1
|
Bardova K, Janovska P, Vavrova A, Kopecky J, Zouhar P. Adaptive Induction of Nonshivering Thermogenesis in Muscle Rather Than Brown Fat Could Counteract Obesity. Physiol Res 2024; 73:S279-S294. [PMID: 38752772 PMCID: PMC11412341 DOI: 10.33549/physiolres.935361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Warm-blooded animals such as birds and mammals are able to protect stable body temperature due to various thermogenic mechanisms. These processes can be facultative (occurring only under specific conditions, such as acute cold) and adaptive (adjusting their capacity according to long-term needs). They can represent a substantial part of overall energy expenditure and, therefore, affect energy balance. Classical mechanisms of facultative thermogenesis include shivering of skeletal muscles and (in mammals) non-shivering thermogenesis (NST) in brown adipose tissue (BAT), which depends on uncoupling protein 1 (UCP1). Existence of several alternative thermogenic mechanisms has been suggested. However, their relative contribution to overall heat production and the extent to which they are adaptive and facultative still needs to be better defined. Here we focus on comparison of NST in BAT with thermogenesis in skeletal muscles, including shivering and NST. We present indications that muscle NST may be adaptive but not facultative, unlike UCP1-dependent NST. Due to its slow regulation and low energy efficiency, reflecting in part the anatomical location, induction of muscle NST may counteract development of obesity more effectively than UCP1-dependent thermogenesis in BAT.
Collapse
Affiliation(s)
- K Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic. or
| | | | | | | | | |
Collapse
|
2
|
Zhang Z, Cui Y, Su V, Wang D, Tol MJ, Cheng L, Wu X, Kim J, Rajbhandari P, Zhang S, Li W, Tontonoz P, Villanueva CJ, Sallam T. A PPARγ/long noncoding RNA axis regulates adipose thermoneutral remodeling in mice. J Clin Invest 2023; 133:e170072. [PMID: 37909330 PMCID: PMC10617768 DOI: 10.1172/jci170072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/06/2023] [Indexed: 11/03/2023] Open
Abstract
Interplay between energy-storing white adipose cells and thermogenic beige adipocytes contributes to obesity and insulin resistance. Irrespective of specialized niche, adipocytes require the activity of the nuclear receptor PPARγ for proper function. Exposure to cold or adrenergic signaling enriches thermogenic cells though multiple pathways that act synergistically with PPARγ; however, the molecular mechanisms by which PPARγ licenses white adipose tissue to preferentially adopt a thermogenic or white adipose fate in response to dietary cues or thermoneutral conditions are not fully elucidated. Here, we show that a PPARγ/long noncoding RNA (lncRNA) axis integrates canonical and noncanonical thermogenesis to restrain white adipose tissue heat dissipation during thermoneutrality and diet-induced obesity. Pharmacologic inhibition or genetic deletion of the lncRNA Lexis enhances uncoupling protein 1-dependent (UCP1-dependent) and -independent thermogenesis. Adipose-specific deletion of Lexis counteracted diet-induced obesity, improved insulin sensitivity, and enhanced energy expenditure. Single-nuclei transcriptomics revealed that Lexis regulates a distinct population of thermogenic adipocytes. We systematically map Lexis motif preferences and show that it regulates the thermogenic program through the activity of the metabolic GWAS gene and WNT modulator TCF7L2. Collectively, our studies uncover a new mode of crosstalk between PPARγ and WNT that preserves white adipose tissue plasticity.
Collapse
Affiliation(s)
- Zhengyi Zhang
- Division of Cardiology, Department of Medicine
- Department of Physiology, and
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Ya Cui
- Division of Computational Biomedicine, Biological Chemistry, University of California, Irvine, Irvine, California, USA
| | - Vivien Su
- Division of Cardiology, Department of Medicine
- Department of Physiology, and
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Dan Wang
- Division of Cardiology, Department of Medicine
- Department of Physiology, and
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Marcus J. Tol
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - Lijing Cheng
- Division of Cardiology, Department of Medicine
- Department of Physiology, and
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Xiaohui Wu
- Division of Cardiology, Department of Medicine
- Department of Physiology, and
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Jason Kim
- Division of Cardiology, Department of Medicine
- Department of Physiology, and
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Prashant Rajbhandari
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sicheng Zhang
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Wei Li
- Division of Computational Biomedicine, Biological Chemistry, University of California, Irvine, Irvine, California, USA
| | - Peter Tontonoz
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
- Department of Biological Chemistry and
| | - Claudio J. Villanueva
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
- Department of Integrative Biology and Physiology, College of Life Sciences, UCLA, Los Angeles, California, USA
| | - Tamer Sallam
- Division of Cardiology, Department of Medicine
- Department of Physiology, and
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| |
Collapse
|
3
|
Abstract
In this review, we provide a brief synopsis of the connections between adipose tissue and metabolic health and highlight some recent developments in understanding and exploiting adipocyte biology. Adipose tissue plays critical roles in the regulation of systemic glucose and lipid metabolism and secretes bioactive molecules possessing endocrine, paracrine, and autocrine functions. Dysfunctional adipose tissue has a detrimental impact on metabolic health and is intimately involved in key aspects of metabolic diseases such as insulin resistance, lipid overload, inflammation, and organelle stress. Differences in the distribution of fat depots and adipose characteristics relate to divergent degrees of metabolic dysfunction found in metabolically healthy and unhealthy obese individuals. Thermogenic adipocytes increase energy expenditure via mitochondrial uncoupling or adenosine triphosphate-consuming futile substrate cycles, while functioning as a metabolic sink and participating in crosstalk with other metabolic organs. Manipulation of adipose tissue provides a wealth of opportunities to intervene and combat the progression of associated metabolic diseases. We discuss current treatment modalities for obesity including incretin hormone analogs and touch upon emerging strategies with therapeutic potential including exosome-based therapy, pharmacological activation of brown and beige adipocyte thermogenesis, and administration or inhibition of adipocyte-derived factors.
Collapse
Affiliation(s)
- Sung-Min An
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA, USA
| | - Seung-Hee Cho
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA, USA
| | - John C. Yoon
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA, USA
| |
Collapse
|
4
|
Reguero M, Gómez de Cedrón M, Sierra-Ramírez A, Fernández-Marcos PJ, Reglero G, Quintela JC, Ramírez de Molina A. Pomegranate Extract Augments Energy Expenditure Counteracting the Metabolic Stress Associated with High-Fat-Diet-Induced Obesity. Int J Mol Sci 2022; 23:ijms231810460. [PMID: 36142372 PMCID: PMC9499678 DOI: 10.3390/ijms231810460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
Obesity is associated to a low grade of chronic inflammation leading to metabolic stress, insulin resistance, metabolic syndrome, dislipidemia, cardiovascular disease, and even cancer. A Mediterranean diet has been shown to reduce systemic inflammatory factors, insulin resistance, and metabolic syndrome. In this scenario, precision nutrition may provide complementary approaches to target the metabolic alterations associated to “unhealthy obesity”. In a previous work, we described a pomegranate extract (PomE) rich in punicalagines to augment markers of browning and thermogenesis in human differentiated adipocytes and to augment the oxidative respiratory capacity in human differentiated myocytes. Herein, we have conducted a preclinical study of high-fat-diet (HFD)-induced obesity where PomE augments the systemic energy expenditure (EE) contributing to a reduction in the low grade of chronic inflammation and insulin resistance associated to obesity. At the molecular level, PomE promotes browning and thermogenesis in adipose tissue, reducing inflammatory markers and augmenting the reductive potential to control the oxidative stress associated to the HFD. PomE merits further investigation as a complementary approach to alleviate obesity, reducing the low grade of chronic inflammation and metabolic stress.
Collapse
Affiliation(s)
- Marina Reguero
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, 28049 Madrid, Spain
- NATAC BIOTECH, Electronica 7, 28923 Madrid, Spain
| | - Marta Gómez de Cedrón
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, 28049 Madrid, Spain
- Correspondence: (M.G.d.C.); (A.R.d.M.)
| | | | | | - Guillermo Reglero
- Production and Characterization of Novel Foods Department, Institute of Food Science Research CIAL, CEI UAM + CSIC, 28049 Madrid, Spain
| | | | - Ana Ramírez de Molina
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, 28049 Madrid, Spain
- Correspondence: (M.G.d.C.); (A.R.d.M.)
| |
Collapse
|
5
|
Pileggi C, Hooks B, McPherson R, Dent R, Harper ME. Targeting skeletal muscle mitochondrial health in obesity. Clin Sci (Lond) 2022; 136:1081-1110. [PMID: 35892309 PMCID: PMC9334731 DOI: 10.1042/cs20210506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/26/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022]
Abstract
Metabolic demands of skeletal muscle are substantial and are characterized normally as highly flexible and with a large dynamic range. Skeletal muscle composition (e.g., fiber type and mitochondrial content) and metabolism (e.g., capacity to switch between fatty acid and glucose substrates) are altered in obesity, with some changes proceeding and some following the development of the disease. Nonetheless, there are marked interindividual differences in skeletal muscle composition and metabolism in obesity, some of which have been associated with obesity risk and weight loss capacity. In this review, we discuss related molecular mechanisms and how current and novel treatment strategies may enhance weight loss capacity, particularly in diet-resistant obesity.
Collapse
Affiliation(s)
- Chantal A. Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada, K1H 8M5
- Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada, K1H 8M5
| | - Breana G. Hooks
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada, K1H 8M5
- Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada, K1H 8M5
| | - Ruth McPherson
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Robert R.M. Dent
- Division of Endocrinology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada, K1H 8M5
- Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada, K1H 8M5
| |
Collapse
|
6
|
Duerre DJ, Galmozzi A. Deconstructing Adipose Tissue Heterogeneity One Cell at a Time. Front Endocrinol (Lausanne) 2022; 13:847291. [PMID: 35399946 PMCID: PMC8990929 DOI: 10.3389/fendo.2022.847291] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/28/2022] [Indexed: 12/26/2022] Open
Abstract
As a central coordinator of physiologic metabolism, adipose tissue has long been appreciated as a highly plastic organ that dynamically responds to environmental cues. Once thought of as a homogenous storage depot, recent advances have enabled deep characterizations of the underlying structure and composition of adipose tissue depots. As the obesity and metabolic disease epidemics continue to accelerate due to modern lifestyles and an aging population, elucidation of the underlying mechanisms that control adipose and systemic homeostasis are of critical importance. Within the past decade, the emergence of deep cell profiling at tissue- and, recently, single-cell level has furthered our understanding of the complex dynamics that contribute to tissue function and their implications in disease development. Although many paradigm-shifting findings may lie ahead, profound advances have been made to forward our understanding of the adipose tissue niche in both health and disease. Now widely accepted as a highly heterogenous organ with major roles in metabolic homeostasis, endocrine signaling, and immune function, the study of adipose tissue dynamics has reached a new frontier. In this review, we will provide a synthesis of the latest advances in adipose tissue biology made possible by the use of single-cell technologies, the impact of epigenetic mechanisms on adipose function, and suggest what next steps will further our understanding of the role that adipose tissue plays in systemic physiology.
Collapse
Affiliation(s)
- Dylan J. Duerre
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, United States
| | - Andrea Galmozzi
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
7
|
Ryan CR, Finch MS, Dunham TC, Murphy JE, Roy BD, MacPherson REK. Creatine Monohydrate Supplementation Increases White Adipose Tissue Mitochondrial Markers in Male and Female Rats in a Depot Specific Manner. Nutrients 2021; 13:2406. [PMID: 34371916 PMCID: PMC8308802 DOI: 10.3390/nu13072406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
White adipose tissue (WAT) is a dynamic endocrine organ that can play a significant role in thermoregulation. WAT has the capacity to adopt structural and functional characteristics of the more metabolically active brown adipose tissue (BAT) and contribute to non-shivering thermogenesis under specific stimuli. Non-shivering thermogenesis was previously thought to be uncoupling protein 1 (UCP1)-dependent however, recent evidence suggests that UCP1-independent mechanisms of thermogenesis exist. Namely, futile creatine cycling has been identified as a contributor to WAT thermogenesis. The purpose of this study was to examine the efficacy of creatine supplementation to alter mitochondrial markers as well as adipocyte size and multilocularity in inguinal (iWAT), gonadal (gWAT), and BAT. Thirty-two male and female Sprague-Dawley rats were treated with varying doses (0 g/L, 2.5 g/L, 5 g/L, and 10 g/L) of creatine monohydrate for 8 weeks. We demonstrate that mitochondrial markers respond in a sex and depot specific manner. In iWAT, female rats displayed significant increases in COXIV, PDH-E1alpha, and cytochrome C protein content. Male rats exhibited gWAT specific increases in COXIV and PDH-E1alpha protein content. This study supports creatine supplementation as a potential method of UCP1-independant thermogenesis and highlights the importance of taking a sex-specific approach when examining the efficacy of browning therapeutics in future research.
Collapse
Affiliation(s)
- Chantal R. Ryan
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (C.R.R.); (M.S.F.)
| | - Michael S. Finch
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (C.R.R.); (M.S.F.)
| | - Tyler C. Dunham
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada; (T.C.D.); (J.E.M.); (B.D.R.)
| | - Jensen E. Murphy
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada; (T.C.D.); (J.E.M.); (B.D.R.)
| | - Brian D. Roy
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada; (T.C.D.); (J.E.M.); (B.D.R.)
| | - Rebecca E. K. MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (C.R.R.); (M.S.F.)
| |
Collapse
|
8
|
Filatov E, Short LI, Forster MAM, Harris SS, Schien EN, Hughes MC, Cline DL, Appleby CJ, Gray SL. Contribution of thermogenic mechanisms by male and female mice lacking pituitary adenylate cyclase-activating polypeptide in response to cold acclimation. Am J Physiol Endocrinol Metab 2021; 320:E475-E487. [PMID: 33356993 DOI: 10.1152/ajpendo.00205.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide critical to the regulation of the stress response, including having a role in energy homeostasis. Mice lacking PACAP are cold-sensitive and have impaired adrenergic-induced thermogenesis. Interestingly, Pacap null mice can survive cold housing if acclimated slowly, similar to observations in uncoupling protein 1 (UCP1)-deficient mice. We hypothesized that Pacap null mice use alternate thermogenic pathways to compensate for impaired adaptive thermogenesis when acclimated to cold. Observations of behavior and assessment of fiber type in skeletal muscles did not show evidence of prolonged burst shivering or changes in oxidative metabolism in male or female Pacap-/- mice during cold acclimation compared with Pacap+/+ mice. Despite previous work that has established impaired capacity for adaptive thermogenesis in Pacap null mice, adaptive thermogenesis can be induced in mice lacking PACAP to support survival with cold housing. Interestingly, sex-specific morphological and molecular differences in adipose tissue remodeling were observed in Pacap null mice compared with controls. Thus, sexual dimorphisms are highlighted in adipose tissue remodeling and thermogenesis with cold acclimation in the absence of PACAP.NEW & NOTEWORTHY This manuscript adds to the literature of endocrine regulation of adaptive thermogenesis and energy balance. It specifically describes the role of pituitary adenylate cyclase-activating polypeptide on the regulation of brown adipose tissue via the sympathetic nervous system with a focus on compensatory mechanisms of thermogenesis. We highlight sex-specific differences in energy metabolism.
Collapse
Affiliation(s)
- Ekaterina Filatov
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Landon I Short
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Maeghan A M Forster
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Simon S Harris
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Erik N Schien
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Malcolm C Hughes
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Daemon L Cline
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Colin J Appleby
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Sarah L Gray
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| |
Collapse
|