1
|
Sharma MR, Dworakowski W, Shapiro BH. Intrasplenic transplantation of isolated adult rat hepatocytes: sex-reversal and/or suppression of the major constituent isoforms of cytochrome P450. Toxicol Pathol 2011; 40:83-92. [PMID: 22083583 DOI: 10.1177/0192623311425061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Adult male and female rat hepatocytes were individually transplanted into the spleens of adult male and female rats. The recipients were euthanized at either eight, sixteen, thirty, or forty-five weeks following transplantation, at which time hepatic and splenic levels of liver-specific rat albumin mRNA as well as sex-dependent transcript levels of CYP2C11, -2C12, -2C7, -2A1, and -3A2-which accounts for > 60% of the total concentration of hepatic constituent cytochrome P450-were determined. Whereas the pre-infused hepatocytes expressed their expected cytochrome P450 sexual dimorphisms (female-specific CYP2C12, male-specific CYP3A2, and female-predominant CYP2A1), their post-transplantational competence now reflected the sexual dimorphisms of the recipient (as observed in the host's liver), which supports the concept that the sex-dependent growth hormone circulating profiles are the determinants regulating the expression levels of hepatic cytochrome P450. Also expressed at normal concentrations in the pre-infused hepatocytes, male-specific CYP2C11 and female-predominant CYP2C7 were inexplicably undetectable in the spleens of both recipient males and females, regardless of the sex of the donor hepatocytes, almost one year after transplantation.
Collapse
Affiliation(s)
- Meena R Sharma
- Laboratories of Biochemistry, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania 19104-6048, USA
| | | | | |
Collapse
|
2
|
Correia MA, Sinclair PR, De Matteis F. Cytochrome P450 regulation: the interplay between its heme and apoprotein moieties in synthesis, assembly, repair, and disposal. Drug Metab Rev 2010; 43:1-26. [PMID: 20860521 DOI: 10.3109/03602532.2010.515222] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Heme is vital to our aerobic universe. Heme cellular content is finely tuned through an exquisite control of synthesis and degradation. Heme deficiency is deleterious to cells, whereas excess heme is toxic. Most of the cellular heme serves as the prosthetic moiety of functionally diverse hemoproteins, including cytochromes P450 (P450s). In the liver, P450s are its major consumers, with >50% of hepatic heme committed to their synthesis. Prosthetic heme is the sine qua non of P450 catalytic biotransformation of both endo- and xenobiotics. This well-recognized functional role notwithstanding, heme also regulates P450 protein synthesis, assembly, repair, and disposal. These less well-appreciated aspects are reviewed herein.
Collapse
Affiliation(s)
- Maria Almira Correia
- Department of Cellular and Molecular Pharmacology, The Liver Center, University of California, San Francisco, 94158, USA.
| | | | | |
Collapse
|
3
|
Audet-Walsh E, Auclair-Vincent S, Anderson A. Glucocorticoids and phenobarbital induce murine CYP2B genes by independent mechanisms. Expert Opin Drug Metab Toxicol 2010; 5:1501-11. [PMID: 19732027 DOI: 10.1517/17425250903234709] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Genes for CYP of the 2B subfamily (CYP2B genes) have long been known to be inducible in murine liver by phenobarbital and phenobarbital-like inducers. More recently, it has become clear that glucocorticoids can also induce these genes by a mechanism independent of that of phenobarbital-like inducers. OBJECTIVE To summarize the evidence for the existence of two distinct molecular mechanisms for induction of murine CYP2B genes and to analyze the wider implications of this situation for inducible xenobiotic metabolism. METHODS The mechanism of action of phenobarbital-like inducers of murine CYP2B genes is first briefly summarized. The role of glucocorticoids in the induction of various proteins, particularly rat phosphoenolpyruvate carboxykinase, where transcriptional activation is achieved via a glucocorticoid response unit, is also discussed. Finally, recent results are presented on glucocorticoid induction of murine CYP2B genes, including evidence for the presence of a functional glucocorticoid response unit in the rat CYP2B2 gene and for the role of constitutive androstane receptor as an accessory factor in this response. RESULTS/CONCLUSION Murine CYP2B genes are seen to respond to two distinct regulatory mechanisms, but much remains to be learned concerning the interactions between these two regulatory loops, as well as the details of glucocorticoid induction.
Collapse
Affiliation(s)
- Etienne Audet-Walsh
- Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, CHUQ, 11, côte du Palais, Québec, Canada
| | | | | |
Collapse
|
4
|
Abstract
Once reserved solely for the treatment of short stature, the now readily available recombinant GH has expanded the use of the hormone to include the treatment of cardiovascular, renal, muscular, skeletal, immunological, psychosocial, and metabolic abnormalities associated with GH deficiency. There are also proposals for the widespread use of the hormone to ameliorate or reverse aging. However, this extensive use of GH has revealed intrinsic sexual dimorphisms in which females are considerably less responsive to the therapeutic regimen than are males. Dynamic changes in the Janus kinase-2 (Jak2)/signal transducers and activators of transcription (Stat5B) signaling pathway [as determined by transducer activation, Stat5B binding to the GH-responsive promoter of the CYP2C11 gene, and expression levels of the suppressors of cytokine signaling family (Socs2, Socs3, and Cis)] were examined in male and female rat-derived primary hepatocyte cultures exposed to the masculine-like episodic GH profile. We report that the cellular actions of GH normally mediated by activation of the Jak2/Stat5B pathway are suppressed in female cells possibly due to an inherent overexpression of Cis, a member of the suppressors of cytokine signaling family that normally down-regulates the Jak2/Stat5B pathway.
Collapse
Affiliation(s)
- Chellappagounder Thangavel
- Laboratories of Biochemistry, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104-6048, USA
| | | |
Collapse
|
5
|
Pustylnyak VO, Gulyaeva LF, Lyakhovich VV. Induction of cytochrome P4502B: Role of regulatory elements and nuclear receptors. BIOCHEMISTRY (MOSCOW) 2007; 72:608-17. [PMID: 17630905 DOI: 10.1134/s000629790706003x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cytochrome P450 of the 2B subfamily is easily induced by many xenobiotics. In spite of intensive investigations, the molecular mechanisms of regulation of the CYP2B genes are not clear. The nuclear receptor CAR is shown to play a crucial role in the activation of CYP2B genes by xenobiotics, but many problems of CAR activation in different animal species and humans remain unsolved. This review focuses on signaling pathways involved in the control of CYP2B gene expression in mammals.
Collapse
Affiliation(s)
- V O Pustylnyak
- Institute of Molecular Biology and Biophysics, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk 630117, Russia.
| | | | | |
Collapse
|
6
|
Agrawal AK, Shapiro BH. Neonatal phenobarbital imprints overexpression of cytochromes P450 with associated increase in tumorigenesis and reduced life span. FASEB J 2005; 19:470-2. [PMID: 15634872 DOI: 10.1096/fj.04-2550fje] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Perinatal exposure to phenobarbital produces a range of permanent reproductive, growth, locomoter, and learning dysfunctions in animals as well as humans. In addition, the affected individuals exhibit latently expressed (i.e., postpubertal) above normal activity levels of hepatic multicytochrome P450-dependent drug metabolizing enzymes. We report that in spite of apparent normal health for the better part of their lives, daily administration of therapeutic-like doses of phenobarbital to male and female rat pups during the first postpartum week reduced life expectancy by approximately 20%. Necropsy at the time of natural death revealed an associated two- to threefold increase in the incidence of tumors in barbiturate-exposed rats of both sexes and a three- to fourfold increase in urinary tract pathologies in male rats. At 2 yr of age, in agreement with an overexpression of hepatic CYP2C6 and CYP2C7, both in vitro and in vivo drug metabolism was more rapid in the phenobarbital-imprinted male and female animals. Moreover, when the senescent rats were rechallenged with a nominal dose of the barbiturate, males and females neonatally exposed to phenobarbital exhibited a dramatic overinduction of multicytochrome P450-dependent drug metabolizing enzymes as well as an overexpression of individual isoforms of cytochrome P450 implicated in enhanced susceptibility to tumorigenesis. Our findings support the growing realization that many adult diseases have their origins in early life by emphasizing that unlike adults, the new born is "plastic," and even therapeutic drugs may produce "silent" programming defects that subtly, but irrevocably, jeopardize life-long well-being.
Collapse
Affiliation(s)
- Arun K Agrawal
- Laboratories of Biochemistry, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104-6048, USA
| | | |
Collapse
|
7
|
Yamamoto M, Mise M, Matsumoto S, Ito S, Gohyama N, Ishida S, Sagara Y, Omiecinski CJ, Oguri K, Yamada H. Comparison of genomic and cDNA sequences of guinea pig CYP2B18 and rat CYP2B2: absence of a phenobarbital-responsive enhancer module in the upstream region of the CYP2B18 gene. J Biochem Mol Toxicol 2004; 18:124-30. [PMID: 15252867 DOI: 10.1002/jbt.20016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Potential mechanisms were investigated whereby CYP2B18, a cytochrome P450 gene exhibiting high constitutive expression but only low levels of phenobarbital-inducibility in the guinea pig liver, may be differentially regulated versus the highly inducible rat CYP2B2 gene. To comparatively assess potential regulatory sequences associated with CYP2B18, a guinea pig genomic library was screened enabling isolation of the CYP2B18 gene. The genomic screening process resulted in the identification of at least four closely-related CYP2B18 genes, designated here as CYP2B18A-D. Of these isolates, CYP2B18A exhibited sequence identical to that of the CYP2B18 cDNA. Further, the deduced amino acid sequence of the CYP2B18 cDNA was identical to that of N-terminal and internally-derived peptide sequences obtained in this investigation from CYP2B18 protein isolated from guinea pig liver. Genomic structural sequences were derived for CYP2B18A, together with the respective 5'-upstream and intronic regions of the gene. Comparison of the CYP2B18A and CYP2B2 gene sequences revealed the lack of repetitive LINE gene sequences in CYP2B18A, putative silencing elements that effect neighboring genes, although these sequences were present in both 5'-upstream and 3'-downstream regions of CYP2B2. We determined that the phenobarbital-responsive enhancer module was absent from the 5'-upstream region as well as the intronic regions of CYP2B18A gene. We hypothesize that the compromised phenobarbital inducibility of CYP2B18A stems from its lack of a functional phenobarbital responsive enhancer module.
Collapse
Affiliation(s)
- Midori Yamamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Thangavel C, Garcia MC, Shapiro BH. Intrinsic sex differences determine expression of growth hormone-regulated female cytochrome P450s. Mol Cell Endocrinol 2004; 220:31-9. [PMID: 15196697 DOI: 10.1016/j.mce.2004.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 04/05/2004] [Accepted: 04/08/2004] [Indexed: 11/15/2022]
Abstract
The masculine profile of cytochrome P450s found in male liver is determined by the episodic secretion of growth hormone characteristic of males. In turn, the female pattern of P450s observed in female rat liver is regulated by the continuous secretion of growth hormone characteristic of the female. In order to determine if intrinsic and possibly permanent sex differences exist in the response of hepatic P450s to growth hormone regulation, we compared the effects of the episodic and continuous growth hormone profiles on the expression of female-dependent isoforms in cultured hepatocytes isolated from both sexes. We observed that female-specific CYP2C12 as well as female-predominant CYP2A1, 3A1, and 2C6 could be induced by growth hormone concentrations equal to as little as 6, 0.6, and 0.06% of the mean circulating hormone profile found in normal females. Irrespective of sex, all four female-dependent isoforms were far more responsive to the continuous growth hormone profile than the episodic pattern. Lastly, female-derived hepatocytes in general responded with strikingly greater induction levels of P450s than male hepatocytes exposed to the same growth hormone profiles. The present findings demonstrate intrinsic, irreversible sex differences in growth hormone-regulated female-dependent P450s.
Collapse
Affiliation(s)
- Chellappagounder Thangavel
- Laboratories of Biochemistry, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6048, USA
| | | | | |
Collapse
|
9
|
Abstract
Induction of drug metabolism was described more than 40 years ago. Progress in understanding the molecular mechanism of induction of drug-metabolizing enzymes was made recently when the important roles of the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), two members of the nuclear receptor superfamily of transcription factors, were discovered to act as sensors for lipophilic xenobiotics, including drugs. CAR and PXR bind as heterodimeric complexes with the retinoid X receptor to response elements in the regulatory regions of the induced genes. PXR is directly activated by xenobiotic ligands, whereas CAR is involved in a more complex and less well understood mechanism of signal transduction triggered by drugs. Most recently, analysis of these xenobiotic-sensing nuclear receptors and their nonmammalian precursors such as the chicken xenobiotic receptor suggests an important role of PXR and CAR also in endogenous pathways, such as cholesterol and bile acid biosynthesis and metabolism. In this review, recent findings regarding xenosensors and their target genes are summarized and are put into an evolutionary perspective in regard to how a living organism has derived a system that is able to deal with potentially toxic compounds it has not encountered before.
Collapse
Affiliation(s)
- Christoph Handschin
- Division of Pharmacology/Neurobiology, Biozentrum of the University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | | |
Collapse
|
10
|
Dhir RN, Shapiro BH. Interpulse growth hormone secretion in the episodic plasma profile causes the sex reversal of cytochrome P450s in senescent male rats. Proc Natl Acad Sci U S A 2003; 100:15224-8. [PMID: 14638941 PMCID: PMC299965 DOI: 10.1073/pnas.2434273100] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Humans as well as other mammals experience an aging-related decline in drug metabolism as well as a diminution in growth hormone secretion. In the case of rats, these events are more pronounced in senescent males, whose expression of male-specific isoforms of cytochrome P450, the major drug-metabolizing enzymes and constituting approximately 60-70% of the total cytochrome P450 in male rat liver, is completely suppressed, whereas female-dependent isoforms are remarkably induced to female-like levels. Overlooked in these independently reported studies is the fact that "signals" inherent in the masculine episodic and female continuous growth hormone profiles regulate expression and/or suppression of the dozen or so sex-dependent cytochrome P450 isoforms in rat liver. Whereas previous studies identified profound reductions in the pulse amplitudes of the masculine growth hormone profile as the cause for the diminished hormone secretion during aging, pulse heights are not recognized by the cytochromes as regulatory signals. Instead, we have shown that just a nominal secretion of growth hormone during the usual growth hormone-devoid interpulse period in the masculine episodic profile can explain the complete repression of male-specific CYP2C11, CYP3A2, and CYP2A2 and induction of female-dependent CYP2C12, CYP2C6, and CYP2A1 observed in senescent male rats.
Collapse
Affiliation(s)
- Ravindra N Dhir
- Laboratories of Biochemistry, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104-6048, USA
| | | |
Collapse
|
11
|
Sharma MR, Periandythevar P, Shapiro BH. Spurious observation of splenic cyp2b1 expression. Drug Metab Dispos 2003; 31:1074-6. [PMID: 12920159 DOI: 10.1124/dmd.31.9.1074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phenobarbital (PB) induction of the CYP2B subfamily was studied in the livers and spleens of male and female rats. Animals were treated with either PB (10 mg/kg) or vehicle for 4 consecutive days. A reverse transcriptase-polymerase chain reaction (RT-PCR), quantitative Northern blotting, Western blotting, and a radioenzymatic assay were used to observe differential levels of CYP2B1 and CYP2B2 mRNAs, proteins, and catalytic activities. CYP2B2 expression was limited to the livers of PB-treated male and female rats and was not detected in spleen. Low constitutive levels of CYP2B1 mRNA were markedly induced approximately 7- to 17-fold in the livers of PB-treated male and female rats, respectively. However, using the same standard oligonucleotide probe for CYP2B1 mRNA, we observed considerably greater constitutive concentrations of the transcript in spleen than in liver. Putative splenic CYP2B1 mRNA was significantly elevated by the PB treatment, although not as profoundly as the hepatic response. In contrast, only the livers of the barbiturate-treated rats expressed CYP2B1 proteins or specific catalytic activity (androstenedione 16beta-hydroxylase). Protein and catalytic activities of the isoforms were undetectable in spleen of either male or female vehicle- and PB-treated rats. In agreement, RT-PCR was unable to demonstrate the expression of splenic CYP2B1 mRNAs. Investigating the possibility that the Northern probe for CYP2B1 was identifying a similar sequence isoform, we performed RT-PCR using primers for CYP2B12 and CYP2B15. Since neither of these isoforms was expressed in spleen, we conclude that the spurious results using the Northern probe for CYP2B1 mRNA were due to the presence of a cross-reacting, PB-responsive transcript not currently identifiable in existing databases.
Collapse
Affiliation(s)
- Meena R Sharma
- Laboratories of Biochemistry, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6048, USA
| | | | | |
Collapse
|
12
|
Agrawal AK, Shapiro BH. Constitutive and inducible hepatic cytochrome P450 isoforms in senescent male and female rats and response to low-dose phenobarbital. Drug Metab Dispos 2003; 31:612-9. [PMID: 12695350 DOI: 10.1124/dmd.31.5.612] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Numerous studies, usually limited to male rodents, have reported an inverse relationship between the age of the animal and the activities of various multi-cytochrome P450-dependent drug-metabolizing enzymes. It has been suggested that the aging-induced decline in hepatic drug-metabolizing capacity is solely a male phenomenon. That is, whereas the levels of male-specific isoforms of P450 decline with senescence, the female-dependent isoforms remain unchanged in females and even increase in male liver. In addition to their baseline activities, induction levels of hepatic monooxygenases have also been reported to decrease with aging. To examine aging- and sex-dependent effects on drug metabolism at a more molecular level, we measured the expression (mRNA, protein, and/or catalytic activity) of a near dozen constitutive and inducible isoforms of P450 in 5-and 23-month-old male and female Sprague-Dawley rats. Moreover, we investigated the induction effects of low concentrations of phenobarbital known to reveal gender differences and the threshold sensitivities of both constitutive and inducible isoforms. With the exception of male-specific CYP2C11 (whose expression declined approximately 70% in aged male rats), we observed little senescence-associated reduction in either preinduction or induction levels of CYP2B1, CYP2B2, CYP3A1, CYP3A2, CYP2C6, CYP2C7, CYP2C12, and CYP2C13 in either male or female rats. Moreover, the sexually dimorphic expression levels apparent at 5 months of age persisted in the old rats.
Collapse
Affiliation(s)
- Arun K Agrawal
- Laboratories of Biochemistry, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6048, USA
| | | |
Collapse
|
13
|
Kaufhold A, Nigam PK, Dhir RN, Shapiro BH. Prevention of latently expressed CYP2C11, CYP3A2, and growth hormone defects in neonatally monosodium glutamate-treated male rats by the N-methyl-D-aspartate receptor antagonist dizocilpine maleate. J Pharmacol Exp Ther 2002; 302:490-6. [PMID: 12130706 DOI: 10.1124/jpet.102.034785] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neonatal administration of monosodium glutamate (MSG) can produce latently expressed defects in drug metabolism and growth hormone secretion as well as stunted growth and obesity. Instead of secreting growth hormone in the masculine episodic profile, plasma hormone levels are generally undetectable in affected adult male rats. Moreover, male-specific isoforms of cytochrome P450 (P450; e.g., CYP2C11 and CYP3A2), whose combined levels comprise the bulk of the total hepatic P450 in adult male rats, are similarly undetectable in these animals. Since "signaling elements" in the masculine episodic growth hormone profile are solely responsible for the elevated characteristic male-like expression levels of CYP2C11 and CYP3A2, suppression of the isoforms in the MSG-treated rats appeared to be caused by the simple absence of the hormone from the circulation. However, the reported failures of restored physiologic masculine growth hormone profiles to correct the P450 defects suggested the occurrence of direct MSG-induced liver damage independent of the well known hypothalamic lesions produced by the amino acid. Concurrent administration of dizocilpine maleate (MK-801), a selective and highly potent noncompetitive N-methyl-D-aspartate receptor antagonist of glutamate, completely prevented the adverse effects of neonatal MSG treatment on P450 expression, growth hormone secretion, and growth parameters, indicating that the amino acid-induced defects are solely a result of neuronal (i.e., hypothalamic) damage produced at the time of MSG exposure. The irreversibility of the P450 damage is described as resulting from secondary defects initially induced by the neuronal lesions.
Collapse
Affiliation(s)
- Antje Kaufhold
- Laboratories of Biochemistry, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6048, USA
| | | | | | | |
Collapse
|
14
|
Corcos C, Brey J, Corcos L. Les récepteurs nucléaires CAR et PXR contrôlent l’induction des cytochromes P450 par le phénobarbital. Med Sci (Paris) 2002. [DOI: 10.1051/medsci/2002184429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Samudre KR, Mani SA, Vathsala PG, Rangarajan PN, Padmanaban G. Phenobarbitone-mediated translocation of the cytosolic proteins interacting with the 5'-proximal region of rat liver CYP2B1/B2 gene into the nucleus. Biochem Biophys Res Commun 2002; 292:312-7. [PMID: 11906163 DOI: 10.1006/bbrc.2002.6665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The positive element (PE) (-69 to -98 bp) within the 5'-proximal region of the CYP2B1/B2 gene (+1 to -179 bp) of rat liver is essential for phenobarbitone (PB) response and gives a single major complex with the rat liver cytosol in gel shift analysis. This complex corresponds to complex I (top) of the three complexes given by the nuclear extracts. PB treatment of rats leads to a decrease in complex I formation with the cytosol and PE and an increase in the same with the nuclear extract in gel shift analysis. Both the changes are counteracted by simultaneous okadaic acid administration. The nuclear protein giving rise to complex I has been isolated and has an M(r) of 26 kDa. The cytosolic counterpart consists of two species, 26 and 28 kDa, as revealed by Southwestern blot analysis using labeled PE. It is concluded that PB treatment leads to the translocation accompanied by processing of the cytosolic protein species into the nucleus that requires protein dephosphorylation. It is suggested that PB may exert a global regulation on the transcription of many genes by modulating the phosphorylation status of different protein factors involved in transcriptional regulation.
Collapse
Affiliation(s)
- Kalpana R Samudre
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | | | |
Collapse
|
16
|
Dhir RN, Dworakowski W, Shapiro BH. Middle-age alterations in the sexually dimorphic plasma growth hormone profiles: involvement of growth hormone-releasing factor and effects on cytochrome p450 expression. Drug Metab Dispos 2002; 30:141-7. [PMID: 11792682 DOI: 10.1124/dmd.30.2.141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rat liver, as well as other species, contains numerous sex-dependent isoforms of cytochrome P450 (P450) that are regulated by the sexually dimorphic profiles of circulating growth hormone. During puberty, young adulthood, and senescence, changes in the hormonal profiles appear to be responsible for alterations in age-associated expression levels of selective P450 isoforms. In contrast, little is known about the growth hormone secretory profiles and their P450-dependent expression levels during middle age. In the present study, we observed subtle changes in the hormonal concentrations, and frequencies of peaks and interpulse periods in the sexually dimorphic growth hormone profiles of 1-year-old male and female rats correlated to suppression of male-specific isoforms CYP2C11 and CYP2C13 and female-predominant CYP2C7. To identify possible causes for the age-associated changes in the circulating growth hormone profiles, the responsiveness of the hypothalamic-pituitary axis to growth hormone secretagogues clonidine and growth hormone-releasing factor (GRF) were examined in middle-aged male and female rats. In spite of the same sexually dimorphic response in young adult and middle-aged rats to both secretogogues (males > females), the pituitary somatotrophs in the older animals exhibited a dramatic decrease in sensitivity to clonidine, characterized by subnormal growth hormone release levels and an inordinate delay in pituitary response to clonidine stimulation. Results from similar studies conducted on middle-aged arcuate nucleus-lesioned rats suggest that a decline in GRF secretion is a possible contributor to the age-associated alterations in plasma growth hormone profiles during middle age. These changes in GRF-induced, sexually dimorphic secretory growth hormone profiles and the accompanying decline in P450 expression levels may anticipate similar, but more profound, changes to occur during senescence.
Collapse
Affiliation(s)
- Ravindra N Dhir
- Laboratories of Biochemistry, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104-6048, USA
| | | | | |
Collapse
|
17
|
Hwang DY, Chae KR, Shin DH, Hwang JH, Lim CH, Kim YJ, Kim BJ, Goo JS, Shin YY, Jang IS, Cho JS, Kim YK. Xenobiotic response in humanized double transgenic mice expressing tetracycline-controlled transactivator and human CYP1B1. Arch Biochem Biophys 2001; 395:32-40. [PMID: 11673863 DOI: 10.1006/abbi.2001.2542] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cytochrome P450 enzymes (P450s or CYPs) are a superfamily of hemeproteins that catalyze the monooxygenation of a wide range of endobiotic and xenobiotic substrates. A typical strategy in toxicological research and testing involves applying a toxicant at high doses for a short period to homogeneous animals under controlled conditions. However, the conditions of this approach have very little in common with actual human exposure. Transgenic (Tg) mice carrying human genes encoding a drug-metabolizing enzyme (CYP) offer a solution to many of the difficulties in the evaluation of chemical toxicity. It has been demonstrated that the expression of human CYP transgenes under the control of mammalian-inducible promoters exhibits relatively poor fold increases after induction. In this study, we used the tetracycline-regulated (tet) promoter system to increase the expression of the human CYP1B1 (hCYP1B1) gene in the tissues of transgenic mice. By mating two lineages of transgenic mice, double transgenic (dTg) mice expressing both tTA and hCYP1B1 genes under the control of the tet promoter were successfully produced, into which the two transgenes were introduced in an embryo. The expression pattern of tTA-driven hCYP1B1 transgene featured a fold induction of more than 3 to 12 in the brain, heart, and lung and 2- to 4-fold induction in the liver, kidney, and intestine upon doxycycline removal. Immunohistochemical staining with hCYP1B1 antibody was also increased by the removal of doxycycline. In addition, the activities of CYP liver microsomes in the dTg mice without doxycycline showed an increase compared to that in the dTg mice treated with doxycycline. The level of activities correspond to the levels of human CYP1B1 protein expression in the Tg mice (-dox) that was increased by 2-fold induction as compared to that of the dTg mice with doxycycline. Thus, overproduction in Tg can be purified and the activity of purified human CYP1B1 can be characterized by alterations to the coding sequence in order to solve the physiological function of this enzyme in a humanized in vivo system. It is also possible to examine the activity of purified human CYP1B1 using several environmental toxicants such as procarcinogens.
Collapse
Affiliation(s)
- D Y Hwang
- Division of Laboratory Animal Resources, Korea FDA, National Institute of Toxicological Research, Seoul, 122-704, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Liu S, Rivera-Rivera I, Bredemeyer AJ, Kemper B. Functional analysis of the phenobarbital-responsive unit in rat CYP2B211Abbreviations: P450, cytochrome P450; PB, phenobarbital; CYP, P450 gene; NR, nuclear receptor; NF-1, nuclear factor-1; GRE, glucocorticoid response element; CAR, constitutive androgen receptor; RXR, retinoid X receptor; PBRU, PB response element. Biochem Pharmacol 2001; 62:21-8. [PMID: 11377393 DOI: 10.1016/s0006-2952(01)00635-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An 163-bp fragment of the rat cytochrome P450 gene, CYP2B2 has been shown to contain sequences that mediate phenobarbital (PB) responsiveness of this gene. In studies on this rat gene and the orthologous mouse gene, Cyp2b10, the minimal fragment required for near full PB responsiveness has varied from about 50 to 80 bp depending on the gene used and the number of copies of the PB responsive sequences assessed. Since there is a single copy of the CYP genes in the genome, we have evaluated deletion and block mutations across an 84-bp region of the PB responsive unit (PBRU), by in situ transfection in rat liver using single copies of the PBRU sequences. From the 5' end, deletions to -2243 retained more than 50% responsiveness to PB compared to the 163-bp fragment. The fragment -2237 to -2155 retained less than 20% responsiveness even though it contained the nuclear receptor (NR)-1, NR-2, and NF-1 motifs which are present in the core of the PBRU. From the 3' end, deletions from -2170 to -2194 eliminated PB responsiveness indicating that the 74-bp sequence from -2243 to -2170 is able to mediate full PB responsiveness. Block mutations within the NR-1 and NF-1 regions reduced responsiveness most dramatically, but did not abolish it, and mutations 3' of the NF-1 site modestly reduced responsiveness. Protein binding was not affected by mutations in the NR-1 region as assessed by DNase I footprinting in vitro but mutations within the NR-2 region reduced binding to the NF-1 site. Mutations of the 5' half or the 3' half of the bipartite NF-1 site, resulted in loss of protection of the NF-1 site and new footprints to the 3' or 5' side, respectively, of the NF-1 site. These results indicate that sequences in addition to the NR-1 and -2 and the NF-1 sites are required for full responsiveness to PB and suggest that proteins which bind to these sites may interact.
Collapse
Affiliation(s)
- S Liu
- Department of Molecular & Integrative Physiology, College of Medicine at Urbana-Champaign, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
19
|
Sueyoshi T, Negishi M. Phenobarbital response elements of cytochrome P450 genes and nuclear receptors. Annu Rev Pharmacol Toxicol 2001; 41:123-43. [PMID: 11264453 DOI: 10.1146/annurev.pharmtox.41.1.123] [Citation(s) in RCA: 297] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phenobarbital (PB) response elements are composed of various nuclear receptor (NR)-binding sites. A 51-bp distal element PB-responsive enhancer module (PBREM) conserved in the PB-inducible CYP2B genes contains two NR-binding direct repeat (DR)-4 motifs. Responding to PB exposure in liver, the NR constitutive active receptor (CAR) translocates to the nucleus, forms a dimer with the retinoid X receptor (RXR), and activates PBREM via binding to DR-4 motifs. For CYP3A genes, a common NR site [DR-3 or everted repeat (ER)-6] is present in proximal promoter regions. In addition, the distal element called the xenobiotic responsive module (XREM) is found in human CYP3A4 genes, which contain both DR-3 and ER-6 motifs. Pregnane X receptor (PXR) could bind to all of these sites and, upon PB induction, a PXR:RXR heterodimer could transactivate XREM. These response elements and NRs are functionally versatile, and capable of responding to distinct but overlapping groups of xenochemicals.
Collapse
Affiliation(s)
- T Sueyoshi
- Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
20
|
Agrawal AK, Shapiro BH. Intrinsic signals in the sexually dimorphic circulating growth hormone profiles of the rat. Mol Cell Endocrinol 2001; 173:167-81. [PMID: 11223188 DOI: 10.1016/s0303-7207(00)00401-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Male rats secrete growth hormone (GH) in episodic bursts every 3.5-4 h. Between the peaks, GH levels are undetectable. In females, GH secretory profiles are characterized as continuous because hormone concentrations are always measurable in the circulation. These gender differences in the circulating GH profiles are responsible, to varying degrees, for observed sexual dimorphisms ranging from body growth to the expression of hepatic cytochrome P450 (P450, CYP) isoforms. Using hypophysectomized rats in which restored gender-dependent plasma GH profiles were manipulated, we have investigated the importance of the interpulse period in the masculine episodic plasma GH profile in regulating expression (mRNA, protein and/or specific catalytic activity) of male-specific CYP2A2, 2C11, 2C13 and 3A2, female-specific CYP2C12 and female-predominant CYP2A1, 2C6 and 2C7. We observed that some isoforms were induced or suppressed by discerning the length of the GH-devoid interpulse period, others responded to the pulse amplitudes, still others recognized the mean circulating concentrations of GH and some were regulated by a combination of these signals. We conclude that concealed in the gender-dependent circulating GH profiles are numerous intrinsic signals, both inductive and repressive, individually "tailored" to be recognized by each isoform of P450. There would appear to be no one signal in each gender-dependent GH profile responsible, in toto, for the characteristic sexually dimorphic expression of some dozen hepatic P450s in male and female rats.
Collapse
Affiliation(s)
- A K Agrawal
- Laboratories of Biochemistry, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, 19104-6048, USA
| | | |
Collapse
|
21
|
Xie W, Barwick JL, Simon CM, Pierce AM, Safe S, Blumberg B, Guzelian PS, Evans RM. Reciprocal activation of xenobiotic response genes by nuclear receptors SXR/PXR and CAR. Genes Dev 2000; 14:3014-23. [PMID: 11114890 PMCID: PMC317112 DOI: 10.1101/gad.846800] [Citation(s) in RCA: 389] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cytochrome P450 (CYP) gene products such as CYP3A and CYP2B are essential for the metabolism of steroid hormones and xenochemicals including prescription drugs. Nuclear receptor SXR/PXR (steroid and xenobiotic receptor/pregnenolone X receptor) has been shown both biochemically and genetically to activate CYP3A genes, while similar studies have established constitutive androstane receptor (CAR) as a CYP2B regulator. The response elements in these genes are also distinct, furthering the concept of independent regulation. Unexpectedly, we found that SXR can regulate CYP2B, both in cultured cells and in transgenic mice via adaptive recognition of the phenobarbital response element (PBRE). In a type of functional symmetry, orphan receptor CAR was also found to activate CYP3A through previously defined SXR/PXR response elements. These observations not only provide a rational explanation for the activation of multiple CYP gene classes by certain xenobiotics, but also reveal the existence of a metabolic safety net that confers a second layer of protection to the harmful effects of toxic compounds and at the same time increases the propensity for drug-drug interactions.
Collapse
Affiliation(s)
- W Xie
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Mani SA, Harish S, Vathsala PG, Rangarajan PN, Padmanaban G. Receptor-mediated gene delivery approach demonstrates the role of 5'-proximal DNA region in conferring phenobarbitone responsiveness to CYP2B2 gene in rat liver in vivo. Biochem Biophys Res Commun 2000; 268:734-9. [PMID: 10679274 DOI: 10.1006/bbrc.2000.2203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phenobarbitone (PB) responsiveness of the 5'-proximal region of the CYP2B1/B2 gene was examined in detail with plasmid DNA constructs containing G-free cassette as reporter, using in vivo targeting of the same DNA constructs into rat liver as galactosylated-polylysine complexes. The contribution of the proximal region (-1 to -179 bp) and the positive element (-69 to -98 bp) identified earlier in this laboratory to PB responsiveness was assessed. The results obtained on PB treatment of rats subjected to receptor-mediated gene delivery to liver were conclusive and dramatic, with the control (saline-treated) rats manifesting very little expression of the reporter, reflecting the in vivo picture of CYP2B1/B2 gene expression. The positive element conferred PB responsiveness to homologous and heterologous promoters. Deletion of the positive element led to elimination of PB response. The entire -179 bp region was significantly more effective in responding to PB treatment than the region up to -98 bp, both containing one copy of the positive element. Thus, the positive element and its flanking sequences in the 5'-proximal region are involved in conferring PB responsiveness to the CYP2B1/B2 gene.
Collapse
Affiliation(s)
- S A Mani
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | | | | | | | | |
Collapse
|
23
|
Waxman DJ. P450 gene induction by structurally diverse xenochemicals: central role of nuclear receptors CAR, PXR, and PPAR. Arch Biochem Biophys 1999; 369:11-23. [PMID: 10462436 DOI: 10.1006/abbi.1999.1351] [Citation(s) in RCA: 509] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The biochemistry of foreign compound metabolism and the roles played by individual cytochrome P450 (CYP) enzymes in drug metabolism and in the toxification and detoxification of xenochemicals prevalent in the environment are important areas of molecular pharmacology and toxicology that have been widely studied over the past decade. Important advances in our understanding of the mechanisms through which foreign chemicals impact on these P450-dependent metabolic processes have been made during the past 2 years with several key discoveries relating to the mechanisms through which xenochemicals induce the expression of hepatic P450 enzymes. Roles for three "orphan" nuclear receptor superfamily members, designated CAR, PXR, and PPAR, in respectively mediating the induction of hepatic P450s belonging to families CYP2, CYP3, and CYP4 in response to the prototypical inducers phenobarbital (CAR), pregnenolone 16alpha-carbonitrile and rifampicin (PXR), and clofibric acid (PPAR) have now been established. Two other nuclear receptors, designated LXR and FXR, which are respectively activated by oxysterols and bile acids, also play a role in liver P450 expression, in this case regulation of P450 cholesterol 7alpha-hydroxylase, a key enzyme of bile acid biosynthesis. All five P450-regulatory nuclear receptors belong to the same nuclear receptor gene family (family NR1), share a common heterodimerization partner, retinoid X-receptor (RXR), and are subject to cross-talk interactions with other nuclear receptors and with a broad range of other intracellular signaling pathways, including those activated by certain cytokines and growth factors. Endogenous ligands of each of those nuclear receptors have been identified and physiological receptor functions are emerging, leading to the proposal that these receptors may primarily serve to modulate hepatic P450 activity in response to endogenous dietary or hormonal stimuli. Accordingly, P450 induction by xenobiotics may in some cases lead to a perturbation of endogenous regulatory circuits with associated pathophysiological consequences.
Collapse
Affiliation(s)
- D J Waxman
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, Massachusetts, 02215, USA.
| |
Collapse
|
24
|
Skarin T, Becher R, Bucht A, Duvefelt K, Bohm S, Ranneberg-Nilsen T, Lilleaas EM, Schwarze PE, Toftgârd R. Cis-acting sequences from the rat cytochrome P450 2B1 gene confer pulmonary and phenobarbital-inducible expression in transgenic mice. Am J Respir Cell Mol Biol 1999; 21:177-84. [PMID: 10423399 DOI: 10.1165/ajrcmb.21.2.3378] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Specific cytochrome P450 enzymes show tissue-specific induction, and different regulatory units for expression of these enzymes have been identified. The regulation of the phenobarbital (PB)-inducible P450 genes has been relatively well characterized in terms of PB induction, but less so with regard to tissue-specific expression. CYP2B2 is not expressed in the rat lung, whereas cytochrome P450 2B1 (CYP2B1) is a dominating enzyme in the same tissue. The constitutive expression of CYP2B1 and CYP2B2 in liver is low, but inducible by PB, whereas the pulmonary expression of CYP2B1 is not induced by PB. This indicates utilization of different regulating mechanisms in the two organs. A gene construct consisting of the structural gene for LacZ coupled to a 1.3-kb 5' fragment of the rat CYP2B1 gene was used to generate transgenic mice in order to further elucidate the mechanism behind tissue-specific expression and PB induction of the CYP2B1 gene. Using reverse transcriptase-polymerase chain reaction on total RNA extracted from lung and liver tissue, a lung-specific transcription of the transgene was observed. Transcription of the construct was also observed in livers from PB-treated transgenic animals. By histochemical staining of lung sections with 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-gal), we demonstrated expression at the protein level in bronchiolar cells. In conclusion, our results revealed that the region extending to -1. 3 kb in the 5' flanking region of the CYP2B1 gene included sequences that could partly account for the lung-specific transcription of CYP2B1 and the hepatic induction of CYP2B1 transcription by PB.
Collapse
Affiliation(s)
- T Skarin
- Department of Biosciences and Center for Nutrition and Toxicology, Karolinska Institute, Huddinge, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- U A Meyer
- Department of Pharmacology, University of Basel, Switzerland.
| | | |
Collapse
|
26
|
Ramsden R, Beck NB, Sommer KM, Omiecinski CJ. Phenobarbital responsiveness conferred by the 5'-flanking region of the rat CYP2B2 gene in transgenic mice. Gene 1999; 228:169-79. [PMID: 10072770 DOI: 10.1016/s0378-1119(98)00612-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phenobarbital (PB) is a prototype for a class of agents that produce marked transcriptional activation of a number of genes, including certain cytochrome P-450s. We used transgenic mouse approaches and multiple gene reporters to assess the functional consequences of specific deletions and site-specific mutations within the 2.5kb 5'-flanking region of the rat CYP2B2 gene. Protein-DNA interactions at the PBRU domain also were characterized. Using the transgenic models, we demonstrate that sequences between -2500 and -1700bp of the CYP2B2 gene are critical for PB induction; mice with 1700 or 800bp of 5'-flanking CYP2B2 sequence are not PB responsive. DNA affinity enrichment techniques and immunoblotting and electromobility shift assays were used to determine that nuclear factor 1 (NF-1) interacts strongly with a site centered at -2200bp in the PB responsive unit (PBRU) of CYP2B2. To test the functional contribution of NF-1 in PB activation, we introduced specific mutations within the PBRU NF-1 element and demonstrated that these mutations completely ablate the binding interaction. However, transgenic mice incorporating the mutant NF-1 sequence within an otherwise wild-type -2500/CYP2B2 transgene maintained full PB responsiveness. These results indicate that, despite the avidity of the respective DNA-protein interaction within the PBRU in vitro, NF-1 interaction is not an essential factor directing PB transcriptional activation in vivo.
Collapse
Affiliation(s)
- R Ramsden
- Department of Environmental Health, 4225 Roosevelt Way NE, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
27
|
Ganem LG, Trottier E, Anderson A, Jefcoate CR. Phenobarbital induction of CYP2B1/2 in primary hepatocytes: endocrine regulation and evidence for a single pathway for multiple inducers. Toxicol Appl Pharmacol 1999; 155:32-42. [PMID: 10036216 DOI: 10.1006/taap.1998.8599] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phenobarbital (PB) and many structurally unrelated chemicals induce the protein and mRNA of P450 cytochromes CYP2B1, CYP2B2, CYP3A1, and specific phase II enzymes to a greater extent in Fischer 344 (F344) than in Wistar Furth (WF) female rats. This sex- and strain-dependent polymorphism can be partly attributed to suppressive effects of thyroid hormone (TH) on WF but not F344 females. We show here that this strain difference was largely retained in primary hepatocyte cultures and could be resolved into two components; (1) Expression of PB-inducible genes-WF hepatocytes had inherently lower basal and PB-induced levels of CYP2B1/2B2 protein and mRNA and UDPGT mRNA; and (2) TH sensitivity-in WF hepatocytes, PB induction, but not basal expression, of CYP2B1/2B2 was three- to fivefold more susceptible to inhibition by TH when the hormone was added to the medium. This second component explains the selective effect of in vivo treatment with methimazole, which lowers circulating TH and partially improves PB induction in WF female rats. Following transfection of a reporter construct containing a PB-responsive unit (PBRU), the plasmid was activated by PB to similar extents in hepatocytes from both rat strains. TH treatment did not inhibit PB-mediated induction of the plasmid in either cell type. Thus, neither of the components determining the strain polymorphism are linked to trans-activating factors contributing to this PBRU activity. The PB-like inducers, 2,2',4,4',5, 5'-hexachlorobiphenyl (HCB) and 1,1-dichloro-2, 2-bis(p-chlorophenyl)ethane (o,p-DDD), proportionally induced the CYP2B1/2B2 and UDPGT genes and activated the plasmid (HCB = PB > DDD). CYP2B1/2B2 expression following induction by PB and HCB was subject to identical patterns of inhibition by okadaic acid, cAMP, and GH. Together, these data suggest that PB-like inducers utilize the same polymorphic pathway to affect the same PBRU-activating factors.
Collapse
Affiliation(s)
- L G Ganem
- Department of Pharmacology and Environmental Toxicology Center, University of Wisconsin-Madison, 53706, USA
| | | | | | | |
Collapse
|
28
|
Mejdoubi N, Henriques C, Bui E, Porquet D. NF-kappaB is involved in the induction of the rat hepatic alpha1-acid glycoprotein gene by phenobarbital. Biochem Biophys Res Commun 1999; 254:93-9. [PMID: 9920738 DOI: 10.1006/bbrc.1998.9903] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phenobarbital, a classical inducer of the drug-metabolizing cytochrome P450 genes, induces alpha1-acid glycoprotein gene expression through a PB-responsive element (PBRE) located at position -142 to -126 from the transcriptional start site. The aim of this study was to investigate nuclear protein binding to the PBRE sequence after PB treatment. Cycloheximide treatment showed that de novo protein synthesis was not required for PB to induce AGP gene expression, pointing to post-translational modifications. Studies of the DNA-protein complex with the PBRE showed that phosphorylation status is a key regulator of the binding capacity of transactivating proteins involved in PB transcriptional activation. This DNA-protein complex, analyzed by southwestern blotting and UV cross-linking, involves three nuclear factors with molecular weights of 43, 52, and 65 kDa. Supershift and competition experiments showed that the 43-kDa factor can be related to C/EBPalpha and the 52- and 65-kDa factors to the two subunits of NF-kappaB.
Collapse
Affiliation(s)
- N Mejdoubi
- Faculté de Pharmacie, Institut de Signalisation et Innovation Thérapeutique, Rue Jean-Baptiste Clément, Chatenay-Malabry, 92290, France
| | | | | | | |
Collapse
|
29
|
Sharma MC, Agrawal AK, Sharma MR, Shapiro BH. Interactions of gender, growth hormone, and phenobarbital induction on murine Cyp2b expression. Biochem Pharmacol 1998; 56:1251-8. [PMID: 9802338 DOI: 10.1016/s0006-2952(98)00247-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interactions of gender, growth hormone, and phenobarbital induction on Cyp2b expression were examined in phenotypically normal (lit/+) and growth-hormone deficient "little" (lit/lit) mice. Using an immunocrossreactive monoclonal antibody designed to identify rat CYP2B1 and 2B2 proteins, we observed three hepatic Cyp2b proteins in control (lit/+) females, but only two proteins, one at trace levels, in control males. Phenobarbital administration to lit/+ mice increased the expression of the two Cyp2b isoforms in the males by 3- to 4-fold, but produced an approximately 75% reduction in the female-expressed proteins. Whereas growth hormone depletion (lit/lit) had no effect on the expression profile of Cyp2b proteins in females, it had a de-repressive effect in males, resulting in the expression of three proteins at concentrations now comparable to those observed in female liver. Generally, phenobarbital had no inductive effects in the lit/lit mice of both sexes. In all groups, transcript levels measured by a CYP2B1 probe were in agreement with the protein findings. In contrast, Cyp2b mRNA identified by an oligonucleotide probe for CYP2B2 were repressed completely by growth hormone in both sexes, and was expressed as a female-predominant transcript in the lit/lit mice. In spite of an apparent high degree of sequence homology between the rat CYP2B and murine Cyp2b gene families, the present findings highlight fundamental differences in their constitutive and gender-dependent expression, growth hormone regulation, and phenobarbital inducibility.
Collapse
Affiliation(s)
- M C Sharma
- Laboratories of Biochemistry, University of Pennsylvania School of Veterinary Medicine, Philadelphia 19104-6048, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Understanding molecular mechanisms of chemical toxicity and the potential risks of drugs to man is a pivotal part of the drug development process. With the dramatic increase in the number of new chemical entities arising from high throughput screening, there is an urgent need to develop systems for the rapid evaluation of potential drugs so that those agents which are most likely to be free of adverse effects can be identified at the earliest possible stage in drug development. The complex mechanisms of action of chemical toxins has made it extremely difficult to evaluate the precise toxic mechanism and also the relative role of specific genes in either potentiating or ameliorating the toxic effect. This problem can be addressed by the application of genetic strategies. Such strategies can exploit strain differences in susceptibility to specific toxic agents or, with the rapidly developing technologies, can exploit the use of transgenic animals where specific genes can be manipulated and subsequent effects on chemical toxicity evaluated. Transgenic animals can be exploited in a variety of ways to understand mechanisms of chemical toxicity. For example, a human gene encoding a drug metabolizing enzyme can be directly introduced and the effects on toxic response evaluated. Alternatively, specific genes can be deleted from the mouse genome and the consequences on toxicological response determined. Many toxic chemical agents modulate patterns of gene expression within target cells. This can be used to screen for responses to different types of toxic insult. In such experiments the promotor of a stress-regulated gene can be ligated to a suitable reporter gene, such as lacZ, or green fluorescent protein, and inserted into the genome of an appropriate test species. On administration of a chemical agent, cells which are sensitive to the toxic effects of that chemical will express the reporter, which can then be identified using an appropriate assay system. This latter strategy provides the potential for screening a large number of compounds rapidly for their potential toxic effects and also provides information on tissue and cellular specificity. Experiments using transgenic animals can be complex, and care must be taken to ensure that the results are not affected by background activities within the species being used. For example, the introduction of a specific human cytochrome P450 gene may have no effect on the metabolic disposition of a drug or toxin because of the background activity within the mouse. As the toxicity of a chemical agent is determined by a wide range of different factors including drug uptake, metabolism, detoxification and repair, differences between man and the species being used could potentially generate a toxic response in the animal model whereas no toxicity may be observed in man. In spite of these confounding factors, the application of transgenic animals to toxicological issues has enormous potential for speeding up the drug discovery process and will undoubtedly become part of this process in the future.
Collapse
Affiliation(s)
- C R Wolf
- Imperial Cancer Research Fund, Molecular Pharmacology Unit, Biomedical Research Centre, Ninewells Hospital and Medical School, Dundee, UK
| | | |
Collapse
|
31
|
Liu S, Park Y, Rivera-Rivera I, Li H, Kemper B. Nuclear factor-1 motif and redundant regulatory elements comprise phenobarbital-responsive enhancer in CYP2B1/2. DNA Cell Biol 1998; 17:461-70. [PMID: 9628589 DOI: 10.1089/dna.1998.17.461] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although the induction of drug-metabolizing systems by phenobarbital has been recognized for about 40 years, the mechanism by which cytochrome P450 gene expression is increased is still not well understood. A 163-bp fragment at about -2.2 Kb in CYP2B2 has been shown to mediate phenobarbital induction in primary rat hepatocytes (Trottier, et al. [1995] Gene 158:263-268) and by an in situ transient transfection assay in rat liver (Park, Y., et al. [1996]. J. Biol. Chem. 271:23725-23728). Deletion mutations of this fragment indicated that the 88-bp stretch from -2258 to -2170 was the minimal sequence that could mediate phenobarbital induction in the in situ system if single copies of the deleted fragments fused to the CYP2C1 proximal promoter were assayed. If three copies of the fragments were present, 5' and 3' deletions defined a minimal 37-bp core fragment, which, although necessary for phenobarbital responsiveness, was not sufficient unless additional sequence was present at either end, suggesting that redundant elements were present in the two flanking regions. Site-specific mutagenesis of an NF-1 site within the 88-bp fragment and linker scanning mutagenesis across the fragment indicated that the NF-1 site and a region to the 5' side of the site contributed to the magnitude of the response, but neither the NF-1 mutations nor any of the linker scanning mutations eliminated the response to phenobarbital. Mutation in a region 3' of the NF-1 site resulted in elevated basal expression without substantial effects on phenobarbital-induced expression. Binding of NF-1 to the 37-bp core fragment was established by gel-shift competition studies and by supershifts of the protein-DNA complexes by antisera to NF-1. Additional protein-DNA complexes were detected in the regions flanking the NF-1 site. These studies indicate that the CYP2B2 phenobarbital-responsive enhancer contains multiple constitutive and phenobarbital-responsive elements. Binding of nuclear proteins from control or phenobarbital-treated animals in vitro to this region was very similar. The only difference detected was a complex that was substantially reduced by phenobarbital treatment and mapped to the 3' side of the NF-1 site.
Collapse
Affiliation(s)
- S Liu
- Department of Molecular & Integrative Physiology, College of Medicine at Urbana-Champaign, University of Illinois 61801, USA
| | | | | | | | | |
Collapse
|
32
|
Shaw GC, Sung CC, Liu CH, Lin CH. Evidence against the Bm1P1 protein as a positive transcription factor for barbiturate-mediated induction of cytochrome P450BM-1 in bacillus megaterium. J Biol Chem 1998; 273:7996-8002. [PMID: 9525898 DOI: 10.1074/jbc.273.14.7996] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Bm1P1 protein was previously proposed to act as a positive transcription factor involved in barbiturate-mediated induction of cytochrome P450BM-1 in Bacillus megaterium. We now report that the bm1P1 gene encodes a protein of 217 amino acids, rather than the 98 amino acids as reported previously. In vitro gel shift assays indicate that the Bm1P1 protein did not interact with probes comprising the regulatory regions of the P450BM-1 gene. Moreover, disruption of the bm1P1 gene did not markedly affect barbiturate induction of P450BM-1 expression. A multicopy plasmid harboring only the P450BM-1 promoter region could increase expression of the chromosome-encoded P450BM-1. The level of expression is comparable with that shown by a multicopy plasmid harboring the P450BM-1 promoter region along with the bm1P1 gene. These results strongly suggest that the Bm1P1 protein is unlikely to act as a positive regulator for barbiturate induction of P450BM-1 expression. Finally, deletion of the Barbie box did not markedly diminish the effect of pentobarbital on expression of a reporter gene transcriptionally fused to the P450BM-1 promoter. This suggests that the Barbie box is unlikely to be a key element in barbiturate-mediated induction of P450BM-1.
Collapse
Affiliation(s)
- G C Shaw
- Institute of Biochemistry, School of Life Science, National Yang-Ming University, Taipei 112, Taiwan, Republic of China
| | | | | | | |
Collapse
|
33
|
Stoltz C, Vachon MH, Trottier E, Dubois S, Paquet Y, Anderson A. The CYP2B2 phenobarbital response unit contains an accessory factor element and a putative glucocorticoid response element essential for conferring maximal phenobarbital responsiveness. J Biol Chem 1998; 273:8528-36. [PMID: 9525968 DOI: 10.1074/jbc.273.14.8528] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatic cytochrome P450s play a critical role in the metabolism of hydrophobic xenobiotics. One of the major unsolved problems in xenobiotic metabolism is the molecular mechanism whereby phenobarbital induces hepatic enzymes, particularly CYP2B1 and CYP2B2 in rat liver. By using primary rat hepatocytes for transfection analyses, we previously identified in the CYP2B2 5'-flank a 163-base pair Sau3AI fragment that confers phenobarbital inducibility on a cat reporter gene and that has the properties of a transcriptional enhancer. Transfection experiments with sub-regions of the Sau3AI fragment now indicate that a central core together with an upstream or downstream accessory element within the fragment can confer phenobarbital responsiveness. One such accessory element, AF1, was identified and localized. DNase I footprinting analysis revealed the presence of a footprint overlapping this AF1 element. It also identified three other major protected regions, two of which are putative recognition sites for known transcription factors. Site-directed mutagenesis indicated that a putative glucocorticoid response element as well as a nuclear factor 1 site and an associated nuclear receptor hexamer half-site are essential for conferring maximal phenobarbital inducibility. Taken together, the results indicate that phenobarbital induction of CYP2B2 requires interactions among multiple regulatory proteins and cis-acting elements constituting a phenobarbital response unit.
Collapse
Affiliation(s)
- C Stoltz
- Centre de recherche en cancérologie de l'Université Laval, Pavillon L'Hôtel-Dieu de Québec, Centre Hospitalier Universitaire de Québec, Québec G1R 2J6 Canada
| | | | | | | | | | | |
Collapse
|
34
|
Honkakoski P, Moore R, Washburn KA, Negishi M. Activation by diverse xenochemicals of the 51-base pair phenobarbital-responsive enhancer module in the CYP2B10 gene. Mol Pharmacol 1998; 53:597-601. [PMID: 9547348 DOI: 10.1124/mol.53.4.597] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
By extending previous studies of the phenobarbital (PB)-responsive 132-base pair (bp) enhancer sequence in the CYP2B10 gene, we have delimited a 51-bp enhancer element that is fully inducible by PB in mouse primary hepatocytes. Sixteen structurally unrelated phenobarbital-type inducers activated the 51-bp enhancer element in transient transfection assays. The results thus indicate that most PB-type inducers, if not all inducers, increase the transcription of the CYP2B10 gene by activating this 51-bp element, now designated PB-responsive enhancer module or PBREM.
Collapse
Affiliation(s)
- P Honkakoski
- Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
35
|
Wolf CR, Campbell SJ, Clark AJ, Smith A, Bishop JO, Henderson CJ. The use of transgenic animals to assess the role of metabolism in target organ toxicity. ARCHIVES OF TOXICOLOGY. SUPPLEMENT. = ARCHIV FUR TOXIKOLOGIE. SUPPLEMENT 1998; 20:443-53. [PMID: 9442315 DOI: 10.1007/978-3-642-46856-8_39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- C R Wolf
- Imperial Cancer Research Fund Molecular Pharmacology Unit, Biomedical Research Centre, Ninewells Hospital and Medical School, Dundee, UK
| | | | | | | | | | | |
Collapse
|
36
|
Regulation of Cytochrome P450 Gene Transcription by Phenobarbital. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998. [DOI: 10.1016/s0079-6603(08)60824-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Dogra SC, Whitelaw ML, May BK. Transcriptional activation of cytochrome P450 genes by different classes of chemical inducers. Clin Exp Pharmacol Physiol 1998; 25:1-9. [PMID: 9493551 DOI: 10.1111/j.1440-1681.1998.tb02135.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. We review here the molecular mechanisms underlying the xenobiotic induction of genes encoding cytochrome P450 (CYP) enzymes in the liver and other tissues. We will focus on four major families of CYP genes. 2. Members of the CYP1 gene family are induced by polycyclic aromatic hydrocarbons and this process is mediated by the basic helix-loop-helix proteins: the Ah receptor and its heterodimeric partner Arnt. Considerable progress has been made in elucidating the molecular details of this induction process. 3. CYP4 genes are activated by peroxisomal proliferators, a group of structurally diverse chemicals that also induce peroxisome proliferation. The transcriptional response is dependent on the peroxisome proliferator-activated receptor and its partner RXR, both members of the nuclear receptor superfamily; their role in the induction process has been well characterized at the molecular level. 4. In contrast, the mechanism of gene induction of CYP2 genes by phenobarbital and other structurally diverse inducers is not well understood and a specific phenobarbital-responsive receptor has not been identified. 5. Induction of the CYP3 gene family by the glucocorticoid dexamethasone appears to involve the glucocorticoid receptor, but this receptor is not apparently required for induction by metapyrone and a complete molecular understanding of the induction processes is lacking at present.
Collapse
Affiliation(s)
- S C Dogra
- Department of Biochemistry, University of Adelaide, South Australia
| | | | | |
Collapse
|
38
|
Dogra SC, May BK. Liver-enriched transcription factors, HNF-1, HNF-3, and C/EBP, are major contributors to the strong activity of the chicken CYP2H1 promoter in chick embryo hepatocytes. DNA Cell Biol 1997; 16:1407-18. [PMID: 9428789 DOI: 10.1089/dna.1997.16.1407] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chicken CYP2H1 promoter constructs express strongly in chick embryo hepatocytes at a level comparable with that of Rous sarcoma viral promoter. We have identified the transcription factors responsible for the active CYP2H1 promoter. Binding sites for transcription factors were located within the first 160 bp of promoter sequence using promoter deletion experiments and DNase I footprint analysis. Sequence analysis revealed characteristic sites for the liver-enriched transcription factors of the HNF-1, HNF-3, and C/EBP families and for the ubiquitous factor, USF. Protein binding to these sites was established by gel mobility shift assays. Mutagenesis and transient transfection experiments demonstrated that these sites, in combination, were responsible for the strong promoter activity with a substantial contribution from HNF-1 and HNF-3. The promoter was also active in mammalian HepG2 and COS-1 cell lines where expression was dependent on the identified transcription factor binding sites but promoter activity in the HeLa cells was low. Transactivation experiments revealed that promoter expression could be activated through the appropriate binding sites by exogenously expressed rat HNF-1alpha or HNF-1beta, rat HNF-3alpha or HNF-3beta and chicken C/EBP alpha. Transcriptional synergism between HNF-1 and C/EBP was observed in these transactivation experiments. A Barbie box-like sequence overlapped the USF element but was not functional. The results demonstrate that liver-enriched transcription factors and USF direct strong expression of the CYP2H1 promoter in transiently transfected cells. By comparison, in vivo expression of this gene in uninduced chick embryo hepatocytes is low but markedly increased by phenobarbital. Drug induction may therefore substantially reflect derepression of this inherently active promoter.
Collapse
Affiliation(s)
- S C Dogra
- Department of Biochemistry, University of Adelaide, South Australia
| | | |
Collapse
|
39
|
Kim J, Kemper B. Phenobarbital alters protein binding to the CYP2B1/2 phenobarbital-responsive unit in native chromatin. J Biol Chem 1997; 272:29423-5. [PMID: 9367997 DOI: 10.1074/jbc.272.47.29423] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Phenobarbital is a classical inducer of the drug metabolizing cytochrome P450 genes, but the molecular mechanism of induction has not been elucidated. Functional analyses have identified a phenobarbital-responsive unit in the rat CYP2B1/2 and mouse Cyp2b10 genes about -2.3 kilobase pairs from the transcriptional start site, but little or no changes in protein binding to this region were observed in vitro. To examine the role of chromatin structure, protein binding to the phenobarbital-responsive unit assessed by in vitro DNase I footprinting was compared with that assessed by DNase I in vivo footprints in native chromatin. A region centered on a putative nuclear factor-1 site was the major protected region in in vitro footprints, and there were no detectable differences in binding between extracts from control and phenobarbital-treated animals. In contrast, phenobarbital treatment dramatically altered the protection pattern in native chromatin. In control samples a core region of about 25 base pairs (bp) centered on the nuclear factor-1 site was protected. However, after phenobarbital treatment, the protection of this core region was increased, and more dramatically the region of protection was extended 20 bp to either side so that a total of about 60 bp were protected. These results provide the first evidence that phenobarbital treatment alters the composition or architecture of proteins binding to the phenobarbital-responsive unit region and indicate that chromatin structure is important in this process. Because proteins are bound to the region in the untreated animal, the mechanism of induction involves the activation of proteins bound to the region and possibly recruitment of additional regulatory proteins rather than conversion of a closed chromatin structure to an open one that can bind regulatory factors.
Collapse
Affiliation(s)
- J Kim
- Department of Molecular and Integrative Physiology and the College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
40
|
Guengerich FP. Role of cytochrome P450 enzymes in drug-drug interactions. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1997; 43:7-35. [PMID: 9342171 DOI: 10.1016/s1054-3589(08)60200-8] [Citation(s) in RCA: 211] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many adverse drug-drug interactions are attributable to pharmacokinetic problems and can be understood in terms of alterations of P450-catalyzed reactions. Much is now known about the human P450 enzymes and what they do, and it has been possible to apply this information to issues related to practical problems. A relatively small subset of the total number of human P450s appears to be responsible for a large fraction of the oxidation of drugs. The three major reasons for drug-drug interactions involving the P450s are induction, inhibition, and possibly stimulation, with inhibition appearing to be the most important in terms of known clinical problems. With the available knowledge of human P450s and reagents, it is possible to do in vitro experiments with drugs and make useful predictions. The results can be tested in vivo, again using assays based on our knowledge of human P450s. This approach has the capability of not only improving predictions about which drugs might show serious interaction problems, but also decreasing the number of in vivo interaction studies that must be performed. These approaches should improve with further refinement and technical advances.
Collapse
Affiliation(s)
- F P Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| |
Collapse
|
41
|
Honkakoski P, Negishi M. Characterization of a phenobarbital-responsive enhancer module in mouse P450 Cyp2b10 gene. J Biol Chem 1997; 272:14943-9. [PMID: 9169466 DOI: 10.1074/jbc.272.23.14943] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Induction of drug- and carcinogen-metabolizing cytochrome P450s by xenobiotic chemicals is a common cellular defense mechanism, usually leading to increased detoxification of xenobiotics but sometimes, paradoxically, to formation of more toxic and carcinogenic metabolites. Phenobarbital (PB) is an archetypal representative for chemicals including industrial solvents, pesticides, plant products, and clinically used drugs that induce several genes within CYP subfamilies 2B, 2A, 2C, and 3A in rodents and humans. Although the transcription of these CYP genes is activated by PB, the associated molecular mechanisms have not yet been elucidated. Here we have analyzed, in detail, enhancer activity of a far upstream region of mouse Cyp2b10 gene and report a 132-base pair PB-responsive enhancer module (PBREM) with a 33-base pair core element containing binding sites for nuclear factor I- and nuclear receptor-like factors. Mutations of these binding sites abolish the ability of PBREM to respond to inducers in mouse primary hepatocytes.
Collapse
Affiliation(s)
- P Honkakoski
- Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
42
|
Sultana S, Nirodi CS, Ram N, Prabhu L, Padmanaban G. A 65-kDa protein mediates the positive role of heme in regulating the transcription of CYP2B1/B2 gene in rat liver. J Biol Chem 1997; 272:8895-900. [PMID: 9083008 DOI: 10.1074/jbc.272.14.8895] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Heme deficiency precipitated by CoCl2 administration to rats leads to a striking decrease in the inducibility of CYP2B1/B2 mRNA levels and its transcription by phenobarbitone (PB), besides decreasing the basal levels. Exogenous hemin administration counteracts the effects of CoCl2 administration. The binding of nuclear proteins to labeled positive cis-acting element (-69 to -98 nucleotides) in the near 5'-upstream region of the gene is inhibited by CoCl2 administration to saline or PB-treated rats, as assessed in gel shift assays. Administration of exogenous hemin to the animal or addition in vitro to the extracts is able to overcome the effects of CoCl2 treatment. The protein mediating this effect has been purified from CoCl2 administered nuclear extracts by heparin-agarose, positive element oligonucleotide affinity, and heme affinity column chromatography. This 65-kDa protein manifests very little binding to the positive element, but in the presence of certain other nuclear proteins, shows a strong heme-responsive binding. The purified protein binds heme. It is also able to stimulate transcription of a minigene construct of the CYP2B1/B2 gene containing -179 nucleotides of the 5'-upstream region and the I exon in a cell-free system, manifesting heme response. It is concluded that the 65-kDa protein mediates the constitutive requirement of heme for the transcription of CYP2B1/B2 gene.
Collapse
Affiliation(s)
- S Sultana
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012 India
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Park Y, Li H, Kemper B. Phenobarbital induction mediated by a distal CYP2B2 sequence in rat liver transiently transfected in situ. J Biol Chem 1996; 271:23725-8. [PMID: 8798596 DOI: 10.1074/jbc.271.39.23725] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The promoter activities of the genes for cytochrome P450 2B1 (CYP2B1) and cytochrome P450 2C1 (CYP2C1) have been assayed by direct injection of promoter-luciferase chimeric genes into rat liver. Activities of minimal promoters for CYP2C1 and CYP2B1 were detectable in untreated animals but were not increased by treatment of the animals with phenobarbital. After insertion to the 5' side of the minimal promoters of one to three copies of the CYP2B2 sequence from -2318 to -2155, a phenobarbital-responsive element in primary hepatocyte cultures (Trottier, E., Belzil, A., Stoltz, C., and Anderson, A. (1995) Gene (Amst.) 158, 263-268), phenobarbital treatment induced the activity of the CYP2C1 promoter by 5-15-fold and the CYP2B1 promoter by 2.5-5-fold. Mutation of a basal transcription element-like motif and a CCAAT/enhancer binding protein element in the CYP2B1 proximal promoter region reduced expression, but 3-4-fold induction by phenobarbital was retained. Mutation of the "Barbie box," a putative phenobarbital-responsive element (He, J.-S., and Fulco, A. J. (1991) J. Biol. Chem. 266, 7864-7869) in the CYP2B1 proximal promoter did not reduce the relative response to phenobarbital. These results demonstrate that direct injection of DNA into rat liver may be used to assay phenobarbital responsiveness of cytochrome P450 genes. In this system, a distal CYP2B2 element mediates a response to phenobarbital, and proximal elements, including the Barbie box, are not required for the induction.
Collapse
Affiliation(s)
- Y Park
- Department of Molecular and Integrative Physiology, College of Medicine at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
45
|
Park Y, Kemper B. The CYP2B1 proximal promoter contains a functional C/EBP regulatory element. DNA Cell Biol 1996; 15:693-701. [PMID: 8769571 DOI: 10.1089/dna.1996.15.693] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cytochromes P450 2B1 and 2B2 (CYP2B1 and CYP2B2) are well-known phenobarbital-inducible genes in rat liver. Potential transcriptional regulatory elements in the proximal promoter regions of rat CYP2B genes were analyzed by transfection in HepG2 hepatoma cells and by binding of nuclear proteins. Deletion of sequences from -1,400 to -110 had modest effects on promoter activity, but further deletion to -57 decreased the transcriptional activity by more than 90%, suggesting the presence of strong cis-acting elements in this region. Sequences similar to a basal transcription element (BTE) in CYP1A1 and a proposed phenobarbital responsive element (Barbie box) are present from -89 to -67. However, no protection was detected in these regions by DNase I footprinting assay. Instead, a region (FP1) from -64 to -45 was protected by liver nuclear extracts. Mutation of either the BTE or FP1 sequences of CYP2B1, or both, reduced transcriptional activity by 70-80% in HepG2 cells. FP1 was identified as a functional C/EBP site by co-transfection of C/EBP expression vectors and supershift assays with C/EBP antisera. Binding of liver nuclear proteins to sequences within the -110 to +1 region was not detectably altered by pretreatment of rats with phenobarbital.
Collapse
Affiliation(s)
- Y Park
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 61801, USA
| | | |
Collapse
|
46
|
Honkakoski P, Moore R, Gynther J, Negishi M. Characterization of phenobarbital-inducible mouse Cyp2b10 gene transcription in primary hepatocytes. J Biol Chem 1996; 271:9746-53. [PMID: 8621653 DOI: 10.1074/jbc.271.16.9746] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The mouse phenobarbital (PB)-inducible Cyp2b10 gene promoter has been isolated and sequenced, and control of its expression has been characterized. The 1405-base pair (bp) Cyp2bl0 promoter sequence is 83% identical to the corresponding region from the rat CYP2B2 gene. In addition to the lack of CA repeats, differences include insertion of 42 base pairs (-123/-82 bp) into the middle of a consensus sequence to the so-called "Barbie box." In this report, we have developed a primary mouse hepatocyte culture system in which endogenous 2B10 mRNA as well as Cyp2b10-driven CAT activity were induced by PB and 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), but not by the 3-chloro derivative of TCPOBOP. Deletion analysis of the Cyp2b10 promoter identified a basal transcription element at -64/-34 bp and a negative element at -971/-775 bp. Sequences contained within the -1404/-971 bp region are responsible for the induced CAT activity. DNase I protection and gel shift assays detected five major protein binding sites within the -1404/-971 bp fragment, one of which shared high sequence identity with a portion of a regulatory element in CYP2B2 gene (Trottier, E., Belzil, A., Stoltz, C., and Anderson, A. (1995) Gene 158, 263-268). Our results indicate that sequences important for PB-induced transcription of Cyp2b10 gene are located in the distal promoter.
Collapse
Affiliation(s)
- P Honkakoski
- Pharmacogenectics Section, Laboratory of Reproductive and Development Toxicology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
47
|
Luc PV, Adesnik M, Ganguly S, Shaw PM. Transcriptional regulation of the CYP2B1 and CYP2B2 genes by C/EBP-related proteins. Biochem Pharmacol 1996; 51:345-56. [PMID: 8573202 DOI: 10.1016/0006-2952(95)02190-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cytochrome P450 (CYP) 2B1 and 2B2 are encoded by two closely related genes, CYP2B1 and CYP2B2, that are expressed at low levels in adult rat liver but are induced markedly by the administration of the drug phenobarbital (PB) or other structurally unrelated hydrophobic compounds to animals. Very little is understood about the molecular mechanisms that control both basal and induced transcription of these genes. We have identified two liver specific DNase I hypersensitive sites associated with the CYP2B1 and CYP2B2 (CYP2B) genes. One site, which maps to a region in the 5'-flanking region between -2.2 and -2.3 kb, became more resistant to DNase I cleavage in nuclei from PB-treated rats; the converse was true of the other hypersensitive site, which maps to the proximal promoter region between -0.05 and -0.15 kb. DNase I footprint analysis revealed three prominent and one weak footprinted regions in the promoter region in the vicinity of the proximal hypersensitive site. Using competitor oligonucleotides, we determined that one footprinted region (FT2), between -42 and -66 bp, is likely to represent a binding site for CCAATT enhancer binding protein (C/EBP) family members. Indeed, bacterial expressed recombinant C/EBP alpha bound at this site and formed a footprint pattern identical to the pattern observed with liver nuclear extract. In vitro transcription assays demonstrated that the FT2 site contributed strongly to promoter activity, since its mutation reduced transcription by 80%. Two other sites identified by footprint analysis (FT1 and FT3) are also required to maintain high basal transcription of CYP2B2 promoter constructs in an in vitro transcription assay. Transient transfection experiments confirmed the expectation that C/EBP alpha could activate the 1.4 kb CYP2B promoter constructs, with mutation of the FT2 site impairing both basal transcription and transactivation by exogenous C/EBP alpha.
Collapse
Affiliation(s)
- P V Luc
- Department of Cell Biology, New York University School of Medicine, NY 10016, USA
| | | | | | | |
Collapse
|
48
|
P450 Cytochromes and Hormonal Regulation: An Overview. ADVANCES IN MOLECULAR AND CELL BIOLOGY 1996. [DOI: 10.1016/s1569-2558(08)60338-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
49
|
Ramana KV, Kohli KK. Induction of hepatic cytochrome P450 by phenobarbitone in rhesus monkey (Macaca mulatta). Drug Chem Toxicol 1996; 19:97-107. [PMID: 8829915 DOI: 10.3109/01480549609002199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An intraperitoneal administration of PB at a daily dose of 50 mg Kg-1 body wt for 4 days increased the specific content of hepatic microsomal heme, cytochrome P450 and the activity of aminopyrine N-demethylase by 1.8, 2.8 and 3.5 fold respectively. These results were substantiated by the intensification of the 52.5 KDa polypeptide in the electrophoretogram of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the hepatic microsomes obtained from PB-pretreated versus control macaques. PB did not affect the hepatic content of cytochrome b5 and the activity of NADPH cytochrome c reductase, whereas it decreased the activity of NADH cytochrome c reductase in the rhesus monkeys. To the best of our knowledge this is a first report on the induction of hepatic cytochrome P450 and related enzymes by PB in rhesus monkeys.
Collapse
Affiliation(s)
- K V Ramana
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | |
Collapse
|
50
|
Dragnev KH, Nims RW, Lubet RA. The chemopreventive agent diallyl sulfide. A structurally atypical phenobarbital-type inducer. Biochem Pharmacol 1995; 50:2099-104. [PMID: 8849338 DOI: 10.1016/0006-2952(95)02117-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Diallyl sulfide (DAS), a known chemopreventive agent, was administered i.g. (200 or 500 mg/kg body wt/day) to male F344/NCr rats for 4 days. Livers were removed, and hepatic levels of a variety of drug-metabolizing enzymes were determined with either catalytic assays or by quantifying levels of total cellular RNA coding for the individual genes of interest. The high dose of DAS induced the cytochrome P450 (CYP) 2B subfamily to near maximal levels [i.e. similar to those induced by phenobarbital (PB)] and induced the CYP3A subfamily, while having minimal effects on the levels of the CYP1A subfamily. In addition, DAS induced the glutathione S-transferase alpha subfamily, the glutathione S-transferase mu subfamily, and epoxide hydrolase. Unlike PB, however, DAS was also able to induce quinone oxidoreductase. In fact, the pleiotropic hepatic response to DAS appeared to be similar to that elicited by PB, with the exception that only DAS induced quinone oxidoreductase. Finally, we determined that DAS induced the levels of a specific nuclear binding protein that appears to be associated with the induction of various genes that are part of the pleiotropic response caused by PB-type inducers.
Collapse
Affiliation(s)
- K H Dragnev
- Laboratory of Comparative Carcinogenesis, NCI-Frederick Cancer Research and Development Center, MD 21702-1201, USA
| | | | | |
Collapse
|