1
|
Neuroprotection of Intermedin Against Cerebral Ischemia/Reperfusion Injury Through Cerebral Microcirculation Improvement and Apoptosis Inhibition. J Mol Neurosci 2020; 71:767-777. [PMID: 32910355 DOI: 10.1007/s12031-020-01697-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/01/2020] [Indexed: 01/06/2023]
Abstract
Ischemic stroke is the primary cause of disability and mortality worldwide. Ischemia/reperfusion (I/R)-induced microcirculatory dysfunction and organ injury generally occur after ischemic stroke. Several studies have shown that intermedin (IMD) has a regulating function on cerebral microcirculation and blood-brain barrier via relaxing cerebral vessels and improving the local blood supply after cerebral ischemia. However, a unified conclusion has not been reached, and the underlying mechanism remains unclear. To observe and analyze the changes of cerebral microcirculation perfusion of cerebral IRI by IMD post-treatment in the rats and further explore the mechanism underlying the beneficial effect of IMD on cerebral IRI. Thirty-nine rats were divided into three groups: sham, I/R, and I/R + IMD groups. After IMD ischemia post-treatment, the rat cerebral infarction rate and the degree of neurological deficit were evaluated by TTC staining and neurological function score; the changes in the amount of cerebral microcirculation implantation on the injured side of the rats were observed by laser Doppler; the pathological changes and cell ultrastructure of rat cortex and hippocampus were observed by HE staining and transmission electron microscopy; the neuron apoptosis in the rat cortex and hippocampus was detected by TUNEL staining and immunohistochemical staining. Impaired neurological function, abnormal cortical/hippocampal neuron morphology, and the proportion of cerebral infarction were significantly improved in the IMD group compared with the I/R group, which suggested a possible neuroprotective role of IMD. IMD treatment also increased the average perfusion of cerebral surface microcirculation in rats by astonished 42.7 times. Finally, IMD administration decreased the caspase-3- and Bax-positive cell numbers and apoptotic cell ratio. IMD has a significant protective effect on neuronal damage caused by cerebral I/R in rats by improving cerebral microcirculation and inhibiting apoptosis.
Collapse
|
2
|
Calcitriol alleviates global cerebral ischemia-induced cognitive impairment by reducing apoptosis regulated by VDR/ERK signaling pathway in rat hippocampus. Brain Res 2019; 1724:146430. [PMID: 31479649 DOI: 10.1016/j.brainres.2019.146430] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Vitamin D (VD) has important neuroprotective functions in the central nervous system. However, further exploration is still needed in the neuroprotective effects of VD monomer therapy on global cerebral ischemia (GCI) and its potential molecular mechanism. OBJECTIVE To investigate whether calcitriol, a biologically active metabolite of VD, could alleviate cognitive impairment induced by GCI via reducing cell apoptosis and activating the extracellular signal-regulated kinase (ERK) signaling pathway. METHODS A total of 145 adult male Sprague Dawley rats were randomly divided into five groups: Sham group (n = 45), GCI group (n = 45), calcitriol treatment group (GCI + calcitriol, n = 45), PD98059 treatment group (n = 5) and vehicle group (n = 5). Morris water maze test was used for evaluating spatial learning and memory functions. Neurological Severity Score and wet-dry weight method were applied to detect neurological deficits and brain water content, respectively. Hematoxylin and eosin staining, transmission electron microscopy, and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end-labeling staining were performed for evaluating the changes of hippocampal CA1 neurons. Immunocytochemistry, immunofluorescence chemistry, and western blot analysis were performed for evaluating the changes of related proteins. RESULTS Calcitriol significantly ameliorated the spatial learning and memory impairments, improved neurological function, attenuated brain edema, and improved the morphological defects in the CA1 area of the hippocampus. Besides, calcitriol reduced GCI-induced cell apoptosis and reversed the up-regulation of pro-apoptotic proteins (Caspase-3 and Bax) and the down-regulation of anti-apoptotic protein (Bcl-2). Furthermore, calcitriol also increased the expression of VD receptors (VDR) and activated the ERK signaling pathway. Moreover, the p-ERK1/2 inhibitor PD98059 reversed the effect of calcitriol on the expression of apoptosis-related proteins. CONCLUSIONS Calcitriol may have a protective effect against GCI-induced cognitive impairments via inhibition of apoptotic cascade by activating the VDR/ERK signaling pathway.
Collapse
|
3
|
Abstract
The objective of the present study is to evaluate the effect of epigallocatechin gallate (EGCG) on aging-mediated cardiac hypertrophy, fibrosis, and apoptosis. The Wistar albino rats were divided into 4 groups (n = 18). Group I: young (3 months), group II: aged (24-26 months), group III: aged + EGCG (200 mg/kg for 30 days), and group IV: young + EGCG. At the end of 30 days, EGCG administration to the aged animals showed significant (P < 0.001) reduction of low-density lipoprotein, very low-density lipoprotein, triglyceride, total cholesterol with concomitant increase of high-density lipoprotein (P < 0.001) when compared with aged rats. Increased (P < 0.001) heart volume, weight with concomitant increase of left ventricular wall thickness, and reduced ventricular cavity were observed in aged rats supplemented with EGCG compared with aged animals. Histology and histomorphometry study of aged animals treated with EGCG showed marked increases in the diameter and volume of cardiomyocytes with concomitant reduction of numerical density when compared with aged animals. Reduced reactive oxygen species (P < 0.001) production with association of increased antioxidant defense system (P < 0.001) in aged hearts supplemented with EGCG when compared with aged animals. TUNEL staining and fibrosis showed a marked increase in apoptotic cell death (P < 0.001) and collagen deposition (P < 0.001) in aged animals treated with EGCG when compared with aged animals. Aged animals treated with EGCG showed a marked increase in protein expression of TGFβ, TNFα, and nuclear factor kappa B (NF-κB) and significant (P < 0.001) alteration in the gene expression of TGFβ, TNFα, NF-κB, α-SMA, and Nrf2 when compared with aged animals. Taken together, it is evident that EGCG may potentially inhibit aging-induced cardiac hypertrophy, fibrosis, and apoptosis, thereby preserving cardiac function. The proposed mechanism would be inhibition of reactive oxygen species-dependent activation of TGFβ1, TNFα, and NF-κB signaling pathway. Hence, the present study suggests that EGCG can be useful to fight against aging-induced cardiac hypertrophy, fibrosis, and apoptosis.
Collapse
|
4
|
Lee DJ, Cavasin MA, Rocker AJ, Soranno DE, Meng X, Shandas R, Park D. An injectable sulfonated reversible thermal gel for therapeutic angiogenesis to protect cardiac function after a myocardial infarction. J Biol Eng 2019; 13:6. [PMID: 30675179 PMCID: PMC6337754 DOI: 10.1186/s13036-019-0142-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/07/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cardiovascular disease and myocardial infarction are associated with high mortality and morbidity and a more effective treatment remains a major clinical need. The intramyocardial injection of biomaterials has been investigated as a potential treatment for heart failure by providing mechanical support to the myocardium and reducing stress on cardiomyocytes. Another treatment approach that has been explored is therapeutic angiogenesis that requires careful spatiotemporal control of angiogenic drug delivery. An injectable sulfonated reversible thermal gel composed of a polyurea conjugated with poly(N-isopropylacrylamide) and sulfonate groups has been developed for intramyocardial injection with angiogenic factors for the protection of cardiac function after a myocardial infarction. RESULTS The thermal gel allowed for the sustained, localized release of VEGF in vivo with intramyocardial injection after two weeks. A myocardial infarction reperfusion injury model was used to evaluate therapeutic benefits to cardiac function and vascularization. Echocardiography presented improved cardiac function, infarct size and ventricular wall thinning were reduced, and immunohistochemistry showed improved vascularization with thermal gel injections. The thermal gel alone showed cardioprotective and vascularization properties, and slightly improved further with the additional delivery of VEGF. An inflammatory response evaluation demonstrated the infiltration of macrophages due to the myocardial infarction was more significant compared to the foreign body inflammatory response to the thermal gel. Detecting DNA fragments of apoptotic cells also demonstrated potential anti-apoptotic effects of the thermal gel. CONCLUSION The intramyocardial injection of the sulfonated reversible thermal gel has cardioprotective and vascularization properties for the treatment of myocardial infarction.
Collapse
Affiliation(s)
- David J. Lee
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Maria A. Cavasin
- Department of Medicine, Division of Cardiology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Adam J. Rocker
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Danielle E. Soranno
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045 USA
- Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Xianzhong Meng
- Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Robin Shandas
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Daewon Park
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045 USA
| |
Collapse
|
5
|
Garvin AM, Jackson MA, Korzick DH. Inhibition of programmed necrosis limits infarct size through altered mitochondrial and immune responses in the aged female rat heart. Am J Physiol Heart Circ Physiol 2018; 315:H1434-H1442. [PMID: 29957016 DOI: 10.1152/ajpheart.00595.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Both advancing age and estrogen loss exacerbate acute myocardial infarction in the female heart. However, the mechanistic underpinnings of age-related differences in cell death after ischemia-reperfusion (I/R) injury in female subjects and reductions in cardioprotective reserve capacity remain largely unexplored. The aim of the present study was to determine the efficacy of programmed necrosis inhibition on infarct size reduction and preservation of left ventricular (LV) function after I/R injury with female aging. Fischer 344 rats were ovariectomized (OVX) at 15 mo and studied at 24 mo (MO OVX) versus adult rats with intact ovaries (6 mo). After in vivo coronary artery ligation (55-min ischemia and 2- or 6-h reperfusion), necrostatin-1 (Nec-1; 3.5 or 5.7 mg/kg) delivered upon reperfusion significantly reduced infarct size by 37% and improved LV function in the MO OVX group ( P < 0.01). Although age-associated elevations in cyclophilin D and mitochondrial acetylation ( P < 0.001) were unaffected by Nec-1, profound reductions in IL-1, IL-6, and TNF-α ( P < 0.05) as well as cardiac immune cell infiltration were observed in MO OVX but not adult rats. We conclude that chronic inflammation and postmenopausal estrogen deficiency conspire to exacerbate acute infarction through a mechanism involving exaggerated mitochondria-mediated programmed necrosis through receptor-interacting protein 1 signaling. Modulatory effects of programmed necrosis inhibition on proinflammatory cytokine production after I/R reveal a potentially important mechanistic target to restore and preserve cardiac function in the OVX aged female heart. NEW & NOTEWORTHY Myocardial infarct size reduction by inhibition of programmed necrosis in aged female subjects suggests a dominant cell death pathway. Alterations in mitochondrial protein levels and acetylation underscore a mitochondria-dependent mechanism, whereas the profound cytokine reduction in aged subjects alone points to a divergent role for immune modulation of programmed necrosis and viable therapeutic target.
Collapse
Affiliation(s)
- Alexandra M Garvin
- Intercollege Graduate Degree Program in Physiology, The Pennsylvania State University , University Park, Pennsylvania
| | - Morgan A Jackson
- Intercollege Graduate Degree Program in Physiology, The Pennsylvania State University , University Park, Pennsylvania
| | - Donna H Korzick
- Intercollege Graduate Degree Program in Physiology, The Pennsylvania State University , University Park, Pennsylvania.,Department of Kinesiology, The Pennsylvania State University , University Park, Pennsylvania
| |
Collapse
|
6
|
Zhang X, Wang Y, Shen W, Ma S, Chen W, Qi R. Rosa rugosa flavonoids alleviate myocardial ischemia reperfusion injury in mice by suppressing JNK and p38 MAPK. Microcirculation 2018; 24. [PMID: 28597598 DOI: 10.1111/micc.12385] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 06/01/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Although Rosa rugosa has been applied for preventing coronary artery disease, the pharmacological mechanism is little explored. In this study, the effects and mechanisms of Rosa rugosa flavonoids (RRF) on myocardial ischemia reperfusion injury (MIRI) were investigated. METHODS Mice were pretreated by intragastric administration of 600 mg/kg RRF for 7 days. Then MIRI was induced by 45 minutes coronary artery ligation and 3 hours reperfusion. Myocardial infarct size (MIS) and histopathology, activities of myocardial enzymes, and effects of RRF on inflammation and apoptosis were evaluated. RESULTS Pretreating the mice with RRF significantly reduced MIS and inhibited activity of plasma myocardial enzymes. Activity of the enzymes associated with anti-oxidation, SOD, and TEAC, and mRNA expression of NOX2 were significantly elevated. RRF pretreatment significantly decreased the translocation of p65 from the cytoplasm into the nucleus and reduced the expression of the pro-inflammatory cytokines, IL-6 and IL-1β. RRF pretreatment also significantly prevented the expression of caspase-3 and Bax, and increased the expression of Bcl-2. And RRF inhibited the phosphorylation of JNK and p38 MAPK. CONCLUSIONS RRF significantly inhibited MIRI through anti-oxidative, anti-inflammatory, and anti-apoptosis effects, and mechanisms were associated with its inhibition on phosphorylation of JNK and p38 MAPK.
Collapse
Affiliation(s)
- Xuehui Zhang
- Shihezi University College of Pharmacy/Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Xinjiang, China.,Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Yuhui Wang
- Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Wanli Shen
- Shihezi University College of Pharmacy/Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Xinjiang, China.,Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Shangzhi Ma
- Shihezi University College of Pharmacy/Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Xinjiang, China.,Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Wen Chen
- Shihezi University College of Pharmacy/Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Xinjiang, China
| | - Rong Qi
- Shihezi University College of Pharmacy/Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Xinjiang, China.,Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| |
Collapse
|
7
|
Wang Z, Chen Y, Xu D. Apigenin protects myocardium by inhibiting the TGF-β1-mediated Smad signaling transduction pathway in acute myocardial infarcted rats. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
8
|
Shim HS, Lee WG, Kim YA, Han JY, Park M, Song YG, Kim JS, Shin IW. Anti-apoptotic and myocardial protective effects of ethyl pyruvate after regional ischaemia/reperfusion myocardial damage in an in vivo rat model. Singapore Med J 2016; 58:557-561. [PMID: 27995262 DOI: 10.11622/smedj.2016190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION The integration of reactive oxygen species is strongly associated with important pathophysiological mechanisms that mediate myocardial ischaemia/reperfusion (I/R) damage. Pyruvate is an efficacious scavenger of reactive oxygen species and a previous study has shown that ethyl pyruvate (EP) has a myocardial protective effect against regional I/R damage in an in vivo rat model. The purpose of this study was to determine whether the myocardial protective effect of EP is associated with anti-apoptosis. METHODS Rats were allocated to receive EP dissolved in lactated Ringer's solution or lactated Ringer's solution alone, via intraperitoneal infusion one hour before ischaemia. They were exposed to 30 minutes of ischaemia followed by reperfusion of the left coronary artery territory over two hours. Anti-apoptotic effects were checked using several biochemical parameters after two hours of reperfusion. Apoptosis was analysed using measured caspase-3 activity, Western blotting of B-cell lymphoma 2 (Bcl-2) family protein cleaved by caspase-3, and assessment of DNA laddering patterns and the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining test. RESULTS In ischaemic myocardium, EP increased Bcl-2 expression, but reduced Bcl-2-associated X protein and cleaved caspase-3 expressions. EP reduced the expression of DNA laddering and the number of myocardial I/R-damaged TUNEL-positive cells. CONCLUSION This study demonstrated that EP has an anti-apoptotic effect after regional I/R damage in an in vivo rat heart model. The myocardial protective effect of EP may be related to its anti-apoptotic effect.
Collapse
Affiliation(s)
- Haeng Seon Shim
- Department of Anesthesiology and Pain Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Wang Gyu Lee
- Department of Anesthesiology and Pain Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Yeon A Kim
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Changwon, Republic of Korea
| | - Jeong Yeol Han
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Changwon, Republic of Korea
| | - Miyeong Park
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Changwon, Republic of Korea
| | - Yun Gyu Song
- Department of Radiology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Joon Soo Kim
- Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Il-Woo Shin
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine, Jinju, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
9
|
Clark RK, Galantino-Homer HL. Wheat germ agglutinin as a counterstain for immunofluorescence studies of equine hoof lamellae. Exp Dermatol 2016; 23:677-8. [PMID: 25040657 DOI: 10.1111/exd.12495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2014] [Indexed: 12/01/2022]
Abstract
Equine laminitis is a common, painful, debilitating condition of the hoof that is a leading cause of disability in horses, often necessitating euthanasia. The equine hoof represents an extreme evolutionary adaptation of an epidermal structure homologous to the human or murine nail units. Immunohistochemistry is frequently utilized in the study of the pathophysiology of laminitis. The complex, multilayered, extensively interdigitated epidermal-dermal lamellar interface renders precise interpretation of immunofluorescence localization difficult, especially when effective technique and reagents render non-reactive tissues completely dark. Fluorescent-conjugated wheat germ agglutinin (WGA) selectively labels dermal extracellular matrix fibres and epidermal cell membranes in tissue sections of horse hoof lamellae, is compatible with indirect immunofluorescence and augments interpretation of indirect immunofluorescence antigen localization. The current report details the use of WGA as a rapid, simple, economical counterstain for immunofluorescence studies of the equine hoof and may have application to other complex epidermal tissue structures.
Collapse
Affiliation(s)
- Robert K Clark
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA, USA; STEM and Health Division, Cumberland County College, Vineland, NJ, USA
| | | |
Collapse
|
10
|
Jose Corbalan J, Vatner DE, Vatner SF. Myocardial apoptosis in heart disease: does the emperor have clothes? Basic Res Cardiol 2016; 111:31. [PMID: 27043720 DOI: 10.1007/s00395-016-0549-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/24/2016] [Indexed: 01/06/2023]
Abstract
Since the discovery of a novel mechanism of cell death that differs from traditional necrosis, i.e., apoptosis, there have been numerous studies concluding that increased apoptosis augments myocardial infarction and heart failure and that limiting apoptosis protects the heart. Importantly, the vast majority of cells in the heart are non-myocytes with only roughly 30 % myocytes, yet almost the entire field studying apoptosis in the heart has disregarded non-myocyte apoptosis, e.g., only 4.7 % of 423 studies on myocardial apoptosis in the past 3 years quantified non-myocyte apoptosis. Accordingly, we reviewed the history of apoptosis in the heart focusing first on myocyte apoptosis, followed by the history of non-myocyte apoptosis in myocardial infarction and heart failure. Apoptosis of several of the major non-myocyte cell types in the heart (cardiac fibroblasts, endothelial cells, vascular smooth muscle cells, macrophages and leukocytes) may actually be responsible for affecting the severity of myocardial infarction and heart failure. In summary, even though it is now known that the majority of apoptosis in the heart occurs in non-myocytes, very little work has been done to elucidate the mechanisms by which non-myocyte apoptosis might be responsible for the adverse effects of apoptosis in myocardial infarction and heart failure. The goal of this review is to provide an impetus for future work in this field on non-myocyte apoptosis that will be required for a better understanding of the role of apoptosis in the heart.
Collapse
Affiliation(s)
- J Jose Corbalan
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Dorothy E Vatner
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Stephen F Vatner
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
11
|
Both castration and goserelin acetate ameliorate myocardial ischemia reperfusion injury and apoptosis in male rats. ISRN PHARMACOLOGY 2014; 2014:206951. [PMID: 24729888 PMCID: PMC3960567 DOI: 10.1155/2014/206951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/19/2014] [Indexed: 11/17/2022]
Abstract
Although reperfusion of an ischemic organ is essential to prevent irreversible tissue damage, it may amplify tissue injury. This study investigates the role of endogenous testosterone in myocardial ischemia reperfusion and apoptosis in male rats. Material and method. Twenty four male rats were randomized into 4 equal groups: Group (1), sham group, rats underwent the same anesthetic and surgical procedure as the control group except for LAD ligation; Group (2), Active control group, rats underwent LAD ligation; Group (3), castrated, rats underwent surgical castration, left 3wks for recovery, and then underwent LAD ligation; and Group (4), Goserelin acetate treated, rats received 3.6 mg of Goserelin 3 wks before surgery and then underwent LAD ligation. At the end of experiment, plasma cTn I, cardiac TNF-α, IL1-β, ICAM-1, and Apoptosis level were measured and histological examination was made. Results. Compared to sham group, the levels of myocardial TNF-α, IL-1β, ICAM-1, apoptosis, and plasma cTn I were significantly increased (P < 0.05) in control group and all rats showed significant myocardial injury (P < 0.05). Castration and Goserelin acetates significantly counteract the increase in myocardial levels of TNF-α, IL-1β, ICAM-1, plasma cTn I, and apoptosis (P < 0.05) and significantly reduce (P < 0.05) the severity of myocardial injury. We conclude that castration and Goserelin acetates ameliorate myocardial I/R injury and apoptosis in rats via interfering with inflammatory reactions.
Collapse
|
12
|
Cha-Molstad H, Xu G, Chen J, Jing G, Young ME, Chatham JC, Shalev A. Calcium channel blockers act through nuclear factor Y to control transcription of key cardiac genes. Mol Pharmacol 2012; 82:541-9. [PMID: 22734068 DOI: 10.1124/mol.112.078253] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
First-generation calcium channel blockers such as verapamil are a widely used class of antihypertensive drugs that block L-type calcium channels. We recently discovered that they also reduce cardiac expression of proapoptotic thioredoxin-interacting protein (TXNIP), suggesting that they may have unappreciated transcriptional effects. By use of TXNIP promoter deletion and mutation studies, we found that a CCAAT element was mediating verapamil-induced transcriptional repression and identified nuclear factor Y (NFY) to be the responsible transcription factor as assessed by overexpression/knockdown and luciferase and chromatin immunoprecipitation assays in cardiomyocytes and in vivo in diabetic mice receiving oral verapamil. We further discovered that increased NFY-DNA binding was associated with histone H4 deacetylation and transcriptional repression and mediated by inhibition of calcineurin signaling. It is noteworthy that the transcriptional control conferred by this newly identified verapamil-calcineurin-NFY signaling cascade was not limited to TXNIP, suggesting that it may modulate the expression of other NFY targets. Thus, verapamil induces a calcineurin-NFY signaling pathway that controls cardiac gene transcription and apoptosis and thereby may affect cardiac biology in previously unrecognized ways.
Collapse
Affiliation(s)
- Hyunjoo Cha-Molstad
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294-2182, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Zhang Q, Xiang J, Wang X, Liu H, Hu B, Feng M, Fu Q. β2-adrenoceptor agonist clenbuterol reduces infarct size and myocardial apoptosis after myocardial ischaemia/reperfusion in anaesthetized rats. Br J Pharmacol 2010; 160:1561-72. [DOI: 10.1111/j.1476-5381.2010.00813.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Jin YC, Lee YS, Kim YM, Seo HG, Lee JH, Kim HJ, Yun-Choi HS, Chang KC. (S)-1-(α-Naphthylmethyl)-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (CKD712) Reduces Rat Myocardial Apoptosis against Ischemia and Reperfusion Injury by Activation of Phosphatidylinositol 3-Kinase/Akt Signaling and Anti-inflammatory Action in Vivo. J Pharmacol Exp Ther 2009; 330:440-8. [DOI: 10.1124/jpet.108.150342] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Dynamics of cell proliferation and apoptosis reflect different life strategies in hydrothermal vent and cold seep vestimentiferan tubeworms. Cell Tissue Res 2009; 337:149-65. [PMID: 19444472 DOI: 10.1007/s00441-009-0811-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 04/21/2009] [Indexed: 10/20/2022]
Abstract
Deep-sea vestimentiferan tubeworms, which live in symbiosis with bacteria, exhibit different life strategies according to their habitat. At unstable and relatively short-lived hydrothermal vents, they grow extremely fast, whereas their close relatives at stable and long-persisting cold seeps grow slowly and live up to 300 years. Growth and age differences are thought to occur because of ecological and physiological adaptations. However, the underlying mechanisms of cell proliferation and death, which are closely linked to homeostasis, growth, and longevity, are unknown. Here, we show by immunohistochemical and ultrastructural cell cycle analyses that cell proliferation activities of the two species studied are higher than in any other characterized invertebrate, being only comparable with tumor and wound-healing processes. The slow growth in Lamellibrachia luymesi from cold seeps results from balanced activities of proliferation and apoptosis in the epidermis. In contrast, Riftia pachyptila from hydrothermal vents grows fast because apoptosis is down-regulated in this tissue. The symbiont-housing organ, the trophosome, exhibits a complex cell cycle and terminal differentiation pattern in both species, and growth is regulated by proliferation. These mechanisms have similarities to the up- and down-regulation of proliferation or apoptosis in various types of tumor, although they occur in healthy animals in this study, thus providing significant insights into the underlying mechanisms of growth and longevity.
Collapse
|
16
|
Scarabelli TM, Mariotto S, Abdel-Azeim S, Shoji K, Darra E, Stephanou A, Chen-Scarabelli C, Marechal JD, Knight R, Ciampa A, Saravolatz L, de Prati AC, Yuan Z, Cavalieri E, Menegazzi M, Latchman D, Pizza C, Perahia D, Suzuki H. Targeting STAT1 by myricetin and delphinidin provides efficient protection of the heart from ischemia/reperfusion-induced injury. FEBS Lett 2008; 583:531-41. [PMID: 19116149 DOI: 10.1016/j.febslet.2008.12.037] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 12/18/2008] [Accepted: 12/18/2008] [Indexed: 11/29/2022]
Abstract
Flavonoids exhibit a variety of beneficial effects in cardiovascular diseases. Although their therapeutic properties have been attributed mainly to their antioxidant action, they have additional protective mechanisms such as inhibition of signal transducer and activator of transcription 1 (STAT1) activation. Here, we have investigated the cardioprotective mechanisms of strong antioxidant flavonoids such as quercetin, myricetin and delphinidin. Although all of them protect the heart from ischemia/reperfusion-injury, myricetin and delphinidin exert a more pronounced protective action than quercetin by their capacity to inhibit STAT1 activation. Biochemical and computer modeling analysis indicated the direct interaction between STAT1 and flavonoids with anti-STAT1 activity.
Collapse
Affiliation(s)
- Tiziano M Scarabelli
- Center for Heart and Vessel Preclinical Studies, St. John Hospital and Medical Center, Wayne State University School of Medicine, Detroit, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Propofol limits rat myocardial ischemia and reperfusion injury with an associated reduction in apoptotic cell death in vivo. Vascul Pharmacol 2008; 50:71-7. [PMID: 18996224 DOI: 10.1016/j.vph.2008.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 08/20/2008] [Accepted: 10/13/2008] [Indexed: 11/21/2022]
Abstract
Propofol, a rapidly acting, short duration, intravenous hypnotic anesthetic induction agent, is often used in clinical situations where myocardial ischemia/ reperfusion (I/R) injury is a threat. The aim of the present study was to evaluate the protective effect of propofol on myocardial I/R injury in rat due to apoptosis. Myocardial I/R injury were induced by occluding the left anterior descending (LAD) coronary artery for 25 min followed by either 2 h or 6 h reperfusion. Apoptosis was evaluated by Western blot analysis (Bcl-2, Bax expression), DNA strand breaks, TUNEL analysis and measuring myocardial caspase-3 activity. Propofol significantly reduced infarct size and improved I/R-induced myocardial contractile dysfunction by improving left ventricular diastolic pressure and positive and negative maximal values of the first derivative (+dp/dt) of left ventricular pressure. Propofol increased Bcl-2/Bax expression ratio and decreased caspase-3 activity in I/R rat hearts, which resulted in reduction of myocardial apoptosis as evidenced by TUNEL analysis and DNA laddering experiments. In an in vitro study, propofol increased H9c2 cell viability against oxidative stress induced by glucose oxidase (GOX) in a dose-dependent manner. These data suggest propofol limits I/R injury with an associated reduction in apoptotic cell death in vivo.
Collapse
|
18
|
Anti-Apoptotic Effect of Magnolol in Myocardial Ischemia and Reperfusion Injury Requires Extracellular Signal-Regulated Kinase1/2 Pathways in RatIn Vivo. Exp Biol Med (Maywood) 2008; 233:1280-8. [DOI: 10.3181/0803-rm-79] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Magnolol, an active component extracted from Magnolia officinalis, has been reported to have protective effect on ischemia and reperfusion (I/R)-induced injury in experimental animals. The aim of the present investigation was to further evaluate the mechanism(s) by which magnolol reduces I/R-induced myocardial injury in rats in vivo. Under anesthesia, left anterior descending (LAD) coronary artery was occluded for 30 min followed by reperfusion for 24 h (for infarct size and cardiac function analysis). In some experiments, reperfusion was limited to 1 h or 6 h for analysis of biochemical and molecular events. Magnolol and DMSO solution (vehicle) were injected intra-peritoneally 1 h prior to I/R insult. The infarct size was measured by TTC technique and heart function was monitored by Millar Catheter. Apoptosis related events such as p-ERK, p-Bad, Bcl-xl and cytochrome c expression were evaluated by Western blot analysis and myocardial caspase-3 activity was also measured. Magnolol (10 mg/kg) reduced infarct size by 50% ( P < 0.01 versus vehicle), and also improved I/R-induced myocardial dysfunction. Left ventricular systolic pressure and positive and negative maximal values of the first derivative of left ventricular pressure (dP/dt) were significantly improved in magnolol-treated rats. Magnolol increased the expression of phosphor ERK and Bad which resulted in inhibition of myocardial apoptosis as evidenced by TUNEL analysis and DNA laddering experiments. Application of PD 98059, a selective MEK1/2 inhibitor, strongly antagonized the effect of magnolol. Taken together, we concluded that magnolol inhibits apoptosis through enhancing the activation of ERK1/2 and modulation of the Bcl-xl proteins which brings about reduction of infarct size and improvement of cardiac function in I/R-induced injury.
Collapse
|
19
|
Knight RA, Chen-Scarabelli C, Yuan Z, McCauley RB, Di Rezze J, Scarabelli GM, Townsend PA, Latchman D, Saravolatz L, Faggian G, Mazzucco A, Chowdrey HS, Stephanou A, Scarabelli TM. Retracted: Cardiac release of urocortin precedes the occurrence of irreversible myocardial damage in the rat heart exposed to ischemia/reperfusion injury. FEBS Lett 2008; 582:984-90. [DOI: 10.1016/j.febslet.2008.02.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 02/07/2008] [Accepted: 02/15/2008] [Indexed: 10/22/2022]
|
20
|
Comparison of the cardiac effects between quinazoline-based alpha1-adrenoceptor antagonists on occlusion-reperfusion injury. J Biomed Sci 2007; 15:239-49. [PMID: 17922254 DOI: 10.1007/s11373-007-9214-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 09/16/2007] [Indexed: 10/22/2022] Open
Abstract
Quinazoline-based compounds such as prazosin and its congeners including doxazosin, bunazosin, and terazosin are widely used as antihypertensive agents. However, there were many clinical observations showing that using these agents may result in higher risk of cardiovascular accidents in recent years. In this study, we compared the effects of four alpha-adrenoceptor antagonists: prazosin, doxazosin, bunazosin, and terazosin on occlusion-reperfusion injury. Langendorff-perfused rat hearts were pretreated with these four antagonists, and then the left main coronary artery was occluded. After 30 min occlusion, the hearts were reperfused for 2 h and the infarct sizes were measured. Two of the compounds studied, prazosin and doxazosin, apparently increased infarct size, CK-MB, and LDH activities after 2 h reperfusion. In contrast, bunazosin decreased infarct size and those biochemical indicators of cellular damage compared to control hearts. Although infarct size after reperfusion was differently changed by these four alpha-adrenoceptor antagonists, TUNEL-positive nuclei and caspase-3 protein expressions of all the groups were not significantly different. We supposed that the different effects of these four agents on infarct size came from the difference in necrosis rather than apoptosis.
Collapse
|
21
|
Hausenloy DJ, Yellon DM. Preconditioning and postconditioning: united at reperfusion. Pharmacol Ther 2007; 116:173-91. [PMID: 17681609 DOI: 10.1016/j.pharmthera.2007.06.005] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 06/12/2007] [Indexed: 01/17/2023]
Abstract
Despite current optimal treatment, the morbidity and mortality of coronary heart disease (CHD), the leading cause of death worldwide, remains significant, paving the way for the development of novel cardioprotective therapies. Two potential strategies for protecting the heart are ischemic preconditioning (IPC) and ischemic postconditioning (IPost), which describe the cardioprotection obtained from applying transient episodes of myocardial ischemia and reperfusion either before or after the index ischemic event, respectively. Much progress has been made in elucidating the signal transduction pathway, which underlies their protection. Intriguingly, it is the first few minutes of myocardial reperfusion following the index ischemic period, which appear crucial to both IPC- and IPost-induced protection. Emerging evidence suggests that they appear to recruit a similar signaling pathway at time of myocardial reperfusion, comprising cell-surface receptors, a diverse array of protein kinase cascades including the reperfusion injury salvage kinase (RISK) pathway, redox signaling, and the mitochondrial permeability transition pore (mPTP). The common signaling pathway that appears to unite these 2 cardioprotective strategies at the time of reperfusion is the subject of this review. Importantly, this common cardioprotective pathway can be activated at the time of myocardial reperfusion in the clinical setting using pharmacological agents to target the essential signaling components, which should lead to the development of novel treatment strategies for improving the clinical outcomes of patients with CHD.
Collapse
Affiliation(s)
- Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, 67 Chenies Mews, London, WC1E 6HX, United Kingdom
| | | |
Collapse
|
22
|
Hamid SA, Bower HS, Baxter GF. Rho kinase activation plays a major role as a mediator of irreversible injury in reperfused myocardium. Am J Physiol Heart Circ Physiol 2007; 292:H2598-606. [PMID: 17220176 DOI: 10.1152/ajpheart.01393.2006] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular signal transduction events in reperfusion following ischemia influence myocardial infarct development. Here we investigate the role of Rho kinase (ROCK) activation as a specific injury signal during reperfusion via attenuation of the reperfusion injury salvage kinase (RISK) pathway phosphatidylinositol 3-kinase (PI3K)/Akt/endothelial nitric oxide (NO) synthase (eNOS). Rat isolated hearts underwent 35 min of left coronary artery occlusion and 120 min of reperfusion. Phosphorylation of the ROCK substrate protein complex ezrin-radixin-moesin, assessed by immunoblotting and immunofluorescence, was used as a marker of ROCK activation. Infarct size was determined by tetrazolium staining, and terminal dUTP nick-end labeling (TUNEL) positivity was used as an index of apoptosis. The ROCK inhibitors fasudil or Y-27632 given 10 min before ischemia until 10 min after reperfusion reduced infarct size (control, 34.1 ± 3.8%; 5 μM fasudil, 18.2 ± 3.1%; 0.3 μM Y-27632, 19.4 ± 4.4%; 5 μM Y-27632, 9.2 ± 2.9%). When 5 μM Y-27632 was targeted specifically during early reperfusion, robust infarct limitation was observed (14.2 ± 2.6% vs. control 33.4 ± 4.4%, P < 0.01). The protective action of Y-27632 given at reperfusion was attenuated by wortmannin (29.2 ± 6.1%) and Nω-nitro-l-arginine methyl ester (30.4 ± 5.7%), confirming a protective mechanism involving PI3K/Akt/NO. Ezrin-radixin-moesin phosphorylation in risk zone myocardium confirmed early and sustained ROCK activation during reperfusion and its inhibition by Y-27632. Inhibition of ROCK activation at reperfusion reduced the proportion of TUNEL-positive nuclei in the infarcted region. In conclusion, ROCK activation occurs specifically during early reperfusion. Inhibition of ROCK at reperfusion onset limits infarct size through an Akt/eNOS-dependent mechanism, suggesting that ROCK activation at reperfusion may be deleterious through suppression of the RISK pathway.
Collapse
Affiliation(s)
- Shabaz A Hamid
- Royal Veterinary College, University of London, London, UK
| | | | | |
Collapse
|
23
|
Chang WL, Chung CH, Wu YC, Su MJ. The vascular and cardioprotective effects of liriodenine in ischemia-reperfusion injury via NO-dependent pathway. Nitric Oxide 2005; 11:307-15. [PMID: 15604043 DOI: 10.1016/j.niox.2004.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Indexed: 11/16/2022]
Abstract
Liriodenine is an aporphine derivative isolated from the plant Fissistigma glaucescens. Electrophysiological action, particularly the blockage of Na+ and K+ channels, contributes to the drug's well-known anti-arrhythmic action. However, liriodenine's cardioprotective efficacy and the relation of the channel blockages to the efficacy are poorly known, as is the drug's effect on coronary flow and endothelial function. The present study evaluated the protection conveyed by liriodenine to myocardium and coronary endothelial cells under conditions of ischemia-reperfusion and to assess the involvement of a nitric oxide (NO)-dependent mechanism. In the Langendorff model utilizing Sprague-Dawley rat hearts, the left main coronary artery was occluded for 30 min and reperfusion for 120 min. Liriodenine (1 microM) significantly promoted the recovery of coronary flow and decreased myocardial infarction compared with vehicle-treated hearts. The drug attenuated the reduction of endothelial reactivity and NO release. To simulate the condition that occurs in the ischemic stage, human umbilical vein endothelial cells (HUVEC) were cultured in serum free conditions. Liriodenine showed concentration-dependent effects on cell viability associated with anti-apoptosis under serum-deprivation. Liriodenine prevented eNOS reduction in serum-deprived HUVEC and ischemia-reperfusion hearts. The vascular and cardioprotective effects were reversed by N(G)-nitro-L-arginine methyl ester. Another Na+ and K+ channel blocker with similar activities as liriodenine (quinidine) failed to protect endothelial cells and myocytes. These results demonstrate that liriodenine reduces the extent of cardiovascular injuries under ischemia-reperfusion conditions mainly by preserving the eNOS and the NO production.
Collapse
Affiliation(s)
- Wei-Luen Chang
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
24
|
Ghosh S, An D, Pulinilkunnil T, Qi D, Lau HCS, Abrahani A, Innis SM, Rodrigues B. Role of dietary fatty acids and acute hyperglycemia in modulating cardiac cell death. Nutrition 2005; 20:916-23. [PMID: 15474882 DOI: 10.1016/j.nut.2004.06.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE We examined the effect of dietary manipulation of palmitic acid (20% [w/w] palm oil [PO]) on cardiomyocyte apoptosis in the rat heart under normoglycemic and hyperglycemic conditions in vivo. We used 20% (w/w) sunflower oil (SO; a diet rich in omega-6 polyunsaturated fatty acids) as an isocaloric control. METHODS Adult male Wistar rats were fed experimental diets containing normal laboratory chow (5% corn oil) or a high fat diet (AIN-76A with PO or SO) for 4 wk. Subsequently, to induce diabetes, rats were injected with streptozotocin (55 mg/kg, intravenously). After 4 d of diabetes, hearts were tested for evidence of lipotoxicity and cell death, and the serum for its related markers. RESULTS Feeding PO and SO magnified palmitic and linoleic acid contents within lipoproteins and hearts respectively. Compared with SO, PO diabetic hearts demonstrated significantly higher levels of apoptosis, with an altered Bax:Bcl-2 ratio, augmented lipid peroxidation, and protein modification by formation of nitrotyrosine. Interestingly, SO-fed diabetic animals demonstrated an increase in serum lactate dehydrogenase and myocardial necrotic changes. CONCLUSION In marked contrast to results obtained in vitro, PO feeding led to only a minor fraction of cardiomyocytes undergoing apoptosis and suggests that, in the intact heart, protective mechanisms could be triggered that dampen excessive apoptosis. Of greater clinical significance was the observation that "heart-friendly" vegetable oils such as SO, rich in omega-6 polyunsaturated fatty acids, could precipitate cardiac necrosis, and questions its beneficial role in the cardiovascular system, especially following diabetes.
Collapse
Affiliation(s)
- Sanjoy Ghosh
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Department of Pediatrics, The University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The natriuretic peptides, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP), are a family of polypeptide mediators exerting numerous actions in cardiovascular homeostasis. ANP and BNP are cardiac derived, being secreted and up-regulated in myocardium in response to many pathophysiological stimuli. CNP is an endothelium-derived mediator. The classical endocrine effects of ANP and BNP on fluid homeostasis and blood pressure, especially in conditions characterised by left ventricular dysfunction, are well recognised and extensively researched. However, there is accumulating evidence that, in addition to endocrine actions, ANP and BNP exhibit important autocrine and paracrine functions within the heart and coronary circulation. These include regulation of myocyte growth, inhibition of fibroblast proliferation and extracellular matrix deposition, a cytoprotective anti-ischaemic (preconditioning-like) function, and influences on coronary endothelium and vascular smooth muscle proliferation and contractility. Most if not all of these actions can be ascribed to particulate guanylyl cyclase activation because the ANP/BNP receptor, natriuretic peptide receptor (NPR)-A, has an intracellular guanylyl cyclase domain. Subsequent elevation of the intracellular second messenger cGMP may exert diverse physiological effects through activation of cGMP-dependent protein kinases (cGK), predominantly cGK-I. However, there appear to be other contributory mechanisms in several of these actions, including the augmentation of nitric oxide synthesis. These diverse actions may represent counterregulatory mechanisms in the pathophysiology of many cardiovascular diseases, not just those typified by left ventricular dysfunction. Ultimately, insights from the autocrine/paracrine actions of natriuretic peptides may provide routes to therapeutic application in cardiac diseases of natriuretic peptides and drugs that modify their availability.
Collapse
|
26
|
Scarabelli TM, Stephanou A, Pasini E, Gitti G, Townsend P, Lawrence K, Chen-Scarabelli C, Saravolatz L, Latchman D, Knight R, Gardin J. Minocycline inhibits caspase activation and reactivation, increases the ratio of XIAP to smac/DIABLO, and reduces the mitochondrial leakage of cytochrome C and smac/DIABLO. J Am Coll Cardiol 2004; 43:865-74. [PMID: 14998631 DOI: 10.1016/j.jacc.2003.09.050] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Revised: 07/25/2003] [Accepted: 09/08/2003] [Indexed: 10/26/2022]
Abstract
OBJECTIVES This study is aimed at investigating the novel use of minocycline for cardiac protection during ischemia/reperfusion (I/R) injury, as well as its mechanism of action. BACKGROUND Minocycline is a tetracycline with anti-inflammatory properties, which is used clinically for the treatment of diseases such as urethritis and rheumatoid arthritis. Experimentally, minocycline has also been shown to be neuroprotective in animal models of cerebral ischemia and to delay progression and improve survival in mouse models of neurodegenerative diseases. METHODS We studied 62 rat intact hearts exposed to I/R and cell cultures of neonatal and adult rat ventricular myocytes. RESULTS Minocycline significantly reduced necrotic and apoptotic cell death, both in neonatal and adult myocytes, not only when given prior to hypoxia (p < 0.001), but also at reoxygenation (p < 0.05). Moreover, in the intact heart exposed to I/R, in vivo treatment with minocycline promoted hemodynamic recovery (p < 0.001) and cell survival, with reduction of infarct size (p < 0.001), cardiac release of creatine phosphokinase (p < 0.001), and apoptotic cell death (p < 0.001). In regard to its antiapoptotic mechanism of action, minocycline significantly reduced the expression level of initiator caspases, increased the ratio of XIAP to Smac/DIABLO at both the messenger RNA and protein level, and prevented mitochondrial release of cytochrome c and Smac/DIABLO (all, p < 0.05). These synergistic actions dramatically prevent the post-ischemic induction of caspase activity associated with cardiac I/R injury. CONCLUSIONS Because of its safety record and multiple novel mechanisms of action, minocycline may be a valuable cardioprotective agent to ameliorate cardiac dysfunction and cell loss associated with I/R injury.
Collapse
Affiliation(s)
- Tiziano M Scarabelli
- Division of Cardiology, Detroit, St John Hospital and Medical Center, Detroit, Michigan 48236, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Scarabelli TM, Pasini E, Stephanou A, Chen-Scarabelli C, Saravolatz L, Knight RA, Latchman DS, Gardin JM. Nutritional supplementation with mixed essential amino acids enhances myocyte survival, preserving mitochondrial functional capacity during ischemia-reperfusion injury. Am J Cardiol 2004; 93:35A-40A. [PMID: 15094104 DOI: 10.1016/j.amjcard.2003.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In patients undergoing coronary surgery, the uptake of amino acids, which has been shown to correlate with oxygen consumption, is a mechanism of cardiac adaptation to the iatrogenic ischemia-reperfusion injury associated with cardioplegic arrest. Based on these premises, we sought to determine whether oral supplementation with mixed amino acids may protect the rat heart exposed to ischemia-reperfusion and to address whether this hypothesized cardioprotection is achieved, at least in part, through preservation of the energy-producing properties of mitochondria. Sprague-Dawley rats were fed (by enteral route) a liquid diet, with or without mixed essential amino acids (daily dose of 1 g/kg) for 30 days. Hearts from anesthetized rats were perfused by the Langendorff method and randomized to 3 groups. The control group was perfused with buffer for 60 minutes; the ischemia-reperfusion control and the amino acid-treated groups were exposed to 35 minutes of ischemia, followed by 60 or 120 minutes of reperfusion. Amino acid supplements minimized infarct size (22 +/- 1.8% vs 33 +/- 2.5%; p <0.05) and occurrence of cardiomyocyte apoptosis, as assessed by co-localization of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and caspase-3-positive staining (p <0.01). Long-term treatment with amino acids also reduced the proportion of cardiomyocytes exhibiting immunostaining for cleaved caspase-9 (p <0.01) but was ineffective on processing of caspase-8. Similar results were obtained in the whole heart by caspase activity assays (p <0.01). The lessened activation of caspase-9 detected in amino acid-treated hearts paralleled a strong reduction in mitochondrial release of cytochrome c. Adenosine triphosphate (ATP) content and rate of ATP production in isolated mitochondria were reduced by >75% in control hearts after 2 hours of reperfusion (p <0.05 vs control hearts); these values returned toward those of the control group in hearts supplemented with amino acids (p <0.01). Finally, the oxygen consumption rate in myocardial skinned bundles was markedly reduced in ischemia-reperfusion control hearts and almost normalized in amino acid-treated hearts (approximately 20% and 93% of the value for normoxic hearts; p <0.01). These results suggest that oral amino acid supplementation attenuates the extent of ischemia-reperfusion injury in the rat heart, through preservation of the mitochondria-generated production of high-energy phosphates.
Collapse
Affiliation(s)
- Tiziano M Scarabelli
- Division of Cardiology, St. John Hospital and Medical Center, Wayne State University, Detroit, Michigan, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Okumura H, Nagaya N, Itoh T, Okano I, Hino J, Mori K, Tsukamoto Y, Ishibashi-Ueda H, Miwa S, Tambara K, Toyokuni S, Yutani C, Kangawa K. Adrenomedullin Infusion Attenuates Myocardial Ischemia/Reperfusion Injury Through the Phosphatidylinositol 3-Kinase/Akt-Dependent Pathway. Circulation 2004; 109:242-8. [PMID: 14691041 DOI: 10.1161/01.cir.0000109214.30211.7c] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background—
Infusion of adrenomedullin (AM) has beneficial hemodynamic effects in patients with heart failure. However, the effect of AM on myocardial ischemia/reperfusion remains unknown.
Methods and Results—
Male Sprague-Dawley rats were exposed to a 30-minute period of ischemia induced by ligation of the left coronary artery. They were randomized to receive AM, AM plus wortmannin (a phosphatidylinositol 3-kinase [PI3K] inhibitor), or saline for 60 minutes after coronary ligation. Hemodynamics and infarct size were examined 24 hours after reperfusion. Myocardial apoptosis was also examined 6 hours after reperfusion. The effect of AM on Akt phosphorylation in cardiac tissues was examined by Western blotting. Intravenous administration of AM significantly reduced myocardial infarct size (28±4% to 16±1%,
P
<0.01), left ventricular end-diastolic pressure (19±2 to 8±2 mm Hg,
P
<0.05), and myocardial apoptotic death (19±2% to 9±4%,
P
<0.05). Western blot analysis showed that AM infusion accelerated Akt phosphorylation in cardiac tissues and that pretreatment with wortmannin significantly attenuated AM-induced Akt phosphorylation. Moreover, pretreatment with wortmannin abolished the beneficial effects of AM: a reduction of infarct size, a decrease in left ventricular end-diastolic pressure, and inhibition of myocardial apoptosis after ischemia/reperfusion.
Conclusions—
Short-term infusion of AM significantly attenuated myocardial ischemia/reperfusion injury. These cardioprotective effects are attributed mainly to antiapoptotic effects of AM via a PI3K/Akt-dependent pathway.
Collapse
Affiliation(s)
- Hiroyuki Okumura
- Department of Biochemistry, National Cardiovascular Center Research Institute, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lawrence KM, Scarabelli TM, Turtle L, Chanalaris A, Townsend PA, Carroll CJ, Hubank M, Stephanou A, Knight RA, Latchman DS. Urocortin protects cardiac myocytes from ischemia/reperfusion injury by attenuating calcium insensitive phospholipase A2gene expression. FASEB J 2003; 17:2313-5. [PMID: 14563694 DOI: 10.1096/fj.02-0832fje] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have used Affymetrix gene chip technology to look for changes in gene expression caused by a 24 h exposure of rat primary neonatal cardiac myocytes to the cardioprotective agent urocortin. We observed a 2.5-fold down-regulation at both the mRNA and protein levels of a specific calcium-insensitive phospholipase A2 enzyme. Levels of lysophosphatidylcholine, a toxic metabolite of phospholipase A2, were lowered by 30% in myocytes treated with urocortin for 24 h and by 50% with the irreversible iPLA2 inhibitor bromoenol lactone compared with controls. Both 4 h ischemia and ischemia followed by 24 h reperfusion caused a significant increase in lysophosphatidylcholine concentration compared with controls. When these myocytes were pretreated with urocortin, the ischemia-induced increase in lysophosphatidylcholine concentration was significantly lowered. Moreover, co-incubation of cardiac myocytes with urocortin, or the specific phospholipase A2 inhibitor bromoenol lactone, reduces the cytotoxicity produced by lysophosphatidylcholine or ischemia/reperfusion. Similarly, in the intact heart ex vivo we found that cardiac damage measured by infarct size was significantly increased when lysophoshatidylcholine was applied during ischemia, compared with ischemia alone, and that pre-treatment with both urocortin and bromoenol lactone reversed the increase in infarct size. This, to our knowledge, is the first study linking the cardioprotective effect of urocortin to a decrease in a specific enzyme protein and a subsequent decrease in the concentration of its cardiotoxic metabolite.
Collapse
Affiliation(s)
- K M Lawrence
- Medical Molecular Biology Unit, Institute of Child Health, University College London, 30 Guilford St., London WC1N 1EH, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Okumura H, Nagaya N, Kangawa K. Adrenomedullin infusion during ischemia/reperfusion attenuates left ventricular remodeling and myocardial fibrosis in rats. Hypertens Res 2003; 26 Suppl:S99-104. [PMID: 12630818 DOI: 10.1291/hypres.26.s99] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent studies have demonstrated that the activation of protein kinase Akt attenuates myocardial ischemia/reperfusion injury. However, it remains unknown whether adrenomedullin (AM), which is also a potent Akt activator, has cardioprotective effects after ischemia/reperfusion. In the present study, Sprague-Dawley rats were exposed to a 30-min period of ischemia induced by ligation of the left coronary artery followed by 24-h reperfusion. They were randomized to receive intravenous administration of AM (0.05 microg/kg/min) or saline for 60 min after coronary ligation. We examined the hemodynamics and myocardial apoptosis 24 h after ischemia/reperfusion. Echocardiographic measurements were performed 4 weeks after ischemia/reperfusion. Myocardial infarct size was also measured histologically. AM significantly reduced left ventricular (LV) end-diastolic pressure (17 +/- 2 to 8 +/- 2 mmHg, p < 0.05) and the number of apoptotic nuclei in myocytes (387 +/- 39 to 147 +/- 72 per field, p < 0.05). AM significantly increased LV dP/dt(max) (4,803 +/- 228 to 5,672 +/- 199 mmHg/s, p < 0.05). AM significantly increased LV fractional shortening (23 +/- 2 vs. 28 +/- 2%, p < 0.05), and significantly reduced LV diastolic dimension (7.4 +/- 0.1 to 6.9 +/- 0.1 mm, p < 0.05) and myocardial infarct size (33 +/- 2 to 20 +/- 2%, p < 0.01) 4 weeks after ischemia/reperfusion. In conclusion, AM infusion during ischemia/reperfusion attenuated the development of LV remodeling and myocardial fibrosis in rats. Based on these results, the cardioprotective effects of AM may be attributed at least partly to its anti-apoptotic effect.
Collapse
Affiliation(s)
- Hiroyuki Okumura
- Department of Biochemistry, National Cardiovascular Center Research Institute, Suita, Japan
| | | | | |
Collapse
|
31
|
Müller M, Ballanyi K. Dynamic recording of cell death in the in vitro dorsal vagal nucleus of rats in response to metabolic arrest. J Neurophysiol 2003; 89:551-61. [PMID: 12522201 DOI: 10.1152/jn.00559.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anoxic/ischemic neuronal death is usually assessed in cell cultures or in vivo within a time window of 24 h to several days using the nucleic acid stain propidium iodide or histological techniques. Accordingly, there is limited information on the time course of such neuronal death. We loaded acute rat brain stem slices with propidium iodide for dynamic fluorometric recording of metabolic arrest-related cell death in the dorsal vagal nucleus. This model was chosen because dorsal vagal neurons show a graded response to metabolic inhibition: anoxia and aglycemia cause a sustained hyperpolarization, whereas ischemia induces a glutamate-mediated, irreversible depolarization. We found that the number of propidium iodide-labeled cells increased from 27% to 43% of total cell count within 1-7 h after preparation of slices. Compared with these untreated control slices, cyanide-induced anoxia (30 min) or aglycemia (1 h) did not cause further cell death, whereas 3-h aglycemia destroyed an additional 13% of cells. Ischemia (1 h) due to cyanide plus iodoacetate immediately labeled an additional 20% of cells, and an additional 48% of cells were destroyed within the following 3 h of postischemia. Continuous recording of propidium iodide fluorescence showed that loss of membrane integrity started within 25 min after onset of the ischemic depolarization and the concomitant intracellular Ca(2+) rise. The results show that propidium iodide can be used to monitor cell death in acute brain slices. Our findings suggest that pronounced cell death occurs within a period of 1-4 h after onset of metabolic arrest and is apparently due to necrotic/oncotic mechanisms.
Collapse
Affiliation(s)
- Michael Müller
- II. Physiologisches Institut, Georg-August-Universität Göttingen, Germany.
| | | |
Collapse
|
32
|
Stephanou A, Scarabelli TM, Townsend PA, Bell R, Yellon D, Knight RA, Latchman DS. The carboxyl-terminal activation domain of the STAT-1 transcription factor enhances ischemia/reperfusion-induced apoptosis in cardiac myocytes. FASEB J 2002; 16:1841-3. [PMID: 12223448 DOI: 10.1096/fj.02-0150fje] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have demonstrated previously that the STAT-1 transcription factor plays a key role in ischemia/reperfusion (I/R)-induced apoptosis in cardiac myocytes. In the present study we assessed which region of the STAT-1 molecule mediates apoptosis in cardiac myocytes. A STAT-1 construct (amino acid 350-750) lacking the N-terminus could enhance I/R-induced apoptosis in cardiac myocytes. However, a STAT-1 construct, which lacks 60 amino acids at the C-terminus (amino acid 691-750), was ineffective in promoting I/R-induced apoptosis in cardiac myocytes. Furthermore, overexpression of a C-terminal STAT-1 construct (amino acid 691-750) containing the transcriptional activation domain, but not the DNA binding domain, strongly enhanced I/R-induced apoptotic cell death. Cardiac myocytes isolated from mice expressing a truncated C-terminal STAT-1 were more sensitive to I/R-induced cell death. Finally, isolated hearts from these animals exposed to I/R injury had larger infarct size and greater number of TUNEL-positive myocytes than control hearts. These studies demonstrate that the C-terminal transactivation domain of STAT-1 is necessary and sufficient for I/R injury-induced apoptosis in cardiac myocytes.
Collapse
Affiliation(s)
- Anastasis Stephanou
- Medical Molecular Biology Unit, Institute of Child Health, University College London, London WC1N 1EH, UK.
| | | | | | | | | | | | | |
Collapse
|
33
|
Maddock HL, Mocanu MM, Yellon DM. Adenosine A(3) receptor activation protects the myocardium from reperfusion/reoxygenation injury. Am J Physiol Heart Circ Physiol 2002; 283:H1307-13. [PMID: 12234780 DOI: 10.1152/ajpheart.00851.2001] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemia-reperfusion induces both necrotic and apoptotic cell death. The ability of adenosine to attenuate reperfusion-induced injury (RI) and the role played by adenosine receptors are unclear. We therefore studied the role of the A(3) receptor (A(3)R) in ameliorating RI using the specific A(3)R agonist 1-[2-chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxi-N-methyl-b-D-ribofuranuronamide (2-Cl-IB-MECA). Isolated rat hearts and cardiomyocytes were subjected to ischemia or simulated ischemia, followed by reperfusion/reoxygenation. The end points were percent infarction/risk zone and annexin-V (apoptosis) and/or propidium iodide positivity (necrosis), respectively. In isolated hearts, 2-Cl-IB-MECA significantly limited infarct size (44.2 +/- 2.7% in control vs. 21.9 +/- 2.4% at 1 nM and 35.8 +/- 3.3% at 0.1 nM, P < 0.05). In isolated myocytes, apoptosis and necrosis were significantly reduced compared with controls (5.7 +/- 2.6% vs. 17.1 +/- 1.3% and 13.7 +/- 2.0% vs. 23.1 +/- 1.5%, respectively, P < 0.0001). In both models, the beneficial effects were abrogated using the A(3)R antagonist MRS-1191. The involvement of A(2a) receptor activation was also examined. This is the first study to demonstrate that A(3)R activation at reperfusion limits myocardial injury in the isolated rat heart and improves survival in isolated myocytes, possibly by antiapoptotic and antinecrotic mechanisms.
Collapse
Affiliation(s)
- Helen L Maddock
- The Hatter Institute for Cardiovascular Studies, Division of Cardiology, University College London Hospitals and Medical School, United Kingdom
| | | | | |
Collapse
|
34
|
Scarabelli TM, Pasini E, Stephanou A, Comini L, Curello S, Raddino R, Ferrari R, Knight R, Latchman DS. Urocortin promotes hemodynamic and bioenergetic recovery and improves cell survival in the isolated rat heart exposed to ischemia/reperfusion. J Am Coll Cardiol 2002; 40:155-61. [PMID: 12103270 DOI: 10.1016/s0735-1097(02)01930-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study evaluates the hemodynamic, bioenergetic and cytoprotective effects of urocortin (Ucn) in the isolated rat heart exposed to ischemia (I)/reperfusion (R). BACKGROUND We have previously demonstrated that administration of exogenous Ucn reduces infarct size in ischemic-reperfused rat hearts. METHODS Urocortin 10(-8)M was added to the perfusate before I, before I and during R, and during R alone in the isolated pulsed rat heart exposed to 35 min I followed by 60 min R. RESULTS Partial to complete recovery of diastolic pressure and developed pressure was seen irrespective of when Ucn was perfused. In particular, beneficial effects are observed when Ucn is only given during R. Urocortin given only before I, and before I and over R, although not during R alone, also produces significant recovery of high-energy phosphate pools. In each group, improvement in ventricular function is associated with reduction both in myocardial damage, assessed by creatine phosphokinase release, and in endothelial cell and cardiomyocyte apoptosis, assessed by caspase 3 activity and fluorescent-based terminal deoxynucleotidyl transferase mediated nick end labelling enhanced with counterstains. These improvements in ventricular performance, bioenergetics and cell survival are not secondary to any inotropic effects of Ucn. CONCLUSIONS This is the first report to show enhanced cardiac function induced by Ucn during I/R. Because the cytoprotective and functional benefits are still produced when Ucn is given only at R, these data suggest that Ucn may be useful clinically in the management of myocardial infarction.
Collapse
Affiliation(s)
- Tiziano M Scarabelli
- Medical Molecular Biology Unit, Institute of Child Health and Great Ormond Street Hospital, University College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Metzger M, Higuchi ML, Moreira LF, Chaves MJF, Castelli JB, Silvestre JML, Bocchi E, Stolf N, Ramires JA. Relevance of apoptosis and cell proliferation for survival of patients with dilated cardiomyopathy undergoing partial left ventriculectomy. Eur J Clin Invest 2002; 32:394-9. [PMID: 12059983 DOI: 10.1046/j.1365-2362.2002.00998.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cardiomyocyte apoptosis as well as proliferation have been described in congestive heart failure, but their clinical relevance remains unclear. In order to clarify whether apoptosis and cell proliferation occur in patients with idiopathic dilated cardiomyopathy and whether their degree in left ventricle fragments resected during partial left ventriculectomy has any influence on the outcome after this surgery, we compared their occurrence in four groups of patients: group A, short-term survivors (n = 18); group B, deaths within 6 months of the surgery (n = 13); group C, long-term survivors (n = 12); and Group D, deaths within 60 months (n = 19). DESIGN Apoptotic cardiomyocytes and interstitial cells were quantified in left ventricle fragments from 31 patients with idiopathic-dilated cardiomyopathy using the TUNEL assay. Cell proliferation was quantified in parallel sections by KI-67 immunohistochemistry. RESULTS Apoptotic cells were present in the majority of cases (n = 24) and proliferative cells in all cases. Whereas there was no significant difference regarding all parameters examined between Groups A and B, there was a highly significant difference between Groups C and D in the number of apoptotic cardiomyocytes (P = 0.012) and apoptotic interstitial cells (P = 0.006). There was no significant relationship between apoptotic cardiomyocytes and KI-67-positive cardiomyocytes, but a negative correlation between apoptotic interstitial cells and KI-67-positive interstitial cells (r = -0.383; P = 0.028). CONCLUSION Cardiomyocyte apoptosis and proliferation occur in the majority of patients with idiopathic-dilated cardiomyopathy. High numbers of apoptotic cardiomyocytes and apoptotic interstitial cells are significantly related to a bad late outcome after partial left ventriculectomy.
Collapse
Affiliation(s)
- M Metzger
- Heart Institute (InCor), University of São Paulo Medical School, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fauvel H, Marchetti P, Obert G, Joulain O, Chopin C, Formstecher P, Nevière R. Protective effects of cyclosporin A from endotoxin-induced myocardial dysfunction and apoptosis in rats. Am J Respir Crit Care Med 2002; 165:449-55. [PMID: 11850335 DOI: 10.1164/ajrccm.165.4.2105084] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Myocardial depression can be demonstrated following administration of endotoxin. Proposed mechanisms of endotoxin-induced myocardial dysfunction include the release of proinflammatory mediators, focal myocardial ischemia, and the presence of activated leukocytes within the myocardium. Recently, myocardial caspase activation and mitochondria-related apoptotic events (i.e., release of cytochrome c) were demonstrated in the failing septic heart. Here, we tested the hypothesis that immunosuppressors, cyclosporin A and tacrolimus (FK 506), would improve inflammation, heart nuclear apoptosis, and myocardial dysfunction in endotoxin-treated rats. Myocardial contractility was assessed using an isolated heart preparation. Heart leukocyte infiltration was assessed by measurement of heart myeloperoxidase activity. Leukocyte activation was studied using the intravital microscopy of the mesenteric venule. Apoptosis was detected as myocardial DNA fragmentation, downstream caspase activation, and mitochondrial cytochrome c release. Both cyclosporin A and FK 506 reduced heart leukocyte sequestration and venular adhesion in endotoxin-treated rats. Cyclosporin A, which blocks mitochondrial cytochrome c release, was able to reduce endotoxin-induced myocardial end-stage nuclear apoptosis and heart dysfunction, whereas tacrolimus had no such effects. These effects could be related to the unique properties of cyclosporin A to act on mitochondria.
Collapse
Affiliation(s)
- Harold Fauvel
- INSERM U459, Faculté de Médecine 1, EA 2689, CHRU and Université de Lille 2, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Stephanou A, Scarabelli TM, Brar BK, Nakanishi Y, Matsumura M, Knight RA, Latchman DS. Induction of apoptosis and Fas receptor/Fas ligand expression by ischemia/reperfusion in cardiac myocytes requires serine 727 of the STAT-1 transcription factor but not tyrosine 701. J Biol Chem 2001; 276:28340-7. [PMID: 11309387 DOI: 10.1074/jbc.m101177200] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we reported that ischemia results in apoptosis and is accompanied by phosphorylation on Tyr-701 and increased expression and transcriptional activity of the signal transducer and activator of transcription-1 (STAT-1). In the present study, we show that exposure of cardiomyocytes to ischemia induced the phosphorylation of STAT-1 at another site, Ser-727. Moreover, STAT-1 is critical for the induction of Fas receptor and Fas ligand expression by ischemia/reperfusion (I/R). Transcriptional activation of Fas and FasL was dependent on Ser-727 of STAT-1 but was independent of Tyr-701. Similarly, Ser-727 but not Tyr-701 was required for enhancement of cardiomyocyte cell death by STAT-1 during I/R. In addition, inhibition of the p38 pathway prevented the induction and transcriptional activation of Fas and FasL in cardiac cells exposed to I/R, whereas inhibition of p42/p44 MAPK had no effect. Finally, I/R also induced phosphorylation of STAT-1 on Ser-727 and expression of Fas/FasL in ventricular myocytes in the intact heart ex vivo. These results indicate that Fas/FasL genes and apoptosis are activated by STAT-1 in cardiac myocytes exposed to I/R and these effects are dependent on the Ser-727 but not the Tyr-701 phosphorylation sites of STAT-1.
Collapse
Affiliation(s)
- A Stephanou
- Medical Molecular Biology Unit, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
38
|
Scarabelli T, Stephanou A, Rayment N, Pasini E, Comini L, Curello S, Ferrari R, Knight R, Latchman D. Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation 2001; 104:253-6. [PMID: 11457740 DOI: 10.1161/01.cir.104.3.253] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Apoptosis contributes to cell loss after ischemia/reperfusion injury in the heart. This study describes the time course and level of apoptosis in different cell types in the intact heart during ischemia/reperfusion injury. METHODS AND RESULTS Isolated Langendorff-perfused rat hearts were subjected to perfusion alone (control) or to 35 minutes of regional ischemia, either alone or followed by 5, 60, or 120 minutes of reperfusion. Sections were stained by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) and propidium iodide and with anti-von Willebrand factor, anti-desmin, or anti-active caspase 3 antibodies; they were then visualized by confocal microscopy. Sections were also examined by electron microscopy. No TUNEL-positive cells were seen in control hearts or hearts exposed to ischemia alone. Early in reperfusion, TUNEL staining was colocalized with endothelial cells from small coronary vessels. Endothelial apoptosis peaked at 1 hour of reperfusion and, at this time, there was clear perivascular localization of apoptotic cardiac myocytes, whose number was inversely proportional to their distance from a positive vessel. After 2 hours of reperfusion, apoptotic cardiac myocytes assumed a more homogeneous distribution. Active caspase 3 labeling was seen independent of DNA fragmentation during ischemia alone, but it colocalized with TUNEL staining over the 3 time points of reperfusion. Immunocytochemical findings were confirmed by electron microscopy and Western blotting. CONCLUSIONS In the very early stages of reperfusion, apoptosis is first seen in the endothelial cells from small coronary vessels. The radial spread of apoptosis to surrounding cardiac myocytes suggests that reperfusion induces the release of soluble pro-apoptotic mediators from endothelial cells that promote myocyte apoptosis.
Collapse
Affiliation(s)
- T Scarabelli
- Medical Molecular Biology Unit, Institute of Child Health, University College London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Nevière R, Fauvel H, Chopin C, Formstecher P, Marchetti P. Caspase inhibition prevents cardiac dysfunction and heart apoptosis in a rat model of sepsis. Am J Respir Crit Care Med 2001; 163:218-25. [PMID: 11208649 DOI: 10.1164/ajrccm.163.1.2003109] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Despite intensive therapy, severe septic shock is commonly associated with myocardial dysfunction and death in humans. No new therapies have proven efficiency against cardiovascular alterations in sepsis. Here, we addressed the question of a beneficial effect of pharmacological inhibition of caspases on myocardial dysfunction following endotoxin treatment. Hearts from rats treated with endotoxin (10 mg/kg, intravenously) were isolated 4 h posttreatment for analysis. Assessment of myocardial contractility ex vivo and detection of apoptosis were performed. Hearts from endotoxin-treated rats displayed multiple caspase activities and also typical apoptosis pattern as detected by TUNEL, DNA fragmentation assays, and cytochrome c release as compared with control rats. z-VAD.fmk (3 mg/kg, intravenously), a broad spectrum caspase inhibitor (but not the irrelevant peptide z-FA.fmk), in coinjection with endotoxin, not only reduced caspase activities and nuclear apoptosis but also completely prevented endotoxin-induced myocardial dysfunction evaluated 4 h and even 14 h after endotoxin challenge. These data indicate that caspase activation plays an important role in myocardial cell dysfunction. Moreover, these results suggest that inhibitors of caspases may have important therapeutic applications in sepsis.
Collapse
Affiliation(s)
- R Nevière
- INSERM U459, Faculté de Médecine, EA 2689, Pavillon Vancostenobel, Faculté de Médecine, and Département de Physiologie, Faculté de Médecine, Lille Cedex, France
| | | | | | | | | |
Collapse
|
40
|
Rubino A, Yellon DM. Ischaemic preconditioning of the vasculature: an overlooked phenomenon for protecting the heart? Trends Pharmacol Sci 2000; 21:225-30. [PMID: 10838610 DOI: 10.1016/s0165-6147(00)01483-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Exposing the heart to brief episodes of ischaemia protects the myocardium and vascular endothelial cells against functional damage and cell death caused by subsequent prolonged ischaemia. Elucidation of the mechanisms that are involved in this phenomenon known as 'ischaemic preconditioning' and identification of drugs that mimic the protective response have the potential to improve the prognosis of myocardial infarction and other cardiac syndromes dramatically. This article focuses on recent findings on the effects of ischaemic preconditioning of the coronary vasculature, which highlight the endothelium as an important target for a successful therapeutic approach to myocardial ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- A Rubino
- The Hatter Institute for Cardiovascular Studies, University College Hospital, Grafton Way, London, UK WC1E 6DB.
| | | |
Collapse
|
41
|
Mocanu MM, Baxter GF, Yellon DM. Caspase inhibition and limitation of myocardial infarct size: protection against lethal reperfusion injury. Br J Pharmacol 2000; 130:197-200. [PMID: 10807653 PMCID: PMC1572087 DOI: 10.1038/sj.bjp.0703336] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ischaemia-reperfusion injury causes cell death by both necrosis and apoptosis. Caspase activation is a major event in apoptosis. We therefore examined the effect of caspase inhibitors during reperfusion upon myocardial infarction. Rat isolated hearts were subjected to 35 min coronary occlusion and 120 min reperfusion. Treatment groups were perfused with caspase inhibitors during early reperfusion. We assessed a non-selective caspase inhibitor (Z-VAD. fmk, 0.1 microM), a caspase-8 inhibitor (Z-IETD.fmk, 0.07 microM), a caspase-9 inhibitor (Z-LEHD.fmk, 0.07 microM) and a caspase-3 inhibitor (Ac-DEVD.cmk, 0.07 microM). All caspase inhibitors limited infarct size (infarct-risk ratio per cent: control 38.5+/-2.6; Z-VAD. fmk 24.6+/-3.4; Z-LEHD.fmk 19.3+/-2.4; Z-IETD.fmk 23.0+/-5.4; Ac-DEVD.cmk 27.8+/-3.3; P<0.05 when compared with control value, 1-way ANOVA). We conclude that caspase inhibition during early reperfusion protects myocardium against lethal reperfusion injury.
Collapse
Affiliation(s)
- M M Mocanu
- The Hatter Institute, Division of Cardiology, University College Hospitals & Medical School, Grafton Way, London, WC1E 6DE
| | - G F Baxter
- The Hatter Institute, Division of Cardiology, University College Hospitals & Medical School, Grafton Way, London, WC1E 6DE
| | - D M Yellon
- The Hatter Institute, Division of Cardiology, University College Hospitals & Medical School, Grafton Way, London, WC1E 6DE
- Author for correspondence:
| |
Collapse
|
42
|
Stephanou A, Brar BK, Scarabelli TM, Jonassen AK, Yellon DM, Marber MS, Knight RA, Latchman DS. Ischemia-induced STAT-1 expression and activation play a critical role in cardiomyocyte apoptosis. J Biol Chem 2000; 275:10002-8. [PMID: 10744676 DOI: 10.1074/jbc.275.14.10002] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We show here that exposure of cardiac cells to simulated ischemia results in apoptosis and is accompanied by phosphorylation and increased expression and transcriptional activity of STAT-1. Similarly, interferon-gamma, which is known to induce STAT-1 activation, also induced apoptosis in cardiac cells. STAT-1-transfected cells were more susceptible to ischemia-induced cell death than cells transfected with a control plasmid lacking the STAT-1 coding sequence. Furthermore, an antisense STAT-1 vector reduced both ischemia- and overexpressed STAT-1-induced cell death in cardiac cells. Both STAT-1 overexpression and interferon-gamma treatment or exposure to ischemia activated the promoter of the pro-apoptotic caspase-1 gene in cardiomyocytes. Finally, ischemia/reperfusion also induced STAT-1 activation and caspase-1 processing in ventricular myocytes in the intact heart ex vivo. Immunofluorescent staining demonstrated an increase in STAT-1-positive staining in cardiomyocytes in response to ischemia/reperfusion that co-localized with terminal deoxynucleotidyl transferase dVTP nick end-labeling-positive apoptotic cells. These results suggest that STAT-1 plays a critical role in the regulation of ischemia/reperfusion-induced apoptosis in cardiac cells, acting at least in part via a caspase-1 activation-dependent pathway.
Collapse
Affiliation(s)
- A Stephanou
- Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|