heterocyclic amines, and polychlorinated aromatic compounds (dioxins, dibenzofurans, and biphenyls), and mediates the carcinogenic effects of these agents. The complementary DNA and part of the gene for an 87-kilodalton human protein that is necessary for Ah receptor function have been cloned. The protein is not the ligand-binding subunit of the receptor but is a factor that is required for the ligand-binding subunit to translocate from the cytosol to the nucleus after binding ligand. The requirement for this factor distinguishes the Ah receptor from the glucocorticoid receptor, to which the Ah receptor has been presumed to be similar. Two portions of the 87-kilodalton protein share sequence similarities with two Drosophila proteins, Per and Sim. Another segment of the protein shows conformity to the consensus sequence for the basic helix-loop-helix motif found in proteins that bind DNA as homodimers or heterodimers.
Collapse
Affiliation(s)
- E C Hoffman
- Department of Pathology, University of California, Los Angeles 90024
| | | | | | | | | | | | | |
Collapse
|
19
|
Wang X, Narasimhan TR, Morrison V, Safe S. In situ and in vitro photoaffinity labeling of the nuclear aryl hydrocarbon receptor from transformed rodent and human cell lines. Arch Biochem Biophys 1991; 287:186-94. [PMID: 1654803 DOI: 10.1016/0003-9861(91)90405-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The photoaffinity labeling of the nuclear aryl hydrocarbon (Ah) receptor from mouse Hepa 1c1c7, rat hepatoma H-4-II E, and human liver Hep G2 cells was investigated using two high affinity ligands, namely 2,3,7,8-[3H]tetrachlorodibenzo-p-dioxin (TCDD) and 7-[125I]iodo-2,3,-dibenzo-p-dioxin ([125I]DBDD). Irradiation of nuclear [3H]TCDD-Ah receptor complexes from the three cell lines for 5 min gave 47, 38, and 62% yields of trichloroacetic acid-precipitable photoadducts from the Hepa 1c1c7, H-4-II E, and Hep G2 cell lines, respectively; denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis separation followed by autoradiography gave one major Ah receptor photoadduct for each cell line with apparent molecular masses at 97, 100, and 110 kDa, respectively. [125I]DBDD could also be used as a photoaffinity label for the nuclear Ah receptor from the three cell lines; although the maximum net yield of photoaffinity labeled nuclear Ah receptor from the rodent nuclear Ah receptor preparations was relatively low (0.5-2.5%), a greater than 15% yield of photoadduct was obtained from the human Hep G2 cells. Both [3H]TCDD and [125I]DBDD were utilized to photoaffinity label the nuclear Ah receptor in Hepa 1c1c7 cells in suspension and the net yield of photoadducts with these ligands was 94.6 and 3.0%, respectively. The cytosolic Ah receptor from the three cell lines was photolabeled with [125I]DBDD and the net yield of photoadducts varied from 3.3 to 14.7%. The functional activity of the photoaffinity-labeled nuclear TCDD-Ah receptor complexes from the cell lines was also determined by comparing relative binding affinities of the photolyzed and unphotolyzed complexes with a synthetic dioxin-responsive element (DRE) using a gel retardation assay. The photolyzed and unphotolyzed complexes from the three cell lines all bound with the DRE in the gel shift assay; however, the gel mobilities of the rodent and human nuclear receptor-DRE complexes were different. Quantitative analysis of the DRE binding showed that there were no significant differences between the photolyzed and unphotolyzed nuclear receptor complexes from the rodent cells, whereas there was a significant 27% decrease in the DRE binding of the photolyzed versus the unphotolyzed nuclear receptor complex from the human Hep G2 cells. These studies demonstrate the utility of [3H]TCDD and [125I]DBDD as photoaffinity labels for the Ah receptor and illustrate the structural and photochemical differences between the rodent and the human nuclear Ah receptor complexes.
Collapse
Affiliation(s)
- X Wang
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station 77843-4466
| | | | | | | |
Collapse
|
20
|
Elferink CJ, Gasiewicz TA, Whitlock JP. Protein-DNA interactions at a dioxin-responsive enhancer. Evidence that the transformed Ah receptor is heteromeric. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)30561-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
Fisher JM, Wu L, Denison MS, Whitlock JP. Organization and function of a dioxin-responsive enhancer. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38723-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
|
23
|
Prokipcak RD, Faber LE, Okey AB. Characterization of the Ah receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin: use of chemical crosslinking and a monoclonal antibody directed against a 59-kDa protein associated with steroid receptors. Arch Biochem Biophys 1989; 274:648-58. [PMID: 2552929 DOI: 10.1016/0003-9861(89)90480-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Ah receptor regulates induction of cytochrome P450IA1 (aryl hydrocarbon hydroxylase) by "3-methylcholanthrene-type" compounds and mediates the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons. Hepatic Ah receptor from untreated rodents is localized in the cytosol and has an apparent molecular mass of 250 to 300 kDa. This large form can be dissociated into a smaller ligand-binding subunit upon exposure to high ionic strength. The Ah receptor displays many structural similarities to the receptors for steroid hormones. Two non-ligand-binding proteins have been identified to be associated with the cytosolic forms of the steroid hormone receptors. The first is a 90-kDa heat shock protein (hsp 90); the second is a 59-kDa protein (p59) of unknown function. The cytosolic Ah receptor ligand-binding subunit previously has been shown to be associated with hsp 90. In the present study, we used a monoclonal antibody, KN 382/EC1, generated against the 59-kDa protein which is associated with rabbit steroid receptors to determine if p59 also is a component of the large cytosolic Ah receptor complex. Cytosolic forms of rabbit progesterone receptor, glucocorticoid receptor, and Ah receptor were analyzed by velocity sedimentation on sucrose gradients under low-ionic-strength conditions and in the presence of molybdate. Progesterone receptor from rabbit uterine cytosol and glucocorticoid receptor from rabbit liver each had a sedimentation coefficient of approximately 9 S. In the presence of KN 382/EC1 antibody the progesterone receptor and the glucocorticoid receptor both underwent a shift in sedimentation to a value of approximately 11 S. The increase in sedimentation velocity is an indication that the receptor-protein complexes are interacting with the antibody. Under low-ionic-strength conditions the Ah receptors from rabbit uterine cytosol and liver cytosol had a sedimentation coefficient of approximately 9 S. However, in contrast to the steroid receptors, the Ah receptor showed no change in its sedimentation properties in either tissue in the presence of KN 382/EC1, indicating that the antibody is not interacting with the Ah receptor. Multimeric Ah receptor complexes that were chemically crosslinked still did not show any interaction with KN 382/EC1. These data indicate that the 59-kDa protein either is not associated with the Ah receptor or is present in an altered form which the antibody cannot recognize.
Collapse
Affiliation(s)
- R D Prokipcak
- Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
24
|
Landers JP, Piskorska-Pliszczynska J, Zacharewski T, Bunce NJ, Safe S. Photoaffinity labeling of the nuclear Ah receptor from mouse Hepa 1c1c7 cells using 2,3,7,8-[3H]tetrachlorodibenzo-p-dioxin. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)51489-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Shen ES, Whitlock JP. The Potential Role of DNA Methylation in the Response to 2,3,7,8-Tetrachlorodibenzo-p-dioxin. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)84636-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Denison MS, Fisher JM, Whitlock JP. Protein-DNA Interactions at Recognition Sites for the Dioxin-Ah Receptor Complex. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)84730-0] [Citation(s) in RCA: 158] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
27
|
Higashimori K, Mizuno K, Nakajo S, Boehm FH, Marcotte PA, Egan DA, Holleman WH, Heusser C, Poisner AM, Inagami T. Pure Human Inactive Renin. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)63748-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
28
|
|