1
|
George K, Hoang HT, Tibbs T, Nagaraja RY, Li G, Troyano-Rodriguez E, Ahmad M. Robust GRK2/3/6-dependent desensitization of oxytocin receptor in neurons. iScience 2024; 27:110047. [PMID: 38883814 PMCID: PMC11179071 DOI: 10.1016/j.isci.2024.110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/22/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Oxytocin plays critical roles in the brain as a neuromodulator, regulating social and other affective behavior. However, the regulatory mechanisms controlling oxytocin receptor (OXTR) signaling in neurons remain unexplored. In this study, we have identified robust and rapid-onset desensitization of OXTR response in multiple regions of the mouse brain. Both cell autonomous spiking response and presynaptic activation undergo similar agonist-induced desensitization. G-protein-coupled receptor kinases (GRK) GRK2, GRK3, and GRK6 are recruited to the activated OXTR in neurons, followed by recruitment of β-arrestin-1 and -2. Neuronal OXTR desensitization was impaired by suppression of GRK2/3/6 kinase activity but remained unaltered with double knockout of β-arrestin-1 and -2. Additionally, we observed robust agonist-induced internalization of neuronal OXTR and its Rab5-dependent recruitment to early endosomes, which was impaired by GRK2/3/6 inhibition. This work defines distinctive aspects of the mechanisms governing OXTR desensitization and internalization in neurons compared to prior studies in heterologous cells.
Collapse
Affiliation(s)
- Kiran George
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hanh T.M. Hoang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Taryn Tibbs
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Raghavendra Y. Nagaraja
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Guangpu Li
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Eva Troyano-Rodriguez
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mohiuddin Ahmad
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
2
|
Holfeld A, Schuster D, Sesterhenn F, Gillingham AK, Stalder P, Haenseler W, Barrio-Hernandez I, Ghosh D, Vowles J, Cowley SA, Nagel L, Khanppnavar B, Serdiuk T, Beltrao P, Korkhov VM, Munro S, Riek R, de Souza N, Picotti P. Systematic identification of structure-specific protein-protein interactions. Mol Syst Biol 2024; 20:651-675. [PMID: 38702390 PMCID: PMC11148107 DOI: 10.1038/s44320-024-00037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
The physical interactome of a protein can be altered upon perturbation, modulating cell physiology and contributing to disease. Identifying interactome differences of normal and disease states of proteins could help understand disease mechanisms, but current methods do not pinpoint structure-specific PPIs and interaction interfaces proteome-wide. We used limited proteolysis-mass spectrometry (LiP-MS) to screen for structure-specific PPIs by probing for protease susceptibility changes of proteins in cellular extracts upon treatment with specific structural states of a protein. We first demonstrated that LiP-MS detects well-characterized PPIs, including antibody-target protein interactions and interactions with membrane proteins, and that it pinpoints interfaces, including epitopes. We then applied the approach to study conformation-specific interactors of the Parkinson's disease hallmark protein alpha-synuclein (aSyn). We identified known interactors of aSyn monomer and amyloid fibrils and provide a resource of novel putative conformation-specific aSyn interactors for validation in further studies. We also used our approach on GDP- and GTP-bound forms of two Rab GTPases, showing detection of differential candidate interactors of conformationally similar proteins. This approach is applicable to screen for structure-specific interactomes of any protein, including posttranslationally modified and unmodified, or metabolite-bound and unbound protein states.
Collapse
Affiliation(s)
- Aleš Holfeld
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Dina Schuster
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Fabian Sesterhenn
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Patrick Stalder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Walther Haenseler
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- University Research Priority Program AdaBD (Adaptive Brain Circuits in Development and Learning), University of Zurich, Zurich, Switzerland
| | - Inigo Barrio-Hernandez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Dhiman Ghosh
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Jane Vowles
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Sally A Cowley
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Luise Nagel
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Basavraj Khanppnavar
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Tetiana Serdiuk
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Pedro Beltrao
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Volodymyr M Korkhov
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Roland Riek
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Natalie de Souza
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Qiao L, Dong C, Jia W, Ma B. NAA20 recruits Rin2 and promotes triple-negative breast cancer progression by regulating Rab5A-mediated activation of EGFR signaling. Cell Signal 2023; 112:110922. [PMID: 37827343 DOI: 10.1016/j.cellsig.2023.110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype with poor prognosis and high mortality. To improve the prognosis and survival of TNBC patients, it is necessary to explore new targets and signaling pathways to develop novel therapies for TNBC treatment. N-α-acetyltransferase 20 (NAA20) is one of the catalytic subunits of N-terminal acetyltransferase (NatB). It has been reported that NAA20 played a critical role in cancer progression. In this study, we found that NAA20 expression was markedly higher in TNBC tissues than in paracancerous normal tissues using The Cancer Genome Atlas (TCGA) analysis. This result was further confirmed by qRT-PCR and immunohistochemistry (IHC). Knockdown of NAA20 significantly inhibited TNBC cell viability by CCK8 and colony formation assays and cell migration and invasion by Transwell assays. Additionally, NAA20 knockdown decreased the expression of EGFR in TNBC cells. Upon stimulation with EGF and knockdown of NAA20, EGFR internalization and degradation were observed by confocal microscopy. The western blot results showed that NAA20 knockdown down-regulated PI3K, AKT, and mTOR phosphorylation. Next, we further explored the underlying molecular mechanisms of NAA20 by co-immunoprecipitation (Co-IP). The results suggested that there was an interacting relationship between NAA20 and Rab5A. Over-expression of NAA20 could potentiate the expression of Rab5A. Furthermore, the knockdown of Rab5A inhibited EGFR expression and the phosphorylation of downstream signaling targets. NAA20 over-expression offset the knockdown effect of Rab5A and activated EGFR signaling. Finally, we constructed a xenograft mouse model transfected TNBC cells to investigate the role of NAA20 in vivo. NAA20 knockdown markedly suppressed tumor growth and decreased tumor volume and weight. In conclusion, our study demonstrated that NAA20, a novel target of TNBC, could promote TNBC progression by regulating Rab5A-mediated activation of EGFR signaling.
Collapse
Affiliation(s)
- Lei Qiao
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China
| | - Chao Dong
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China
| | - Wenlei Jia
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China
| | - Binlin Ma
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China.
| |
Collapse
|
4
|
Tawfeeq N, Lazarte JMS, Jin Y, Gregory MD, Lamango NS. Polyisoprenylated cysteinyl amide inhibitors deplete singly polyisoprenylated monomeric G-proteins in lung and breast cancer cell lines. Oncotarget 2023; 14:243-257. [PMID: 36961909 PMCID: PMC10038354 DOI: 10.18632/oncotarget.28390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
Finding effective therapies against cancers driven by mutant and/or overexpressed hyperactive G-proteins remains an area of active research. Polyisoprenylated cysteinyl amide inhibitors (PCAIs) are agents that mimic the essential posttranslational modifications of G-proteins. It is hypothesized that PCAIs work as anticancer agents by disrupting polyisoprenylation-dependent functional interactions of the G-Proteins. This study tested this hypothesis by determining the effect of the PCAIs on the levels of RAS and related monomeric G-proteins. Following 48 h exposure, we found significant decreases in the levels of KRAS, RHOA, RAC1, and CDC42 ranging within 20-66% after NSL-YHJ-2-27 (5 μM) treatment in all four cell lines tested, A549, NCI-H1299, MDA-MB-231, and MDA-MB-468. However, no significant difference was observed on the G-protein, RAB5A. Interestingly, 38 and 44% decreases in the levels of the farnesylated and acylated NRAS were observed in the two breast cancer cell lines, MDA-MB-231, and MDA-MB-468, respectively, while HRAS levels showed a 36% decrease only in MDA-MB-468 cells. Moreover, after PCAIs treatment, migration, and invasion of A549 cells were inhibited by 72 and 70%, respectively while the levels of vinculin and fascin dropped by 33 and 43%, respectively. These findings implicate the potential role of PCAIs as anticancer agents through their direct interaction with monomeric G-proteins.
Collapse
Affiliation(s)
- Nada Tawfeeq
- Florida A&M University College of Pharmacy Pharmaceutical Sciences, Institute of Public Health, Tallahassee, FL 32307, USA
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman bin Faisal University, Dammam, Eastern Province, Kingdom of Saudi Arabia
| | - Jassy Mary S Lazarte
- Florida A&M University College of Pharmacy Pharmaceutical Sciences, Institute of Public Health, Tallahassee, FL 32307, USA
| | - Yonghao Jin
- Florida A&M University College of Pharmacy Pharmaceutical Sciences, Institute of Public Health, Tallahassee, FL 32307, USA
| | - Matthew D Gregory
- Florida A&M University College of Pharmacy Pharmaceutical Sciences, Institute of Public Health, Tallahassee, FL 32307, USA
| | - Nazarius S Lamango
- Florida A&M University College of Pharmacy Pharmaceutical Sciences, Institute of Public Health, Tallahassee, FL 32307, USA
| |
Collapse
|
5
|
Listeria InlB Expedites Vacuole Escape and Intracellular Proliferation by Promoting Rab7 Recruitment via Vps34. mBio 2023; 14:e0322122. [PMID: 36656016 PMCID: PMC9973280 DOI: 10.1128/mbio.03221-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Rapid phagosomal escape mediated by listeriolysin O (LLO) is a prerequisite for Listeria monocytogenes intracellular replication and pathogenesis. Escape takes place within minutes after internalization from vacuoles that are negative to the early endosomal Rab5 GTPase and positive to the late endosomal Rab7. Using mutant analysis, we found that the listerial invasin InlB was required for optimal intracellular proliferation of L. monocytogenes. Starting from this observation, we determined in HeLa cells that InlB promotes early phagosomal escape and efficient Rab7 acquisition by the Listeria-containing vacuole (LCV). Recruitment of the class III phosphoinositide 3-kinase (PI3K) Vps34 to the LCV and accumulation of its lipid product, phosphatidylinositol 3-phosphate (PI3P), two key endosomal maturation mediators, were also dependent on InlB. Small interfering RNA (siRNA) knockdown experiments showed that Vps34 was required for Rab7 recruitment and early (LLO-mediated) escape and supported InlB-dependent intracellular proliferation. Together, our data indicate that InlB accelerates LCV conversion into an escape-favorable Rab7 late phagosome via subversion of class III PI3K/Vps34 signaling. Our findings uncover a new function for the InlB invasin in Listeria pathogenesis as an intracellular proliferation-promoting virulence factor. IMPORTANCE Avoidance of lysosomal killing by manipulation of the endosomal compartment is a virulence mechanism assumed to be largely restricted to intravacuolar intracellular pathogens. Our findings are important because they show that cytosolic pathogens like L. monocytogenes, which rapidly escape the phagosome after internalization, can also extensively subvert endocytic trafficking as part of their survival strategy. They also clarify that, instead of delaying phagosome maturation (to allow time for LLO-dependent disruption, as currently thought), via InlB L. monocytogenes appears to facilitate the rapid conversion of the phagocytic vacuole into an escape-conducive late phagosome. Our data highlight the multifunctionality of bacterial virulence factors. At the cell surface, the InlB invasin induces receptor-mediated phagocytosis via class I PI3K activation, whereas after internalization it exploits class III PI3K (Vsp34) to promote intracellular survival. Systematically elucidating the mechanisms by which Listeria interferes with PI3K signaling all along the endocytic pathway may lead to novel anti-infective therapies.
Collapse
|
6
|
Banworth MJ, Liang Z, Li G. A Novel Membrane Targeting Domain Mediates the Endosomal or Golgi Localization Specificity of Small GTPases Rab22 and Rab31. J Biol Chem 2022; 298:102281. [PMID: 35863437 PMCID: PMC9403361 DOI: 10.1016/j.jbc.2022.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Rab22 and Rab31 belong to the Rab5 subfamily of GTPases that regulates endocytic traffic and endosomal sorting. Rab22 and Rab31 (a.k.a. Rab22b) are closely related and share 87% amino acid sequence similarity, but they show distinct intracellular localization and function in the cell. Rab22 is localized to early endosomes and regulates early endosomal recycling, while Rab31 is mostly localized to the Golgi complex with only a small fraction in the endosomes at steady state. The specific determinants that affect this differential localization, however, are unclear. In this study, we identify a novel membrane targeting domain (MTD) consisting of the C-terminal hypervariable domain (HVD), inter-switch loop (ISL), and N-terminal domain as a major determinant of endosomal localization for Rab22 and Rab31, as well as Rab5. Rab22 and Rab31 share the same N-terminal domain, but we find Rab22 chimeras with Rab31 HVD exhibit phenotypic Rab31 localization to the Golgi complex while Rab31 chimeras with the Rab22 HVD localize to early endosomes, similar to wild type Rab22. We also find that the Rab22 HVD favors interaction with the early endosomal effector protein Rabenosyn-5, which may stabilize the Rab localization to the endosomes. The importance of effector interaction in endosomal localization is further demonstrated by the disruption of Rab22 endosomal localization in Rabenosyn-5 knockout cells and by the shift of Rab31 to the endosomes in Rabenosyn-5 overexpressing cells. Taken together, we have identified a novel MTD that mediates localization of Rab5 subfamily members to early endosomes via interaction with an effector such as Rabenosyn-5.
Collapse
Affiliation(s)
- Marcellus J Banworth
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zhimin Liang
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
7
|
Bertović I, Kurelić R, Mahmutefendić Lučin H, Jurak Begonja A. Early Endosomal GTPase Rab5 (Ras-Related Protein in Brain 5) Regulates GPIbβ (Glycoprotein Ib Subunit β) Trafficking and Platelet Production In Vitro. Arterioscler Thromb Vasc Biol 2022; 42:e10-e26. [PMID: 34732055 DOI: 10.1161/atvbaha.121.316552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Maturation of megakaryocytes culminates with extensive membrane rearrangements necessary for proplatelet formation. Mechanisms required for proplatelet extension and origin of membranes are still poorly understood. GTPase Rab5 (Ras-related protein in brain 5) regulates endocytic uptake and homotypic fusion of early endosomes and regulates phosphatidylinositol 3-monophosphate production important for binding of effector proteins during early-to-late endosomal/lysosomal maturation. Approach and Results: To investigate the role of Rab5 in megakaryocytes, we expressed GFP (green fluorescent protein)-coupled Rab5 wild type and its point mutants Q79L (active) and N133L (inactive) in primary murine fetal liver-derived megakaryocytes. Active Rab5 Q79L induced the formation of enlarged early endosomes, while inactive Rab5 N133L caused endosomal fragmentation. Consistently, an increased amount of transferrin internalization in Rab5 Q79L was impaired in Rab5 N133L expressing megakaryocytes, when compared with GFP or Rab5 wild type. Moreover, trafficking of GPIbβ (glycoprotein Ib subunit beta), a subunit of major megakaryocytes receptor and membrane marker, was found to be mediated by Rab5 activity. While GPIbβ was mostly present along the plasma membrane, and within cytoplasmic vesicles in Rab5 wild type megakaryocytes, it accumulated in the majority of Rab5 Q79L enlarged endosomes. Conversely, Rab5 N133L caused mostly GPIbβ plasma membrane retention. Furthermore, Rab5 Q79L expression increased incorporation of the membrane dye (PKH26), indicating higher membrane content. Finally, while Rab5 Q79L increased proplatelet production, inactive Rab5 N133L strongly inhibited it and was coupled with a decrease in late endosomes/lysosomes. Localization of GPIbβ in enlarged endosomes was phosphatidylinositol 3-monophosphate dependent. CONCLUSIONS Taken together, our results demonstrate that Rab5-dependent endocytosis plays an important role in megakaryocytes receptor trafficking, membrane formation, and thrombopoiesis.
Collapse
Affiliation(s)
- Ivana Bertović
- Department of Biotechnology (I.B., R.K., A.J.B), University of Rijeka, Croatia
| | - Roberta Kurelić
- Department of Biotechnology (I.B., R.K., A.J.B), University of Rijeka, Croatia
| | | | | |
Collapse
|
8
|
Structural basis of human PDZD8-Rab7 interaction for the ER-late endosome tethering. Sci Rep 2021; 11:18859. [PMID: 34552186 PMCID: PMC8458453 DOI: 10.1038/s41598-021-98419-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/31/2021] [Indexed: 02/02/2023] Open
Abstract
The membrane contact sites (MCSs) between the ER and late endosomes (LEs) are essential for the regulation of endosomal protein sorting, dynamics, and motility. PDZD8 is an ER transmembrane protein containing a Synaptotagmin-like Mitochondrial lipid-binding Proteins (SMP) domain. PDZD8 tethers the ER to late endosomes and lysosomes by associating its C-terminal coiled-coil (CC) with the LE Rab7. To identify the structural determinants for the PDZD8–Rab7 interaction, we determined the crystal structure of the human PDZD8 CC domain in complex with the GTP-bound form of Rab7. The PDZD8 CC contains one short helix and the two helices forming an antiparallel coiled-coil. Two Rab7 molecules bind to the opposite sides of the PDZD8 CC in a 2:1 ratio. The switch I/II and interswitch regions of the GTP-loaded Rab7 form the binding interfaces, which correlates with the GTP-dependent interaction of PDZD8 and Rab7. Analysis of the protein interaction by isothermal titration calorimetry confirms that two Rab7 molecules bind the PDZD8 CC in a GTP-dependent manner. The structural model of the PDZD8 CC–Rab7 complex correlates with the recruitment of PDZD8 at the LE–ER interface and its role in lipid transport and regulation.
Collapse
|
9
|
Corkery DP, Nadeem A, Aung KM, Hassan A, Liu T, Cervantes-Rivera R, Lystad AH, Wang H, Persson K, Puhar A, Simonsen A, Uhlin BE, Wai SN, Wu YW. Vibrio cholerae cytotoxin MakA induces noncanonical autophagy resulting in the spatial inhibition of canonical autophagy. J Cell Sci 2021; 134:jcs252015. [PMID: 33106317 DOI: 10.1242/jcs.252015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy plays an essential role in the defense against many microbial pathogens as a regulator of both innate and adaptive immunity. Some pathogens have evolved sophisticated mechanisms that promote their ability to evade or subvert host autophagy. Here, we describe a novel mechanism of autophagy modulation mediated by the recently discovered Vibrio cholerae cytotoxin, motility-associated killing factor A (MakA). pH-dependent endocytosis of MakA by host cells resulted in the formation of a cholesterol-rich endolysosomal membrane aggregate in the perinuclear region. Aggregate formation induced the noncanonical autophagy pathway driving unconventional LC3 (herein referring to MAP1LC3B) lipidation on endolysosomal membranes. Subsequent sequestration of the ATG12-ATG5-ATG16L1 E3-like enzyme complex, required for LC3 lipidation at the membranous aggregate, resulted in an inhibition of both canonical autophagy and autophagy-related processes, including the unconventional secretion of interleukin-1β (IL-1β). These findings identify a novel mechanism of host autophagy modulation and immune modulation employed by V. cholerae during bacterial infection.
Collapse
Affiliation(s)
- Dale P Corkery
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Aftab Nadeem
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Kyaw Min Aung
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Ahmed Hassan
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Tao Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Ramón Cervantes-Rivera
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Alf Håkon Lystad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hui Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Karina Persson
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Andrea Puhar
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bernt Eric Uhlin
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Sun Nyunt Wai
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Yao-Wen Wu
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
10
|
Kam KL, Parrack P, Banworth M, Aravindan S, Li G, Fung KM. Use of Immunohistochemistry to Determine Expression of Rab5 Subfamily of GTPases in Mature and Developmental Brains. Methods Mol Biol 2021; 2293:265-271. [PMID: 34453724 PMCID: PMC8917831 DOI: 10.1007/978-1-0716-1346-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rab GTPases are essentially molecular switches. They serve as master regulators in intracellular membrane trafficking from the formation and transport of vesicles at the originating organelle to its fusion to the membrane at the target organelle. Their functions are diversified and each has their specific subcellular location. Their expression may vary significantly in the same cell when the level of protein production is significantly different in different physiologic status. One of the best examples is the transition from fetal to mature status of cells. Expression and localization of Rab GTPases in mature and developing brains have not been well studied. Immunohistochemistry is an efficient way in the detection, semiquantitation, and localization of Rab GTPases in tissue sections. It is inexpensive and fast which allow efficient mass screening of many sections. In this chapter, we describe the immunohistochemical assay protocol for analyzing several Rab protein expressions of the Rab5 subfamily, including Rab5, Rab17, Rab22, and Rab31, in developmental (fetal) and mature human brains.
Collapse
Affiliation(s)
- Kwok-Ling Kam
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Paige Parrack
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Marcellus Banworth
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sheeja Aravindan
- Tissue Pathology Shared Resource, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Guangpu Li
- Department of Biochemistry and Molecular Biology, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
11
|
Peterson TA, Piper RC. Deconvolution of Multiple Rab Binding Domains Using the Batch Yeast 2-Hybrid Method DEEPN. Methods Mol Biol 2021; 2293:117-141. [PMID: 34453714 PMCID: PMC8524840 DOI: 10.1007/978-1-0716-1346-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A hallmark of functionally significant interactions between Rab proteins and their targets is whether that binding depends on the type of nucleotide bound to the Rab GTPase. A system that can directly compare those sets of interactions mediated by a Rab in its GTP-bound conformation versus its GDP bound conformation would provide a direct route to finding biologically relevant partners. Comprehensive large-scale yeast 2-hybrid assays allow a potential method to compare one interactome against another provided that the same set of potentially interacting partners is interrogated between samples. Here we describe the use of such a yeast 2-hybrid system that lends itself toward comparing pairs of Rab mutants, locked in either their GTP or GDP conformation. Importantly, using a complex library of protein fragments as potential binding ("prey") partners, identification of interacting proteins as well as the domain(s) mediating those interactions can be determined using a series of sequence analyses and binary validation experiments.
Collapse
Affiliation(s)
- Tabitha A Peterson
- Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert C Piper
- Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
12
|
Du G, Qiao Y, Zhuo Z, Zhou J, Li X, Liu Z, Li Y, Chen H. Lipoic acid rejuvenates aged intestinal stem cells by preventing age-associated endosome reduction. EMBO Rep 2020; 21:e49583. [PMID: 32648369 PMCID: PMC7403706 DOI: 10.15252/embr.201949583] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 05/15/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
The age‐associated decline of adult stem cell function is closely related to the decline in tissue function and age‐related diseases. However, the underlying mechanisms that ultimately lead to the observed functional decline of stem cells still remain largely unexplored. This study investigated Drosophila midguts and found a continuous downregulation of lipoic acid synthase, which encodes the key enzyme for the endogenous synthesis of alpha‐lipoic acid (ALA), upon aging. Importantly, orally administration of ALA significantly reversed the age‐associated hyperproliferation of intestinal stem cells (ISCs) and the observed decline of intestinal function, thus extending the lifespan of Drosophila. This study reports that ALA reverses age‐associated ISC dysfunction by promoting the activation of the endocytosis–autophagy network, which decreases in aged ISCs. Moreover, this study suggests that ALA may be used as a safe and effective anti‐aging compound for the treatment of ISC‐dysfunction‐related diseases and for the promotion of healthy aging in humans.
Collapse
Affiliation(s)
- Gang Du
- Laboratory for Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yicheng Qiao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhangpeng Zhuo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiaqi Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaorong Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhiming Liu
- Laboratory for Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haiyang Chen
- Laboratory for Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Yang Y, Wang P, Jin B, Dong Z, Chen G, Liu D. Screening of Potential Key Transcripts Involved in Planarian Regeneration and Analysis of Its Regeneration Patterns by PacBio Long-Read Sequencing. Front Genet 2020; 11:580. [PMID: 32612637 PMCID: PMC7308552 DOI: 10.3389/fgene.2020.00580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/11/2020] [Indexed: 12/30/2022] Open
Abstract
Dugesia japonica is an excellent animal model for studying the regeneration mechanism due to its characteristics of rapid regeneration and easy breeding. PacBio sequencing was performed on the intact planarians (In) and regenerating planarians of 1 day (1d), 3 days (3d), and 5 days (5d) after amputation. The aim of this study is to deeply profile the transcriptome of D. japonica and to evaluate its regenerate changes. Using robust statistical analysis, we identified 5931, 5115, and 4669 transcripts differentially expressed between 1d and In, 3d and In, 5d and In, respectively. A total of 63 key transcripts were screened from these DETs. These key transcripts enhance the expression in different regenerate stages respectively to regulate specific processes including signal transduction, mitosis, protein synthesis, transport and degradation, apoptosis, neural development, and energy cycling. Finally, according to the biological processes involved in these potential key transcripts, we propose a hypothesis of head regeneration model about D. japonica. In addition, the weighted gene co-expression network analysis provides a new way to screen key transcripts from large amounts of data. Together, these analyses identify a number of potential key regulators controlling proliferation, differentiation, apoptosis, and signal transduction. What's more, this study provides a powerful data foundation for further research on planarians regeneration.
Collapse
Affiliation(s)
- Yibo Yang
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Peizheng Wang
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Baijie Jin
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
14
|
Münzberg E, Stein M. Structure and Dynamics of Mono- vs. Doubly Lipidated Rab5 in Membranes. Int J Mol Sci 2019; 20:ijms20194773. [PMID: 31561436 PMCID: PMC6801778 DOI: 10.3390/ijms20194773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 01/13/2023] Open
Abstract
The Rab5 small GTPase is a regulator of endosomal trafficking and vesicle fusion. It possesses two adjacent cysteine residues for post-translational geranylgeranylation at its C-terminus for the protein to associate with the early endosome membrane. We compare the effect of mono-lipidification of only one cysteine residue with the doubly modified, fully functional Rab protein in both guanosine diphosphate (GDP)- and guanosine triphosphate (GTP)-bound states and in different membranes (one, three, and six-component membranes). Molecular simulations show that the mono-geranylgeranylated protein is less strongly associated with the membranes and diffuses faster than the doubly lipidated protein. The geranylgeranyl anchor membrane insertion depth is smaller and the protein–membrane distance distribution is broad and uncharacteristic for the membrane composition. The mono-geranylgeranylated protein reveals an unspecific association with the membrane and an orientation at the membrane that does not allow a nucleotide-specific recruitment of further effector proteins. This work shows that double-lipidification is critical for Rab5 to perform its physiological function and mono-geranylgeranylation renders it membrane-associated but non-functional.
Collapse
Affiliation(s)
- Eileen Münzberg
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, Sandtorstrasse 1, 39106 Magdeburg, Germany.
| | - Matthias Stein
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, Sandtorstrasse 1, 39106 Magdeburg, Germany.
| |
Collapse
|
15
|
Wang S, Allen N, Vickers TA, Revenko AS, Sun H, Liang XH, Crooke ST. Cellular uptake mediated by epidermal growth factor receptor facilitates the intracellular activity of phosphorothioate-modified antisense oligonucleotides. Nucleic Acids Res 2019. [PMID: 29514240 PMCID: PMC5909429 DOI: 10.1093/nar/gky145] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Chemically modified antisense oligonucleotides (ASOs) with phosphorothioate (PS) linkages have been extensively studied as research and therapeutic agents. PS-ASOs can enter the cell and trigger cleavage of complementary RNA by RNase H1 even in the absence of transfection reagent. A number of cell surface proteins have been identified that bind PS-ASOs and mediate their cellular uptake; however, the mechanisms that lead to productive internalization of PS-ASOs are not well understood. Here, we characterized the interaction between PS-ASOs and epidermal growth factor receptor (EGFR). We found that PS-ASOs trafficked together with EGF and EGFR into clathrin-coated pit structures. Their co-localization was also observed at early endosomes and inside enlarged late endosomes. Reduction of EGFR decreased PS-ASO activity without affecting EGF-mediated signaling pathways and overexpression of EGFR increased PS-ASO activity in cells. Furthermore, reduction of EGFR delays PS-ASO trafficking from early to late endosomes. Thus, EGFR binds to PS-ASOs at the cell surface and mediates essential steps for active (productive) cellular uptake of PS-ASOs through its cargo-dependent trafficking processes which migrate PS-ASOs from early to late endosomes. This EGFR-mediated process can also serve as an additional model to better understand the mechanism of intracellular uptake and endosomal release of PS-ASOs.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Nickolas Allen
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Timothy A Vickers
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Alexey S Revenko
- Department of Antisense Drug, Discovery, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Hong Sun
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Xue-Hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
16
|
Gillingham AK, Bertram J, Begum F, Munro S. In vivo identification of GTPase interactors by mitochondrial relocalization and proximity biotinylation. eLife 2019; 8:45916. [PMID: 31294692 PMCID: PMC6639074 DOI: 10.7554/elife.45916] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
The GTPases of the Ras superfamily regulate cell growth, membrane traffic and the cytoskeleton, and a wide range of diseases are caused by mutations in particular members. They function as switchable landmarks with the active GTP-bound form recruiting to the membrane a specific set of effector proteins. The GTPases are precisely controlled by regulators that promote acquisition of GTP (GEFs) or its hydrolysis to GDP (GAPs). We report here MitoID, a method for identifying effectors and regulators by performing in vivo proximity biotinylation with mitochondrially-localized forms of the GTPases. Applying this to 11 human Rab GTPases identified many known effectors and GAPs, as well as putative novel effectors, with examples of the latter validated for Rab2, Rab5, Rab9 and Rab11. MitoID can also efficiently identify effectors and GAPs of Rho and Ras family GTPases such as Cdc42, RhoA, Rheb, and N-Ras, and can identify GEFs by use of GDP-bound forms.
Collapse
Affiliation(s)
| | - Jessie Bertram
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Farida Begum
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
17
|
Elmogy M, Mohamed AA, Tufail M, Uno T, Takeda M. Molecular and functional characterization of the American cockroach, Periplaneta americana, Rab5: the first exopterygotan low molecular weight ovarian GTPase during oogenesis. INSECT SCIENCE 2018; 25:751-764. [PMID: 28548451 DOI: 10.1111/1744-7917.12485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/22/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
The small Rab GTPases are key regulators of membrane vesicle trafficking. Ovaries of Periplaneta americana (Linnaeus) (Blattodea: Blattidae) have small molecular weight GTP/ATP-binding proteins during early and late vitellogenic periods of oogenesis. However, the identification and characterization of the detected proteins have not been yet reported. Herein, we cloned a cDNA encoding Rab5 from the American cockroach, P. americana, ovaries (PamRab5). It comprises 796 bp, encoding a protein of 213 amino acid residues with a predicted molecular weight of 23.5 kDa. PamRab5 exists as a single-copy gene in the P. americana genome, as revealed by Southern blot analysis. An approximate 2.6 kb ovarian mRNA was transcribed especially at high levels in the previtellogenic ovaries, detected by Northern blot analysis. The muscle and head tissues also showed high levels of PamRab5 transcript. PamRab5 protein was localized, via immunofluorescence labeling, to germline-derived cells of the oocytes, very early during oocyte differentiation. Immunoblotting detected a ∼25 kDa signal as a membrane-associated form revealed after application of detergent in the extraction buffer, and 23 kDa as a cytosolic form consistent with the predicted molecular weight from amino acid sequence in different tissues including ovary, muscles and head. The PamRab5 during late vitellogenic periods is required to regulate the endocytotic machinery during oogenesis in this cockroach. This is the first report on Rab5 from a hemimetabolan, and presents an inaugural step in probing the molecular premises of insect oocyte endocytotic trafficking important for oogenesis and embryonic development.
Collapse
Affiliation(s)
- Mohamed Elmogy
- Department of Entomology, Faculty of Science, Cairo University, Orman, Giza, Egypt
| | - Amr A Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Orman, Giza, Egypt
| | - Muhammad Tufail
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | - Tomohide Uno
- Laboratory of Biological Chemistry, Faculty of Agriculture, Department of Biofunctional Chemistry, Kobe University, Nada-ku, Hyogo, Japan
| | - Makio Takeda
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| |
Collapse
|
18
|
Kim ST, Lee YJ, Tasaki T, Mun SR, Hwang J, Kang MJ, Ganipisetti S, Yi EC, Kim BY, Kwon YT. The N-recognin UBR4 of the N-end rule pathway is targeted to and required for the biogenesis of the early endosome. J Cell Sci 2018; 131:jcs.217646. [PMID: 30111582 DOI: 10.1242/jcs.217646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/30/2018] [Indexed: 12/26/2022] Open
Abstract
The N-end rule pathway is a proteolytic system in which single N-terminal residues of proteins act as N-degrons. These degrons are recognized by N-recognins, facilitating substrate degradation via the ubiquitin (Ub) proteasome system (UPS) or autophagy. We have previously identified a set of N-recognins [UBR1, UBR2, UBR4 (also known as p600) and UBR5 (also known as EDD)] that bind N-degrons through their UBR boxes to promote proteolysis by the proteasome. Here, we show that the 570 kDa N-recognin UBR4 is associated with maturing endosomes through an interaction with Ca2+-bound calmodulin. The endosomal recruitment of UBR4 is essential for the biogenesis of early endosomes (EEs) and endosome-related processes, such as the trafficking of endocytosed protein cargos and degradation of extracellular cargos by endosomal hydrolases. In mouse embryos, UBR4 marks and plays a role in the endosome-lysosome pathway that mediates the heterophagic proteolysis of endocytosed maternal proteins into amino acids. By screening 9591 drugs through the DrugBank database, we identify picolinic acid as a putative ligand for UBR4 that inhibits the biogenesis of EEs. Our results suggest that UBR4 is an essential modulator in the endosome-lysosome system.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sung Tae Kim
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.,Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, United States
| | - Yoon Jee Lee
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Takafumi Tasaki
- Division of Protein Regulation Research, Medical Research Institute, Kanazawa Medical University, Ishikawa, 920-0293, Japan.,Department of Medical Zoology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Su Ran Mun
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Joonsung Hwang
- World Class Institute, Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, 28116, Republic of Korea
| | - Min Jueng Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, 03080, Republic of Korea
| | - Srinivasrao Ganipisetti
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, 03080, Republic of Korea
| | - Bo Yeon Kim
- World Class Institute, Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, 28116, Republic of Korea
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea .,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
19
|
Molecular Insights into the Roles of Rab Proteins in Intracellular Dynamics and Neurodegenerative Diseases. Neuromolecular Med 2018; 20:18-36. [PMID: 29423895 DOI: 10.1007/s12017-018-8479-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/27/2018] [Indexed: 02/01/2023]
Abstract
In eukaryotes, the cellular functions are segregated to membrane-bound organelles. This inherently requires sorting of metabolites to membrane-limited locations. Sorting the metabolites from ribosomes to various organelles along the intracellular trafficking pathways involves several integral cellular processes, including an energy-dependent step, in which the sorting of metabolites between organelles is catalyzed by membrane-anchoring protein Rab-GTPases (Rab). They contribute to relaying the switching of the secretory proteins between hydrophobic and hydrophilic environments. The intracellular trafficking routes include exocytic and endocytic pathways. In these pathways, numerous Rab-GTPases are participating in discrete shuttling of cargoes. Long-distance trafficking of cargoes is essential for neuronal functions, and Rabs are critical for these functions, including the transport of membranes and essential proteins for the development of axons and neurites. Rabs are also the key players in exocytosis of neurotransmitters and recycling of neurotransmitter receptors. Thus, Rabs are critical for maintaining neuronal communication, as well as for normal cellular physiology. Therefore, cellular defects of Rab components involved in neural functions, which severely affect normal brain functions, can produce neurological complications, including several neurodegenerative diseases. In this review, we provide a comprehensive overview of the current understanding of the molecular signaling pathways of Rab proteins and the impact of their defects on different neurodegenerative diseases. The insights gathered into the dynamics of Rabs that are described in this review provide new avenues for developing effective treatments for neurodegenerative diseases-associated with Rab defects.
Collapse
|
20
|
Whitecross DE, Anderson DH. Identification of the Binding Sites on Rab5 and p110beta Phosphatidylinositol 3-kinase. Sci Rep 2017; 7:16194. [PMID: 29170408 PMCID: PMC5700975 DOI: 10.1038/s41598-017-16029-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/06/2017] [Indexed: 12/19/2022] Open
Abstract
Rab5 is a small monomeric GTPase that mediates protein trafficking during endocytosis. Inactivation of Rab5 by GTP hydrolysis causes a conformational change that masks binding sites on its “switch regions” from downstream effectors. The p85 subunit of phosphatidylinositol 3-kinase (PI3K) is a GTPase activating protein (GAP) towards Rab5. Whereas p85 can bind with both Rab5-GTP and Rab5-GDP, the PI3K catalytic subunit p110β binds only Rab5-GTP, suggesting it interacts with the switch regions. Thus, the GAP functions of the catalytic arginine finger (from p85) and switch region stabilization (from p110β) may be provided by both proteins, acting together. To identify the Rab5 residues involved in binding p110β, residues in the Rab5 switch regions were mutated. A stabilized recombinant p110 protein, where the p85-iSH2 domain was fused to p110 (alpha or beta) was used in binding experiments. Eleven Rab5 mutants, including E80R and H83E, showed reduced p110β binding. The Rab5 binding site on p110β was also resolved through mutation of p110β in its Ras binding domain, and includes residues I234, E238 and Y244. This is a second region within p110β important for Rab5 binding. The Rab5-GTP:p110β interaction may be further elucidated through the characterization of these non-binding mutants in cells.
Collapse
Affiliation(s)
- Dielle E Whitecross
- Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Deborah H Anderson
- Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, Saskatchewan, S7N 5E5, Canada. .,Departments of Oncology and Biochemistry, College of Medicine, 107 Wiggins Road, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada.
| |
Collapse
|
21
|
Entry Studies of New World Arenaviruses. Methods Mol Biol 2017. [PMID: 28986829 DOI: 10.1007/978-1-4939-6981-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Identification of cell moieties involved in viral binding and internalization is essential since their expression would render a cell susceptible. Further steps that allow the uncoating of the viral particle at the right subcellular localization have been intensively studied. These "entry" steps could determine cell permissiveness and often define tissue and host tropism. Therefore applying the right and, when possible, straightforward experimental approaches would shorten avenues to the complete knowledge of this first and key step of any viral life cycle. Mammarenaviruses are enveloped viruses that enter the host cell via receptor-mediated endocytosis. In this chapter we present a set of customized experimental approaches and tools that were used to describe the entry of Junín virus (JUNV), and other New World mammarenavirus members, into mammalian cells.
Collapse
|
22
|
Wang S, Sun H, Tanowitz M, Liang XH, Crooke ST. Intra-endosomal trafficking mediated by lysobisphosphatidic acid contributes to intracellular release of phosphorothioate-modified antisense oligonucleotides. Nucleic Acids Res 2017; 45:5309-5322. [PMID: 28379543 PMCID: PMC5605259 DOI: 10.1093/nar/gkx231] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
Antisense oligonucleotides (ASOs) with phosphorothioate (PS) linkages are broadly used as research tools and therapeutic agents. Chemically modified PS-ASOs can mediate efficient target reduction by site-specific cleavage of RNA through RNase H1. PS-ASOs are known to be internalized via a number of endocytotic pathways and are released from membrane-enclosed endocytotic organelles, mainly late endosomes (LEs). This study was focused on the details of PS-ASO trafficking through endocytic pathways. It was found that lysobisphosphatidic acid (LBPA) is required for release of PS-ASOs from LEs. PS-ASOs exited early endosomes (EEs) rapidly after internalization and became co-localized with LBPA by 2 hours in LEs. Inside LEs, PS-ASOs and LBPA were co-localized in punctate, dot-like structures, likely intraluminal vesicles (ILVs). Deactivation of LBPA using anti-LBPA antibody significantly decreased PS-ASO activities without affecting total PS-ASO uptake. Reduction of Alix also substantially decreased PS-ASO activities without affecting total PS-ASO uptake. Furthermore, Alix reduction decreased LBPA levels and limited co-localization of LBPA with PS-ASOs at ILVs inside LEs. Thus, the fusion properties of ILVs, which are supported by LBPA, contribute to PS-ASO intracellular release from LEs.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Hong Sun
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Michael Tanowitz
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Xue-Hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
23
|
Lin J, Wang C, Zhang L, Wang T, Zhang J, Liang W, Li C, Qian G, Ouyang Y, Guo K, Zhang Y. Rab5 Enhances Classical Swine Fever Virus Proliferation and Interacts with Viral NS4B Protein to Facilitate Formation of NS4B Related Complex. Front Microbiol 2017; 8:1468. [PMID: 28848503 PMCID: PMC5550665 DOI: 10.3389/fmicb.2017.01468] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/20/2017] [Indexed: 11/13/2022] Open
Abstract
Classical swine fever virus (CSFV) is a fatal pig pestivirus and causes serious financial losses to the pig industry. CSFV NS4B protein is one of the most important viral replicase proteins. Rab5, a member of the small Rab GTPase family, is involved in infection and replication of numerous viruses including hepatitis C virus and dengue virus. Until now, the effects of Rab5 on the proliferation of CSFV are poorly defined. In the present study, we showed that Rab5 could enhance CSFV proliferation by utilizing lentivirus-mediated constitutive overexpression and eukaryotic plasmid transient overexpression approaches. On the other hand, lentivirus-mediated short hairpin RNA knockdown of Rab5 dramatically inhibited virus production. Co-immunoprecipitation, glutathione S-transferase pulldown and laser confocal microscopy assays further confirmed the interaction between Rab5 and CSFV NS4B protein. In addition, intracellular distribution of NS4B-Red presented many granular fluorescent signals (GFS) in CSFV infected PK-15 cells. Inhibition of basal Rab5 function with Rab5 dominant negative mutant Rab5S34N resulted in disruption of the GFS. These results indicate that Rab5 plays a critical role in facilitating the formation of the NS4B related complexes. Furthermore, it was observed that NS4B co-localized with viral NS3 and NS5A proteins in the cytoplasm, suggesting that NS3 and NS5A might be components of the NS4B related complex. Taken together, these results demonstrate that Rab5 positively modulates CSFV propagation and interacts with NS4B protein to facilitate the NS4B related complexes formation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| |
Collapse
|
24
|
Rab5 and its effector FHF contribute to neuronal polarity through dynein-dependent retrieval of somatodendritic proteins from the axon. Proc Natl Acad Sci U S A 2016; 113:E5318-27. [PMID: 27559088 PMCID: PMC5018783 DOI: 10.1073/pnas.1601844113] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An open question in cell biology is how the general intracellular transport machinery is adapted to perform specialized functions in polarized cells such as neurons. Here we illustrate this adaptation by elucidating a role for the ubiquitous small GTPase Ras-related protein in brain 5 (Rab5) in neuronal polarity. We show that inactivation or depletion of Rab5 in rat hippocampal neurons abrogates the somatodendritic polarity of the transferrin receptor and several glutamate receptor types, resulting in their appearance in the axon. This loss of polarity is not caused primarily by increased transport from the soma to the axon but rather by decreased retrieval from the axon to the soma. Retrieval is also dependent on the Rab5 effector Fused Toes (FTS)-Hook-FTS and Hook-interacting protein (FHIP) (FHF) complex, which interacts with the minus-end-directed microtubule motor dynein and its activator dynactin to drive a population of axonal retrograde carriers containing somatodendritic proteins toward the soma. These findings emphasize the importance of both biosynthetic sorting and axonal retrieval for the polarized distribution of somatodendritic receptors at steady state.
Collapse
|
25
|
Rastogi R, Verma JK, Kapoor A, Langsley G, Mukhopadhyay A. Rab5 Isoforms Specifically Regulate Different Modes of Endocytosis in Leishmania. J Biol Chem 2016; 291:14732-46. [PMID: 27226564 DOI: 10.1074/jbc.m116.716514] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Indexed: 11/06/2022] Open
Abstract
Differential functions of Rab5 isoforms in endocytosis are not well characterized. Here, we cloned, expressed, and characterized Rab5a and Rab5b from Leishmania and found that both of them are localized in the early endosome. To understand the role of LdRab5 isoforms in different modes of endocytosis in Leishmania, we generated transgenic parasites overexpressing LdRab5a, LdRab5b, or their dominant-positive (LdRab5a:Q93L and LdRab5b:Q80L) or dominant-negative mutants (LdRab5a:N146I and LdRab5b:N133I). Using LdRab5a or its mutants overexpressing parasites, we found that LdRab5a specifically regulates the fluid-phase endocytosis of horseradish peroxidase and also specifically induced the transport of dextran-Texas Red to the lysosomes. In contrast, cells overexpressing LdRab5b or its mutants showed that LdRab5b explicitly controls receptor-mediated endocytosis of hemoglobin, and overexpression of LdRab5b:WT enhanced the transport of internalized Hb to the lysosomes in comparison with control cells. To unequivocally demonstrate the role of Rab5 isoforms in endocytosis in Leishmania, we tried to generate null-mutants of LdRab5a and LdRab5b parasites, but both were lethal indicating their essential functions in parasites. Therefore, we used heterozygous LdRab5a(+/-) and LdRab5b(+/-) cells. LdRab5a(+/-) Leishmania showed 50% inhibition of HRP uptake, but hemoglobin endocytosis was uninterrupted. In contrast, about 50% inhibition of Hb endocytosis was observed in LdRab5b(+/-) cells without any significant effect on HRP uptake. Finally, we tried to identify putative LdRab5a and LdRab5b effectors. We found that LdRab5b interacts with clathrin heavy chain and hemoglobin receptor. However, LdRab5a failed to interact with the clathrin heavy chain, and interaction with hemoglobin receptor was significantly less. Thus, our results showed that LdRab5a and LdRab5b differentially regulate fluid phase and receptor-mediated endocytosis in Leishmania.
Collapse
Affiliation(s)
- Ruchir Rastogi
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| | - Jitender Kumar Verma
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| | - Anjali Kapoor
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| | - Gordon Langsley
- the INSERM U1016, CNRS UMR8104, Cochin Institute, 75014 Paris, France
| | - Amitabha Mukhopadhyay
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| |
Collapse
|
26
|
Khan FI, Aamir M, Wei DQ, Ahmad F, Hassan MI. Molecular mechanism of Ras-related protein Rab-5A and effect of mutations in the catalytically active phosphate-binding loop. J Biomol Struct Dyn 2016; 35:105-118. [PMID: 26727234 DOI: 10.1080/07391102.2015.1134346] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ras-related protein (Rab-5a) is primarily involved in the regulation of early endosome fusion during endocytosis and takes part in the budding process. During GTP hydrolysis, Rab5a was spotted in the cytoplasmic side of early endosomes in association with the GTP. Previous study suggested that the substitution of alanine with proline at position 30 of Rab5a reduces the GTPase activity around 12-fold, while, with arginine substitution stimulates the intrinsic GTP hydrolysis by 5-fold. Most of the other substitutions at this position show a little or no effect on the GTPase activity. In this paper, structure analysis and molecular dynamics (MD) simulation studies of human Rab5a and its mutants have been extensively carried out. The effect of binding of a non-hydrolyzable GTP analog guanosine-5'-(β, γ)-imidotriphosphate (GppNHp) with Rab5a and its mutants are described. The objective of the current study is to perform a detailed examination of structural flexibility of Rab5a and its mutants p.Ala30Pro and p.Ala30Arg using MD simulations. Our observations suggest that mutant p.Ala30Arg stabilize the protein molecule when bound to GppNHp which offers additional contacts. Despite an in silico approach, this study provides a deep insight into the impact of mutation on the structure, function, stability, and mechanism of binding of GppNHp to the Rab5a at molecular level.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- a School of Chemistry and Chemical Engineering , Henan University of Technology , Henan 450001 , China
| | - Mohd Aamir
- b Centre for Interdisciplinary Research in Basic Science , Jamia Millia Islamia , New Delhi 110025 , India
| | - Dong-Qing Wei
- a School of Chemistry and Chemical Engineering , Henan University of Technology , Henan 450001 , China
| | - Faizan Ahmad
- b Centre for Interdisciplinary Research in Basic Science , Jamia Millia Islamia , New Delhi 110025 , India
| | - Md Imtaiyaz Hassan
- b Centre for Interdisciplinary Research in Basic Science , Jamia Millia Islamia , New Delhi 110025 , India
| |
Collapse
|
27
|
Araujo CL, Quintero IB, Ovaska K, Herrala AM, Hautaniemi S, Vihko PT. Transmembrane prostatic acid phosphatase (TMPAP) delays cells in G1 phase of the cell cycle. Prostate 2016; 76:151-62. [PMID: 26419820 DOI: 10.1002/pros.23105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/18/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND Prostate adenocarcinoma is the most common form of prostate cancer. We have previously shown in a murine model that prostatic acid phosphatase (PAP) deficiency leads to increased cell proliferation and development of prostate adenocarcinoma. The association between PAP and prostate cancer has been reported. Indeed, high PAP enzymatic activity is detected in the serum of patients with metastatic disease while its expression is reduced in prostate cancer tissue. However, the molecular mechanisms behind the onset of the disease remains poorly understood. We previously identified a novel transmembrane prostatic acid phosphatase (TMPAP) isoform, which interacts with snapin. TMPAP is expressed on the plasma membrane, as well as endosomal/lysosomal and exosomal membrane vesicles by means of a tyrosine-based lysosomal targeting motif (Yxxϕ). METHODS We used stable overexpression of the secreted isoform (SPAP) and TMPAP in LNCaP cells, live cell imaging, microarray and qRT-PCR analyses, and fluid phase uptake of HRP and transferrin. RESULTS Our results indicate that the stable overexpression of TMPAP, but not SPAP in LNCaP cells reduces cell growth while increasing endo/exocytosis and cell size. Specifically, cells overexpressing TMPAP accumulate in the G1 phase of the cell cycle, and show altered gene expression profile. CONCLUSIONS Our data suggests that TMPAP may function as a non-canonical tumor suppressor by delaying cell growth in G1 phase of the cell cycle.
Collapse
Affiliation(s)
- César L Araujo
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital Laboratory, FI-00014 University of Helsinki, Finland
| | - Ileana B Quintero
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital Laboratory, FI-00014 University of Helsinki, Finland
| | - Kristian Ovaska
- Research Programs Unit, Genome-scale Biology and Institute of Biomedicine, FI-00014 University of Helsinki, Finland
| | - Annakaisa M Herrala
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital Laboratory, FI-00014 University of Helsinki, Finland
| | - Sampsa Hautaniemi
- Research Programs Unit, Genome-scale Biology and Institute of Biomedicine, FI-00014 University of Helsinki, Finland
| | - Pirkko T Vihko
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital Laboratory, FI-00014 University of Helsinki, Finland
| |
Collapse
|
28
|
Amir M, Wahiduzzaman, Dar MA, Haque MA, Islam A, Ahmad F, Hassan MI. Purification and characterization of Ras related protein, Rab5a from Tinospora cordifolia. Int J Biol Macromol 2016; 82:471-9. [DOI: 10.1016/j.ijbiomac.2015.10.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 11/27/2022]
|
29
|
Hoepflinger MC, Geretschlaeger A, Sommer A, Hoeftberger M, Hametner C, Ueda T, Foissner I. Molecular Analysis and Localization of CaARA7 a Conventional RAB5 GTPase from Characean Algae. Traffic 2015; 16:534-54. [PMID: 25639563 PMCID: PMC4898595 DOI: 10.1111/tra.12267] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 11/28/2022]
Abstract
RAB5 GTPases are important regulators of endosomal membrane traffic. Among them Arabidopsis thaliana ARA7/RABF2b is highly conserved and homologues are present in fungal, animal and plant kingdoms. In land plants ARA7 and its homologues are involved in endocytosis and transport towards the vacuole. Here we report on the isolation of an ARA7 homologue (CaARA7/CaRABF2) in the highly evolved characean green alga Chara australis. It encodes a polypeptide of 202 amino acids with a calculated molecular mass of 22.2 kDa and intrinsic GTPase activity. Immunolabelling of internodal cells with a specific antibody reveals CaARA7 epitopes at multivesicular endosomes (MVEs) and at MVE-containing wortmannin (WM) compartments. When transiently expressed in epidermal cells of Nicotiana benthamiana leaves, fluorescently tagged CaARA7 localizes to small organelles (putative MVEs) and WM compartments, and partially colocalizes with AtARA7 and CaARA6, a plant specific RABF1 GTPase. Mutations in membrane anchoring and GTP binding sites alter localization of CaARA7 and affect GTPase activity, respectively. This first detailed study of a conventional RAB5 GTPase in green algae demonstrates that CaARA7 is similar to RAB5 GTPases from land plants and other organisms and shows conserved structure and localization.
Collapse
Affiliation(s)
- Marion C. Hoepflinger
- Department of Cell Biology/Plant Physiology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Anja Geretschlaeger
- Department of Cell Biology/Plant Physiology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Aniela Sommer
- Department of Cell Biology/Plant Physiology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Margit Hoeftberger
- Department of Cell Biology/Plant Physiology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Christina Hametner
- Department of Organismic Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Ilse Foissner
- Department of Cell Biology/Plant Physiology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| |
Collapse
|
30
|
Gimenez MC, Rodríguez Aguirre JF, Colombo MI, Delgui LR. Infectious bursal disease virusuptake involves macropinocytosis and trafficking to early endosomes in a Rab5-dependent manner. Cell Microbiol 2015; 17:988-1007. [DOI: 10.1111/cmi.12415] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/18/2014] [Accepted: 01/02/2015] [Indexed: 12/25/2022]
Affiliation(s)
- María C. Gimenez
- Facultad de Farmacia y Bioquímica; Universidad Juan Agustín Maza; Mendoza Argentina
- Instituto de Histología y Embriología (IHEM); Facultad de Ciencias Médicas; Universidad Nacional de Cuyo - CONICET; Mendoza Argentina
| | | | - María I. Colombo
- Facultad de Farmacia y Bioquímica; Universidad Juan Agustín Maza; Mendoza Argentina
- Instituto de Histología y Embriología (IHEM); Facultad de Ciencias Médicas; Universidad Nacional de Cuyo - CONICET; Mendoza Argentina
| | - Laura R. Delgui
- Facultad de Farmacia y Bioquímica; Universidad Juan Agustín Maza; Mendoza Argentina
- Instituto de Histología y Embriología (IHEM); Facultad de Ciencias Médicas; Universidad Nacional de Cuyo - CONICET; Mendoza Argentina
- Facultad de Ciencias Exactas y Naturales; Universidad Nacional de Cuyo; Mendoza Argentina
| |
Collapse
|
31
|
Yun HJ, Kim H, Ga I, Oh H, Ho DH, Kim J, Seo H, Son I, Seol W. An early endosome regulator, Rab5b, is an LRRK2 kinase substrate. J Biochem 2015; 157:485-95. [PMID: 25605758 DOI: 10.1093/jb/mvv005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/18/2014] [Indexed: 11/13/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has been identified as a causative gene for Parkinson's disease (PD). LRRK2 contains a kinase and a GTPase domain, both of which provide critical intracellular signal-transduction functions. We showed previously that Rab5b, a small GTPase protein that regulates the motility and fusion of early endosomes, interacts with LRRK2 and co-regulates synaptic vesicle endocytosis. Using recombinant proteins, we show here that LRRK2 phosphorylates Rab5b at its Thr6 residue in in vitro kinase assays with mass spectrophotometry analysis. Phosphorylation of Rab5b by LRRK2 on the threonine residue was confirmed by western analysis using cells stably expressing LRRK2 G2019S. The phosphomimetic T6D mutant exhibited stronger GTPase activity than that of the wild-type Rab5b. In addition, phosphorylation of Rab5b by LRRK2 also exhibited GTPase activity stronger than that of the unphosphorylated Rab5b protein. Two assays testing Rab5's activity, neurite outgrowth analysis and epidermal growth factor receptor degradation assays, showed that Rab5b T6D exhibited phenotypes that were expected to be observed in the inactive Rab5b, including longer neurite length and less degradation of EGFR. These results suggest that LRRK2 kinase activity functions as a Rab5b GTPase activating protein and thus, negatively regulates Rab5b signalling.
Collapse
Affiliation(s)
- Hye Jin Yun
- Institute for Brain Science and Technology, Inje University, Gaegumdong, Busanjingu, Busan, South Korea; InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Sanbondong, Gunposhi, Gyeonggido, South Korea; Department of Molecular and Life Sciences, Hanyang University, Ansanshi, Gyeonggido, South Korea; and Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Sanbondong, Gunposhi, Gyeonggido, South Korea
| | - Hyejung Kim
- Institute for Brain Science and Technology, Inje University, Gaegumdong, Busanjingu, Busan, South Korea; InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Sanbondong, Gunposhi, Gyeonggido, South Korea; Department of Molecular and Life Sciences, Hanyang University, Ansanshi, Gyeonggido, South Korea; and Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Sanbondong, Gunposhi, Gyeonggido, South Korea
| | - Inhwa Ga
- Institute for Brain Science and Technology, Inje University, Gaegumdong, Busanjingu, Busan, South Korea; InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Sanbondong, Gunposhi, Gyeonggido, South Korea; Department of Molecular and Life Sciences, Hanyang University, Ansanshi, Gyeonggido, South Korea; and Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Sanbondong, Gunposhi, Gyeonggido, South Korea
| | - Hakjin Oh
- Institute for Brain Science and Technology, Inje University, Gaegumdong, Busanjingu, Busan, South Korea; InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Sanbondong, Gunposhi, Gyeonggido, South Korea; Department of Molecular and Life Sciences, Hanyang University, Ansanshi, Gyeonggido, South Korea; and Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Sanbondong, Gunposhi, Gyeonggido, South Korea
| | - Dong Hwan Ho
- Institute for Brain Science and Technology, Inje University, Gaegumdong, Busanjingu, Busan, South Korea; InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Sanbondong, Gunposhi, Gyeonggido, South Korea; Department of Molecular and Life Sciences, Hanyang University, Ansanshi, Gyeonggido, South Korea; and Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Sanbondong, Gunposhi, Gyeonggido, South Korea Institute for Brain Science and Technology, Inje University, Gaegumdong, Busanjingu, Busan, South Korea; InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Sanbondong, Gunposhi, Gyeonggido, South Korea; Department of Molecular and Life Sciences, Hanyang University, Ansanshi, Gyeonggido, South Korea; and Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Sanbondong, Gunposhi, Gyeonggido, South Korea
| | - Jiyoung Kim
- Institute for Brain Science and Technology, Inje University, Gaegumdong, Busanjingu, Busan, South Korea; InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Sanbondong, Gunposhi, Gyeonggido, South Korea; Department of Molecular and Life Sciences, Hanyang University, Ansanshi, Gyeonggido, South Korea; and Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Sanbondong, Gunposhi, Gyeonggido, South Korea
| | - Hyemyung Seo
- Institute for Brain Science and Technology, Inje University, Gaegumdong, Busanjingu, Busan, South Korea; InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Sanbondong, Gunposhi, Gyeonggido, South Korea; Department of Molecular and Life Sciences, Hanyang University, Ansanshi, Gyeonggido, South Korea; and Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Sanbondong, Gunposhi, Gyeonggido, South Korea
| | - Ilhong Son
- Institute for Brain Science and Technology, Inje University, Gaegumdong, Busanjingu, Busan, South Korea; InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Sanbondong, Gunposhi, Gyeonggido, South Korea; Department of Molecular and Life Sciences, Hanyang University, Ansanshi, Gyeonggido, South Korea; and Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Sanbondong, Gunposhi, Gyeonggido, South Korea Institute for Brain Science and Technology, Inje University, Gaegumdong, Busanjingu, Busan, South Korea; InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Sanbondong, Gunposhi, Gyeonggido, South Korea; Department of Molecular and Life Sciences, Hanyang University, Ansanshi, Gyeonggido, South Korea; and Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Sanbondong, Gunposhi, Gyeonggido, South Korea
| | - Wongi Seol
- Institute for Brain Science and Technology, Inje University, Gaegumdong, Busanjingu, Busan, South Korea; InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Sanbondong, Gunposhi, Gyeonggido, South Korea; Department of Molecular and Life Sciences, Hanyang University, Ansanshi, Gyeonggido, South Korea; and Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Sanbondong, Gunposhi, Gyeonggido, South Korea Institute for Brain Science and Technology, Inje University, Gaegumdong, Busanjingu, Busan, South Korea; InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Sanbondong, Gunposhi, Gyeonggido, South Korea; Department of Molecular and Life Sciences, Hanyang University, Ansanshi, Gyeonggido, South Korea; and Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Sanbondong, Gunposhi, Gyeonggido, South Korea
| |
Collapse
|
32
|
Kenyon EJ, Campos I, Bull JC, Williams PH, Stemple DL, Clark MD. Zebrafish Rab5 proteins and a role for Rab5ab in nodal signalling. Dev Biol 2014; 397:212-24. [PMID: 25478908 PMCID: PMC4294769 DOI: 10.1016/j.ydbio.2014.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 11/03/2014] [Accepted: 11/11/2014] [Indexed: 01/08/2023]
Abstract
The RAB5 gene family is the best characterised of all human RAB families and is essential for in vitro homotypic fusion of early endosomes. In recent years, the disruption or activation of Rab5 family proteins has been used as a tool to understand growth factor signal transduction in whole animal systems such as Drosophila melanogaster and zebrafish. In this study we have examined the functions for four rab5 genes in zebrafish. Disruption of rab5ab expression by antisense morpholino oligonucleotide (MO) knockdown abolishes nodal signalling in early zebrafish embryos, whereas overexpression of rab5ab mRNA leads to ectopic expression of markers that are normally downstream of nodal signalling. By contrast MO disruption of other zebrafish rab5 genes shows little or no effect on expression of markers of dorsal organiser development. We conclude that rab5ab is essential for nodal signalling and organizer specification in the developing zebrafish embryo. We have examined the activities of each of the zebrafish Rab5 genes using morpholino knockdowns. Loss of one Rab5 isoform, Rab5ab, affects formation of the dorsal organizer. Rab5ab overexpression leads to ectopic expression of dorsal markers.
Collapse
Affiliation(s)
- Emma J Kenyon
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Isabel Campos
- Champalimaud Centre for the Unknown, Fundação Champalimaud, Lisboa, Portugal
| | - James C Bull
- Department of Biosciences, Swansea University, Swansea SA2 8PP, United Kingdom
| | - P Huw Williams
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Derek L Stemple
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom.
| | - Matthew D Clark
- Sequencing Technology Development, The Genome Analysis Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
33
|
Toward a comprehensive map of the effectors of rab GTPases. Dev Cell 2014; 31:358-373. [PMID: 25453831 PMCID: PMC4232348 DOI: 10.1016/j.devcel.2014.10.007] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/25/2014] [Accepted: 09/25/2014] [Indexed: 11/24/2022]
Abstract
The Rab GTPases recruit peripheral membrane proteins to intracellular organelles. These Rab effectors typically mediate the motility of organelles and vesicles and contribute to the specificity of membrane traffic. However, for many Rabs, few, if any, effectors have been identified; hence, their role remains unclear. To identify Rab effectors, we used a comprehensive set of Drosophila Rabs for affinity chromatography followed by mass spectrometry to identify the proteins bound to each Rab. For many Rabs, this revealed specific interactions with Drosophila orthologs of known effectors. In addition, we found numerous Rab-specific interactions with known components of membrane traffic as well as with diverse proteins not previously linked to organelles or having no known function. We confirm over 25 interactions for Rab2, Rab4, Rab5, Rab6, Rab7, Rab9, Rab18, Rab19, Rab30, and Rab39. These include tethering complexes, coiled-coiled proteins, motor linkers, Rab regulators, and several proteins linked to human disease. Proteomic screen identifies effectors of Drosophila Rabs with a human ortholog Specific hits include orthologs of numerous known effectors of mammalian Rabs Validated effectors include traffic proteins and those of unknown function Orthologs of disease genes CLEC16A, LRRK2, and SPG20 are validated as effectors
Collapse
|
34
|
Shtanko O, Nikitina RA, Altuntas CZ, Chepurnov AA, Davey RA. Crimean-Congo hemorrhagic fever virus entry into host cells occurs through the multivesicular body and requires ESCRT regulators. PLoS Pathog 2014; 10:e1004390. [PMID: 25233119 PMCID: PMC4169490 DOI: 10.1371/journal.ppat.1004390] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/10/2014] [Indexed: 11/21/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne bunyavirus causing outbreaks of severe disease in humans, with a fatality rate approaching 30%. There are no widely accepted therapeutics available to prevent or treat the disease. CCHFV enters host cells through clathrin-mediated endocytosis and is subsequently transported to an acidified compartment where the fusion of virus envelope with cellular membranes takes place. To better understand the uptake pathway, we sought to identify host factors controlling CCHFV transport through the cell. We demonstrate that after passing through early endosomes in a Rab5-dependent manner, CCHFV is delivered to multivesicular bodies (MVBs). Virus particles localized to MVBs approximately 1 hour after infection and affected the distribution of the organelle within cells. Interestingly, blocking Rab7 activity had no effect on association of the virus with MVBs. Productive virus infection depended on phosphatidylinositol 3-kinase (PI3K) activity, which meditates the formation of functional MVBs. Silencing Tsg101, Vps24, Vps4B, or Alix/Aip1, components of the endosomal sorting complex required for transport (ESCRT) pathway controlling MVB biogenesis, inhibited infection of wild-type virus as well as a novel pseudotyped vesicular stomatitis virus (VSV) bearing CCHFV glycoprotein, supporting a role for the MVB pathway in CCHFV entry. We further demonstrate that blocking transport out of MVBs still allowed virus entry while preventing vesicular acidification, required for membrane fusion, trapped virions in the MVBs. These findings suggest that MVBs are necessary for infection and are the sites of virus-endosome membrane fusion. Crimean-Congo hemorrhagic fever virus (CCHFV) is the cause of a severe, often fatal disease in humans. While it has been demonstrated that CCHFV cell entry depends on clathrin-mediated endocytosis, low pH, and early endosomes, the identity of the endosomes where virus penetrates into cell cytoplasm to initiate genome replication is unknown. Here, we showed that CCHFV was transported through early endosomes to multivesicular bodies (MVBs). We also showed that MVBs were likely the last organelle virus encountered before escaping into the cytoplasm. Our work has identified new cellular factors essential for CCHFV entry and potential novel targets for therapeutic intervention against this pathogen.
Collapse
Affiliation(s)
- Olena Shtanko
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Raisa A. Nikitina
- Laboratory of Regulation of Immunopoiesis, Institute for Clinical Immunology, Novosibirsk, Russian Federation
| | - Cengiz Z. Altuntas
- Texas Institute of Biotechnology Education and Research, North American University, Houston, Texas, United States of America
| | - Alexander A. Chepurnov
- Laboratory of Regulation of Immunopoiesis, Institute for Clinical Immunology, Novosibirsk, Russian Federation
| | - Robert A. Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Qi Y, Marlin MC, Liang Z, Berry WL, Janknecht R, Zhou J, Wang Z, Lu G, Li G. Distinct biochemical and functional properties of two Rab5 homologs from the rice blast fungus Magnaporthe oryzae. J Biol Chem 2014; 289:28299-309. [PMID: 25164815 DOI: 10.1074/jbc.m114.591503] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Rab5 is a key regulator of early endocytosis by promoting early endosomal fusion and motility. In this study, we have unexpectedly found distinct properties of the two Rab5 homologs (MoRab5A and MoRab5B) from Magnaporthe oryzae, a pathogenic fungus in plants whose infection causes rice blast disease. Like mammalian Rab5, MoRab5A and MoRab5B can bind to several Rab5 effectors in a GTP-dependent manner, including EEA1, Rabenosyn-5, and Rabaptin-5. However, MoRab5A shows distinct binding characteristics in the sense that both the wild-type and the GTP hydrolysis-defective constitutively active mutant bind the effectors equally well in GST pull-down assays, suggesting that MoRab5A is defective in GTP hydrolysis and mostly in the GTP-bound conformation in the cell. Indeed, GTP hydrolysis assays indicate that MoRab5A GTPase activity is dramatically lower than MoRab5B and human Rab5 and is insensitive to RabGAP5 stimulation. We have further identified a Pro residue in the switch I region largely responsible for the distinct MoRab5A properties by characterization of MoRab5A and MoRab5B chimeras and mutagenesis. The differences between MoRab5A and MoRab5B extend to their functions in the cell. Although they both target to early endosomes, only MoRab5B closely resembles human Rab5 in promoting early endosome fusion and stimulating fluid phase endocytosis. In contrast, MoRab5A correlates with another related early endosomal Rab, Rab22, in terms of the presence of the switch I Pro residue and the blocked GTPase activity. Our data thus identify MoRab5B as the Rab5 ortholog and suggest that MoRab5A specializes to perform a non-redundant function in endosomal sorting.
Collapse
Affiliation(s)
- Yaoyao Qi
- From the Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China, and Departments of Biochemistry and Molecular Biology
| | | | - Zhimin Liang
- Departments of Biochemistry and Molecular Biology
| | | | - Ralf Janknecht
- Cell Biology, and Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Jie Zhou
- From the Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China, and
| | - Zonghua Wang
- From the Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China, and
| | - Guodong Lu
- From the Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China, and
| | - Guangpu Li
- Departments of Biochemistry and Molecular Biology, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
36
|
Li Y, Low LH, Putz U, Goh CP, Tan SS, Howitt J. Rab5 and Ndfip1 are involved in Pten ubiquitination and nuclear trafficking. Traffic 2014; 15:749-61. [PMID: 24798731 DOI: 10.1111/tra.12175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 12/18/2022]
Abstract
The spatial regulation of Pten is critical for its role as a tumour suppressor with both nuclear and cytoplasmic locations being implicated with distinct functions. In the cytoplasm, Pten plays a central role in opposing PI3K/Akt cell signalling, whereas in the nucleus, Pten is important for maintaining genome stability and enhancing the tumour suppressor activity of APC-CDH1. Despite this diversity in protein function at different subcellular locations, there is limited knowledge on how Pten is able to find different cellular niches. Here, we report that Rab5 GTPase is required for efficient trafficking and ubiquitination of Pten on endosomes inside the cytosol. Using bimolecular fluorescence complementation (BiFC) for imaging protein interactions, we observed that ubiquitinated Pten is localized to peri-nuclear and nuclear regions of the cell. Nuclear trafficking of Pten required both Rab5 as well as the E3 ligase adaptor protein Ndfip1. Rab5 colocalization with Pten was observed on endosomes and expression of a dominant negative form of Rab5 significantly reduced Pten ubiquitination and nuclear trafficking. Genomic deletion of Ndfip1 abrogated nuclear trafficking of ubiquitinated Pten, even in the presence of Rab5. Our findings show that endosomal trafficking and ubiquitination are important mechanisms for the subcellular distribution of Pten.
Collapse
Affiliation(s)
- Yijia Li
- Brain Development and Regeneration Division, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Ong ST, Freeley M, Skubis-Zegadło J, Fazil MHUT, Kelleher D, Fresser F, Baier G, Verma NK, Long A. Phosphorylation of Rab5a protein by protein kinase Cϵ is crucial for T-cell migration. J Biol Chem 2014; 289:19420-34. [PMID: 24872409 DOI: 10.1074/jbc.m113.545863] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rab GTPases control membrane traffic and receptor-mediated endocytosis. Within this context, Rab5a plays an important role in the spatial regulation of intracellular transport and signal transduction processes. Here, we report a previously uncharacterized role for Rab5a in the regulation of T-cell motility. We show that Rab5a physically associates with protein kinase Cϵ (PKCϵ) in migrating T-cells. After stimulation of T-cells through the integrin LFA-1 or the chemokine receptor CXCR4, Rab5a is phosphorylated on an N-terminal Thr-7 site by PKCϵ. Both Rab5a and PKCϵ dynamically interact at the centrosomal region of migrating cells, and PKCϵ-mediated phosphorylation on Thr-7 regulates Rab5a trafficking to the cell leading edge. Furthermore, we demonstrate that Rab5a Thr-7 phosphorylation is functionally necessary for Rac1 activation, actin rearrangement, and T-cell motility. We present a novel mechanism by which a PKCϵ-Rab5a-Rac1 axis regulates cytoskeleton remodeling and T-cell migration, both of which are central for the adaptive immune response.
Collapse
Affiliation(s)
- Seow Theng Ong
- From the From the Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Michael Freeley
- From the From the Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Joanna Skubis-Zegadło
- From the From the Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland, Department of Applied Pharmacy and Bioengineering, Medical University of Warsaw, 02-091 Warsaw, Poland
| | | | - Dermot Kelleher
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637553, Faculty of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom, and
| | - Friedrich Fresser
- the Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Gottfried Baier
- the Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637553,
| | - Aideen Long
- From the From the Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland,
| |
Collapse
|
38
|
Yaqoob U, Jagavelu K, Shergill U, de Assuncao T, Cao S, Shah VH. FGF21 promotes endothelial cell angiogenesis through a dynamin-2 and Rab5 dependent pathway. PLoS One 2014; 9:e98130. [PMID: 24848261 PMCID: PMC4029959 DOI: 10.1371/journal.pone.0098130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/28/2014] [Indexed: 12/26/2022] Open
Abstract
Binding of angiogenic molecules with cognate receptor tyrosine kinases (RTK) is required for angiogenesis however the precise link between RTK binding, endocytosis, and signaling requires further investigation. Here, we use FGFR1 as a model to test the effects of the large GTPase and endocytosis regulatory molecule dynamin-2 on angiogenic signaling in context of distinct FGF ligands. In vitro, overexpression of dominant negative dynamin-2 (DynK44A) attenuates FGFR1 activation of Erk and tubulogenesis by FGF2. Furthermore, we identify FGF21, a non-classical, FGF ligand implicated in diverse human pathologies as an angiogenic molecule acting through FGFR1 and β-Klotho coreceptor. Disruption of FGFR1 activation of ERK by FGF21 is achieved by perturbation of the function of both dynamin-2 and Rab5 GTPase. In vivo, mice harboring endothelial selective overexpression of DynK44A, show impaired angiogenesis in response to FGF21. In conclusion, dynamin dependent endocytosis of FGFR1 is required for in vitro and in vivo angiogenesis in response to FGF2 and the non-classical FGF ligand, FGF21. These studies extend our understanding of the relationships between RTK binding, internalization, endosomal targeting, and angiogenic signaling.
Collapse
Affiliation(s)
- Usman Yaqoob
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kumaravelu Jagavelu
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Uday Shergill
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Thiago de Assuncao
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Sheng Cao
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (SC); (VHS)
| | - Vijay H. Shah
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (SC); (VHS)
| |
Collapse
|
39
|
Involvement of microtubular network and its motors in productive endocytic trafficking of mouse polyomavirus. PLoS One 2014; 9:e96922. [PMID: 24810588 PMCID: PMC4014599 DOI: 10.1371/journal.pone.0096922] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/14/2014] [Indexed: 12/18/2022] Open
Abstract
Infection of non-enveloped polyomaviruses depends on an intact microtubular network. Here we focus on mouse polyomavirus (MPyV). We show that the dynamics of MPyV cytoplasmic transport reflects the characteristics of microtubular motor-driven transport with bi-directional saltatory movements. In cells treated with microtubule-disrupting agents, localization of MPyV was significantly perturbed, the virus was retained at the cell periphery, mostly within membrane structures resembling multicaveolar complexes, and at later times post-infection, only a fraction of the virus was found in Rab7-positive endosomes and multivesicular bodies. Inhibition of cytoplasmic dynein-based motility by overexpression of dynamitin affected perinuclear translocation of the virus, delivery of virions to the ER and substantially reduced the numbers of infected cells, while overexpression of dominant-negative form of kinesin-1 or kinesin-2 had no significant impact on virus localization and infectivity. We also found that transport along microtubules was important for MPyV-containing endosome sequential acquisition of Rab5, Rab7 and Rab11 GTPases. However, in contrast to dominant-negative mutant of Rab7 (T22N), overexpression of dominant-negative mutant Rab11 (S25N) did not affect the virus infectivity. Altogether, our study revealed that MPyV cytoplasmic trafficking leading to productive infection bypasses recycling endosomes, does not require the function of kinesin-1 and kinesin-2, but depends on functional dynein-mediated transport along microtubules for translocation of the virions from peripheral, often caveolin-positive compartments to late endosomes and ER – a prerequisite for efficient delivery of the viral genome to the nucleus.
Collapse
|
40
|
HAGIWARA M, MATSUSHITA K. Epigallocatechin gallate suppresses LPS endocytosis and nitric oxide productionby reducing Rab5-caveolin-1 interaction. Biomed Res 2014; 35:145-51. [DOI: 10.2220/biomedres.35.145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Regulation of Rab5 function during phagocytosis of live Pseudomonas aeruginosa in macrophages. Infect Immun 2013; 81:2426-36. [PMID: 23630954 DOI: 10.1128/iai.00387-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa, a Gram-negative opportunistic human pathogen, is a frequent cause of severe hospital-acquired infections. Effectors produced by the type III secretion system disrupt mammalian cell membrane trafficking and signaling and are integral to the establishment of P. aeruginosa infection. One of these effectors, ExoS, ADP-ribosylates several host cell proteins, including Ras and Rab GTPases. In this study, we demonstrated that Rab5 plays a critical role during early stages of P. aeruginosa invasion of J774-Eclone macrophages. We showed that live, but not heat-inactivated, P. aeruginosa inhibited phagocytosis and that this occurred in conjunction with downregulation of Rab5 activity. Inactivation of Rab5 was dependent on ExoS ADP-ribosyltransferase activity, and in J744-Eclone cells, ExoS ADP-ribosyltransferase activity caused a more severe inhibition of phagocytosis than ExoS Rho GTPase activity. Furthermore, we found that expression of Rin1, a Rab5 guanine exchange factor, but not Rabex5 and Rap6, partially reversed the inactivation of Rab5 during invasion of live P. aeruginosa. These studies provide evidence that live P. aeruginosa cells are able to influence their rate of phagocytosis in macrophages by directly regulating activation of Rab5.
Collapse
|
42
|
Jia F, Li Y, Huang Y, Chen T, Li S, Xu Y, Wu Z, Li X, Yu X. Molecular characterization and expression of Rab7 from Clonorchis sinensis and its potential role in autophagy. Parasitol Res 2013; 112:2461-7. [PMID: 23609597 DOI: 10.1007/s00436-013-3409-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 03/21/2013] [Indexed: 10/26/2022]
Abstract
Accumulating evidences suggest that Rab7 GTPase is important for the normal progression of autophagy. However, the role of Rab7 GTPase in regulation of autophagy in Clonorchis sinensis is not known. In this study, a gene encoding Rab7 was isolated from C. sinensis adult cDNA. Recombinant CsRab7 was expressed and purified from Escherichia coli. CsRab7 transcripts were detected in the cDNA of adult worm, metacercaria, cercaria, and egg of C. sinensis, and were highly expressed in the metacercaria. Immunohistochemical localization results revealed that CsRab7 was specifically deposited on the vitellarium and eggs of adult worm. Furthermore, EGFP signal of CsRab7WT and the active mutant CsRab7Q67L were associated with autophagic vesicles in transiently transfected 293T cells. It is concluded from the present study that CsRab7 GTPase possibly contributes to the development of C. sinensis and that the autophagy pathway could be an important site of action with respect to the developmental role of CsRab7 in C. sinensis.
Collapse
Affiliation(s)
- Feifei Jia
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lerner DW, McCoy D, Isabella AJ, Mahowald AP, Gerlach GF, Chaudhry TA, Horne-Badovinac S. A Rab10-dependent mechanism for polarized basement membrane secretion during organ morphogenesis. Dev Cell 2013; 24:159-68. [PMID: 23369713 DOI: 10.1016/j.devcel.2012.12.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 10/16/2012] [Accepted: 12/04/2012] [Indexed: 12/21/2022]
Abstract
Basement membranes (BMs) are specialized extracellular matrices that are essential for epithelial structure and morphogenesis. However, little is known about how BM proteins are delivered to the basal cell surface or how this process is regulated during development. Here, we identify a mechanism for polarized BM secretion in the Drosophila follicle cells. BM proteins are synthesized in a basal endoplasmic reticulum (ER) compartment from localized mRNAs and are then exported through Tango1-positive ER exit sites to basal Golgi clusters. Next, Crag targets Rab10 to structures in the basal cytoplasm, where it restricts protein delivery to the basal surface. These events occur during egg chamber elongation, a morphogenetic process that depends on follicle cell planar polarity and BM remodeling. Significantly, Tango1 and Rab10 are also planar polarized at the basal epithelial surface. We propose that the spatial control of BM production along two tissue axes promotes exocytic efficiency, BM remodeling, and organ morphogenesis.
Collapse
Affiliation(s)
- David W Lerner
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Rab GTPases regulate endothelial cell protein C receptor-mediated endocytosis and trafficking of factor VIIa. PLoS One 2013; 8:e59304. [PMID: 23555015 PMCID: PMC3598704 DOI: 10.1371/journal.pone.0059304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 02/14/2013] [Indexed: 01/11/2023] Open
Abstract
Recent studies have established that factor VIIa (FVIIa) binds to the endothelial cell protein C receptor (EPCR). FVIIa binding to EPCR may promote the endocytosis of this receptor/ligand complex. Rab GTPases are known to play a crucial role in the endocytic and exocytic pathways of receptors or receptor/ligand complexes. The present study was undertaken to investigate the role of Rab GTPases in the intracellular trafficking of EPCR and FVIIa. CHO-EPCR cells and human umbilical vein endothelial cells (HUVEC) were transduced with recombinant adenoviral vectors to express wild-type, constitutively active, or dominant negative mutant of various Rab GTPases. Cells were exposed to FVIIa conjugated with AF488 fluorescent probe (AF488-FVIIa), and intracellular trafficking of FVIIa, EPCR, and Rab proteins was evaluated by immunofluorescence confocal microscopy. In cells expressing wild-type or constitutively active Rab4A, internalized AF488-FVIIa accumulated in early/sorting endosomes and its entry into the recycling endosomal compartment (REC) was inhibited. Expression of constitutively active Rab5A induced large endosomal structures beneath the plasma membrane where EPCR and FVIIa accumulated. Dominant negative Rab5A inhibited the endocytosis of EPCR-FVIIa. Expression of constitutively active Rab11 resulted in retention of accumulated AF488-FVIIa in the REC, whereas expression of a dominant negative form of Rab11 led to accumulation of internalized FVIIa in the cytoplasm and prevented entry of internalized FVIIa into the REC. Expression of dominant negative Rab11 also inhibited the transport of FVIIa across the endothelium. Overall our data show that Rab GTPases regulate the internalization and intracellular trafficking of EPCR-FVIIa.
Collapse
|
45
|
Barbeau A, Swift JL, Godin AG, De Koninck Y, Wiseman PW, Beaulieu JM. Spatial intensity distribution analysis (SpIDA): a new tool for receptor tyrosine kinase activation and transactivation quantification. Methods Cell Biol 2013; 117:1-19. [PMID: 24143969 DOI: 10.1016/b978-0-12-408143-7.00001-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter presents a general approach for the application of spatial intensity distribution analysis (SpIDA) to pharmacodynamic quantification of receptor tyrosine kinase homodimerization in response to direct ligand activation or transactivation by G protein-coupled receptors. A custom graphical user interface developed for MATLAB is used to extract quantal brightness and receptor density information from intensity histograms calculated from single fluorescence microscopy images. This approach allows measurement of monomer/oligomer protein mixtures within subcellular compartments using conventional confocal laser scanning microscopy. Application of quantitative pharmacological analysis to data obtained using SpIDA provides a universal method for comparing studies between cell lines and receptor systems. In addition, because of its compatibility with conventional immunostaining approaches, SpIDA is suitable not only for use in recombinant systems but also for the characterization of mechanisms involving endogenous proteins. Therefore, SpIDA enables these biological processes to be monitored directly in their native cellular environment.
Collapse
Affiliation(s)
- Annie Barbeau
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec, Canada; Institut universitaire en santé mentale de Québec, Québec, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Miller VJ, Sharma P, Kudlyk TA, Frost L, Rofe AP, Watson IJ, Duden R, Lowe M, Lupashin VV, Ungar D. Molecular insights into vesicle tethering at the Golgi by the conserved oligomeric Golgi (COG) complex and the golgin TATA element modulatory factor (TMF). J Biol Chem 2012; 288:4229-40. [PMID: 23239882 DOI: 10.1074/jbc.m112.426767] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein sorting between eukaryotic compartments requires vesicular transport, wherein tethering provides the first contact between vesicle and target membranes. Here we map and start to functionally analyze the interaction network of the conserved oligomeric Golgi (COG) complex that mediates retrograde tethering at the Golgi. The interactions of COG subunits with members of transport factor families assign the individual subunits as specific interaction hubs. Functional analysis of selected interactions suggests a mechanistic tethering model. We find that the COG complex interacts with two different Rabs in addition to each end of the golgin "TATA element modulatory factor" (TMF). This allows COG to potentially bridge the distance between the distal end of the golgin and the target membrane thereby promoting tighter docking. Concurrently we show that the central portion of TMF can bind to Golgi membranes that are liberated of their COPI cover. This latter interaction could serve to bring vesicle and target membranes into close apposition prior to fusion. A target selection mechanism, in which a hetero-oligomeric tethering factor organizes Rabs and coiled transport factors to enable protein sorting specificity, could be applicable to vesicle targeting throughout eukaryotic cells.
Collapse
Affiliation(s)
- Victoria J Miller
- Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gallegos ME, Balakrishnan S, Chandramouli P, Arora S, Azameera A, Babushekar A, Bargoma E, Bokhari A, Chava SK, Das P, Desai M, Decena D, Saramma SDD, Dey B, Doss AL, Gor N, Gudiputi L, Guo C, Hande S, Jensen M, Jones S, Jones N, Jorgens D, Karamchedu P, Kamrani K, Kolora LD, Kristensen L, Kwan K, Lau H, Maharaj P, Mander N, Mangipudi K, Menakuru H, Mody V, Mohanty S, Mukkamala S, Mundra SA, Nagaraju S, Narayanaswamy R, Ndungu-Case C, Noorbakhsh M, Patel J, Patel P, Pendem SV, Ponakala A, Rath M, Robles MC, Rokkam D, Roth C, Sasidharan P, Shah S, Tandon S, Suprai J, Truong TQN, Uthayaruban R, Varma A, Ved U, Wang Z, Yu Z. The C. elegans rab family: identification, classification and toolkit construction. PLoS One 2012; 7:e49387. [PMID: 23185324 PMCID: PMC3504004 DOI: 10.1371/journal.pone.0049387] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 10/09/2012] [Indexed: 11/29/2022] Open
Abstract
Rab monomeric GTPases regulate specific aspects of vesicle transport in eukaryotes including coat recruitment, uncoating, fission, motility, target selection and fusion. Moreover, individual Rab proteins function at specific sites within the cell, for example the ER, golgi and early endosome. Importantly, the localization and function of individual Rab subfamily members are often conserved underscoring the significant contributions that model organisms such as Caenorhabditis elegans can make towards a better understanding of human disease caused by Rab and vesicle trafficking malfunction. With this in mind, a bioinformatics approach was first taken to identify and classify the complete C. elegans Rab family placing individual Rabs into specific subfamilies based on molecular phylogenetics. For genes that were difficult to classify by sequence similarity alone, we did a comparative analysis of intron position among specific subfamilies from yeast to humans. This two-pronged approach allowed the classification of 30 out of 31 C. elegans Rab proteins identified here including Rab31/Rab50, a likely member of the last eukaryotic common ancestor (LECA). Second, a molecular toolset was created to facilitate research on biological processes that involve Rab proteins. Specifically, we used Gateway-compatible C. elegans ORFeome clones as starting material to create 44 full-length, sequence-verified, dominant-negative (DN) and constitutive active (CA) rab open reading frames (ORFs). Development of this toolset provided independent research projects for students enrolled in a research-based molecular techniques course at California State University, East Bay (CSUEB).
Collapse
Affiliation(s)
- Maria E Gallegos
- Department of Biological Sciences, California State University East Bay, Hayward, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Fan B, Bordigari G, Flammer J, Killer HE, Meyer P, Neutzner A. Meningothelial cells participate in immunological processes in the cerebrospinal fluid. J Neuroimmunol 2012; 244:45-50. [DOI: 10.1016/j.jneuroim.2011.12.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 12/05/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
|
49
|
Rosenfeld JL, Knoll BJ, Moore RH. Regulation of G-Protein-Coupled Receptor Activity by Rab GTPases. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820212398] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
50
|
Mizutani R, Nakamura K, Kato N, Aizawa K, Miyamoto Y, Torii T, Yamauchi J, Tanoue A. Expression of sorting nexin 12 is regulated in developing cerebral cortical neurons. J Neurosci Res 2011; 90:721-31. [PMID: 22109349 DOI: 10.1002/jnr.22795] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/31/2011] [Accepted: 08/23/2011] [Indexed: 11/08/2022]
Abstract
The sorting nexins (SNXs) are a family of proteins functioning in diverse processes, including endocytosis, endosomal sorting, and endosomal signaling. Sorting nexin 12 (SNX12) is one of the SNXs family members; however, its function remains unknown. To clarify the function of SNX12, in this study, we first investigated the expression profiles in mice, particularly in the central nervous system (CNS), and then analyzed the functional role on neurite outgrowth. We found that SNX12 was widely expressed in the adult mouse CNS and that its expression level was higher in the cerebral cortex than in other examined regions. SNX12 expression was detected in the neurons but not the glial cells of the adult mouse cerebral cortex. In the fetal brain, SNX12 expression increased during the embryonic stage and gradually decreased after birth. Although the immunoreactivities of SNX12 were widespread in the cerebral cortical cells in the fetal brain, the immunopositive signals of SNX12 were more intense in the postmitotic neurons in the cortical plate than in the proliferating precursor cells in the ventricular zone, suggesting that SNX12 plays critical roles in the postmitotic neurons during cerebral cortical development. Furthermore, in mouse neuroblastoma and N1E-115 cells and rat primary cortical neurons, SNX12 expression was increased as neurite outgrowth progressed and the knockdown of SNX12 attenuated the outgrowth of neurites. These results suggest that SNX12 regulates neurite formation during cerebral cortical development.
Collapse
Affiliation(s)
- Reiko Mizutani
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|