1
|
Zhao L, Luo K, Wang Z, Wang Y, Zhang X, Yang D, Ma M, Zhou J, Cui J, Wang J, Han CZY, Liu X, Wang R. Design, synthesis, and biological activity of new endomorphin analogs with multi-site modifications. Bioorg Med Chem 2020; 28:115438. [PMID: 32199689 DOI: 10.1016/j.bmc.2020.115438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Endomorphin (EM)-1 and EM-2 are the most effective endogenous analgesics with efficient separation of analgesia from the risk of adverse effects. Poor metabolic stability and ineffective analgesia after peripheral administration were detrimental for the use of EMs as novel clinical analgesics. Therefore, here, we aimed to establish new EM analogs via introducing different bifunctional d-amino acids at position 2 of [(2-furyl)Map4]EMs. The combination of [(2-furyl)Map4]EMs with D-Arg2 or D-Cit2 yielded analogs with enhanced binding affinity to the μ-opioid receptor (MOR) and increased stability against enzymatic degradation (t1/2 > 300 min). However, the agonistic activities of these analogs toward MOR were slightly reduced. Similar to morphine, peripheral administration of the analog [D-Cit2, (2-furyl)Map4]EM-1 (10) significantly inhibited the pain behavior of mice in multiple pain models. In addition, this EM-1 analog was associated with reduced tolerance, less effect on gastrointestinal mobility, and no significant motor impairment. Compared to natural EMs, the EM analogs synthesized herein had enhanced metabolic stability, bioavailability, and analgesic properties.
Collapse
Affiliation(s)
- Long Zhao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Keyao Luo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Zhaojuan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yuan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Xianghui Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Dongxu Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Mengtao Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Jingjing Zhou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Jiaming Cui
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Jing Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Chao-Zhen-Yi Han
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Xin Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
2
|
Wang X, Liu Y, Wu X, Zhang Y, Pan R, Yu W, Wu F. Engineered endomorphin-2 gene: A novel therapy for improving morphine reinstatement in CPP model of rats by using deficient adenovirus as the vector. Biochem Biophys Res Commun 2019; 513:141-146. [DOI: 10.1016/j.bbrc.2019.03.183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022]
|
3
|
Discovery of two novel branched peptidomimetics containing endomorphin-2 and RF9 pharmacophores: Synthesis and neuropharmacological evaluation. Bioorg Med Chem 2019; 27:630-643. [DOI: 10.1016/j.bmc.2019.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/25/2018] [Accepted: 01/03/2019] [Indexed: 11/23/2022]
|
4
|
Wang CL, Yang DJ, Yuan BY, Wang Y. C-terminal hydrazide modification changes the spinal antinociceptive profiles of endomorphins in mice. Peptides 2018; 99:128-133. [PMID: 28888771 DOI: 10.1016/j.peptides.2017.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/24/2017] [Accepted: 08/28/2017] [Indexed: 01/11/2023]
Abstract
Previously, we have demonstrated that endomorphins (EMs) analogs with C-terminal hydrazide modification retained the μ-opioid receptor affinity and selectivity, and exhibited potent antinociception after intracerebroventricular (i.c.v.) administration. In the present study, we extended our studies to evaluate the antinociceptive profiles of EMs and their analogs EM-1-NHNH2, EM-2-NHNH2 given spinally in the radiant heat paw withdrawal test. Following intrathecal (i.t.) administration, EM-1, EM-2, EM-1-NHNH2 and EM-2-NHNH2 dose-dependently increased the latency for paw withdrawal response. EM-1-NHNH2 displayed the highest antinociceptive effects, with the ED50 values being 1.63 nmol, more potent than the parent EM-1 (1.96 nmol), but with no significant difference. By contrast, the analgesic activities of EM-2 and its analog EM-2-NHNH2 were almost equivalent (P>0.05). Naloxone and β-funaltrexamine (β-FNA) almost completely attenuated the antinociceptive effects of EMs and their analogs EM-1-NHNH2, EM-2-NHNH2 (10 nmol, i.t.), indicating the involvement of μ-opioid receptors. Notably, the antinociception of EM-1 was not significantly antagonized by naloxonazine, a selective μ1-opioid receptor antagonist, but partially reversed the effects of EM-2, suggesting that EM-1 and EM-2 may produce antinociception through distinct μ1- and μ2-opioid receptor subtypes. Moreover, naloxonazine didn't significantly block the antinociceptive effects of EM-1-NHNH2 and EM-2-NHNH2, and nor-BNI, the κ-opioid receptor antagonist, attenuated the analgesic effects of EM-2, but not EM-1, EM-1-NHNH2 or EM-2-NHNH2. These results indicated that C-terminal amide to hydrazide conversion changed the antinociceptive opioid mechanisms of EM-2 but not EM-1 at the spinal level. Herein, the acute antinociceptive tolerance were further determined and compared. EM-1-NHNH2 and EM-2-NHNH2 shifted the dose-response curve rightward by only 2.8 and 1.5-fold as determined by tolerance ratio, whereas EM-1 and EM-2 by 3.4 and 4.6-fold, respectively, indicating substantially reduced antinociceptive tolerance. The present study demonstrated that C-terminal hydrazide modification changes the spinal antinociceptive profiles of EMs.
Collapse
Affiliation(s)
- Chang-Lin Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| | - Dai-Jun Yang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Bi-Yu Yuan
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Yu Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| |
Collapse
|
5
|
Wu FX, He Y, Di HT, Sun YM, Pan RR, Yu WF, Liu R. An Engineered Endomorphin-2 Gene for Morphine Withdrawal Syndrome. PLoS One 2016; 11:e0149877. [PMID: 27003293 PMCID: PMC4803333 DOI: 10.1371/journal.pone.0149877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 02/06/2016] [Indexed: 11/19/2022] Open
Abstract
An optimal therapeutics to manage opioid withdrawal syndrome is desired for opioid addiction treatment. Down-regulation of endogenous endomorphin-2 (EM2) level in the central nervous system after continuous morphine exposure was observed, which suggested that increase of EM2 could be an alternative novel method for opioid dependence. As a short peptide, the short half-life of EM2 limits its clinical usage through conventional administration. In the present study, we engineered an EM2 gene using a signal peptide of mouse growth factor for an out-secretory expression of EM2 and an adenovirus as a vector, which ultimately sustained the release of EM-2. After administration of the adenovirus in central nervous system, a sustained increase of EM2 level in the cerebral spinal fluid (CSF) was observed along with a reduction of morphine withdrawal syndrome. These findings suggest that the engineered EM2 gene delivered to the central nervous system could be a novel therapeutics for withdrawal syndrome in opioid dependent subjects.
Collapse
Affiliation(s)
- Fei-xiang Wu
- Department of Anesthesiology & Intensive Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Yan He
- Department of Anesthesiology, Dongfang Hospital, Fujian, 354200, China
| | - Hui-ting Di
- Department of Anesthesiology & Intensive Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Yu-ming Sun
- Department of Anesthesiology & Intensive Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Rui-rui Pan
- Department of Anesthesiology & Intensive Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Wei-feng Yu
- Department of Anesthesiology & Intensive Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| |
Collapse
|
6
|
Rational Approach to the Design of Bioactive Peptidomimetics: Recent Developments in Opioid Agonist Peptides. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2015. [DOI: 10.1016/b978-0-444-63462-7.00002-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
7
|
Mollica A, Costante R, Stefanucci A, Pinnen F, Luisi G, Pieretti S, Borsodi A, Bojnik E, Benyhe S. Hybrid peptides endomorphin-2/DAMGO: Design, synthesis and biological evaluation. Eur J Med Chem 2013; 68:167-77. [DOI: 10.1016/j.ejmech.2013.07.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/03/2013] [Accepted: 07/05/2013] [Indexed: 02/07/2023]
|
8
|
Wang CL, Ren YK, Xiang Q, Wang Y, Gu N, Lu C, Wang R. Characterization of opioid activities of endomorphin analogs with C-terminal amide to hydrazide conversion. Neuropeptides 2013; 47:297-304. [PMID: 24084335 DOI: 10.1016/j.npep.2013.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/31/2013] [Accepted: 09/09/2013] [Indexed: 11/29/2022]
Abstract
Previously, we have synthesized an endomorphin-2 (EM-2) analog with C-terminal amide to hydrazide conversion, exhibiting slightly lower μ-affinity than EM-2. In the present study, the influence of C-terminal amide group to hydrazide conversion on the in vitro and in vivo opioid activities of EMs was evaluated. Our results demonstrated that C-terminal amide to hydrazide conversion of EMs did not markedly change their μ-opioid receptor binding affinities. Nevertheless, EM-2-NHNH2 decreased guinea pig ileum (GPI) and mouse vas deferens (MVD) potencies by about 10- and 5-fold compared to the parent compound, respectively. It is noteworthy that EM-1-NHNH2 exhibited the highest antinociception after intracerebroventricular (i.c.v.) injection, about 1.5-fold more potent than EM-1, but with moderate colonic contractile and expulsive effects, comparable with EM-1. Additionally, though EM-2-NHNH2 showed a slightly lower antinociceptive effect than EM-2, at higher doses (i.c.v., 1.5 and 5 nmol/mouse) the inhibitory effects of colonic propulsion were significantly attenuated, which would be helpful in the development of suitable μ-opioid therapeutics, but without some undesirable side effects. Therefore, the present results gave the evidence that C-terminal amide to hydrazide conversion of EMs may play an important role in the regulation of opioid activities.
Collapse
Affiliation(s)
- Chang-Lin Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Inhibition of proteases as a novel therapeutic strategy in the treatment of metabolic, inflammatory and functional diseases of the gastrointestinal tract. Drug Discov Today 2013; 18:708-15. [DOI: 10.1016/j.drudis.2013.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/19/2013] [Accepted: 03/28/2013] [Indexed: 12/14/2022]
|
10
|
Varamini P, Mansfeld FM, Blanchfield JT, Wyse BD, Smith MT, Toth I. Synthesis and Biological Evaluation of an Orally Active Glycosylated Endomorphin-1. J Med Chem 2012; 55:5859-67. [DOI: 10.1021/jm300418d] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | - Bruce D. Wyse
- School of Pharmacy, The University
of Queensland, Brisbane, QLD 4102, Australia
| | - Maree T. Smith
- School of Pharmacy, The University
of Queensland, Brisbane, QLD 4102, Australia
| | - Istvan Toth
- School of Pharmacy, The University
of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
11
|
Cravezic A, Fichna J, Gach K, Wyrebska A, Perlikowska R, Costentin J, Bonnet JJ, Janecka A, do Rego JC. Effect of potent endomorphin degradation blockers on analgesic and antidepressant-like responses in mice. Neuropharmacology 2011; 61:1229-38. [DOI: 10.1016/j.neuropharm.2011.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/27/2011] [Accepted: 07/12/2011] [Indexed: 11/16/2022]
|
12
|
Perlikowska R, Fichna J, do-Rego JC, Gach K, Janecka A. Kinetic studies of novel inhibitors of endomorphin degrading enzymes. Med Chem Res 2011; 21:1445-1450. [PMID: 22707871 PMCID: PMC3359464 DOI: 10.1007/s00044-011-9666-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 05/07/2011] [Indexed: 11/20/2022]
Abstract
Endomorphins (EMs), two endogenous μ-opioid receptor selective ligands, are attractive lead compounds for opioid-based pain management studies. However, these peptides are quickly degraded by peptidases, in particular by dipeptidylpeptidase IV (DPP IV) and aminopeptidase M (APM). Targeting enzymatic degradation is one approach to prolong endomorphin activity. In this study we characterized the action of two new inhibitors of similar to endomorphins structure, Tyr-Pro-Ala-NH2 (EMDB-2) and Tyr-Pro-Ala-OH (EMDB-3), which were designed earlier in our laboratory. The presented data give evidence that EMDB-2 and EMDB-3 are potent inhibitors of enzymes responsible for endomorphin cleavage. These compounds are stable and easily synthesized. EMDB-2 and EMDB-3 are competitive inhibitors of both, DPP IV and APM, with Ki values in micromolar range. They are less potent than diprotin A in protecting EMs against DPP IV but more potent than actinonin in protecting these peptides against APM.
Collapse
|
13
|
Mallareddy JR, Borics A, Keresztes A, Kövér KE, Tourwé D, Tóth G. Design, synthesis, pharmacological evaluation, and structure-activity study of novel endomorphin analogues with multiple structural modifications. J Med Chem 2011; 54:1462-72. [PMID: 21287991 DOI: 10.1021/jm101515v] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study reports on new proteolytically stable, pharmacologically active endomorphin analogues, incorporating Dmt(1), Achc(2), pFPhe(4), or βMePhe(4) unnatural amino acids. Consistent with earlier results, it was found that the analogues carrying Dmt(1) and Achc(2) residues displayed the highest μ-opioid receptor affinities, depending upon the configuration of the incorporated Achc(2). Combination of such derivatives with pFPhe(4) or βMePhe(4) yielded further compounds with variable binding potencies. Combined application of Dmt(1), cis-(1S,2R)Achc(2), and pFPhe(4) (compound 16) resulted in the most potent analogue. Ligand stimulated [(35)S]GTPγS binding assays indicated that the analogues retained their agonist activities and opioid receptor specificities. NMR and molecular modeling studies of the analogues containing βMePhe(4) or pFPhe(4) confirmed the predominance of bent structures, however, it is apparent that bent structures are energetically more favored than random/extended structures for all studied compounds.
Collapse
Affiliation(s)
- Jayapal Reddy Mallareddy
- Institute of Biochemistry , Biological Research Center, Hungarian Academy of Sciences, PO Box 521, H-6701 Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
14
|
Liu WX, Wang R. Endomorphins: potential roles and therapeutic indications in the development of opioid peptide analgesic drugs. Med Res Rev 2011; 32:536-80. [DOI: 10.1002/med.20222] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province; School of Basic Medical Sciences; Institute of Biochemistry and Molecular Biology; State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou China
| |
Collapse
|
15
|
Fichna J, Perlikowska R, Gach K, Do-Rego JC, Cravezic A, Janecka A, Storr MA. The Novel Endomorphin Degradation Blockers Tyr-Pro-DClPhe-Phe-NH2 (EMDB-1) and Tyr-Pro-Ala-NH2 (EMDB-2) Prolong Endomorphin-2 Action in Rat Ileum In Vitro. Chem Biol Drug Des 2010; 76:77-81. [DOI: 10.1111/j.1747-0285.2010.00977.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
16
|
Perlikowska R, Fichna J, WyrÄbska A, Poels J, Vanden Broeck J, Toth G, Storr M, do Rego JC, Janecka A. Design, Synthesis and Pharmacological Characterization of Endomorphin Analogues with Non-Cyclic Amino Acid Residues in Position 2. Basic Clin Pharmacol Toxicol 2010; 106:106-13. [DOI: 10.1111/j.1742-7843.2009.00476.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Torino D, Mollica A, Pinnen F, Lucente G, Feliciani F, Davis P, Lai J, Ma SW, Porreca F, Hruby VJ. Synthesis and evaluation of new endomorphin analogues modified at the Pro(2) residue. Bioorg Med Chem Lett 2009; 19:4115-8. [PMID: 19560919 PMCID: PMC2737817 DOI: 10.1016/j.bmcl.2009.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/27/2009] [Accepted: 06/01/2009] [Indexed: 10/20/2022]
Abstract
Six new endomorphin analogues, incorporating constrained amino acids in place of native proline have been synthesized. Residues of (S)-azetidine-2-carboxylic acid (Aze), 3,4-dehydro-(S)-proline (Delta(3)Pro), azetidine-3-carboxylic acid (3Aze) and dehydro-alanine (DeltaAla) have been used to prepare [Delta(3)Pro(2)]EM-2 (1), [Aze(2)]EM-1 (2), [Aze(2)]EM-2 (3), [3Aze(2)]EM-1 (4), [3Aze(2)]EM-2 (5) and [DeltaAla(2)]EM-2 (6). Binding assays and functional bioactivities for mu- and delta-receptors are reported. The highest affinity, bioactivity and selectivity are shown by peptides 2 and 3 containing the Aze residue.
Collapse
Affiliation(s)
- Domenica Torino
- Dipartimento di Chimica e Tecnologie del Farmaco e Istituto di Chimica Biomolecolare, CNR Sezione di Roma, “Sapienza”, Università di Roma, P.le A. Moro 5, 00185 Roma, Italy
| | - Adriano Mollica
- Dipartimento di Scienze del Farmaco, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Francesco Pinnen
- Dipartimento di Scienze del Farmaco, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Gino Lucente
- Dipartimento di Chimica e Tecnologie del Farmaco e Istituto di Chimica Biomolecolare, CNR Sezione di Roma, “Sapienza”, Università di Roma, P.le A. Moro 5, 00185 Roma, Italy
| | - Federica Feliciani
- Dipartimento di Scienze del Farmaco, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Peg Davis
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA 85721
| | - Josephine Lai
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA 85721
| | - Shou-Wu Ma
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA 85721
| | - Frank Porreca
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA 85721
| | - Victor J. Hruby
- Department of Chemistry, University of Arizona, Tucson, AZ, USA 85721
| |
Collapse
|
18
|
Gong P, Chen FX, Zhao Q, Ma GF, Wang R. The oxidation metabolites of endomorphin 1 and its fragments induced by free radicals. J Pept Sci 2009; 15:337-44. [PMID: 19206076 DOI: 10.1002/psc.1116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Endomorphin 1 (EM1), an endogenous micro-opioid receptor agonist, acts as a free radical scavenger in vitro and an antioxidant in vivo. The modification of EM1 by ROS and the properties of the OM attracted our attention. In vitro assays were performed via RP-HPLC, spectrophotometric measurements, EPR and amino acid analysis, Schmorl's reaction to define the formation of melanin-like compounds transformed from EM1, collectively named EM1-melanin and by solubility assay, radioligand-binding assay, NADH oxidation, superoxide anion scavenging assay to study some physical and chemical properties of EM1-melanin. Possible pathways of the formation of EM1-melanin were proposed.
Collapse
Affiliation(s)
- Pin Gong
- School of Life Science and State Key Laboratory of Applied Organic Chemistry, School of Basic Medical Sciences, Institute of Biochemistry and Molecular Biology, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | |
Collapse
|
19
|
Janecka A, Staniszewska R, Gach K, Fichna J. Enzymatic degradation of endomorphins. Peptides 2008; 29:2066-73. [PMID: 18718496 DOI: 10.1016/j.peptides.2008.07.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 07/12/2008] [Accepted: 07/16/2008] [Indexed: 12/22/2022]
Abstract
Centrally acting plant opiates, such as morphine, are the most frequently used analgesics for the relief of severe pain, even though their undesired side effects are serious limitation to their usefulness. The search for new therapeutics that could replace morphine has been mainly focused on the development of peptide analogs or peptidomimetics with high selectivity for one receptor type and high bioavailability, that is good blood-brain barrier permeability and enzymatic stability. Drugs, in order to be effective, must be able to reach the target tissue and to remain metabolically stable to produce the desired effects. The study of naturally occurring peptides provides a rational and powerful approach in the design of peptide therapeutics. Endogenous opioid peptides, endomorphin-1 and endomorphin-2, are two potent and highly selective mu-opioid receptor agonists, discovered only a decade ago, which display potent analgesic activity. However, extensive studies on the possible use of endomorphins as analgesics instead of morphine met with failure due to their instability. This review deals with the recent investigations that allowed determine degradation pathways of endomorphins in vitro and in vivo and propose modifications that will lead to more stable analogs.
Collapse
Affiliation(s)
- Anna Janecka
- Laboratory of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
| | | | | | | |
Collapse
|
20
|
Tugyi R, Mezõ G, Gitta S, Fellinger E, Andreu D, Hudecz F. Effect of Conjugation with Polypeptide Carrier on the Enzymatic Degradation of Herpes Simplex Virus Glycoprotein D Derived Epitope Peptide. Bioconjug Chem 2008; 19:1652-9. [DOI: 10.1021/bc700469r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Regina Tugyi
- Chemical Research Center, Institute of Biomolecular Chemistry, Hungarian Academy of Sciences, Budapest, Hungary, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Budapest 112, P.O. Box 32, H-1518, Hungary, Department of General Zoology and Department of Organic Chemistry, Eötvös L. University, Budapest, Hungary, and Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gábor Mezõ
- Chemical Research Center, Institute of Biomolecular Chemistry, Hungarian Academy of Sciences, Budapest, Hungary, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Budapest 112, P.O. Box 32, H-1518, Hungary, Department of General Zoology and Department of Organic Chemistry, Eötvös L. University, Budapest, Hungary, and Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Schlosser Gitta
- Chemical Research Center, Institute of Biomolecular Chemistry, Hungarian Academy of Sciences, Budapest, Hungary, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Budapest 112, P.O. Box 32, H-1518, Hungary, Department of General Zoology and Department of Organic Chemistry, Eötvös L. University, Budapest, Hungary, and Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Erzsébet Fellinger
- Chemical Research Center, Institute of Biomolecular Chemistry, Hungarian Academy of Sciences, Budapest, Hungary, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Budapest 112, P.O. Box 32, H-1518, Hungary, Department of General Zoology and Department of Organic Chemistry, Eötvös L. University, Budapest, Hungary, and Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - David Andreu
- Chemical Research Center, Institute of Biomolecular Chemistry, Hungarian Academy of Sciences, Budapest, Hungary, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Budapest 112, P.O. Box 32, H-1518, Hungary, Department of General Zoology and Department of Organic Chemistry, Eötvös L. University, Budapest, Hungary, and Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ferenc Hudecz
- Chemical Research Center, Institute of Biomolecular Chemistry, Hungarian Academy of Sciences, Budapest, Hungary, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Budapest 112, P.O. Box 32, H-1518, Hungary, Department of General Zoology and Department of Organic Chemistry, Eötvös L. University, Budapest, Hungary, and Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
21
|
Keresztes A, Szűcs M, Borics A, Kövér KE, Forró E, Fülöp F, Tömböly C, Péter A, Páhi A, Fábián G, Murányi M, Tóth G. New Endomorphin Analogues Containing Alicyclic β-Amino Acids: Influence on Bioactive Conformation and Pharmacological Profile. J Med Chem 2008; 51:4270-9. [DOI: 10.1021/jm800223t] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Attila Keresztes
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Mária Szűcs
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Attila Borics
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Katalin E. Kövér
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Enikő Forró
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Csaba Tömböly
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Antal Péter
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Annamária Páhi
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Gabriella Fábián
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Mariann Murányi
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Géza Tóth
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
22
|
Fichna J, Janecka A, Costentin J, Do Rego JC. The endomorphin system and its evolving neurophysiological role. Pharmacol Rev 2007; 59:88-123. [PMID: 17329549 DOI: 10.1124/pr.59.1.3] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endomorphin-1 (Tyr-Pro-Trp-Phe-NH2) and endomorphin-2 (Tyr-Pro-Phe-Phe-NH2) are two endogenous opioid peptides with high affinity and remarkable selectivity for the mu-opioid receptor. The neuroanatomical distribution of endomorphins reflects their potential endogenous role in many major physiological processes, which include perception of pain, responses related to stress, and complex functions such as reward, arousal, and vigilance, as well as autonomic, cognitive, neuroendocrine, and limbic homeostasis. In this review we discuss the biological effects of endomorphin-1 and endomorphin-2 in relation to their distribution in the central and peripheral nervous systems. We describe the relationship between these two mu-opioid receptor-selective peptides and endogenous neurohormones and neurotransmitters. We also evaluate the role of endomorphins from the physiological point of view and report selectively on the most important findings in their pharmacology.
Collapse
Affiliation(s)
- Jakub Fichna
- Laboratory of Experimental Neuropsychopharmacology, CNRS FRE 2735, IFRMP 23, Faculty of Medicine & Pharmacy, University of Rouen, 22, Boulevard Gambetta, 76183 Rouen cedex, France
| | | | | | | |
Collapse
|
23
|
Yu Y, Shao X, Cui Y, Liu HM, Wang CL, Fan YZ, Liu J, Dong SL, Cui YX, Wang R. Structure–Activity Study on the Spatial Arrangement of the Third Aromatic Ring of Endomorphins 1 and 2 Using an Atypical Constrained C Terminus. ChemMedChem 2007; 2:309-17. [PMID: 17285661 DOI: 10.1002/cmdc.200600274] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The discovery of endomorphins (EMs) has opened the possibility of searching for new analgesics. However, the design of peptide analgesics has proven to be very difficult as a result of their conformational flexibility and a lack of clarity in structure-activity relationships (SAR). In EMs, the amino acid side chains exhibit considerable conformational flexibility, especially in the third aromatic ring, which is free to adopt a bioactive conformation. To resolve these problems, a series of C terminus EM analogues, [Xaa(4)-R]EMs, modified through the substitution of Phe(4) with nonaromatic residues and termination with benzyl groups, were designed to generate conformational constrains of the third aromatic ring by amide bond and torsion angles (phi(4) and psi(4)) of Xaa(4). Introduction of (S)-alpha-methyl or (S)/(R)-alpha-carboxamide on the methylene unit of the benzyl group was designed to produce an atypical topographical constraint (phi(5)) of the third aromatic ring rotation. Interestingly, some EM derivatives, with elimination of the C-terminal carboxamide group and significant changes in the address sequence (Phe(4)-NH(2)), still exhibited higher mu-opioid receptor (MOR) affinity than unmodified EMs. In contrast, some analogues with incorrectly constrained C termini displayed very low affinity and pharmacological activities. Thus, our results indicate that these EM analogues, with atypical constrained C termini, provide model compounds with potent MOR agonism. They also give evidence that the proper spatial orientation and conformational restriction of the third aromatic ring are crucial for the interaction of EMs with MOR.
Collapse
Affiliation(s)
- Ye Yu
- Institute of Biochemistry and Molecular Biology, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sarić A, Balog T, Sobocanec S, Marotti T. Endomorphin 1 activates nitric oxide synthase 2 activity and downregulates nitric oxide synthase 2 mRNA expression. Neuroscience 2007; 144:1454-61. [PMID: 17197099 DOI: 10.1016/j.neuroscience.2006.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 11/07/2006] [Accepted: 11/12/2006] [Indexed: 11/20/2022]
Abstract
Endomorphins 1 and 2 are newly discovered opioid tetrapeptides whose structure is more resistant to enzymatic degradation than that of other opioid peptides. Endomorphins 1 and 2 are considered as endogenous ligands with a high affinity for mu receptors. A number of studies have shown that opioid peptides per se can induce release of nitric oxide from rodent and human immune cells. Endomorphins seemed to be involved in the process of vasodilatation by stimulating release of nitric oxide. In our study we stimulated in vitro J774 macrophages with different concentrations of endomorphin 1 or 2 for measuring nitric oxide release and nitric oxide synthase 2 (NOS 2) mRNA expression. Results showed that 48 h incubation did not enhance nitric oxide release when measured with the Griess method. On the other hand, using real-time amperometric detection of nitric oxide release shortly after challenge with endomorphins, we showed that only 10(-6) M endomorphin 1 was able to stimulate nitric oxide release from a J774 macrophage cell line by activation of NOS 2 isoenzyme. The peak release was 1000-1500 s after stimulation and was in the range of nitric oxide release stimulated with 10 microg/ml lipopolysaccharide. In contrast to this, endomorphin 2 failed to induce nitric oxide release in all tested concentrations. Using a specific inhibitor of nitric oxide synthase 2 (N-(3-[aminomethyl]benzyl)acetamidine, 1400W) we eliminated the stimulatory effect of endomorphin 1 on nitric oxide release. The expression of mRNA for NOS 2 in J774 macrophages, after 30 min incubation with either lipopolysaccharide or 10(-6) M endomorphin 1 was not upregulated. As expected, lipopolysaccharide induced de novo NOS 2 transcription within 4 h. At the same time, in contrast to lipopolysaccharide, mRNA expression of cells treated with endomorphin 1 was downregulated. Since a mu-opioid receptor specific antagonist beta-funaltrexamine hydrochloride inhibited nitric oxide release from endomorphin 1-treated cells, the effect seemed to be mu-opioid receptor mediated.
Collapse
MESH Headings
- Animals
- Cell Line
- Dose-Response Relationship, Drug
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Enzyme Activation/drug effects
- Enzyme Activation/physiology
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation, Enzymologic/physiology
- Lipopolysaccharides/pharmacology
- Macrophages/drug effects
- Macrophages/enzymology
- Mice
- Narcotic Antagonists/pharmacology
- Nitric Oxide/biosynthesis
- Nitric Oxide Synthase Type II/drug effects
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/metabolism
- Oligopeptides/metabolism
- Oligopeptides/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- A Sarić
- Division of Molecular Medicine, Rudjer Bosković Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | | | | | | |
Collapse
|
25
|
Keresztes A, Tóth G, Fülöp F, Szucs M. Synthesis, radiolabeling and receptor binding of [3H][(1S,2R)ACPC2]endomorphin-2. Peptides 2006; 27:3315-21. [PMID: 17084945 DOI: 10.1016/j.peptides.2006.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 09/14/2006] [Accepted: 09/15/2006] [Indexed: 11/25/2022]
Abstract
Previously, we have shown that substitution of Pro(2) for cis-2-aminocyclopentanecarboxylic acid, ACPC in endomorphin-2 results in an analogue with greatly augmented proteolytic stability, high mu-opioid receptor affinity and selectivity. We now report the synthesis and biochemical characterization of [(3)H][(1S,2R)ACPC(2)]endomorphin-2 with a specific activity of 1.41 TBq/mmol (38.17 Ci/mmol). Specific binding of [(3)H][(1S,2R)ACPC(2)]endomorphin-2 was saturable and of high affinity with an equilibrium dissociation constant, K(d)=1.80+/-0.21nM and receptor density, B(max)=345+/-27 fmol x mg protein(-1) at 25 degrees C in rat brain membranes. Similar affinity values were obtained in kinetic and displacement assays. Both Na(+) and Gpp(NH)p decreased the affinity proving the agonist character of the radioligand. [(3)H][(1S,2R)ACPC(2)]endomorphin-2 retained the mu-specificity of the parent peptide. The new radioligand will be a useful tool to map the topographical requirements of mu-opioid peptide binding due to its high affinity, selectivity and enzymatic stability.
Collapse
Affiliation(s)
- Attila Keresztes
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | |
Collapse
|
26
|
Gao Y, Liu X, Liu W, Qi Y, Liu X, Zhou Y, Wang R. Opioid receptor binding and antinociceptive activity of the analogues of endomorphin-2 and morphiceptin with phenylalanine mimics in the position 3 or 4. Bioorg Med Chem Lett 2006; 16:3688-92. [PMID: 16682191 DOI: 10.1016/j.bmcl.2006.04.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 04/06/2006] [Accepted: 04/21/2006] [Indexed: 11/29/2022]
Abstract
Endomorphin-2 (EM-2) and morphiceptin are the same class of putative mu-opioid receptor ligands. To investigate the effectiveness of phenylglycine (Phg, L or D) and homophenylalanine (Hfe) as the surrogates of phenylalanine in the position 3 and/or 4 of them, a series of their analogues were synthesized. Opioid receptor binding affinities were determined. Two analogues, [Hfe3]EM-2 and [Phg4] (EM-2/morphiceptin), showed different but potent antinociceptive activity in mouse hot-plate test, the results combined with their half-lives of degradation by mouse brain homogenate could also present some evidence to the in vivo degradative mechanism of EM-2.
Collapse
Affiliation(s)
- Yanfeng Gao
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Rónai AZ, Szemenyei E, Kató E, Kocsis L, Orosz G, Al-Khrasani M, Tóth G. Endomorphin synthesis in rat brain from intracerebroventricularly injected [3H]-Tyr-Pro: A possible biosynthetic route for endomorphins. ACTA ACUST UNITED AC 2006; 134:54-60. [PMID: 16464510 DOI: 10.1016/j.regpep.2005.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 12/15/2005] [Accepted: 12/22/2005] [Indexed: 11/22/2022]
Abstract
In spite of concentrated efforts, the biosynthetic route of mu-opioid receptor agonist brain tetrapeptide endomorphins (Tyr-Pro-Trp-Phe-NH2 and Tyr-Pro-Phe-Phe-NH2), discovered in 1997, is still obscure. We report presently that 30 min after intracerebroventricular injection of 20 or 200 microCi [3H]Tyr-Pro (49.9 Ci mmol(-1)) the incorporated radioactivity was found in endomorphin-related tetra- and tripeptides in rat brain extracts. As detected by the combination of HPLC with radiodetection, a peak corresponding to endomorphin-2-OH could be identified in two of four extracts of "20 microCi" series. Radioactive peaks in position of Tyr, Tyr-Pro, Tyr-Pro-Phe or Tyr-Pro-Trp appeared regularly in both series and also in the "tetrapeptide cluster" constituted by endomorphins and their free carboxylic forms. In one of the four extracts in the "200 microCi" series a robust active peak in the position of endomorphin 2 could be detected. Intracerebroventricularly injected 100 nmol, but not 10 or 1000 nmol cold Tyr-Pro (devoid of opioid activity in vitro), caused a naloxone-reversible prolongation of tail-flick latency in rats, peaking between 15 and 30 min. We suggest that Tyr-Pro may serve as a biosynthetic precursor to endomorphin synthesis.
Collapse
Affiliation(s)
- András Z Rónai
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Faculty of Medicine, NET Bldg. 412, P.O.B. 370, H-1445 Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
28
|
Yu Y, Wang CL, Cui Y, Fan YZ, Liu J, Shao X, Liu HM, Wang R. C-terminal amide to alcohol conversion changes the cardiovascular effects of endomorphins in anesthetized rats. Peptides 2006; 27:136-43. [PMID: 16139930 DOI: 10.1016/j.peptides.2005.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 07/11/2005] [Accepted: 07/12/2005] [Indexed: 11/28/2022]
Abstract
Endomorphin1-ol (Tyr-Pro-Trp-Phe-ol, EM1-ol) and endomorphin2-ol (Tyr-Pro-Phe-Phe-ol, EM2-ol), with C-terminal alcohol (-ol) containing, have been shown to exhibit higher affinity and lower intrinsic efficacy in vitro than endomorphins. In the present study, in order to investigate the alterations of systemic hemodynamic effects induced by C-terminal amide to alcohol conversion, responses to intravenous (i.v.) or intracerebroventricular (i.c.v.) injection of EM1-ol, EM2-ol and their parents were compared in the system arterial pressure (SAP) and heart rate (HR) of anesthetized rats. Both EM1-ol and EM2-ol induced dose-related decrease in SAP and HR when injected in doses of 3-100 nmol/kg, i.v. In terms of relative vasodepressor activity, it is interesting to note that EM2-ol was more potent than endomorphin2 [the dose of 25% decrease in SAP (DD25) = 6.01+/-3.19 and 13.99+/-1.56 nmol/kg, i.v., respectively] at a time when responses to EM1-ol were less potent than endomorphin1. Moreover, decreases in SAP in response to EM1-ol and EM2-ol were reduced by naloxone, atropine sulfate, L-NAME and bilateral vagotomy. It indicated that the vasodepressor responses were possibly mediated by a naloxone-sensitive, nitric oxide release, vagus-activated mechanism. It is noteworthy that i.c.v. injections of -ol derivatives produced dose-related decreases in SAP and HR, which were significantly less potent than endomorphins and were attenuated by naloxone and atropine sulfate. In summary, the results of the present study indicated that the C-terminal amide to alcohol conversion produced different effects on the vasodepressor activity of endomorphin1 and endomorphin2 and endowed EM2-ol distinctive hypotension characters in peripheral (i.v.) and central (i.c.v.) tissues. Moreover, these results provided indirect evidence that amidated C-terminus might play an important role in the regulation of the cardiovascular system.
Collapse
Affiliation(s)
- Ye Yu
- Department of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, PR China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Janecka A, Kruszynski R, Fichna J, Kosson P, Janecki T. Enzymatic degradation studies of endomorphin-2 and its analogs containing N-methylated amino acids. Peptides 2006; 27:131-5. [PMID: 16087275 DOI: 10.1016/j.peptides.2005.06.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 06/17/2005] [Accepted: 06/21/2005] [Indexed: 11/25/2022]
Abstract
In this paper, we describe the synthesis of novel endomorphin-2 analogs, containing N-methylated amino acids, consecutively in each position. The receptor-binding profile of the new analogs and their stability against enzymatic cleavage by commercially available peptidases, carboxypeptidase Y and aminopeptidase M, and a rat brain homogenate are reported. The best analog of this series, [Sar2]endomorphin-2, was almost equipotent with the parent peptide in the mu-receptor-binding assay and was also highly resistant to enzymatic degradation. This analog may be a suitable candidate for the in vivo antinociceptive studies.
Collapse
Affiliation(s)
- Anna Janecka
- Department of Medicinal Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | | | | | | | | |
Collapse
|
30
|
Zhao QY, Chen Q, Yang DJ, Feng Y, Long Y, Wang P, Wang R. Endomorphin 1[ψ] and endomorphin 2[ψ], endomorphins analogues containing a reduced (CH2NH) amide bond between Tyr1 and Pro2, display partial agonist potency but significant antinociception. Life Sci 2005; 77:1155-65. [PMID: 15878600 DOI: 10.1016/j.lfs.2005.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 03/14/2005] [Indexed: 10/25/2022]
Abstract
Endomorphin 1 (EM1) and endomorphin 2 (EM2) are highly potent and selective mu-opioid receptor agonists and have significant antinociceptive action. In the mu-selective pocket of endomorphins (EMs), Pro2 residue is a spacer and directs the Tyr1 and Trp3/Phe3 side chains into the required orientation. The present work was designed to substitute the peptide bond between Tyr1 and Pro2 of EMs with a reduced (CH2NH) bond and study the agonist potency and antinociception of EM1[psi] (Tyr[psi(CH2NH)]Pro-Trp-Phe-NH2) and EM2[psi] (Tyr[psi(CH2NH)]Pro-Phe-Phe-NH2). Both EM1[psi] and EM2[psi] are partial mu opioid receptor agonists showing significant loss of agonist potency in GPI assay. However, EMs[psi] exhibited potent supraspinal antinociceptive action in vivo. In the mice tail-flick test, EMs[psi] (1, 5, 10 nmol/mouse, i.c.v.) produced potent and short-lasting antinociception in a dose-dependent and naloxone (1 mg/kg) reversed manner. At the highest dose of 10 nmol, the effect of EM2[psi] was prolonged and more significant than that of EM2. In the rat model of formalin injection induced inflammatory pain, EMs[psi] (0.1, 1, 10 nmol/rat, i.c.v.), like EMs, exerted transient but not dose-dependent antinociception. These results suggested that in the mu-selective pocket of EMs, the rigid conformation induced by the peptide bond between Tyr1 and Pro2 is essential to regulate their agonist properties at the mu opioid receptors. However, the increased conformational flexibility induced by the reduced (CH2NH) bond made less influence on their antinociception.
Collapse
Affiliation(s)
- Qian-Yu Zhao
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Tugyi R, Uray K, Iván D, Fellinger E, Perkins A, Hudecz F. Partial D-amino acid substitution: Improved enzymatic stability and preserved Ab recognition of a MUC2 epitope peptide. Proc Natl Acad Sci U S A 2005; 102:413-8. [PMID: 15630090 PMCID: PMC544305 DOI: 10.1073/pnas.0407677102] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 11/24/2004] [Indexed: 11/18/2022] Open
Abstract
The stability of an immunogen against enzymatic degradation is considered an important factor for the design of synthetic vaccines. For our studies, we have selected an epitope from the tandem-repeat unit of the high-molecular-weight MUC2 mucin glycoprotein, which can be underglycosylated in case of colon cancer. In this study, we prepared a MUC2 peptide containing the PTGTQ epitope of a MUC2 protein backbone-specific mAb 996 and its derivatives. In these peptides, the N- and C-terminal flanking regions were systematically substituted by up to three d-amino acids. Peptides prepared by solid-phase synthesis were tested for their mAb 996 binding in competitive ELISA experiments, and their stability was studied in serum and lysosomal preparation. Our data show that the epitope function of peptide (15)TPTPTGTQTPT(25) is retained even in the presence of two d-amino acid residues at its N-terminal flanking region and up to three at its C-terminal flanking region (tpTPTGTQtpt). Also, this partly d peptide shows high resistance against proteolytic degradation in diluted human serum and in lysosomal preparation. These findings suggest that, by appropriate combination of structural modifications (namely, d-amino acid substitution) in the flanks of an Ab epitope, it is feasible to construct a synthetic antigen with preserved recognition properties and high stability against enzymatic degradation. Peptides tPTPTGTQTpt and tpTPTGTQTpt derived from this study can be used for immunization experiments and as potential components of synthetic vaccines for tumor therapy.
Collapse
Affiliation(s)
- Regina Tugyi
- Institute of Chemistry, Hungarian Academy of Sciences, 59-67 Pusztaszeri út, Budapest, H-1025 Hungary
| | | | | | | | | | | |
Collapse
|
32
|
Tugyi R, Mezö G, Fellinger E, Andreu D, Hudecz F. The effect of cyclization on the enzymatic degradation of herpes simplex virus glycoprotein D derived epitope peptide. J Pept Sci 2005; 11:642-9. [PMID: 15864815 DOI: 10.1002/psc.669] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
One linear and three cyclic peptides corresponding to the 278-287 ((278)LLEDPVGTVA(287)) sequence of glycoprotein D (gD-1) of herpes simplex virus were synthesized for the analysis of the effect of cyclization on protection against enzymatic degradation. In this design, the turn-forming motif ((281)DPVG(284)) was positioned in the central part of the peptide and elongated by three amino acids at both termini. Cyclopeptide formation was achieved by the introduction of a peptide bond, a disulfide bridge or a thioether link. The stability of these peptides was compared in human serum and also in rat lysosomal preparations. The data obtained in 10% and 50% human serum show that all three types of cyclization enhanced the stability, but at different levels. Complete stability was only achieved by the introduction of a thioether link, while the presence of a disulfide or peptide bond resulted in improved, but partial resistance against hydrolytic decomposition. In lysosomal preparations the presence of cyclic primary structure provided full protection against enzymatic hydrolysis. Taken together, these findings indicate that by appropriate structural modification it is feasible to construct a synthetic antigen with high stability against enzymatic degradation in complex biological fluids. Further studies are in progress to identify enzymes responsible for degradation in diluted human sera as well as in the lysosomal preparations and to gain more detailed information on the mechanism of action.
Collapse
Affiliation(s)
- Regina Tugyi
- Chemical Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | |
Collapse
|
33
|
Tessier B, Blanchard F, Vanderesse R, Harscoat C, Marc I. Applicability of predictive models to the peptide mobility analysis by capillary electrophoresis–electrospray mass spectrometry. J Chromatogr A 2004; 1024:255-66. [PMID: 14753727 DOI: 10.1016/j.chroma.2003.10.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The prediction of peptide mobility by capillary electrophoresis (CE) coupled to electrospray mass spectrometry (MS) is studied in order to verify the validity of the semi-empirical models developed in classical CE. This work relies on the experimental determination of the electrophoretic mobilities of 68 peptides, different in charge and in size. The results indicate that the prediction is possible in CE-MS experiments, in spite of the restraints inherent in the coupling conditions. The best fit of experimental data was obtained with the Offord's model. The efficiency of the model was confirmed by the analysis of a peptide mixture in CE-MS.
Collapse
Affiliation(s)
- B Tessier
- Laboratoire des Sciences du Génie Chimique, U.P.R. 6811, C.N.R.S./I.N.P.L., 13 rue du Bois de la Champelle, Vandoeuvre-Lès-Nancy 54500, France
| | | | | | | | | |
Collapse
|
34
|
Tömböly C, Kövér KE, Péter A, Tourwé D, Biyashev D, Benyhe S, Borsodi A, Al-Khrasani M, Rónai AZ, Tóth G. Structure−Activity Study on the Phe Side Chain Arrangement of Endomorphins Using Conformationally Constrained Analogues. J Med Chem 2003; 47:735-43. [PMID: 14736254 DOI: 10.1021/jm0310028] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Endomorphins-1 and -2 were substituted with all the beta-MePhe stereoisomers in their Phe residues to generate a conformationally constrained peptide set. This series of molecules was subjected to biological assays, and for beta-MePhe(4)-endomorphins-2, a conformational analysis was performed. Incorporation of (2S,3S)-beta-MePhe(4) resulted in the most potent analogues of both endomorphins with enhanced enzymatic stability. Their micro opioid affinities were 4-times higher than the parent peptides, they stimulated [(35)S]GTPgammaS binding, and they were found to be full agonists. NMR experiments revealed that C-terminal (2S,3S)-beta-MePhe in endomorphin-2 strongly favored the gauche (-) spatial orientation which implies the presence of the chi(1) = -60 degrees rotamer of Phe(4) in the binding conformer of endomorphins. Our results emphasize that the appropriate orientation of the C-terminal aromatic side chain of endomorphins is substantial for binding to the micro opioid receptor.
Collapse
Affiliation(s)
- Csaba Tömböly
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, 6701 Szeged, P.O. Box 521, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tóth F, Farkas J, Tóth G, Wollemann M, Borsodi A, Benyhe S. Synthesis and binding characteristics of a novel enkephalin analogue, [3H]Tyr-D-Ala-Gly-Phe-D-Nle-Arg-Phe. Peptides 2003; 24:1433-40. [PMID: 14706559 DOI: 10.1016/j.peptides.2003.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The endogenous opioid heptapeptide (Tyr-Gly-Gly-Phe-Met-Arg-Phe; MERF) has been shown to interact with multiple opioid as well as non-opioid sites in mammalian brain membranes. To increase the stability and bioavailability of MERF, new synthetic derivatives with D-amino acid substitutions were prepared and studied. One of the new compounds in this series, Tyr-D-Ala-Gly-Phe-D-Nle-Arg-Phe (DADN), had only moderate affinity in competing with [3H]MERF, whereas it displayed the highest potency in producing antinociception following intrathecal administration. DADN was radiolabeled with 41Ci/mmol specific activity. Specific binding of [3H]DADN was saturable, stereoselective and of high affinity. Chemical stability, increased micro-receptor selectivity, and hydrophobicity of the peptide all contribute to the effectiveness observed in biochemical and pharmacological studies.
Collapse
Affiliation(s)
- Fanni Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, Szeged H-6701, Hungary
| | | | | | | | | | | |
Collapse
|
36
|
Sakurada C, Sakurada S, Hayashi T, Katsuyama S, Tan-No K, Sakurada T. Degradation of endomorphin-2 at the supraspinal level in mice is initiated by dipeptidyl peptidase IV: an in vitro and in vivo study. Biochem Pharmacol 2003; 66:653-61. [PMID: 12906930 DOI: 10.1016/s0006-2952(03)00391-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Endomorphin-2 (Tyr-Pro-Phe-PheNH(2)) was discovered as an endogenous ligand for the mu-opioid receptor. The physiological function of endomorphin-2 as a neurotransmitter or neuromodulator may cease through the rapid enzymatic process in the synapse of brain, as for other neuropeptides. The present study was conducted to examine the metabolism of endomorphin-2 by synaptic membranes prepared from mouse brain. Major metabolites were free tyrosine, free phenylalanine, Tyr-Pro and PheNH(2). Both the degradation of endomorphin-2 and the accumulation of major metabolites were inhibited by specific inhibitors of dipeptidyl peptidase IV, such as diprotin A and B. On the other hand, the accumulation of Phe-PheNH(2) and Pro-Phe-PheNH(2) was increased in the presence of bestatin, an aminopeptidase inhibitor, whereas that of free phenylalanine and PheNH(2) was decreased. Furthermore, purified dipeptidyl peptidase IV hydrolyzed endomorphin-2 at the cleavage site, Pro(2)-Phe(3) bond. Thus, degradation of endomorphin-2 by brain synaptic membranes seems to take place mainly through the cleavage of Pro(2)-Phe(3) bond by dipeptidyl peptidase IV, followed by release of free phenylalanine and PheNH(2) from the liberated fragment, Phe-PheNH(2) by aminopeptidase. We have also examined that the effect of diprotin A on the antinociception induced by intracerebroventricularly administered endomorphin-2 in the mouse paw withdrawal test. Diprotin A simultaneously injected with endomorphin-2 enhanced endomorphin-2-induced antinociception. These results indicate that dipeptidyl peptidase IV may be an important peptidase responsible for terminating endomorphin-2-induced antinociception at the supraspinal level in mice.
Collapse
Affiliation(s)
- Chikai Sakurada
- Department of Biochemistry, Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Okada Y, Fujita Y, Motoyama T, Tsuda Y, Yokoi T, Li T, Sasaki Y, Ambo A, Jinsmaa Y, Bryant SD, Lazarus LH. Structural studies of [2',6'-dimethyl-L-tyrosine1]endomorphin-2 analogues: enhanced activity and cis orientation of the Dmt-Pro amide bond. Bioorg Med Chem 2003; 11:1983-94. [PMID: 12670649 DOI: 10.1016/s0968-0896(03)00068-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Analogues of endomorphin-2 (EM-2: Tyr-Pro-Phe-Phe-NH(2)) (1) were designed to examine the importance of each residue on mu-opioid receptor interaction. Replacement of Tyr(1) by 2',6'-dimethyl-L-tyrosine (Dmt) (9-12) exerted profound effects: [Dmt(1)]EM-2 (9) elevated mu-opioid affinity 4.6-fold (K(i mu=0.15 nM) yet selectivity fell 330-fold as delta-affinity rose (K(i)delta=28.2 nM). This simultaneous increased mu- and delta-receptor bioactivities resulted in dual agonism (IC(50)=0.07 and 1.87 nM, respectively). While substitution of Phe(4) by a phenethyl group (4) decreased mu affinity (K(i)mu=13.3 nM), the same derivative containing Dmt (12) was comparable to EM-2 but also acquired weak delta antagonism (pA(2)=7.05). 1H NMR spectroscopy revealed a trans configuration (1:2 to 1:3, cis/trans) in the Tyr-Pro amide bond, but a cis configuration (5:3 to 13:7, cis/trans) with Dmt-Pro analogues.
Collapse
Affiliation(s)
- Yoshio Okada
- Faculty of Pharmaceutical Sciences, Department of Medicinal Chemistry, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Al-Khrasani M, Elor G, Yusuf Abbas M, Rónai AZ. The effect of endomorphins on the release of 3H-norepinephrine from rat nucleus tractus solitarii slices. REGULATORY PEPTIDES 2003; 111:97-101. [PMID: 12609755 DOI: 10.1016/s0167-0115(02)00257-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We used two, 3-min field stimulation cycles 30 min apart (S1, S2) in 3H-norepinephrine-loaded, superfused rat nucleus tractus solitarii-dorsal motor vagal nucleus (NTS-DVN) slices. The stimulation-induced release was expressed as the area above the baseline. Drugs were introduced 12 min before S2 and drug actions were characterized in terms of alterations of S2/S1 ratios. The S2/S1 ratio was 1.047 (0.946-1.159, n = 4, geometric mean and 95% confidence interval) in controls and 0.336 (0.230-0.490, n = 3), 0.726 (0.590-0.892, n = 4), 0.613 (0.594-0.683, n = 4) and 0.665 (0.500-0.886, n = 4) in the presence of 10(-6) M clonidine, D-Ala(2),MePhe(4),Gly(5)-ol-enkephalin (DAMGO), endomorphin-1 (Tyr-Pro-Trp-Phe-NH(2), EM-1) and -2 (Tyr-Pro-Phe-Phe-NH(2), EM-2) [the latter two in the presence of 10(-4) M diprotin A, an inhibitor of dipeptidyl-aminopeptidase IV (DAP-IV) enzyme]. The effect of DAMGO at 10(-5) M was significantly higher than at 10(-6) M, whereas the effect of endomorphins did not differ at the two concentration levels. Diprotin A potentiated only very modestly the action of endomorphins. These data (a) confirm the presence of functional mu-opioid receptors in the vagal complex, (b) render it likely that the enzymic degradation of endomorphins is not a highly effective process in brain slices and (c) may suggest that the apparent ceiling in the effect of endomorphins might be related to their partial agonist property.
Collapse
Affiliation(s)
- Mahmoud Al-Khrasani
- Faculty of Medicine, Department of Pharmacology and Pharmacotherapy, Semmelweis University, POB 370, H-1445, Budapest, Hungary.
| | | | | | | |
Collapse
|
39
|
Okada Y, Tsuda Y, Bryant SD, Lazarus LH. Endomorphins and related opioid peptides. VITAMINS AND HORMONES 2003; 65:257-79. [PMID: 12481550 DOI: 10.1016/s0083-6729(02)65067-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Opioid peptides and their G-protein-coupled receptors (delta, kappa, mu) are located in the central nervous system and peripheral tissues. The opioid system has been studied to determine the intrinsic mechanism of modulation of pain and to develop uniquely effective pain-control substances with minimal abuse potential and side effects. Two types of endogenous opioid peptides exist, one containing Try-Gly-Gly-Phe as the message domain (enkephalins, endorphins, dynorphins) and the other containing the Tyr-Pro-Phe/Trp sequence (endomorphins-1 and -2). Endomorphin-1 (Tyr-Pro-Trp-Phe-NH2), which has high mu receptor affinity (Ki = 0.36 nM) and remarkable selectivity (4000- and 15,000-fold preference over the delta and kappa receptors, respectively), was isolated from bovine and human brain. In addition, endomorphin-2 (Tyr-Pro-Phe-Phe-NH2), isolated from the same sources, exhibited high mu receptor affinity (Ki = 0.69 nM) and very high selectivity (13,000- and 7500-fold preference relative to delta and kappa receptors, respectively). Both opioids bind to mu-opioid receptors, thereby activating G-proteins, resulting in regulation of gastrointestinal motility, manifestation of antinociception, and effects on the vascular systems and memory. To develop novel analgesics with less addictive properties, evaluation of the structure-activity relationships of the endomorphins led to the design of more potent and stable analgesics. Opioidmimetics and opioid peptides containing the amino acid sequence of the message domain of endomorphins, Tyr-Pro-Phe/Trp, could exhibit unique binding activity and lead to the development of new therapeutic drugs for controlling pain.
Collapse
Affiliation(s)
- Yoshio Okada
- Faculty of Pharmaceutical Sciences, High Technology Research Center, Kobe Gakuin University, Kobe 651-2180, Japan
| | | | | | | |
Collapse
|
40
|
Hau VS, Huber JD, Campos CR, Lipkowski AW, Misicka A, Davis TP. Effect of guanidino modification and proline substitution on the in vitro stability and blood-brain barrier permeability of endomorphin II. J Pharm Sci 2002; 91:2140-9. [PMID: 12226841 DOI: 10.1002/jps.10202] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Endomorphin II (ENDII), an endogenous ligand for the mu-opioid receptor, was investigated as a possible analgesic with fewer side effects than morphine. To improve CNS entry of END II, structural modification was also examined to determine whether Pro(4) substitution and cationization affected physico-chemical characteristics, blood-brain barrier (BBB) transport, and analgesic profile. END II and its Pro(4)-substituted analog, Morphiceptin (MOR), were cationized by guanidino (GU)-addition. MOR was seven times less lipophilic than END II, whereas GU-addition decreased lipophilicity of both peptides. MOR did not affect in vitro BBB permeability; however, GU-addition increased permeability of MOR by 31%. MOR decreased protein binding by 23% compared to END II, whereas GU-addition increased protein binding of both peptides by 71 and 113%, respectively. MOR increased brain t(1/2) compared to END II. GU-addition significantly increased t(1/2) of MOR and END II in both brain (sixfold and 10-fold, respectively) and serum (over 10-fold). Pro(4)-substitution and GU-addition enhanced the in vivo analgesia profiles of i.v. administered END II and MOR, but decreased i.c.v. analgesia profiles. This study demonstrates Pro(4)-substitution decreases protein binding and enhances brain stability while cationization enhances both brain and serum stability with variable effects on BBB permeability. The analgesic profiles show that both Pro(4)-substitution and cationization enhance i.v. analgesia and thus, are promising structural modifications for the development of successful opioid drugs.
Collapse
Affiliation(s)
- Vincent S Hau
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, Arizona 85724, USA
| | | | | | | | | | | |
Collapse
|
41
|
Rewarding and psychomotor stimulant effects of endomorphin-1: anteroposterior differences within the ventral tegmental area and lack of effect in nucleus accumbens. J Neurosci 2002. [PMID: 12177217 DOI: 10.1523/jneurosci.22-16-07225.2002] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endomorphin-1 (EM-1) is a recently isolated endogenous peptide having potent analgesic activity and high affinity and selectivity for the mu-opioid receptor. The present study was designed to investigate the rewarding and psychomotor stimulant effects of EM-1 in specific brain regions. We found that rats would learn without priming or response shaping to lever-press for microinjections of EM-1 into the ventral tegmental area (VTA); responding was most vigorous for high-dose injections into the posterior VTA. Rats did not learn to lever-press for microinjections of EM-1 into the nucleus accumbens (NAS) or regions just dorsal to the VTA. Lever-pressing for EM-1 in the VTA was extinguished when vehicle was substituted for the peptide and was reinstated when EM-1 reinforcement was re-established. Conditioned place preference was established by EM-1 injections into the posterior but not the anterior VTA or the NAS. Injection of EM-1 (0.1-1.0 nmol) into the posterior VTA induced robust increases in locomotor activity, whereas injections into the anterior VTA had very weak locomotor-stimulating effects. When injected into the NAS, EM-1 (0.1-10.0 nmol) did not affect locomotor activity. The present findings implicate the posterior VTA as a highly specific and sensitive site for opioid reward and suggest a role for EM-1-containing projections to the posterior VTA in the rewarding effects of other reinforcers.
Collapse
|
42
|
Abstract
The catabolism of the endomorphins was investigated in detail. The endomorphins were degraded relatively slowly in the rat brain homogenate (t1/2(endomorphin-1)=4.94 min; t1/2(endomorphin-2)=3.81 min). The inhibition of metalloproteases and aminopeptidases stabilised the endomorphins to the greatest extent. The digestion of endomorphins tritiated specifically on Tyr(1), Pro(2) or Phe(3) established also that only the aminopeptidase pathways were essential for inactivation of the endomorphins, and that the tetrapeptides were degraded by cleavage of the Pro(2)-Trp(3) or Pro(2)-Phe(3) bond. The end-products of the catabolism were amino acids; the fragments Tyr-Pro-OH and Pro-Trp-Phe-NH2 were present as intermediates. Metabolites produced by brain carboxypeptidases were not detected.
Collapse
Affiliation(s)
- Csaba Tömböly
- Institute of Biochemistry, Biological Research Centre of Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, Hungary
| | | | | |
Collapse
|
43
|
Cardillo G, Gentilucci L, Qasem AR, Sgarzi F, Spampinato S. Endomorphin-1 analogues containing beta-proline are mu-opioid receptor agonists and display enhanced enzymatic hydrolysis resistance. J Med Chem 2002; 45:2571-8. [PMID: 12036366 DOI: 10.1021/jm011059z] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper we describe the synthesis and affinity toward the mu-opioid receptor of some tetrapeptides obtained from endomorphin-1, H-Tyr-Pro-Trp-Phe-NH(2) (1), by substituting each amino acid in turn with its homologue. The ability to bind mu-opioid receptors depends on the beta-amino acid, and in particular 4, which contains beta-L-Pro, has a K(I) in the nanomolar range. The peptides 4 and 5 are significantly more resistant to enzymatic hydrolysis than 1. The same compounds, as well as the mu-opioid receptor agonist DAMGO, produced a concentration-dependent inhibition of forskolin-stimulated cyclic AMP formation, thus behaving as mu-opioid agonists. These features suggest that this novel class of endomorphin-1 analogues may represent suitable candidates for the in vivo investigation as potential mu-opioid receptor agonists.
Collapse
Affiliation(s)
- Giuliana Cardillo
- Dipartimento di Chimica G. Ciamician, via Selmi 2, Università degli Studi di Bologna, 40126-Bologna, Italy
| | | | | | | | | |
Collapse
|
44
|
Grass S, Xu IS, Wiesenfeld-Hallin Z, Xu XJ. Comparison of the effect of intrathecal endomorphin-1 and endomorphin-2 on spinal cord excitability in rats. Neurosci Lett 2002; 324:197-200. [PMID: 12009522 DOI: 10.1016/s0304-3940(02)00201-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We examined and compared the effects of intrathecal (i.t.) endomorphin-1 and endomorphin-2 on the nociceptive flexor reflex in decerebrate, spinalized, unanesthetized rats. I.t. endomorphin-1 and -2 induced a dose-dependent depression of the flexor reflex with an initial brief facilitatory effect. The magnitude of reflex facilitation and depression was similar between endomorphin-1 and -2, but the duration of depression was significantly longer for endomorphin-1 than endomorphin-2. The results suggested that the spinal antinociceptive effects of endomorphin-1 and -2 are similar, with endomorphin-1 being more resistant to enzymatic degradation.
Collapse
Affiliation(s)
- Stefan Grass
- Department of Medical Laboratory Sciences and Technology, Division of Clinical Neurophysiology, Karolinska Institutet, Huddinge University Hospital, 141 86 Stockholm, Sweden.
| | | | | | | |
Collapse
|
45
|
Csullog E, Joo G, Toth G, Dobos I, Benedek G, Horvath G. Antinociceptive effect of continuous intrathecal administration of endomorphin-1. Pain 2001; 94:31-38. [PMID: 11576742 DOI: 10.1016/s0304-3959(01)00338-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Endomorphin-1 is a novel endogenous opioid peptide with high affinity and selectivity for the mu-opioid receptor. Earlier results have shown that it causes antinociception in different pain tests, but its effect is short-lasting. The purpose of the present study was to investigate the antinociceptive potency of continuously administered endomorphin-1 on carrageenan-induced thermal hyperalgesia by means of a paw withdrawal test in awake rats. The possible interaction between endomorphin-1 and the C-terminal octapeptide of the novel endogenous peptide nocistatin (bPNP-3-8P) was examined in the same experimental set-up. Continuous administration of endomorphin-1 (0.1, 0.3, 1 or 2 microg/min for 60 min) did not influence the paw withdrawal latencies of the normal paws. On the inflamed side, endomorphin-1 dose-dependently decreased the thermal hyperalgesia during continuous administration. The cessation of administration resulted in a gradual decrease in the antinociceptive effect of endomorphin-1. bPNP-3-8P (0.003-30 microg, administered cumulatively) significantly decreased the heat hyperalgesia at higher doses (3 and 30 microg). Continuous administration of bPNP-3-8P (0.03, 0.1 and 1 microg/min) did not potentiate the antinociceptive effect of endomorphin-1; instead, it even shortened the duration of its effect. The results demonstrate that continuous administration of endomorphin-1 is an effective method of inhibiting thermal hyperalgesia in rats. Furthermore, the fragment bPNP-3-8P itself has low antinociceptive potency and does not potentiate the antinociceptive effect of endomorphin-1 under these circumstances.
Collapse
Affiliation(s)
- Emese Csullog
- Department of Physiology, Faculty of Medicine, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary Department of Anesthesiology and Intensive Care, Faculty of Medicine, University of Szeged, Szeged, Hungary Isotope Laboratory of Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary Department of Physical Therapy, Faculty of Health Science, University of Szeged, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Szatmári I, Biyashev D, Tömböly C, Tóth G, Mácsai M, Szabó G, Borsodi A, Lengyel I. Influence of degradation on binding properties and biological activity of endomorphin 1. Biochem Biophys Res Commun 2001; 284:771-6. [PMID: 11396969 DOI: 10.1006/bbrc.2001.5056] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The recently-isolated endogenous peptide endomorphin 1 has high affinity for the mu opioid receptor and plays an important role in analgesia. Several of its degradation products have been isolated from the central nervous system. Degradation products present structural similarities and may influence the receptor binding properties and biological activity of the parent compound. Therefore, we investigated how degradation of endomorphin 1 might influence ligand binding to the mu opioid receptor, the consequent activation of G proteins and its antinociceptive effect. Both N- and C-terminal truncation of endomorphin 1 resulted in peptides presenting considerably lower opioid receptor binding potency. None of these peptides had an effect on GTP binding, nor was able to produce analgesia, suggesting that degradation destroys the biological activity of endomorphin 1.
Collapse
Affiliation(s)
- I Szatmári
- Institute of Biochemistry Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Krondahl E, von Euler-Chelpin H, Orzechowski A, Ekström G, Lennernäs H. In vitro metabolism of opioid tetrapeptide agonists in various tissues and subcellular fractions from rats. Peptides 2001; 22:613-21. [PMID: 11311732 DOI: 10.1016/s0196-9781(01)00328-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The metabolism of three mu-selective opioid tetrapeptide agonists, Tyr-D-Arg-Phe-Nva-NH(2) (TArPN), Tyr-D-Arg-Phe-Phe-NH(2) (TArPP), and Tyr-D-Ala-Phe-Phe-NH(2) (TAPP), was investigated in different rat tissues. High metabolic activity (<20% peptide remaining after 30 min) was found against the three peptides in the kidney homogenate and against TArPN in spleen homogenate. Low metabolic activity (>80% peptide remaining after 30 min) was found for all peptides in brain homogenate and plasma, and for TArPN and TArPP in blood. The other tissue homogenates, prepared from the small and large intestine, liver and lung, all exhibited intermediate metabolic activity (20-80% peptide remaining after 30 min) against the peptides. In all tissues investigated, the tetrapeptides were metabolized at the C-terminal amide by deamidation.A further in depth metabolic investigation was performed in subcellular fractions isolated from three tissues (small intestine, liver and kidney). In the liver, the deamidation was predominantly localized to the mitochondrial/lysosomal fraction, while hydrolysis at the N-terminal Tyr residue was the major metabolic pathway in the microsomal/brush-border membrane fraction from the kidney and small intestine.
Collapse
Affiliation(s)
- E Krondahl
- Department of Pharmacy, Division of Pharmaceutics, Box 580, BMC, SE-751 23, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
49
|
Horvath G. Endomorphin-1 and endomorphin-2: pharmacology of the selective endogenous mu-opioid receptor agonists. Pharmacol Ther 2000; 88:437-63. [PMID: 11337033 DOI: 10.1016/s0163-7258(00)00100-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The recently discovered endogenous opioid peptides, endomorphins-1 and -2, appear to have properties consistent with neurotransmitter/neuromodulator actions in mammals. This review surveys the information gained so far from studies of different aspects of the endomorphins. Thus, the endomorphins have been found unequally in the brain; they are stored in neurons and axon terminals, with a heterogeneous distribution; they are released from synaptosomes by depolarization; they are enzymatically converted by endopeptidases; and they interact specifically and with high affinity with mu-opioid receptors. The most outstanding effect of the endomorphins is their antinociceptive action. This depends on both central and peripheral neurons. Additionally, the endomorphins cause vasodilatation by stimulating nitric oxide release from the endothelium. Their roles in different central and peripheral functions, however, have not been fully clarified yet. From a therapeutic perspective, therefore, they may be conceived at present as potent antinociceptive and vasodilator agents.
Collapse
Affiliation(s)
- G Horvath
- Department of Physiology, Faculty of Medicine and Faculty of Health Sciences, University of Szeged, P.O. Box 427, H-6701, Szeged, Hungary.
| |
Collapse
|
50
|
Krondahl E, Von Euler-Chelpin H, Orzechowski A, Ekström G, Lennernäs H. Investigations of the in-vitro metabolism of three opioid tetrapeptides by pancreatic and intestinal enzymes. J Pharm Pharmacol 2000; 52:785-95. [PMID: 10933129 DOI: 10.1211/0022357001774642] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The metabolism of three opioid tetrapeptides, Tyr-D-Arg-Phe-Nva-NH2, Tyr-D-Arg-Phe-Phe-NH2 and Tyr-D-Ala-Phe-Phe-NH2, was investigated in the presence of pure pancreatic enzymes (trypsin, chymotrypsin, elastase, carboxypeptidase A and carboxypeptidase B), as well as in the presence of pure carboxylesterase and aminopeptidase N. The cleavage patterns of the pure pancreatic enzymes were then compared with those found in rat and human jejunal fluid. Metabolism was also studied in homogenates from different intestinal regions (duodenum, jejunum, ileum and colon) and in enterocyte cytosol from rats. The effect of various protease inhibitors was investigated in the jejunal homogenate. The parent peptides were assayed by high-performance liquid chromatography and metabolites were identified by means of liquid chromatography-mass spectrometry. Of the pure enzymes, the quickest hydrolysis of the peptides was observed for the pancreatic enzymes chymotrypsin, trypsin and carboxypeptidase A. In most cases they formed the corresponding deamidated tetrapeptides (chymotrypsin and trypsin) or tripeptides with a missing C-terminal amino acid (carboxypeptidase A). Regional differences in intestinal metabolism rates were found for all three peptides (P < 0.001), with the highest rates observed in jejunal and/or colonic homogenates. The deamidated tetrapeptides were formed both in rat intestinal homogenates and in enterocyte cytosol. Metabolism in the jejunal homogenate was markedly inhibited by some serine and combined serine and cysteine protease inhibitors. In conclusion, the C-terminal amide of these tetrapeptides did not fully stabilise them against intestinal deamidase and carboxypeptidase activities. The significant hydrolysis of the peptides by pure chymotrypsin, trypsin and carboxypeptidase A showed that lumenal pancreatic proteases might be a clear metabolic obstacle in oral delivery even for small peptides such as these tetrapeptides.
Collapse
Affiliation(s)
- E Krondahl
- Department of Pharmacy, Division of Pharmaceutics, Uppsala University, Sweden
| | | | | | | | | |
Collapse
|