1
|
Afonso O, Avilés A, Álvarez CJ. Neural correlates of lexical, sublexical and motor processes in word handwriting. Brain Cogn 2025; 184:106272. [PMID: 39904155 DOI: 10.1016/j.bandc.2025.106272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
Writing recruits a vast neural network underpinning both linguistic and motor processes. Previous studies have tried to identify which brain areas underpin both the linguistic and motor aspects of writing. However, little is known about the neural substrate of the lexical and sublexical "routes" for spelling. In this fMRI study, participants (n = 25) copied or saw/read symbols or words. Words varied in lexical frequency and phonology-to-orthography (P-O) consistency. Anterior parts of the inferior frontal gyrus were selectively recruited when copying P-O inconsistent words, while the right Heschl's gyrus was recruited only when copying consistent words. Non-specific motor and linguistic areas were also identified. Our results contribute to our knowledge of the neural substrate of the lexical and sublexical spelling routes and suggest that different brain areas might be involved in the lexical processing of input (reading) and output (writing) orthography.
Collapse
Affiliation(s)
- Olivia Afonso
- Centre for Psychological Research, Oxford Brookes University, United Kingdom.
| | - Alberto Avilés
- School of Psychology and Counselling, The Open University, United Kingdom.
| | - Carlos J Álvarez
- Departmento de Psicología Cognitiva, Organizacional y Social and IUNE, Universidad de La Laguna, Spain.
| |
Collapse
|
2
|
Zygouris NC, Vlachos F, Styliaras SK, Tziallas GD, Avramidis E. Validation of the Askisi-Lexia neuropsychological web-based screener: A neuropsychological battery for screening cognitive and phonological skills of children with dyslexia. APPLIED NEUROPSYCHOLOGY. CHILD 2025:1-17. [PMID: 39908307 DOI: 10.1080/21622965.2025.2461192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
DSM-5 classifies dyslexia as a "specific learning disorder with impairment in reading", emphasizing deficits in phonological processing and letter knowledge. Children with dyslexia commonly exhibit challenges in reading accuracy, fluency, and associated cognitive deficits. Computerized neuropsychological assessments have gained prominence for their precision and control in evaluating cognitive abilities. This manuscript presents the validation outcomes of Askisi-Lexia, a web-based neuropsychological screener developed to assess cognitive and phonological skills in children. The screener effectively differentiated between dyslexic and non-dyslexic participants, with dyslexic children demonstrating significantly lower scores and prolonged response times across all nine tasks (five targeting phonological skills and four evaluating cognitive abilities). Additionally, Askisi-Lexia exhibited high sensitivity and specificity across all subtests. Reliability analysis revealed high internal consistency and test-retest reliability. Notably, moderate correlations were observed between Askisi-Lexia and Test-A, a well-established traditional paper-and-pencil assessment, underscoring the screener's validity. These findings highlight the efficacy of web-based tools in assessing phonological and cognitive deficits associated with dyslexia. The study underscores the potential of web-based screening applications as practical, engaging, and efficient methods for dyslexia assessment. Such tools facilitate identification and intervention, contributing to significant advancements in educational and clinical practice for children with reading-related challenges.
Collapse
Affiliation(s)
- Nikolaos C Zygouris
- Laboratory of Digital Neuropsychological Assessment, Department of Informatics and Telecommunications, University of Thessaly, Lamia, Greece
| | - Filippos Vlachos
- Department of Special Education, University of Thessaly, Volos, Greece
| | - Stefanos K Styliaras
- Laboratory of Digital Neuropsychological Assessment, Department of Informatics and Telecommunications, University of Thessaly, Lamia, Greece
| | - Grigoris D Tziallas
- Laboratory of Digital Neuropsychological Assessment, Department of Informatics and Telecommunications, University of Thessaly, Lamia, Greece
| | - Elias Avramidis
- Department of Special Education, University of Thessaly, Volos, Greece
| |
Collapse
|
3
|
Turker S, Kuhnke P, Cheung VKM, Weise K, Hartwigsen G. Neurostimulation improves reading and alters communication within reading networks in dyslexia. Ann N Y Acad Sci 2025; 1544:172-189. [PMID: 39891923 PMCID: PMC11829325 DOI: 10.1111/nyas.15291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
The left temporo-parietal cortex (TPC) is critical for phonological decoding during reading and appears hypoactive in dyslexia. Therefore, a promising approach to alleviating phonological deficits in dyslexia is to modulate left TPC functioning. However, it is unclear how neurostimulation alters activity and network interactions in dyslexia. To address this gap, we combined facilitatory transcranial magnetic stimulation (TMS) to the left TPC in adults with dyslexia with an overt word and pseudoword reading task during functional neuroimaging. We found TMS-induced improvements in pseudoword reading, reduced contributions of right-hemispheric regions during reading, and substantial changes between the core reading nodes and an extended network involving the right cerebellum. Stronger coupling between temporo-occipital and frontal cortices was further directly linked to improvements in pseudoword reading. Collectively, we provide evidence for a crucial role of the left TPC for phonological decoding and show that TMS can successfully modulate reading networks to improve reading in dyslexia.
Collapse
Affiliation(s)
- Sabrina Turker
- Research Group Cognition and PlasticityMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Wilhelm Wundt Institute for PsychologyLeipzig UniversityLeipzigGermany
| | - Philipp Kuhnke
- Research Group Cognition and PlasticityMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Wilhelm Wundt Institute for PsychologyLeipzig UniversityLeipzigGermany
| | | | - Konstantin Weise
- Methods and Development Group Brain NetworksMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Gesa Hartwigsen
- Research Group Cognition and PlasticityMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Wilhelm Wundt Institute for PsychologyLeipzig UniversityLeipzigGermany
| |
Collapse
|
4
|
Uno T, Takano K, Nakamura K. Dissecting the Causal Role of Early Inferior Frontal Activation in Reading. J Neurosci 2025; 45:e0194242024. [PMID: 39542729 PMCID: PMC11713856 DOI: 10.1523/jneurosci.0194-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Cognitive models of reading assume that speech production occurs after visual and phonological processing of written words. This traditional view is at odds with more recent magnetoencephalography studies showing that the left posterior inferior frontal cortex (pIFC) classically associated with spoken production responds to print at 100-150 ms after word-onset, almost simultaneously with posterior brain regions for visual and phonological processing. Yet the theoretical significance of this fast neural response remains open to date. We used transcranial magnetic stimulation (TMS) to investigate how the left pIFC contributes to the early stage of reading. In Experiment 1, 23 adult participants (14 females) performed three different tasks about written words (oral reading, semantic judgment, and perceptual judgment) while single-pulse TMS was delivered to the left pIFC, fusiform gyrus or supramarginal gyrus at different time points (50-200 ms after word-onset). A robust double dissociation was found between tasks and stimulation sites-oral reading, but not other control tasks, was disrupted only when TMS was delivered to pIFC at 100 ms. This task-specific impact of pIFC stimulation was further corroborated in Experiment 2, which revealed another double dissociation between oral reading and picture naming. These results demonstrate that the left pIFC specifically and causally mediates rapid computation of speech motor codes at the earliest stage of reading and suggest that this fast sublexical neural pathway for pronunciation, although seemingly dormant, is fully functioning in literate adults. Our results further suggest that these left-hemisphere systems for reading overall act faster than known previously.
Collapse
Affiliation(s)
- Tomoki Uno
- Section of Systems Neuroscience, National Rehabilitation Center for Persons with Disabilities, Tokorozawa 359-8555, Japan
| | - Kouji Takano
- Section of Systems Neuroscience, National Rehabilitation Center for Persons with Disabilities, Tokorozawa 359-8555, Japan
| | - Kimihiro Nakamura
- Section of Systems Neuroscience, National Rehabilitation Center for Persons with Disabilities, Tokorozawa 359-8555, Japan
| |
Collapse
|
5
|
Seghier ML, Boudelaa S. Constraining current neuroanatomical models of reading: the view from Arabic. Brain Struct Funct 2024; 229:2167-2185. [PMID: 38969935 DOI: 10.1007/s00429-024-02827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 06/17/2024] [Indexed: 07/07/2024]
Abstract
There is a growing interest in imaging understudied orthographies to unravel their neuronal correlates and their implications for existing computational and neuroanatomical models. Here, we review current brain mapping literature about Arabic words. We first offer a succinct description of some unique linguistic features of Arabic that challenge current cognitive models of reading. We then appraise the existing functional neuroimaging studies that investigated written Arabic word processing. Our review revealed that (1) Arabic is still understudied, (2) the most investigated features concerned the effects of vowelling and diglossia in Arabic reading, (3) findings were not always discussed in the light of existing reading models such as the dual route cascaded, the triangle, and the connectionist dual process models, and (4) current evidence is unreliable when it comes to the exact neuronal pathways that sustain Arabic word processing. Overall, despite the fact that Arabic has some unique linguistic features that challenge and ultimately enrich current reading models, the existing functional neuroimaging literature falls short of offering a reliable evidence about brain networks of Arabic reading. We conclude by highlighting the need for more systematic studies of the linguistic features of Arabic to build theoretical and neuroanatomical models that are concurrently specific and general.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, UAE.
| | - Sami Boudelaa
- Department of Cognitive Sciences, United Arab Emirates University, Al Ain, UAE.
| |
Collapse
|
6
|
Rampinini A, Balboni I, Golestani N, Berthele R. A behavioural exploration of language aptitude and experience, cognition and more using Graph Analysis. Brain Res 2024; 1842:149109. [PMID: 38964704 DOI: 10.1016/j.brainres.2024.149109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/01/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Language aptitude has recently regained interest in cognitive neuroscience. Traditional language aptitude testing included phonemic coding ability, associative memory, grammatical sensitivity and inductive language learning. Moreover, domain-general cognitive abilities are associated with individual differences in language aptitude, together with factors that have yet to be elucidated. Beyond domain-general cognition, it is also likely that aptitude and experience in domain-specific but non-linguistic fields (e.g. music or numerical processing) influence and are influenced by language aptitude. We investigated some of these relationships in a sample of 152 participants, using exploratory graph analysis, across different levels of regularisation, i.e. sensitivity. We carried out a meta cluster analysis in a second step to identify variables that are robustly grouped together. We discuss the data, as well as their meta-network groupings, at a baseline network sensitivity level, and in two analyses, one including and the other excluding dyslexic readers. Our results show a stable association between language and cognition, and the isolation of multilingual language experience, musicality and literacy. We highlight the necessity of a more comprehensive view of language and of cognition as multivariate systems.
Collapse
Affiliation(s)
- Alessandra Rampinini
- Department of Psychology, Faculty of Psychology and Education Science, University of Geneva, Geneva, Switzerland; National Centre for Competence in Research Evolving Language, Switzerland
| | - Irene Balboni
- Department of Psychology, Faculty of Psychology and Education Science, University of Geneva, Geneva, Switzerland; Institute of Multilingualism, University of Fribourg, Fribourg, Switzerland; National Centre for Competence in Research Evolving Language, Switzerland
| | - Narly Golestani
- Department of Psychology, Faculty of Psychology and Education Science, University of Geneva, Geneva, Switzerland; Cognitive Science Hub, University of Vienna, Vienna, Austria; Department of Behavioural and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria; National Centre for Competence in Research Evolving Language, Switzerland
| | - Raphael Berthele
- Institute of Multilingualism, University of Fribourg, Fribourg, Switzerland; National Centre for Competence in Research Evolving Language, Switzerland.
| |
Collapse
|
7
|
Lee MM, Stoodley CJ. Neural bases of reading fluency: A systematic review and meta-analysis. Neuropsychologia 2024; 202:108947. [PMID: 38964441 DOI: 10.1016/j.neuropsychologia.2024.108947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Reading fluency, the ability to read quickly and accurately, is a critical marker of successful reading and is notoriously difficult to improve in reading disabled populations. Despite its importance to functional literacy, fluency is a relatively under-studied aspect of reading, and the neural correlates of reading fluency are not well understood. Here, we review the literature of the neural correlates of reading fluency as well as rapid automatized naming (RAN), a task that is robustly related to reading fluency. In a qualitative review of the neuroimaging literature, we evaluated structural and functional MRI studies of reading fluency in readers from a range of skill levels. This was followed by a quantitative activation likelihood estimate (ALE) meta-analysis of fMRI studies of reading speed and RAN measures. We anticipated that reading speed, relative to untimed reading and reading-related tasks, would harness ventral reading pathways that are thought to enable the fast, visual recognition of words. The qualitative review showed that speeded reading taps the entire canonical reading network. The meta-analysis indicated a stronger role of the ventral reading pathway in rapid reading and rapid naming. Both reviews identified regions outside the canonical reading network that contribute to reading fluency, such as the bilateral insula and superior parietal lobule. We suggest that fluent reading engages both domain-specific reading pathways as well as domain-general regions that support overall task performance and discuss future avenues of research to expand our understanding of the neural bases of fluent reading.
Collapse
Affiliation(s)
- Marissa M Lee
- Department of Neuroscience, American University, USA; Center for Applied Brain and Cognitive Sciences, Tufts University, USA
| | - Catherine J Stoodley
- Department of Neuroscience, American University, USA; Developing Brain Institute, Children's National Hospital, USA; Departments of Neurology and Pediatrics, The George Washington University School of Medicine and Health Sciences, USA.
| |
Collapse
|
8
|
Gupta G, Arrington CN, Morris R. Sex Differences in White Matter Diffusivity in Children with Developmental Dyslexia. CHILDREN (BASEL, SWITZERLAND) 2024; 11:721. [PMID: 38929300 PMCID: PMC11201584 DOI: 10.3390/children11060721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Despite the high prevalence of developmental dyslexia in the U.S. population, research remains limited and possibly biased due to the overrepresentation of males in most dyslexic samples. Studying biological sex differences in the context of developmental dyslexia can help provide a more complete understanding of the neurological markers that underly this disorder. The current study aimed to explore sex differences in white matter diffusivity in typical and dyslexic samples in third and fourth graders. Participants were asked to complete behavioral/cognitive assessments at baseline followed by MRI scanning and diffusion-weighted imaging sequences. A series of ANOVAs were conducted for comparing group membership (developmental dyslexia or typically developing), gender status (F/M), and white matter diffusivity in the tracts of interest. The Results indicated significant differences in fractional anisotropy in the left hemisphere components of the inferior and superior (parietal and temporal) longitudinal fasciculi. While males with dyslexia had lower fractional anisotropy in these tracts compared to control males, no such differences were found in females. The results of the current study may suggest that females may use a more bilateral/alternative reading network.
Collapse
Affiliation(s)
- Gehna Gupta
- Department of Neuroscience, Georgia State University, Atlanta, GA 30303, USA;
- Georgia State/Georgia Tech Center for Advanced Brain Imaging, Atlanta, GA 30318, USA;
| | - C. Nikki Arrington
- Department of Neuroscience, Georgia State University, Atlanta, GA 30303, USA;
- Georgia State/Georgia Tech Center for Advanced Brain Imaging, Atlanta, GA 30318, USA;
- Department of Psychology, Georgia State University, Atlanta, GA 30303, USA
- Center for Translational Research in Neuroimaging and Data Science, Atlanta, GA 30303, USA
| | - Robin Morris
- Georgia State/Georgia Tech Center for Advanced Brain Imaging, Atlanta, GA 30318, USA;
- Department of Psychology, Georgia State University, Atlanta, GA 30303, USA
- Center for Translational Research in Neuroimaging and Data Science, Atlanta, GA 30303, USA
| |
Collapse
|
9
|
Ashburn SM, Matejko AA, Eden GF. Activation and functional connectivity of cerebellum during reading and during arithmetic in children with combined reading and math disabilities. Front Neurosci 2024; 18:1135166. [PMID: 38741787 PMCID: PMC11090247 DOI: 10.3389/fnins.2024.1135166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/06/2024] [Indexed: 05/16/2024] Open
Abstract
Background Reading and math constitute important academic skills, and as such, reading disability (RD or developmental dyslexia) and math disability (MD or developmental dyscalculia) can have negative consequences for children's educational progress. Although RD and MD are different learning disabilities, they frequently co-occur. Separate theories have implicated the cerebellum and its cortical connections in RD and in MD, suggesting that children with combined reading and math disability (RD + MD) may have altered cerebellar function and disrupted functional connectivity between the cerebellum and cortex during reading and during arithmetic processing. Methods Here we compared Control and RD + MD groups during a reading task as well as during an arithmetic task on (i) activation of the cerebellum, (ii) background functional connectivity, and (iii) task-dependent functional connectivity between the cerebellum and the cortex. Results The two groups (Control, RD + MD) did not differ for either task (reading, arithmetic) on any of the three measures (activation, background functional connectivity, task-dependent functional connectivity). Conclusion These results do not support theories that children's deficits in reading and math originate in the cerebellum.
Collapse
Affiliation(s)
| | | | - Guinevere F. Eden
- Center for the Study of Learning, Department of Pediatrics, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
10
|
Lochy A, Rossion B, Lambon Ralph M, Volfart A, Hauk O, Schiltz C. Linguistic and attentional factors - Not statistical regularities - Contribute to word-selective neural responses with FPVS-oddball paradigms. Cortex 2024; 173:339-354. [PMID: 38479348 PMCID: PMC10988773 DOI: 10.1016/j.cortex.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/30/2023] [Accepted: 01/29/2024] [Indexed: 03/27/2024]
Abstract
Studies using frequency-tagging in electroencephalography (EEG) have dramatically increased in the past 10 years, in a variety of domains and populations. Here we used Fast Periodic Visual Stimulation (FPVS) combined with an oddball design to explore visual word recognition. Given the paradigm's high sensitivity, it is crucial for future basic research and clinical application to prove its robustness across variations of designs, stimulus types and tasks. This paradigm uses periodicity of brain responses to measure discrimination between two experimentally defined categories of stimuli presented periodically. EEG was recorded in 22 adults who viewed words inserted every 5 stimuli (at 2 Hz) within base stimuli presented at 10 Hz. Using two discrimination levels (deviant words among nonwords or pseudowords), we assessed the impact of relative frequency of item repetition (set size or item repetition controlled for deviant versus base stimuli), and of the orthogonal task (focused or deployed spatial attention). Word-selective occipito-temporal responses were robust at the individual level (significant in 95% of participants), left-lateralized, larger for the prelexical (nonwords) than lexical (pseudowords) contrast, and stronger with a deployed spatial attention task as compared to the typically used focused task. Importantly, amplitudes were not affected by item repetition. These results help understanding the factors influencing word-selective EEG responses and support the validity of FPVS-EEG oddball paradigms, as they confirm that word-selective responses are linguistic. Second, they show its robustness against design-related factors that could induce statistical (ir)regularities in item rate. They also confirm its high individual sensitivity and demonstrate how it can be optimized, using a deployed rather than focused attention task, to measure implicit word recognition processes in typical and atypical populations.
Collapse
Affiliation(s)
- Aliette Lochy
- Institute of Cognitive Science and Assessment, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Psychological Science Institute (IPSY), UCLouvain, Louvain-La-Neuve, Belgium.
| | - Bruno Rossion
- Université de Lorraine, CNRS, Nancy, France; CHRU-Nancy, Service de Neurologie, Nancy, France
| | | | - Angélique Volfart
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Australia
| | - Olaf Hauk
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Christine Schiltz
- Institute of Cognitive Science and Assessment, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
11
|
Bonte M, Brem S. Unraveling individual differences in learning potential: A dynamic framework for the case of reading development. Dev Cogn Neurosci 2024; 66:101362. [PMID: 38447471 PMCID: PMC10925938 DOI: 10.1016/j.dcn.2024.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/02/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
Children show an enormous capacity to learn during development, but with large individual differences in the time course and trajectory of learning and the achieved skill level. Recent progress in developmental sciences has shown the contribution of a multitude of factors including genetic variation, brain plasticity, socio-cultural context and learning experiences to individual development. These factors interact in a complex manner, producing children's idiosyncratic and heterogeneous learning paths. Despite an increasing recognition of these intricate dynamics, current research on the development of culturally acquired skills such as reading still has a typical focus on snapshots of children's performance at discrete points in time. Here we argue that this 'static' approach is often insufficient and limits advancements in the prediction and mechanistic understanding of individual differences in learning capacity. We present a dynamic framework which highlights the importance of capturing short-term trajectories during learning across multiple stages and processes as a proxy for long-term development on the example of reading. This framework will help explain relevant variability in children's learning paths and outcomes and fosters new perspectives and approaches to study how children develop and learn.
Collapse
Affiliation(s)
- Milene Bonte
- Department of Cognitive Neuroscience and Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Harrington RM, Kristinsson S, Wilmskoetter J, Busby N, den Ouden D, Rorden C, Fridriksson J, Bonilha L. Dissociating reading and auditory comprehension in persons with aphasia. Brain Commun 2024; 6:fcae102. [PMID: 38585671 PMCID: PMC10998352 DOI: 10.1093/braincomms/fcae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/10/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Language comprehension is often affected in individuals with post-stroke aphasia. However, deficits in auditory comprehension are not fully correlated with deficits in reading comprehension and the mechanisms underlying this dissociation remain unclear. This distinction is important for understanding language mechanisms, predicting long-term impairments and future development of treatment interventions. Using comprehensive auditory and reading measures from a large cohort of individuals with aphasia, we evaluated the relationship between aphasia type and reading comprehension impairments, the relationship between auditory versus reading comprehension deficits and the crucial neuroanatomy supporting the dissociation between post-stroke reading and auditory deficits. Scores from the Western Aphasia Battery-Revised from 70 participants with aphasia after a left-hemisphere stroke were utilized to evaluate both reading and auditory comprehension of linguistically equivalent stimuli. Repeated-measures and univariate ANOVA were used to assess the relationship between auditory comprehension and aphasia types and correlations were employed to test the relationship between reading and auditory comprehension deficits. Lesion-symptom mapping was used to determine the dissociation of crucial brain structures supporting reading comprehension deficits controlling for auditory deficits and vice versa. Participants with Broca's or global aphasia had the worst performance on reading comprehension. Auditory comprehension explained 26% of the variance in reading comprehension for sentence completion and 44% for following sequential commands. Controlling for auditory comprehension, worse reading comprehension performance was independently associated with damage to the inferior temporal gyrus, fusiform gyrus, posterior inferior temporal gyrus, inferior occipital gyrus, lingual gyrus and posterior thalamic radiation. Auditory and reading comprehension are only partly correlated in aphasia. Reading is an integral part of daily life and directly associated with quality of life and functional outcomes. This study demonstrated that reading performance is directly related to lesioned areas in the boundaries between visual association regions and ventral stream language areas. This behavioural and neuroanatomical dissociation provides information about the neurobiology of language and mechanisms for potential future treatment interventions.
Collapse
Affiliation(s)
- Rachael M Harrington
- Department of Communication Sciences and Disorders and Center for Research on the Challenges of Acquiring Language and Literacy, Georgia State University, Atlanta, GA 30310, USA
| | - Sigfus Kristinsson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Janina Wilmskoetter
- Department of Health and Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC 29464, USA
| | - Natalie Busby
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Dirk den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Leonardo Bonilha
- School of Medicine Columbia, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
13
|
Sinha N, Nikki Arrington C, Malins JG, Pugh KR, Frijters JC, Morris R. The reading-attention relationship: Variations in working memory network activity during single word decoding in children with and without dyslexia. Neuropsychologia 2024; 195:108821. [PMID: 38340962 PMCID: PMC11284775 DOI: 10.1016/j.neuropsychologia.2024.108821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/18/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
This study utilized a neuroimaging task to assess working memory (WM) network recruitment during single word reading. Associations between WM and reading comprehension skills are well documented. Several converging models suggest WM may also contribute to foundational reading skills, but few studies have assessed this contribution directly. Two groups of children (77 developmental dyslexia (DD), 22 controls) completed a functional magnetic resonance imaging (fMRI) task to identify activation of a priori defined regions of the WM network. fMRI trials consisted of familiar word, pseudoword, and false font stimuli within a 1-back oddball task to assess how activation in the WM network differs in response to stimuli that can respectively be processed using word recognition, phonological decoding, or non-word strategies. Results showed children with DD recruited WM regions bilaterally in response to all stimulus types, whereas control children recruited left-lateralized WM regions during the pseudoword condition only. Group-level comparisons revealed activation differences in the defined WM network regions for false font and familiar word, but not pseudoword conditions. This effect was driven by increased activity in participants with DD in right hemisphere frontal, parietal, and motor regions despite poorer task performance. Findings suggest the WM network may contribute to inefficient decoding and word recognition strategies in children with DD.
Collapse
Affiliation(s)
- Niki Sinha
- Department of Child and Youth Studies, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| | - C Nikki Arrington
- Department of Psychology, Georgia State University, Atlanta, GA, 30303, United States; GSU/GT Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, 30318, United States; Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, 30303, United States
| | - Jeffrey G Malins
- Department of Psychology, Georgia State University, Atlanta, GA, 30303, United States; Haskins Laboratories, New Haven, CT, 06511, United States
| | - Kenneth R Pugh
- Haskins Laboratories, New Haven, CT, 06511, United States; Department of Linguistics, Yale University, New Haven, CT, 06520, United States; Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06269, United States
| | - Jan C Frijters
- Department of Child and Youth Studies, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Robin Morris
- Department of Psychology, Georgia State University, Atlanta, GA, 30303, United States
| |
Collapse
|
14
|
Wat EK, Jangraw DC, Finn ES, Bandettini PA, Preston JL, Landi N, Hoeft F, Frost SJ, Lau A, Chen G, Pugh KR, Molfese PJ. Will you read how I will read? Naturalistic fMRI predictors of emergent reading. Neuropsychologia 2024; 193:108763. [PMID: 38141965 PMCID: PMC11370251 DOI: 10.1016/j.neuropsychologia.2023.108763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/07/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Despite reading being an essential and almost universal skill in the developed world, reading proficiency varies substantially from person to person. To study why, the fMRI field is beginning to turn from single-word or nonword reading tasks to naturalistic stimuli like connected text and listening to stories. To study reading development in children just beginning to read, listening to stories is an appropriate paradigm because speech perception and phonological processing are important for, and are predictors of, reading proficiency. Our study examined the relationship between behavioral reading-related skills and the neural response to listening to stories in the fMRI environment. Functional MRI were gathered in a 3T TIM-Trio scanner. During the fMRI scan, children aged approximately 7 years listened to professionally narrated common short stories and answered comprehension questions following the narration. Analyses of the data used inter-subject correlation (ISC), and representational similarity analysis (RSA). Our primary finding is that ISC reveals areas of increased synchrony in both high- and low-performing emergent readers previously implicated in reading ability/disability. Of particular interest are that several previously identified brain regions (medial temporal gyrus (MTG), inferior frontal gyrus (IFG), inferior temporal gyrus (ITG)) were found to "synchronize" across higher reading ability participants, while lower reading ability participants had idiosyncratic activation patterns in these regions. Additionally, two regions (superior frontal gyrus (SFG) and another portion of ITG) were recruited by all participants, but their specific timecourse of activation depended on reading performance. These analyses support the idea that different brain regions involved in reading follow different developmental trajectories that correlate with reading proficiency on a spectrum rather than the usual dichotomy of poor readers versus strong readers.
Collapse
Affiliation(s)
| | - David C Jangraw
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, VT, USA
| | - Emily S Finn
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Peter A Bandettini
- Section on Functional Imaging Methods, NIMH, Bethesda, MD, USA; Center for Multimodal Neuroimaging, NIMH, Bethesda, MD, USA
| | - Jonathan L Preston
- Haskins Laboratories, New Haven, CT, USA; Syracuse University, Syracuse, NY, USA
| | - Nicole Landi
- Haskins Laboratories, New Haven, CT, USA; Department of Psychological Sciences, University of Connecticut, USA
| | - Fumiko Hoeft
- Haskins Laboratories, New Haven, CT, USA; Department of Psychological Sciences, University of Connecticut, USA
| | | | - Airey Lau
- Haskins Laboratories, New Haven, CT, USA
| | - Gang Chen
- Statistical Computing Core, NIMH, Bethesda, MD, USA
| | - Kenneth R Pugh
- Haskins Laboratories, New Haven, CT, USA; Department of Psychological Sciences, University of Connecticut, USA; Department of Linguistics, Yale University School of Medicine, New Haven, CT, USA
| | - Peter J Molfese
- Center for Multimodal Neuroimaging, NIMH, Bethesda, MD, USA; Haskins Laboratories, New Haven, CT, USA.
| |
Collapse
|
15
|
Lasnick OHM, Hoeft F. Sensory temporal sampling in time: an integrated model of the TSF and neural noise hypothesis as an etiological pathway for dyslexia. Front Hum Neurosci 2024; 17:1294941. [PMID: 38234592 PMCID: PMC10792016 DOI: 10.3389/fnhum.2023.1294941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
Much progress has been made in research on the causal mechanisms of developmental dyslexia. In recent years, the "temporal sampling" account of dyslexia has evolved considerably, with contributions from neurogenetics and novel imaging methods resulting in a much more complex etiological view of the disorder. The original temporal sampling framework implicates disrupted neural entrainment to speech as a causal factor for atypical phonological representations. Yet, empirical findings have not provided clear evidence of a low-level etiology for this endophenotype. In contrast, the neural noise hypothesis presents a theoretical view of the manifestation of dyslexia from the level of genes to behavior. However, its relative novelty (published in 2017) means that empirical research focused on specific predictions is sparse. The current paper reviews dyslexia research using a dual framework from the temporal sampling and neural noise hypotheses and discusses the complementary nature of these two views of dyslexia. We present an argument for an integrated model of sensory temporal sampling as an etiological pathway for dyslexia. Finally, we conclude with a brief discussion of outstanding questions.
Collapse
Affiliation(s)
- Oliver H. M. Lasnick
- brainLENS Laboratory, Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | | |
Collapse
|
16
|
Guerra G, Tijms J, Tierney A, Vaessen A, Dick F, Bonte M. Auditory attention influences trajectories of symbol-speech sound learning in children with and without dyslexia. J Exp Child Psychol 2024; 237:105761. [PMID: 37666181 DOI: 10.1016/j.jecp.2023.105761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 09/06/2023]
Abstract
The acquisition of letter-speech sound correspondences is a fundamental process underlying reading development, one that could be influenced by several linguistic and domain-general cognitive factors. In the current study, we mimicked the first steps of this process by examining behavioral trajectories of audiovisual associative learning in 110 7- to 12-year-old children with and without dyslexia. Children were asked to learn the associations between eight novel symbols and native speech sounds in a brief training and subsequently read words and pseudowords written in the artificial orthography. We then investigated the influence of auditory attention as one of the putative domain-general factors influencing associative learning. To this aim, we assessed children with experimental measures of auditory sustained selective attention and interference control. Our results showed shallower learning trajectories in children with dyslexia, especially during the later phases of the training blocks. Despite this, children with dyslexia performed similarly to typical readers on the post-training reading tests using the artificial orthography. Better auditory sustained selective attention and interference control skills predicted greater response accuracy during training. Sustained selective attention was also associated with the ability to apply these novel correspondences in the reading tests. Although this result has the limitations of a correlational design, it denotes that poor attentional skills may constitute a risk during the early stages of reading acquisition, when children start to learn letter-speech sound associations. Importantly, our findings underscore the importance of examining dynamics of learning in reading acquisition as well as individual differences in more domain-general attentional factors.
Collapse
Affiliation(s)
- Giada Guerra
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, London WC1E 7HX, UK; Maastricht Brain Imaging Center and Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Jurgen Tijms
- RID Institute, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands; Rudolf Berlin Center, Department of Psychology, University of Amsterdam, 1018 WT Amsterdam, The Netherlands
| | - Adam Tierney
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, London WC1E 7HX, UK
| | - Anniek Vaessen
- RID Institute, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands
| | - Frederic Dick
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, London WC1E 7HX, UK; Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London WC1H 0AP, UK
| | - Milene Bonte
- Maastricht Brain Imaging Center and Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
17
|
Turker S, Kuhnke P, Jiang Z, Hartwigsen G. Disrupted network interactions serve as a neural marker of dyslexia. Commun Biol 2023; 6:1114. [PMID: 37923809 PMCID: PMC10624919 DOI: 10.1038/s42003-023-05499-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
Dyslexia, a frequent learning disorder, is characterized by severe impairments in reading and writing and hypoactivation in reading regions in the left hemisphere. Despite decades of research, it remains unclear to date if observed behavioural deficits are caused by aberrant network interactions during reading and whether differences in functional activation and connectivity are directly related to reading performance. Here we provide a comprehensive characterization of reading-related brain connectivity in adults with and without dyslexia. We find disrupted functional coupling between hypoactive reading regions, especially between the left temporo-parietal and occipito-temporal cortices, and an extensive functional disruption of the right cerebellum in adults with dyslexia. Network analyses suggest that individuals with dyslexia process written stimuli via a dorsal decoding route and show stronger reading-related interaction with the right cerebellum. Moreover, increased connectivity within networks is linked to worse reading performance in dyslexia. Collectively, our results provide strong evidence for aberrant task-related connectivity as a neural marker for dyslexia that directly impacts behavioural performance. The observed differences in activation and connectivity suggest that one effective way to alleviate reading problems in dyslexia is through modulating interactions within the reading network with neurostimulation methods.
Collapse
Affiliation(s)
- Sabrina Turker
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany.
- Wilhelm Wundt Institute for Psychology, Leipzig University, 04103, Leipzig, Germany.
| | - Philipp Kuhnke
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, 04103, Leipzig, Germany
| | - Zhizhao Jiang
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, 04103, Leipzig, Germany
| |
Collapse
|
18
|
Turker S, Kuhnke P, Schmid FR, Cheung VKM, Weise K, Knoke M, Zeidler B, Seidel K, Eckert L, Hartwigsen G. Adaptive short-term plasticity in the typical reading network. Neuroimage 2023; 281:120373. [PMID: 37696425 PMCID: PMC10577446 DOI: 10.1016/j.neuroimage.2023.120373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023] Open
Abstract
The left temporo-parietal cortex (TPC) is crucial for phonological decoding, i.e., for learning and retaining sound-letter mappings, and appears hypoactive in dyslexia. Here, we tested the causal contribution of this area for reading in typical readers with transcranial magnetic stimulation (TMS) and explored the reading network's response with fMRI. By investigating the underlying neural correlates of stimulation-induced modulations of the reading network, we can help improve targeted interventions for individuals with dyslexia. 28 typical adult readers overtly read simple and complex words and pseudowords during fMRI after effective and sham TMS over the left TPC. To explore differences in functional activation and effective connectivity within the reading network, we performed univariate and multivariate analyses, as well as dynamic causal modeling. While TMS-induced effects on reading performance and brain activation showed large individual variability, multivariate analyses revealed a shift in activation in the left inferior frontal cortex for pseudoword reading after effective TMS. Furthermore, TMS increased effective connectivity from the left ventral occipito-temporal cortex to the left TPC. In the absence of effects on reading performance, the observed changes in task-related activity and the increase in functional coupling between the two core reading nodes suggest successful short-term compensatory reorganization in the reading network following TMS-induced disruption. This study is the first to explore neurophysiological changes induced by TMS to a core reading node in typical readers while performing an overt reading task. We provide evidence for remote stimulation effects and emphasize the relevance of functional interactions in the reading network.
Collapse
Affiliation(s)
- S Turker
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany; Wilhelm Wundt Institute for Psychology, University of Leipzig, Germany.
| | - P Kuhnke
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany; Wilhelm Wundt Institute for Psychology, University of Leipzig, Germany
| | - F R Schmid
- CBC Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - V K M Cheung
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - K Weise
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - M Knoke
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany
| | - B Zeidler
- Centre for Systematic Musicology, University of Graz, Austria
| | - K Seidel
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany
| | - L Eckert
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany
| | - G Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany; Wilhelm Wundt Institute for Psychology, University of Leipzig, Germany
| |
Collapse
|
19
|
Church JA. The Brain's Control Networks in Reading: Insights From Cross-Task Studies of Youth. MIND, BRAIN AND EDUCATION : THE OFFICIAL JOURNAL OF THE INTERNATIONAL MIND, BRAIN, AND EDUCATION SOCIETY 2023; 17:257-266. [PMID: 38745918 PMCID: PMC11091959 DOI: 10.1111/mbe.12372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/04/2023] [Indexed: 05/16/2024]
Abstract
Humans engage multiple brain systems to read successfully, including using regions important for vision, language, and control. Control refers to the set of executive processes in the brain that guide moment-to-moment behavior in service of our goals. There is a growing appreciation for the role of the brain's control system in reading comprehension, in reading skill change over time, and in those who have difficulty with the reading process. One way to understand the brain's control engagement in reading may be to study control engagement across multiple tasks in order to study consistencies, or cross-task similarities, relative to reading-specific variations. In this commentary, I briefly summarize some of our recent work studying the brain's control networks across different tasks (e.g., when reading, or doing different executive function tasks). I then review our findings of when control activation does or does not relate to measures of reading ability, and reading growth over time. The utility of cross-task comparisons in neuroimaging is noted, as well as the need to better understand multiple sources of heterogeneity in our developmental samples. I end by discussing a few of the many future directions for further study of the brain with regard to the brain's control processing and academic achievement.
Collapse
|
20
|
Ashburn SM, Lynn Flowers D, Eden GF. A comparison of functional activation and connectivity of the cerebellum in adults and children during single word processing. BRAIN AND LANGUAGE 2023; 246:105346. [PMID: 37994829 PMCID: PMC10722870 DOI: 10.1016/j.bandl.2023.105346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/17/2023] [Accepted: 10/10/2023] [Indexed: 11/24/2023]
Abstract
Meta-analyses on reading show cerebellar activation in adults, but not children, suggesting a possible age-dependent role of the cerebellum in reading. However, the few studies that compare adults and children during reading report mixed cerebellar activation results. Here, we studied (i) cerebellar activation during implicit word processing in adults and children and (ii) functional connectivity (FC) between the cerebellum and left cortical regions involved in reading. First, both groups activated bilateral cerebellum for word processing when compared to fixation, but not when compared to the active control. There were no differences between adults and children. Second, we found intrinsic FC between several cerebellar seed regions and cortical target regions in adults and children, as well as between-group differences. However, task-modulated FC specific to word processing revealed no within- nor between-group results. Together this study does not provide support for a role of the cerebellum in word processing at either age.
Collapse
Affiliation(s)
- Sikoya M Ashburn
- Center for the Study of Learning, Department of Pediatrics, Georgetown University Medical Center, Washington, DC, United States
| | - D Lynn Flowers
- Center for the Study of Learning, Department of Pediatrics, Georgetown University Medical Center, Washington, DC, United States
| | - Guinevere F Eden
- Center for the Study of Learning, Department of Pediatrics, Georgetown University Medical Center, Washington, DC, United States.
| |
Collapse
|
21
|
Sánchez A, Carreiras M, Paz-Alonso PM. Word frequency and reading demands modulate brain activation in the inferior frontal gyrus. Sci Rep 2023; 13:17217. [PMID: 37821488 PMCID: PMC10567770 DOI: 10.1038/s41598-023-44420-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023] Open
Abstract
Processing efficiency differs between high- and low-frequency words, with less frequent words resulting in longer response latencies in several linguistic behavioral tasks. Nevertheless, studies using functional MRI to investigate the word frequency effect have employed diverse methodologies and produced heterogeneous results. In this study, we examine the effect of word frequency through complementary analytical approaches and functional connectivity analyses. Furthermore, we examine whether reading demands, which have been shown to influence reading-related activation, modulate the effects of word frequency. We conducted MRI scanning on 54 healthy participants who performed two versions of a single-word reading task involving high- and low-frequency words: a low-level perceptual reading task and a high-level semantic reading task. The results indicate that word frequency influenced the activation of the pars orbitalis and pars triangularis of the inferior frontal gyrus, but only in the semantic reading task. Additionally, the ventral occipitotemporal cortex exhibited stronger regional activation during the semantic reading task compared to the perceptual reading task, with no effects of word frequency. Functional connectivity analyses demonstrated significant coupling among regions within both the dorsal and ventral reading networks, without any observable effects of word frequency or task. These findings were consistent across group- and individual-level analytical approaches. Overall, our results provide further support for the involvement of the inferior frontal gyrus in semantic processing during reading, as indicated by the effect of word frequency and the influence of reading demands, highlighting the role of the ventral reading network. These findings are discussed in line with their implications for lexical and pre-lexical reading processing.
Collapse
Affiliation(s)
- Abraham Sánchez
- Basque Center On Cognition Brain and Language (BCBL), BCBL, Mikeletegi Pasealekua 69, 2, 20009, Donostia-San Sebastián, Spain.
- University of the Basque Country (EHU/UPV), Donostia-San Sebastián, Spain.
| | - Manuel Carreiras
- Basque Center On Cognition Brain and Language (BCBL), BCBL, Mikeletegi Pasealekua 69, 2, 20009, Donostia-San Sebastián, Spain
- University of the Basque Country (EHU/UPV), Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Pedro M Paz-Alonso
- Basque Center On Cognition Brain and Language (BCBL), BCBL, Mikeletegi Pasealekua 69, 2, 20009, Donostia-San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
22
|
Shoukat S, Zia MA, Uzair M, Alsubki RA, Sajid K, Shoukat S, Attia KA, Fiaz S, Ali S, Kimiko I, Ali GM. Synergistic neuroprotection by phytocompounds of Bacopa monnieri in scopolamine-induced Alzheimer's disease mice model. Mol Biol Rep 2023; 50:7967-7979. [PMID: 37535247 DOI: 10.1007/s11033-023-08674-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Millions of people around the globe are affected by Alzheimer's disease (AD). This crippling condition has no treatment despite intensive studies. Some phytocompounds have been shown to protect against Alzheimer's in recent studies. METHODS Thus, this work aimed to examine Bacopa monnieri phytocompounds' synergistic effects on neurodegeneration, antioxidant activity, and cognition in the scopolamine-induced AD mice model. The toxicity study of two phytocompounds: quercetin and bacopaside X revealed an LD50 of more than 2000 mg/kg since no deaths occurred. RESULTS The neuroprotection experiment consists of 6 groups i.e., control (saline), scopolamine (1 mg/kg), donepezil (5 mg/kg), Q (25 mg/kg), BX (20 mg/kg), and Q + BX (25 mg/kg + 20 mg/kg). Visual behavioral assessment using the Morris water maze showed that animals in the diseased model group (scopolamine) moved more slowly toward the platform and exhibited greater thigmotaxis behavior than the treatment and control groups. Likewise, the concentration of biochemical NO, GSH, and MDA improved in treatment groups concerning the diseased group. mRNA levels of different marker genes including ChAT, IL-1α, IL-1 β, TNF α, tau, and β secretase (BACE1) improved in treatment groups with respect to the disease group. CONCLUSION Both bacopaside X and quercetin synergistically have shown promising results in neuroprotection. Therefore, it is suggested that Q and BX may work synergistically due to their antioxidant and neuroprotective property.
Collapse
Affiliation(s)
- Shehla Shoukat
- Department of Plant Genomics and Biotechnology, PARC Institute of Advanced Studies in Agriculture, Affiliated with Quaid-e-Azam University, National Agriculture Research Centre, Islamabad, Pakistan.
| | - Muhammad Amir Zia
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan
| | - Roua A Alsubki
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Kaynat Sajid
- Department of Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Sana Shoukat
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, University of Haripur, Haripur, Pakistan
| | - Shaukat Ali
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan.
| | - Itoh Kimiko
- Department of Plant Breeding and Genetics, University of Haripur, Haripur, Pakistan
- Institute of Science and Technology, Niigata University, Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | | |
Collapse
|
23
|
Zhang K, Sun X, Yu C, Eggleston RL, Marks RA, Nickerson N, Caruso VC, Hu X, Tardif T, Chou T, Booth JR, Kovelman I. Phonological and morphological literacy skills in English and Chinese: A cross-linguistic neuroimaging comparison of Chinese-English bilingual and monolingual English children. Hum Brain Mapp 2023; 44:4812-4829. [PMID: 37483170 PMCID: PMC10400794 DOI: 10.1002/hbm.26419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Over the course of literacy development, children learn to recognize word sounds and meanings in print. Yet, they do so differently across alphabetic and character-based orthographies such as English and Chinese. To uncover cross-linguistic influences on children's literacy, we asked young Chinese-English simultaneous bilinguals and English monolinguals (N = 119, ages 5-10) to complete phonological and morphological awareness (MA) literacy tasks. Children completed the tasks in the auditory modality in each of their languages during functional near-infrared spectroscopy neuroimaging. Cross-linguistically, comparisons between bilinguals' two languages revealed that the task that was more central to reading in a given orthography, such as phonological awareness (PA) in English and MA in Chinese, elicited less activation in the left inferior frontal and parietal regions. Group comparisons between bilinguals and monolinguals in English, their shared language of academic instruction, revealed that the left inferior frontal was less active during phonology but more active during morphology in bilinguals relative to monolinguals. MA skills are generally considered to have greater language specificity than PA skills. Bilingual literacy training in a skill that is maximally similar across languages, such as PA, may therefore yield greater automaticity for this skill, as reflected in the lower activation in bilinguals relative to monolinguals. This interpretation is supported by negative correlations between proficiency and brain activation. Together, these findings suggest that both the structural characteristics and literacy experiences with a given language can exert specific influences on bilingual and monolingual children's emerging brain networks for learning to read.
Collapse
Affiliation(s)
- Kehui Zhang
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | - Xin Sun
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
- Department of PsychologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Chi‐Lin Yu
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - Rebecca A. Marks
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Nia Nickerson
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - Xiao‐Su Hu
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | - Twila Tardif
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | - Tai‐Li Chou
- Department of PsychologyNational Taiwan UniversityTaipeiTaiwan
| | - James R. Booth
- Department of Psychology and Human DevelopmentVanderbilt UniversityNashvilleTennesseeUSA
| | - Ioulia Kovelman
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
24
|
Harrington RM, Krishnamurthy LC, Ossowski A, Jeter M, Davis A, Bledniak E, Ware AL, Morris R, Arrington CN. Preliminary evidence of prolonged timing effects of theta-burst stimulation in the reading system. Front Hum Neurosci 2023; 17:1227194. [PMID: 37706172 PMCID: PMC10496289 DOI: 10.3389/fnhum.2023.1227194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/31/2023] [Indexed: 09/15/2023] Open
Abstract
Theta-burst stimulation (TBS) is a repetitive transcranial magnetic stimulation technique that can be used to upregulate or downregulate different brain regions. However, the timing of its effects and the differing effects of continuous TBS (cTBS) versus intermittent TBS (iTBS) in the reading system have not been explored. This study assessed how stimulation type and post-stimulation timing affected change in performance during a phonological discrimination and sight word recognition task after stimulation of supramarginal gyrus (SMG). Fourteen right-handed young adults (age 18-27 years; 44% male) were block-randomized to receive either iTBS or cTBS to the supramarginal gyrus. Participants then performed a pseudoword discrimination task and an orthographic awareness task (behavioral control) at four different time points and change in reaction time compared to baseline was measured from each time point. There was no effect of stimulation type on change in reaction time [t(16) = -0.2, p = 0.9], suggesting that both types of TBS caused similar effects. Percent change in reaction time decreased over time in the pseudoword task [t(50) = -5.9, p < 0.001], indicating faster pseudoword processing speed with better performance 60-70 min after stimulation. In contrast, no change was demonstrated over time for the behavioral control task [t(43) = -0.6, p = 0.6], suggesting that the change over time seen in the test condition was not a learning effect. These findings provide insight into the effects of TBS on the reading system and can guide future study designs.
Collapse
Affiliation(s)
- Rachael M. Harrington
- Center for Research on the Challenges of Acquiring Language and Literacy, Georgia State University, Atlanta, GA, United States
- Department of Communication Sciences and Disorders, Georgia State University, Atlanta, GA, United States
- Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, United States
| | - Lisa C. Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
- Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, United States
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, United States
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States
| | - Alexandra Ossowski
- Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, United States
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - Mykayla Jeter
- Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, United States
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
| | - Adriane Davis
- Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, United States
| | - Ewelina Bledniak
- Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, United States
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - Ashley L. Ware
- Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, United States
- Department of Psychology, Georgia State University, Atlanta, GA, United States
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
| | - Robin Morris
- Center for Research on the Challenges of Acquiring Language and Literacy, Georgia State University, Atlanta, GA, United States
- Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, United States
- Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, United States
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - C. Nikki Arrington
- Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, United States
- Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, United States
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
25
|
Wang F, Nguyen QTH, Kaneshiro B, Hasak L, Wang AM, Toomarian EY, Norcia AM, McCandliss BD. Lexical and sublexical cortical tuning for print revealed by Steady-State Visual Evoked Potentials (SSVEPs) in early readers. Dev Sci 2023; 26:e13352. [PMID: 36413170 PMCID: PMC10881121 DOI: 10.1111/desc.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 10/27/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
There are multiple levels of processing relevant to reading that vary in their visual, sublexical, and lexical orthographic processing demands. Segregating distinct cortical sources for each of these levels has been challenging in EEG studies of early readers. To address this challenge, we applied recent advances in analyzing high-density EEG using Steady-State Visual Evoked Potentials (SSVEPs) via data-driven Reliable Components Analysis (RCA) in a group of early readers spanning from kindergarten to second grade. Three controlled stimulus contrasts-familiar words versus unfamiliar pseudofonts, familiar words versus pseudowords, and pseudowords versus nonwords-were used to isolate coarse print tuning, lexical processing, and sublexical orthography-related processing, respectively. First, three overlapping yet distinct neural sources-left vOT, dorsal parietal, and primary visual cortex were revealed underlying coarse print tuning. Second, we segregated distinct cortical sources for the other two levels of processing: lexical fine tuning over occipito-temporal/parietal regions; sublexical orthographic fine tuning over left occipital regions. Finally, exploratory group analyses based on children's reading fluency suggested that coarse print tuning emerges early even in children with limited reading knowledge, while sublexical and higher-level lexical processing emerge only in children with sufficient reading knowledge. RESEARCH HIGHLIGHTS: Cognitive processes underlying coarse print tuning, sublexical, and lexical fine tuning were examined in beginning readers. Three overlapping yet distinct neural sources-left ventral occipito-temporal (vOT), left temporo-parietal, and primary visual cortex-were revealed underlying coarse print tuning. Responses to sublexical orthographic fine tuning were found over left occipital regions, while responses to higher-level linguistic fine tuning were found over occipito-temporal/parietal regions. Exploratory group analyses suggested that coarse print tuning emerges in children with limited reading knowledge, while sublexical and higher-level linguistic fine tuning effects emerge in children with sufficient reading knowledge.
Collapse
Affiliation(s)
- Fang Wang
- Graduate School of Education, Stanford University, Stanford, California, USA
| | | | - Blair Kaneshiro
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Lindsey Hasak
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Angie M. Wang
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Elizabeth Y. Toomarian
- Graduate School of Education, Stanford University, Stanford, California, USA
- Synapse School, Menlo Park, California, USA
| | - Anthony M. Norcia
- Department of Psychology, Stanford University, Stanford, California, USA
- Wu Tsai Neurosciences Institute, Stanford, California, USA
| | - Bruce D. McCandliss
- Graduate School of Education, Stanford University, Stanford, California, USA
| |
Collapse
|
26
|
Carrión-Castillo A, Paz-Alonso PM, Carreiras M. Brain structure, phenotypic and genetic correlates of reading performance. Nat Hum Behav 2023; 7:1120-1134. [PMID: 37037991 DOI: 10.1038/s41562-023-01583-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/08/2023] [Indexed: 04/12/2023]
Abstract
Reading is an evolutionarily recent development that recruits and tunes brain circuitry connecting primary- and language-processing regions. We investigated whether metrics of the brain's physical structure correlate with reading performance and whether genetic variants affect this relationship. To this aim, we used the Adolescent Brain Cognitive Development dataset (n = 9,013) of 9-10-year-olds and focused on 150 measures of cortical surface area (CSA) and thickness. Our results reveal that reading performance is associated with nine measures of brain structure including relevant regions of the reading network. Furthermore, we show that this relationship is partially mediated by genetic factors for two of these measures: the CSA of the entire left hemisphere and, specifically, of the left superior temporal gyrus CSA. These effects emphasize the complex and subtle interplay between genes, brain and reading, which is a partly heritable polygenic skill that relies on a distributed network.
Collapse
Affiliation(s)
| | - Pedro M Paz-Alonso
- Basque Center on Cognition, Brain and Language (BCBL), Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Manuel Carreiras
- Basque Center on Cognition, Brain and Language (BCBL), Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
- University of the Basque Country, Bilbao, Spain.
| |
Collapse
|
27
|
Christoforou C, Theodorou M, Fella A, Papadopoulos TC. RAN-related neural-congruency: a machine learning approach toward the study of the neural underpinnings of naming speed. Front Psychol 2023; 14:1076501. [PMID: 37408955 PMCID: PMC10319123 DOI: 10.3389/fpsyg.2023.1076501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Objective Naming speed, behaviorally measured via the serial Rapid automatized naming (RAN) test, is one of the most examined underlying cognitive factors of reading development and reading difficulties (RD). However, the unconstrained-reading format of serial RAN has made it challenging for traditional EEG analysis methods to extract neural components for studying the neural underpinnings of naming speed. The present study aims to explore a novel approach to isolate neural components during the serial RAN task that are (a) informative of group differences between children with dyslexia (DYS) and chronological age controls (CAC), (b) improve the power of analysis, and (c) are suitable for deciphering the neural underpinnings of naming speed. Methods We propose a novel machine-learning-based algorithm that extracts spatiotemporal neural components during serial RAN, termed RAN-related neural-congruency components. We demonstrate our approach on EEG and eye-tracking recordings from 60 children (30 DYS and 30 CAC), under phonologically or visually similar, and dissimilar control tasks. Results Results reveal significant differences in the RAN-related neural-congruency components between DYS and CAC groups in all four conditions. Conclusion Rapid automatized naming-related neural-congruency components capture the neural activity of cognitive processes associated with naming speed and are informative of group differences between children with dyslexia and typically developing children. Significance We propose the resulting RAN-related neural-components as a methodological framework to facilitate studying the neural underpinnings of naming speed and their association with reading performance and related difficulties.
Collapse
Affiliation(s)
- Christoforos Christoforou
- Division of Computer Science, Mathematics and Science, St. John’s University, New York, NY, United States
| | | | - Argyro Fella
- Department of Education, University of Nicosia, Nicosia, Cyprus
| | - Timothy C. Papadopoulos
- Department of Psychology and Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
28
|
Ostertag C, Reynolds JE, Kar P, Dewey D, Gibbard WB, Tortorelli C, Lebel C. Arcuate fasciculus and pre-reading language development in children with prenatal alcohol exposure. Front Neurosci 2023; 17:1174165. [PMID: 37332878 PMCID: PMC10272404 DOI: 10.3389/fnins.2023.1174165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Prenatal alcohol exposure (PAE) contributes to widespread neurodevelopmental challenges, including reading, and has been associated with altered white matter. Here, we aimed to investigate whether arcuate fasciculus (AF) development is associated with pre-reading language skills in young children with PAE. Methods A total of 51 children with confirmed PAE (25 males; 5.6 ± 1.1 years) and 116 unexposed controls (57 males; 4.6 ± 1.2 years) underwent longitudinal diffusion tensor imaging (DTI), for a total of 111 scans from participants with PAE and 381 scans in the unexposed control group. We delineated the left and right AF and extracted mean fractional anisotropy (FA) and mean diffusivity (MD). Pre-reading language ability was assessed using age-standardized phonological processing (PP) and speeded naming (SN) scores of the NEPSY-II. Linear mixed effects models were run to determine the relationship between diffusion metrics and age, group, sex, and age-by-group interactions, with subject modeled as a random factor. A secondary mixed effect model analysis assessed the influence of white matter microstructure and PAE on pre-reading language ability using diffusion metric-by-age-by-group interactions, with 51 age- and sex-matched unexposed controls. Results Phonological processing (PP) and SN scores were significantly lower in the PAE group (p < 0.001). In the right AF, there were significant age-by-group interactions for FA (p < 0.001) and MD (p = 0.0173). In the left AF, there was a nominally significant age-by-group interaction for MD that failed to survive correction (p = 0.0418). For the pre-reading analysis, a significant diffusion-by-age-by-group interaction was found for left FA (p = 0.0029) in predicting SN scores, and for the right FA (p = 0.00691) in predicting PP scores. Discussion Children with PAE showed altered developmental trajectories for the AF, compared with unexposed controls. Children with PAE, regardless of age, showed altered brain-language relationships that resembled those seen in younger typically developing children. Our findings support the contention that altered developmental trajectories in the AF may be associated with functional outcomes in young children with PAE.
Collapse
Affiliation(s)
- Curtis Ostertag
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Jess E. Reynolds
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Preeti Kar
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah Dewey
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - W. Ben Gibbard
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | | | - Catherine Lebel
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
29
|
Zhang J, Li H, Zhang M, Wang Z, Ao X, Jian J, Wei N, Liu H, Ding G, Meng X. Functional preference of the left inferior parietal lobule to second language reading. Neuroimage 2023; 270:119989. [PMID: 36858331 DOI: 10.1016/j.neuroimage.2023.119989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023] Open
Abstract
Additional neural substance for reading in a second language has been reported by prior studies. However, to date, there has been little investigation into whether and how the brain's adaptation to a second language is induced by specific linguistic tasks or is a general effect during reading in a new language. To address this issue, our study investigated Chinese children learning English as a second language by combining cross-sectional and longitudinal Functional Magnetic Resonance Imaging (fMRI) studies. We compared brain activation across four reading tasks, orthographic tasks and phonological tasks in Chinese (the first language, L1) and English (the second language, L2). By comparing the activation pattern across languages, we observed greater activation in the left inferior parietal lobule (LIPL) in English compared to Chinese, suggesting a functional preference of the LIPL to L2. In addition, greater correlation between LIPL-related FC and L2 was mainly observed in the phonological task, indicating that LIPL could be associated with phonological processing. Moreover, a proportion of the children were enrolled in an 8-week phonological-based reading-training program. We observed significant functional plasticity of the LIPL elicited by this training program only in the English phonological task and not in the orthographic task, further substantiating that the additional requirements of the LIPL in L2 are mainly associated with phonological processing. The findings provide new insights into understanding the functional contribution of the LIPL to reading in a second language.
Collapse
Affiliation(s)
- Jia Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Hehui Li
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Manli Zhang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavioral and Mental Health, Peking University, Beijing 100871, China; Human Communication, Development, and Information Sciences, Faculty of Education, The University of Hong Kong, Hong Kong, China
| | - Zhengke Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavioral and Mental Health, Peking University, Beijing 100871, China
| | - Xiya Ao
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavioral and Mental Health, Peking University, Beijing 100871, China
| | - Jie Jian
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavioral and Mental Health, Peking University, Beijing 100871, China
| | - Na Wei
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Haiyi Liu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xiangzhi Meng
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavioral and Mental Health, Peking University, Beijing 100871, China; PekingU-PolyU Center for Child Development and Learning, Peking University, Beijing 100871, China.
| |
Collapse
|
30
|
Chyl K, Gentile F, Dębska A, Dynak A, Łuniewska M, Wójcik M, Bonte M, Jednoróg K. Early reading skills and the ventral occipito-temporal cortex organization. Cortex 2023; 160:134-151. [PMID: 36841094 DOI: 10.1016/j.cortex.2023.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/31/2022] [Accepted: 01/03/2023] [Indexed: 02/09/2023]
Abstract
Learning to read impacts the way the ventral occipitotemporal cortex (VOT) reorganizes. The postulated underlying mechanism of neuronal recycling was recently revisited. Neuroimaging data showed that voxels weakly specialized for visual processing keep their initial category selectivity (i.e., object or face processing) while acquiring an additional and stronger responsivity to written words. Here, we examined a large and diverse group of six-year-olds prior to formal literacy training (N = 72) using various data analysis techniques (univariate, multivariate, rapid adaptation) and types of stimuli (print, false fonts, houses, faces) to further explore how VOT changes and adapts to the novel skill of reading. We found that among several visual stimuli categories only print activated a wide network of language related areas outside of the bilateral visual cortex, and the level of reading skill was related to the strength of this activation, showing the development of the reading circuit. Rapid adaptation was not directly related to the level of reading skill in the young children studied here, but it clearly revealed the emergence of the reading network in readers. Most importantly, we found that the reorganization of the VOT is not in fact an "invasion" by reading acquisition-voxels previously activated for faces started to respond more for print, while at the same time keeping their previous function. We can thus conclude that the revised hypothesis of neuronal recycling is supported by our data.
Collapse
Affiliation(s)
- Katarzyna Chyl
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; The International Studies Unit, The Educational Research Institute, Warsaw, Poland; Maastricht Brain Imaging Center and Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Francesco Gentile
- Maastricht Brain Imaging Center and Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Agnieszka Dębska
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Dynak
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Magdalena Łuniewska
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Marta Wójcik
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Milene Bonte
- Maastricht Brain Imaging Center and Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
31
|
Di Pietro SV, Willinger D, Frei N, Lutz C, Coraj S, Schneider C, Stämpfli P, Brem S. Disentangling influences of dyslexia, development, and reading experience on effective brain connectivity in children. Neuroimage 2023; 268:119869. [PMID: 36639004 DOI: 10.1016/j.neuroimage.2023.119869] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Altered brain connectivity between regions of the reading network has been associated with reading difficulties. However, it remains unclear whether connectivity differences between children with dyslexia (DYS) and those with typical reading skills (TR) are specific to reading impairments or to reading experience. In this functional MRI study, 132 children (M = 10.06 y, SD = 1.46) performed a phonological lexical decision task. We aimed to disentangle (1) disorder-specific from (2) experience-related differences in effective connectivity and to (3) characterize the development of DYS and TR. We applied dynamic causal modeling to age-matched (ndys = 25, nTR = 35) and reading-level-matched (ndys = 25, nTR = 22) groups. Developmental effects were assessed in beginning and advanced readers (TR: nbeg = 48, nadv = 35, DYS: nbeg = 24, nadv = 25). We show that altered feedback connectivity between the inferior parietal lobule and the visual word form area (VWFA) during print processing can be specifically attributed to reading impairments, because these alterations were found in DYS compared to both the age-matched and reading-level-matched TR. In contrast, feedforward connectivity from the VWFA to parietal and frontal regions characterized experience in TR and increased with age and reading skill. These directed connectivity findings pinpoint disorder-specific and experience-dependent alterations in the brain's reading network.
Collapse
Affiliation(s)
- Sarah V Di Pietro
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| | - David Willinger
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; Department of Psychology and Psychodynamics, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Nada Frei
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Christina Lutz
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Seline Coraj
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Chiara Schneider
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland
| | - Philipp Stämpfli
- MR-Center of the Department of Psychiatry, Psychotherapy and Psychosomatics and the Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland; MR-Center of the Department of Psychiatry, Psychotherapy and Psychosomatics and the Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
32
|
Lee MM, Drury BC, McGrath LM, Stoodley CJ. Shared grey matter correlates of reading and attention. BRAIN AND LANGUAGE 2023; 237:105230. [PMID: 36731345 PMCID: PMC10153583 DOI: 10.1016/j.bandl.2023.105230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 05/04/2023]
Abstract
Disorders of reading (developmental dyslexia) and attention (ADHD) have a high rate of comorbidity (25-40%), yet little is known about the neural underpinnings of this phenomenon. The current study investigated the shared and unique neural correlates of reading and attention in 330 typically developing children ages 8-18 from the Philadelphia Neurodevelopmental Cohort. Multiple regression analyses were used to identify regions of the brain where grey matter (GM) volume was associated with reading or attention scores (p < 0.001, cluster FDR p < 0.05). Better attention scores correlated with increased GM in the precuneus and higher reading scores were associated with greater thalamic GM. An exploratory conjunction analysis (p < 0.05, k > 239) found that GM in the caudate and precuneus correlated with both reading and attention scores. These results are consistent with a recent meta-analysis which identified GM reductions in the caudate in both dyslexia and ADHD and reveal potential shared neural correlates of reading and attention.
Collapse
Affiliation(s)
- Marissa M Lee
- Department of Psychology, American University, United States; Department of Neuroscience, American University, United States
| | - Brianne C Drury
- Undergraduate Program in Neuroscience, American University, United States
| | | | - Catherine J Stoodley
- Department of Psychology, American University, United States; Department of Neuroscience, American University, United States.
| |
Collapse
|
33
|
Li L, Zhang H, Qi Y, Lei X, Yu X, Liu H. More than visual-spatial skills: The important role of phonological awareness in mathematical abilities among Chinese primary school children. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-04151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
Zhao J, Song Z, Zhao Y, Thiebaut de Schotten M, Altarelli I, Ramus F. White matter connectivity in uncinate fasciculus accounts for visual attention span in developmental dyslexia. Neuropsychologia 2022; 177:108414. [PMID: 36343707 DOI: 10.1016/j.neuropsychologia.2022.108414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
The present study aimed to investigate the role of connectivity disruptions in two fiber pathways, the uncinate fasciculus (UF) and the frontal aslant tract (FAT), in developmental dyslexia and determine the relationship between the connectivity of these pathways and behavioral performance in children with dyslexia. A total of 26 French children with dyslexia and 31 age-matched control children were included. Spherical deconvolution tractography was used to reconstruct the two fiber pathways. Hindrance-modulated oriented anisotropy (HMOA) was used to measure the connectivity of each fiber pathway in both hemispheres. Only boys with dyslexia showed reduced HMOA in the UF compared to control boys. Furthermore, HMOA of the UF correlated with individual differences in the visual attention span in participants with dyslexia. All significant results found in HMOA of the UF were verified in fractional anisotropy (FA) of the UF using standard diffusion imaging model. This study suggests a differential sex effect on the connectivity disruption in the UF in developmental dyslexia. It also indicates that the UF may play an essential role in the visual attention span deficit in developmental dyslexia.
Collapse
Affiliation(s)
- Jingjing Zhao
- School of Psychology, Shaanxi Normal University, Xi'an, China.
| | - Zujun Song
- School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Yueye Zhao
- School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Michel Thiebaut de Schotten
- Institut des Maladies Neurodégénératives-UMR5293, CNRS, CEA, University of Bordeaux, Bordeaux, France; Brain Connectivity and Behavior Laboratory, Sorbonne Universities, Paris, France
| | - Irene Altarelli
- LaPsyDÉ Laboratory (UMR 8240), Université Paris Cité, Paris, France
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, EHESS, CNRS), Département D'Etudes Cognitives, Ecole Normale Supérieure, PSL University, Paris, France.
| |
Collapse
|
35
|
Oliaee A, Mohebbi M, Shirani S, Rostami R. Extraction of discriminative features from EEG signals of dyslexic children; before and after the treatment. Cogn Neurodyn 2022; 16:1249-1259. [PMID: 36408072 PMCID: PMC9666605 DOI: 10.1007/s11571-022-09794-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 11/25/2022] Open
Abstract
Dyslexia is a neurological disorder manifested as difficulty reading and writing. It can occur despite adequate instruction, intelligence, and intact sensory abilities. Different electroencephalogram (EEG) patterns have been demonstrated between dyslexic and healthy subjects in previous studies. This study focuses on the difference between patients before and after treatment. The main goal is to identify the subset of features that adequately discriminate subjects before and after a specific treatment plan. The treatment consists of Transcranial Direct Current Stimulation (tDCS) and occupational therapy using the BrainWare SAFARI software. The EEG signals of sixteen dyslexic children were recorded during the eyes-closed resting state before and after treatment. The preprocessing step was followed by the extraction of a wide range of features to investigate the differences related to the treatment. An optimal subset of features extracted from recorded EEG signals was determined using Principal Component Analysis (PCA) in conjunction with the Sequential Floating Forward Selection (SFFS) algorithm. The results showed that treatment leads to significant changes in EEG features like spectral and phase-related EEG features, in various regions. It has been demonstrated that the extracted subset of discriminative features can be useful for classification applications in treatment assessment. The most discriminative subset of features could classify the data with an accuracy of 92% with SVM classifier. The above result confirms the efficacy of the treatment plans in improving dyslexic children's cognitive skills.
Collapse
Affiliation(s)
- Anahita Oliaee
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Maryam Mohebbi
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Sepehr Shirani
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Reza Rostami
- Department of Psychology, Faculty of Psychology, University of Tehran, Tehran, Iran
| |
Collapse
|
36
|
Socioeconomic dissociations in the neural and cognitive bases of reading disorders. Dev Cogn Neurosci 2022; 58:101175. [PMID: 36401889 PMCID: PMC9674867 DOI: 10.1016/j.dcn.2022.101175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/20/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022] Open
Abstract
Childhood socioeconomic status (SES) strongly predicts disparities in reading development, yet it is unknown whether early environments also moderate the cognitive and neurobiological bases of reading disorders (RD) such as dyslexia, the most prevalent learning disability. SES-diverse 6-9-year-old children (n = 155, half with RD) completed behavioral and functional magnetic resonance imaging (fMRI) tasks engaging phonological and orthographic processing, which revealed corresponding double-dissociations in neurocognitive deficits. At the higher end of the SES spectrum, RD was most strongly explained by differences in phonological skill and corresponding activation in left inferior frontal and temporoparietal regions during phonological processing-widely considered the "core deficit" of RD. However, at the lower end of the SES spectrum, RD was most strongly explained by differences in rapid naming skills and corresponding activation in left temporoparietal and fusiform regions during orthographic processing. Findings indicate that children's early environments systematically moderate the neurocognitive systems underlying RD, which has implications for assessment and treatment approaches to reduce SES disparities in RD outcomes. Further, results suggest that reliance on high-SES convenience samples may mask critical heterogeneity in the foundations of both typical and disordered reading development.
Collapse
|
37
|
Bertoni S, Franceschini S, Campana G, Facoetti A. The effects of bilateral posterior parietal cortex tRNS on reading performance. Cereb Cortex 2022; 33:5538-5546. [PMID: 36336338 DOI: 10.1093/cercor/bhac440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
According to established cognitive neuroscience knowledge based on studies on disabled and typically developing readers, reading is based on a dual-stream model in which a phonological-dorsal stream (left temporo-parietal and inferior frontal areas) processes unfamiliar words and pseudowords, whereas an orthographic-ventral stream (left occipito-temporal and inferior frontal areas) processes known words. However, correlational neuroimaging, causal longitudinal, training, and pharmacological studies have suggested the critical role of visuo-spatial attention in reading development. In a double blind, crossover within-subjects experiment, we manipulated the neuromodulatory effect of a short-term bilateral stimulation of posterior parietal cortex (PPC) by using active and sham tRNS during reading tasks in a large sample of young adults. In contrast to the dual-stream model predicting either no effect or a selective effect on the stimulated phonological-dorsal stream (as well as to a general multisensory effect on both reading streams), we found that only word-reading performance improved after active bilateral PPC tRNS. These findings demonstrate a direct neural connectivity between the PPC, controlling visuo-spatial attention, and the ventral stream for visual word recognition. These results support a neurobiological model of reading where performance of the orthographic-ventral stream is boosted by an efficient deployment of visuo-spatial attention from bilateral PPC stimulation.
Collapse
Affiliation(s)
- Sara Bertoni
- Developmental and Cognitive Neuroscience Lab , Department of General Psychology, , Padua 35131 , Italy
- University of Padua , Department of General Psychology, , Padua 35131 , Italy
- Department of Human and Social Sciences, University of Bergamo , Bergamo 24129 , Italy
| | - Sandro Franceschini
- Developmental and Cognitive Neuroscience Lab , Department of General Psychology, , Padua 35131 , Italy
- University of Padua , Department of General Psychology, , Padua 35131 , Italy
| | - Gianluca Campana
- PercUp Lab , Department of General Psychology, , Padua 35131 , Italy
- University of Padua , Department of General Psychology, , Padua 35131 , Italy
| | - Andrea Facoetti
- Developmental and Cognitive Neuroscience Lab , Department of General Psychology, , Padua 35131 , Italy
- University of Padua , Department of General Psychology, , Padua 35131 , Italy
| |
Collapse
|
38
|
Liu CY, Tao R, Qin L, Matthews S, Siok WT. Functional connectivity during orthographic, phonological, and semantic processing of Chinese characters identifies distinct visuospatial and phonosemantic networks. Hum Brain Mapp 2022; 43:5066-5080. [PMID: 36097409 PMCID: PMC9582368 DOI: 10.1002/hbm.26075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/22/2022] [Accepted: 08/14/2022] [Indexed: 11/12/2022] Open
Abstract
While neuroimaging studies have identified brain regions associated with single word reading, its three constituents, namely, orthography, phonology, and meaning, and the functional connectivity of their networks remain underexplored. This study examined the neurocognitive underpinnings of these neural activations and functional connectivity of the identified brain regions using a within-subject design. Thirty-one native Mandarin speakers performed orthographic, phonological, and semantic judgment tasks during functional magnetic resonance imaging. The results indicated that the three processes shared a core network consisting of a large region in the left prefrontal cortex, fusiform gyrus, and medial superior frontal gyrus but not the superior temporal gyrus. Orthographic processing more strongly recruited the left dorsolateral prefrontal cortex, left superior parietal lobule and bilateral fusiform gyri; semantic processing more strongly recruited the left inferior frontal gyrus and left middle temporal gyrus, whereas phonological processing more strongly activated the dorsal part of the precentral gyrus. Functional connectivity analysis identified a posterior visuospatial network and a frontal phonosemantic network interfaced by the left middle frontal gyrus. We conclude that reading Chinese recruits cognitive resources that correspond to basic task demands with unique features best explained in connection with the individual reading subprocesses.
Collapse
Affiliation(s)
- Chun Yin Liu
- Department of LinguisticsThe University of Hong KongHong Kong SARChina
| | - Ran Tao
- Department of LinguisticsThe University of Hong KongHong Kong SARChina
- Research Centre for Language, Cognition, and Neuroscience, Department of Chinese and Bilingual StudiesThe Hong Kong Polytechnic UniversityHong Kong SARChina
| | - Lang Qin
- Department of LinguisticsThe University of Hong KongHong Kong SARChina
- Center for MRI Research, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Stephen Matthews
- Department of LinguisticsThe University of Hong KongHong Kong SARChina
| | - Wai Ting Siok
- Department of LinguisticsThe University of Hong KongHong Kong SARChina
| |
Collapse
|
39
|
Brignoni‐Pérez E, Jamal NI, Eden GF. Functional neuroanatomy of English word reading in early bilingual and monolingual adults. Hum Brain Mapp 2022; 43:4310-4325. [PMID: 35607841 PMCID: PMC9435003 DOI: 10.1002/hbm.25955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 12/02/2022] Open
Abstract
Skilled reading is important in daily life. While the understanding of the neurofunctional organization of this uniquely human skill has advanced significantly, it does not take into consideration the common bilingual experiences around the world. To examine the role of early bilingualism on the neural substrates supporting English word processing, we compared brain activity, as well as functional connectivity, in Spanish-English early bilingual adults (N = 25) and English monolingual adults (N = 33) during single-word processing. Activation analysis revealed no significant differences between the two groups. A seed-to-voxel analysis using eight a priori selected seed-regions (placed in regions known to be involved in reading) revealed relatively stronger functional connectivity in bilinguals between two sets of regions: left superior temporal gyrus seed positively with left lingual gyrus and left middle frontal gyrus seed negatively with left anterior cingulate cortex. Together these results suggest that an early Spanish-English bilingual experience does not modulate local brain activity for English word reading. It does, however, have some influence on the functional intercommunication between brain regions during reading, specifically in two regions associated with reading, which are functionally connected to those inside and outside of the reading network. We conclude that brain regions involved in processing English words are not that different in Spanish-English early bilingual adults relative to monolingual adult users of English.
Collapse
Affiliation(s)
- Edith Brignoni‐Pérez
- Center for the Study of Learning, Department of PediatricsGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
- Interdisciplinary Program in NeuroscienceGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Nasheed I. Jamal
- Center for the Study of Learning, Department of PediatricsGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Guinevere F. Eden
- Center for the Study of Learning, Department of PediatricsGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
- Interdisciplinary Program in NeuroscienceGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
40
|
Feng X, Monzalvo K, Dehaene S, Dehaene-Lambertz G. Evolution of reading and face circuits during the first three years of reading acquisition. Neuroimage 2022; 259:119394. [PMID: 35718022 DOI: 10.1016/j.neuroimage.2022.119394] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
Although words and faces activate neighboring regions in the fusiform gyrus, we lack an understanding of how such category selectivity emerges during development. To investigate the organization of reading and face circuits at the earliest stage of reading acquisition, we measured the fMRI responses to words, faces, houses, and checkerboards in three groups of 60 French children: 6-year-old pre-readers, 6-year-old beginning readers and 9-year-old advanced readers. The results showed that specific responses to written words were absent prior to reading, but emerged in beginning readers, irrespective of age. Likewise, specific responses to faces were barely visible in pre-readers and continued to evolve in the 9-year-olds, yet primarily driven by age rather than by schooling. Crucially, the sectors of ventral visual cortex that become specialized for words and faces harbored their own functional connectivity prior to reading acquisition: the VWFA with left-hemispheric spoken language areas, and the FFA with the contralateral region and the amygdalae. The results support the view that reading acquisition occurs through the recycling of a pre-existing but plastic circuit which, in pre-readers, already connects the VWFA site to other distant language areas. We argue that reading acquisition does not compete with the face system directly, through a pruning of preexisting face responses, but indirectly, by hindering the slow growth of face responses in the left hemisphere, thus increasing a pre-existing right hemispheric bias.
Collapse
Affiliation(s)
- Xiaoxia Feng
- Cognitive Neuroimaging Unit, CNRS ERL 9003, INSERM U992, CEA, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France
| | - Karla Monzalvo
- Cognitive Neuroimaging Unit, CNRS ERL 9003, INSERM U992, CEA, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, CNRS ERL 9003, INSERM U992, CEA, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France; Collège de France, Université PSL Paris Sciences Lettres, Paris, France
| | - Ghislaine Dehaene-Lambertz
- Cognitive Neuroimaging Unit, CNRS ERL 9003, INSERM U992, CEA, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France.
| |
Collapse
|
41
|
Associations between Brain Microstructure and Phonological Processing Ability in Preschool Children. CHILDREN 2022; 9:children9060782. [PMID: 35740719 PMCID: PMC9221994 DOI: 10.3390/children9060782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
Abstract
Neuroimaging studies have associated brain changes in children with future reading and language skills, but few studies have investigated the association between language skills and white matter structure in preschool-aged children. Using 208 data sets acquired in 73 healthy children aged 2–7 years, we investigated the relationship between developmental brain microstructure and phonological processing ability as measured using their phonological processing raw score (PPRS). The correlation analysis showed that across the whole age group, with increasing age, PPRS increased, fractional anisotropy (FA) of the internal capsule and inferior fronto-occipital fasciculus and some other regions increased, and mean diffusivity (MD) of the corpus callosum and internal capsule and some other regions decreased. The results of the mediation analysis suggest that increased FA may be the basis of phonological processing ability development during this period, and the increased number of fiber connections between the right inferior parietal lobule and right supramarginal gyrus may be a key imaging feature of phonological processing ability development. Our study reflects the changes in brain microstructure and contributes to understanding the underlying neural mechanisms of language development in preschool children.
Collapse
|
42
|
Li A, Yang R, Qu J, Dong J, Gu L, Mei L. Neural representation of phonological information during Chinese character reading. Hum Brain Mapp 2022; 43:4013-4029. [PMID: 35545935 PMCID: PMC9374885 DOI: 10.1002/hbm.25900] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/04/2022] [Accepted: 04/26/2022] [Indexed: 11/12/2022] Open
Abstract
Previous studies have revealed that phonological processing of Chinese characters elicited activation in the left prefrontal cortex, bilateral parietal cortex, and occipitotemporal regions. However, it is controversial what role the left middle frontal gyrus plays in Chinese character reading, and whether the core regions (e.g., the left superior temporal gyrus and supramarginal gyrus) for phonological processing of alphabetic languages are also involved in Chinese character reading. To address these questions, the present study used both univariate and multivariate analysis (i.e., representational similarity analysis, RSA) to explore neural representations of phonological information during Chinese character reading. Participants were scanned while performing a reading aloud task. Univariate activation analysis revealed a widely distributed network for word reading, including the bilateral inferior frontal gyrus, middle frontal gyrus, lateral temporal cortex, and occipitotemporal cortex. More importantly, RSA showed that the left prefrontal (i.e., the left middle frontal gyrus and left inferior frontal gyrus) and bilateral occipitotemporal areas (i.e., the left inferior and middle temporal gyrus and bilateral fusiform gyrus) represented phonological information of Chinese characters. These results confirmed the importance of the left middle frontal gyrus and regions in ventral pathway in representing phonological information of Chinese characters.
Collapse
Affiliation(s)
- Aqian Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Rui Yang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jing Qu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jie Dong
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Lala Gu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China
| |
Collapse
|
43
|
Yu X, Dunstan J, Jacobson SW, Molteno CD, Lindinger NM, Turesky TK, Meintjes EM, Jacobson JL, Gaab N. Distinctive neural correlates of phonological and reading impairment in fetal alcohol-exposed adolescents with and without facial dysmorphology. Neuropsychologia 2022; 169:108188. [PMID: 35218791 PMCID: PMC9922095 DOI: 10.1016/j.neuropsychologia.2022.108188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/26/2021] [Accepted: 02/21/2022] [Indexed: 01/25/2023]
Abstract
Prenatal alcohol exposure (PAE) has been linked to atypical brain and cognitive development, including poor academic performance in reading. This study utilized functional magnetic resonance imaging and diffusion tensor imaging to characterize functional and structural mechanisms mediating reading deficits in 26 adolescents with PAE-related facial dysmorphology (fetal alcohol syndrome (FAS)/partial FAS (PFAS)), 29 heavily-exposed (HE) non-syndromal adolescents, in comparison with 19 typically developing controls. The FAS/PFAS and HE groups were balanced in terms of levels of PAE and reading (dis)ability. While neural alterations in the posterior association cortices were evident in both PAE groups, distinctive neural correlates of reading (dis)abilities were observed between adolescents with and without facial dysmorphology. Specifically, compared to the HE and control groups, the syndromal adolescents showed greater activation in the right precentral gyrus during phonological processing and rightward lateralization in an important reading-related tract (inferior longitudinal fasciculus, ILF), suggesting an atypical reliance on the right hemisphere. By contrast, in the HE, better reading skills were positively correlated with neural activation in the left angular gyrus and white matter organization of the left ILF, although the brain function-behavior relation was weaker than among the controls, suggesting less efficient function of the typical reading network. Our findings provide converging evidence at both the neural functional and structural levels for distinctive brain mechanisms underlying atypical reading and phonological processing in PAE adolescents with and without facial dysmorphology.
Collapse
Affiliation(s)
- Xi Yu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China; Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, MA, 02115, USA.
| | - Jade Dunstan
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, MA, 02115, USA
| | - Sandra W Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, 7701, South Africa; Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7701, South Africa
| | - Christopher D Molteno
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, 7701, South Africa
| | - Nadine M Lindinger
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7701, South Africa
| | - Ted K Turesky
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA; Harvard Graduate School of Education, Cambridge, MA, 02138, USA
| | - Ernesta M Meintjes
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7701, South Africa
| | - Joseph L Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7701, South Africa.
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA; Harvard Graduate School of Education, Cambridge, MA, 02138, USA.
| |
Collapse
|
44
|
Panda EJ, Kember J, Emami Z, Nayman C, Valiante TA, Pang EW. Dynamic functional brain network connectivity during pseudoword processing relates to children's reading skill. Neuropsychologia 2022; 168:108181. [PMID: 35167858 DOI: 10.1016/j.neuropsychologia.2022.108181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/30/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
Abstract
Learning to read requires children to link print (orthography) with its corresponding speech sounds (phonology). Yet, most EEG studies of reading development focus on emerging functional specialization (e.g., developing increasingly refined orthographic representations), rather than directly measuring the functional connectivity that links orthography and phonology in real time. In this proof-of-concept study we relate children's reading skill to both orthographic specialization for print (via the N170, also called the N1, event related potential, ERP) and orthographic-phonological integration (via dynamic/event-related EEG phase synchronization - an index of functional brain network connectivity). Typically developing English speaking children (n = 24; 4-14 years) and control adults (n = 20; 18-35 years) viewed pseudowords, consonants and unfamiliar false fonts during a 1-back memory task while 64-channel EEG was recorded. Orthographic specialization (larger N170 for pseudowords vs. false fonts) became more left-lateralized with age, but not with reading skill. Conversely, children's reading skill correlated with functional brain network connectivity during pseudoword processing that requires orthography-phonology linking. This was seen during two periods of simultaneous low frequency synchronization/high frequency desynchronization of posterior-occipital brain network activity. Specifically, in stronger readers, left posterior-occipital activity showed more delta (1-3Hz) synchronization around 300-500 ms (simultaneous with gamma 30-80 Hz desynchronization) and more gamma desynchronization around 600-1000 ms (simultaneous with theta 3-7Hz synchronization) during pseudoword vs. false font processing. These effects were significant even when controlling for age (moderate - large effect sizes). Dynamic functional brain network connectivity measures the brain's real-time sound-print linking. It may offer an under-explored, yet sensitive, index of the neural plasticity associated with reading development.
Collapse
Affiliation(s)
- Erin J Panda
- Department of Child and Youth Studies, Brock University, 1812, Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Ontario, Canada; Epilepsy Research Program of the Ontario Brain Institute, Toronto, Ontario, Canada; Division of Neurology / Neurosciences and Mental Health, The Hospital for Sick Children / SickKids Research Institute, Toronto, Ontario, Canada.
| | - Jonah Kember
- Department of Child and Youth Studies, Brock University, 1812, Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Ontario, Canada.
| | - Zahra Emami
- Division of Neurology / Neurosciences and Mental Health, The Hospital for Sick Children / SickKids Research Institute, Toronto, Ontario, Canada.
| | - Candace Nayman
- Division of Neurology / Neurosciences and Mental Health, The Hospital for Sick Children / SickKids Research Institute, Toronto, Ontario, Canada.
| | - Taufik A Valiante
- Epilepsy Research Program of the Ontario Brain Institute, Toronto, Ontario, Canada; Krembil Brain Institute, University Health Network and Toronto Western Hospital, Toronto, Ontario, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Institute of Biomedical Engineering, University of Toronto, Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
| | - Elizabeth W Pang
- Epilepsy Research Program of the Ontario Brain Institute, Toronto, Ontario, Canada; Division of Neurology / Neurosciences and Mental Health, The Hospital for Sick Children / SickKids Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
45
|
Li H, Yuan Q, Luo YJ, Tao W. A new perspective for understanding the contributions of the cerebellum to reading: The cerebro-cerebellar mapping hypothesis. Neuropsychologia 2022; 170:108231. [DOI: 10.1016/j.neuropsychologia.2022.108231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023]
|
46
|
Ligges C, Ligges M, Gaser C. Cross-Sectional Investigation of Brain Volume in Dyslexia. Front Neurol 2022; 13:847919. [PMID: 35350399 PMCID: PMC8957969 DOI: 10.3389/fneur.2022.847919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/04/2022] [Indexed: 01/18/2023] Open
Abstract
The goal of the study was to determine whether dyslexia is associated with differences in local brain volume, and whether these local brain volume differences show cross-sectional age-effects. We investigated the local volume of gray and white brain matter with voxel-based morphometry (VBM) as well as reading performance in three age groups of dyslexic and neurotypical normal reading subjects (children, teenagers and adults). Performance data demonstrate a steady improvement of reading skills in both neurotypical as well as dyslexic readers. However, the pattern of gray matter volumes tell a different story: the children are the only group with significant differences between neurotypical and dyslexic readers in local gray matter brain volume. These differences are localized in brain areas associated with the reading network (angular, middle temporal and inferior temporal gyrus as well as the cerebellum). Yet the comparison of neurotypical and normal readers over the age groups shows that the steady increase in performance in neurotypical readers is accompanied by a steady decrease of gray matter volume, whereas the brain volumes of dyslexic readers do not show this linear correlation between brain volume and performance. This is further evidence that dyslexia is a disorder with a neuroanatomical basis in the form of a lower volume of gray matter in parts of the reading network in early dyslexic readers. The present data point out that network shaping processes in gray matter volume in the reading network does take place over age in dyslexia. Yet this neural foundation does not seem to be sufficient to allow normal reading performances even in adults with dyslexia. Thus dyslexia is a disorder with lifelong consequences, which is why consistent support for affected individuals in their educational and professional careers is of great importance. Longitudinal studies are needed to verify whether this holds as a valid pattern or whether there is evidence of greater interindividual variance in the neuroanatomy of dyslexia.
Collapse
Affiliation(s)
- Carolin Ligges
- Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Marc Ligges
- Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
47
|
Turker S, Hartwigsen G. The use of noninvasive brain stimulation techniques to improve reading difficulties in dyslexia: A systematic review. Hum Brain Mapp 2022; 43:1157-1173. [PMID: 34716977 PMCID: PMC8764483 DOI: 10.1002/hbm.25700] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023] Open
Abstract
Noninvasive brain stimulation (NIBS) allows to actively and noninvasively modulate brain function. Aside from inhibiting specific processes, NIBS may also enhance cognitive functions, which might be used for the prevention and intervention of learning disabilities such as dyslexia. However, despite the growing interest in modulating learning abilities, a comprehensive, up-to-date review synthesizing NIBS studies with dyslexics is missing. Here, we fill this gap and elucidate the potential of NIBS as treatment option in dyslexia. The findings of the 15 included studies suggest that repeated sessions of reading training combined with different NIBS protocols may induce long-lasting improvements of reading performance in child and adult dyslexics, opening promising avenues for future research. In particular, the "classical" reading areas seem to be most successfully modulated through NIBS, and facilitatory protocols can improve various reading-related subprocesses. Moreover, we emphasize the need to further explore the potential to modulate auditory cortex function as a preintervention and intervention approach for affected children, for example, to avoid the development of auditory and phonological difficulties at the core of dyslexia. Finally, we outline how future studies may increase our understanding of the neurobiological basis of NIBS-induced improvements in dyslexia.
Collapse
Affiliation(s)
- Sabrina Turker
- Lise Meitner Research Group Cognition and PlasticityMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Alexander von Humboldt FoundationBerlinGermany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and PlasticityMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
48
|
Freire MR, Pammer K. Reading as A Cultural Tool for Neurocognitive Development: A Complex Interactive Relationship between Reading Acquisition and Visuospatial Development for Indigenous and non-Indigenous Australians. JOURNAL OF COGNITION AND DEVELOPMENT 2022. [DOI: 10.1080/15248372.2022.2037606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Melissa R. Freire
- Research School of Psychology, Australian National University, Australia
| | - Kristen Pammer
- Research School of Psychology, Australian National University, Australia
- School of Psychology, University of Newcastle, Australia
| |
Collapse
|
49
|
OUP accepted manuscript. Cereb Cortex 2022; 32:4684-4697. [DOI: 10.1093/cercor/bhab510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
|
50
|
Perdue MV, Mahaffy K, Vlahcevic K, Wolfman E, Erbeli F, Richlan F, Landi N. Reading intervention and neuroplasticity: A systematic review and meta-analysis of brain changes associated with reading intervention. Neurosci Biobehav Rev 2022; 132:465-494. [PMID: 34856223 PMCID: PMC10327490 DOI: 10.1016/j.neubiorev.2021.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/22/2022]
Abstract
Behavioral research supports the efficacy of intervention for reading disability, but the brain mechanisms underlying improvement in reading are not well understood. Here, we review 39 neuroimaging studies of reading intervention to characterize links between reading improvement and changes in the brain. We report evidence of changes in activation, connectivity, and structure within the reading network, and right hemisphere, frontal and sub-cortical regions. Our meta-analysis of changes in brain activation from pre- to post- reading intervention in eight studies did not yield any significant effects. Methodological heterogeneity among studies may contribute to the lack of significant meta-analytic findings. Based on our qualitative synthesis, we propose that brain changes in response to intervention should be considered in terms of interactions among distributed cognitive, linguistic and sensory systems, rather than via a "normalized" vs. "compensatory" dichotomy. Further empirical research is needed to identify effects of moderating factors such as features of intervention programs, neuroimaging tasks, and individual differences among participants.
Collapse
Affiliation(s)
- Meaghan V Perdue
- Dept. of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA; Dept. of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Kelly Mahaffy
- Dept. of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA
| | - Katherine Vlahcevic
- Dept. of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA
| | - Emma Wolfman
- Dept. of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Florina Erbeli
- Dept. of Educational Psychology, Texas A&M University, College Station, TX, USA
| | - Fabio Richlan
- Centre for Cognitive Neuroscience & Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Nicole Landi
- Dept. of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA
| |
Collapse
|