1
|
Momma K, Shimizu T, Hayashi T, Hirakawa Y, Kuroda M, Oda M. Monoclonal antibodies against jellyfish collagen. J Biomater Appl 2025; 39:807-815. [PMID: 39576871 DOI: 10.1177/08853282241298354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Collagens are abundant structural proteins found in both mammalian and marine species, and attractive biomaterials used in various fields. Jellyfish collagen-based products have become increasingly popular because of their clinically proven health benefits such as the effects of skin wound healing and immune stimulation. To develop detection tools for jellyfish collagen, we generated four monoclonal antibodies, MCOL1, 2, 3, and 4, by immunizing mice with moon jellyfish collagen. The nucleotide and amino acid sequences of the variable regions of the monoclonal antibodies were determined. The antibody-binding kinetics toward collagens from moon jellyfish were evaluated using a surface plasmon resonance (SPR) biosensor, and the binding specificity was evaluated in comparison with binding to collagens from edible jellyfish, fish scales, and pig and cow skins. MCOL1, 3, and 4 specifically bound to moon jellyfish collagen, whereas MCOL2 bound to both moon and edible jellyfish collagens. Considering the results showing that the SPR responses of MCOL2 binding were greater than those seen with the other antibodies, MCOL2 could recognize the common and repetitive sequences of the two jellyfish collagens. Therefore, this monoclonal antibody will be most applicable for detecting jellyfish collagen.
Collapse
Affiliation(s)
- Keiko Momma
- Faculty of Home Economics, Kyoto Women's University, Kyoto, Japan
| | | | - Takahiro Hayashi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Yuki Hirakawa
- Faculty of Home Economics, Kyoto Women's University, Kyoto, Japan
| | - Masataka Kuroda
- AI Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
- Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
2
|
Lim K, Han SH, Han S, Lee JY, Choi HS, Choi D, Ryu CJ. A monoclonal antibody recognizing CD98 on human embryonic stem cells shows anti-tumor activity in hepatocellular carcinoma xenografts. Cancer Immunol Immunother 2024; 73:231. [PMID: 39261363 PMCID: PMC11390997 DOI: 10.1007/s00262-024-03827-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
CD98, also known as SLC3A2, is a multifunctional cell surface molecule consisting of amino acid transporters. CD98 is ubiquitously expressed in many types of tissues, but expressed at higher levels in cancerous tissues than in normal tissues. CD98 is also upregulated in most hepatocellular carcinoma (HCC) patients; however, the function of CD98 in HCC cells has been little studied. In this study, we generated a panel of monoclonal antibodies (MAbs) against surface proteins on human embryonic stem cells (hESCs). NPB15, one of the MAbs, bound to hESCs and various cancer cells, including HCC cells and non-small cell lung carcinoma (NSCLC) cells, but not to peripheral blood mononuclear cells (PBMCs) and primary hepatocytes. Immunoprecipitation and mass spectrometry identified the target antigen of NPB15 as CD98. CD98 depletion decreased cell proliferation, clonogenic survival, and migration and induced apoptosis in HCC cells. In addition, CD98 depletion decreased the expression of cancer stem cell (CSC) markers in HCC cells. In tumorsphere cultures, the expression of CD98 interacting with NPB15 was significantly increased, as were known CSC markers. After cell sorting by NPB15, cells with high expression of CD98 (CD98-high) showed higher clonogenic survival than cells with low expression of CD98 (CD98-low) in HCC cells, suggesting CD98 as a potential CSC marker on HCC cells. The chimeric version of NPB15 was able to induce antibody-dependent cellular cytotoxicity (ADCC) against HCC cells in vitro. NPB15 injection showed antitumor activity in an HCC xenograft mouse model. The results suggest that NPB15 may be developed as a therapeutic antibody for HCC patients.
Collapse
Affiliation(s)
- Keunpyo Lim
- Department of Integrative Bioscience and Biotechnology, Institute of Bioscience, Sejong University, Seoul, 05006, Republic of Korea
| | - San Ha Han
- Department of Integrative Bioscience and Biotechnology, Institute of Bioscience, Sejong University, Seoul, 05006, Republic of Korea
| | - Sein Han
- Department of Integrative Bioscience and Biotechnology, Institute of Bioscience, Sejong University, Seoul, 05006, Republic of Korea
| | - Ji Yoon Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Bioscience, Sejong University, Seoul, 05006, Republic of Korea
| | - Hong Seo Choi
- Department of Integrative Bioscience and Biotechnology, Institute of Bioscience, Sejong University, Seoul, 05006, Republic of Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea
| | - Chun Jeih Ryu
- Department of Integrative Bioscience and Biotechnology, Institute of Bioscience, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
3
|
Lu F, Wu X, Zhang F, Wu J, Yuan Z, Wang B, Tan G, Guo S. Comparison of single-chain variable fragments and monoclonal antibody against dihydroartemisinin. J Immunol Methods 2024; 532:113728. [PMID: 39059746 DOI: 10.1016/j.jim.2024.113728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/08/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Immunoassay relies on antibodies, but traditional antibodies such as monoclonal antibody (mAb) require animal immunization and complex procedures. Single-chain variable fragment (scFv) becomes a potential alternative to mAb with advantages of the low cost, rapid and easy prepared. In the present study, we prepared scFvs against dihydroartemisinin (DHA) based on E. coli and HEK293T cell expression system, named MBP-scFv and scFv-Fc, respectively. Their properties were compared with the parent mAb. The calculated affinity constants of mAb, MBP-scFv and scFv-Fc were 2.1 × 108 L mol-1, 2.2 × 107 L mol-1 and 1.6 × 108 L mol-1, respectively. The half inhibitory concentration (IC50) of mAb, MBP-scFv and scFv-Fc were 1.16 ng mL-1, 2.15 ng mL-1 and 6.57 ng mL-1, respectively. Both the scFv showed less sensitive than the mAb based on the IC50. The cross-reactivities of MBP-scFv for artemisinin and artesunate exhibited similarities to the mAb, yet the cross-reactivities of scFv-Fc for these compounds exceeded those of the mAb significantly. The stability of the scFvs was ascertained to be maintained for over 5 days at room temperature, and for more than a month at both 4 °C and - 20 °C. After that, the indirect competitive enzyme-linked immunosorbent assays (icELISAs) based on the scFv from E. coli were used to detect the DHA content in eight drug samples, and the result was consistent with ultra-performance liquid chromatography simultaneously. Although scFv can be used for quantitative determination of drugs, but it still cannot completely replace mAb in immunoassay without evolution and modification.
Collapse
Affiliation(s)
- Fang Lu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Xiqun Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Fa Zhang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, China; Key Laboratory of High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Jiaqiang Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Zhaodong Yuan
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Baomin Wang
- College of Agronomy and Biotechnology, China Agricultural University, 100193 Beijing, China
| | - Guiyu Tan
- Key Laboratory of High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China.
| | - Suqin Guo
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, China.
| |
Collapse
|
4
|
Tommeurd W, Thueng-in K, Theerawatanasirikul S, Tuyapala N, Poonsuk S, Petcharat N, Thangthamniyom N, Lekcharoensuk P. Identification of Conserved Linear Epitopes on Viral Protein 2 of Foot-and-Mouth Disease Virus Serotype O by Monoclonal Antibodies 6F4.D11.B6 and 8D6.B9.C3. Antibodies (Basel) 2024; 13:67. [PMID: 39189238 PMCID: PMC11348169 DOI: 10.3390/antib13030067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/28/2024] Open
Abstract
Foot-and-mouth disease (FMD) is a highly infectious disease of cloven-hoofed animals with a significant economic impact. Early diagnosis and effective prevention and control could reduce the spread of the disease which could possibly minimize economic losses. Epitope characterization based on monoclonal antibodies provide essential information for developing diagnostic assays and vaccine designs. In this study, monoclonal antibodies raised against FMD virus (FMDV) were produced. Sixty-six monoclonal antibodies demonstrated strong reactivity and specificity to FMDV. The purified monoclonal antibodies were further used for bio-panning to select phage expressing specific epitopes from phage-displayed 12 mer-peptide library. The phage peptide sequences were analyzed using multiple sequence alignment and evaluated by peptide ELISA. Two hybridoma clones secreted monoclonal antibodies recognizing linear epitopes on VP2 of FMDV serotype O. The non-neutralizing monoclonal antibody 6F4.D11.B6 recognized the residues 67-78 on antigenic site 2 resinding in VP2, while the neutralizing monoclonal antibody 8D6.B9.C3 recognized a novel linear epitope encompassing residues 115-126 on VP2. This information and the FMDV-specific monoclonal antibodies provide valuable sources for further study and application in diagnosis, therapeutics and vaccine designs to strengthen the disease prevention and control measures.
Collapse
Affiliation(s)
- Wantanee Tommeurd
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand; (W.T.); (S.T.)
| | - Kanyarat Thueng-in
- School of Pathology, Translational Medicine Program, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Sirin Theerawatanasirikul
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand; (W.T.); (S.T.)
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Nongnaput Tuyapala
- Protein-Ligand Engineering and Molecular Biology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
| | - Sukontip Poonsuk
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Nantawan Petcharat
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Nattarat Thangthamniyom
- Research and Development Department, Animal Health and Diagnostic Center, CPF (Thailand) Public Company Limited, Bangkok 10530, Thailand;
| | - Porntippa Lekcharoensuk
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand; (W.T.); (S.T.)
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| |
Collapse
|
5
|
Zhao J, Li P, ABD EL-ATY AM, Xu L, Lei X, Gao S, Li J, Zhao Y, She Y, Jin F, Wang J, Hammock BD, Jin M. A novel sustainable immunoassay for sensitive detection of atrazine based on the anti-idiotypic nanobody and recombinant full-length antibody. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2024; 491:152039. [PMID: 38882000 PMCID: PMC11173377 DOI: 10.1016/j.cej.2024.152039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Immunoassays have been widely used to determine small-molecule compounds in food and the environment, meeting the challenge of obtaining false positive or negative results because of the variance in the batches of antibodies and antigens. To resolve this problem, atrazine (ATR) was used as a target, and anti-idiotypic nanobodies for ATR (AI-Nbs) and a recombinant full-length antibody against ATR (ATR-rAb) were prepared for the development of a sustainable enzyme-linked immunosorbent assay (ELISA). AI-Nb-7, AI-Nb-58, and AI-Nb-66 were selected from an immune phage display library. ATR-rAb was produced in mammalian HEK293 (F) cells. Among the four detection methods explored, the assay using AI-Nb-66 as a coating antigen and ATR-rAb as a detection reagent yielded a half maximal inhibitory concentration (IC50) of 1.66 ng mL-1 for ATR and a linear range of 0.35-8.73 ng mL-1. The cross-reactivity of the assay to ametryn was 64.24%, whereas that to terbutylazine was 38.20%. Surface plasmon resonance (SPR) analysis illustrated that these cross-reactive triazine compounds can bind to ATR-rAb to varying degrees at high concentrations; however, the binding/dissociation kinetic curves and the response values at the same concentration are different, which results in differences in cross-reactivity. Homology modeling and molecular docking revealed that the triazine ring is vital in recognizing triazine compounds. The proposed immunoassay exhibited acceptable recoveries of 84.40-105.36% for detecting fruit, vegetables, and black tea. In conclusion, this study highlights a new strategy for developing sustainable immunoassays for detecting trace pesticide contaminants.
Collapse
Affiliation(s)
- Jing Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peipei Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - A. M. ABD EL-ATY
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Lingyuan Xu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingmei Lei
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Song Gao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Biological and Resources Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Jia Li
- Jinhua Miaozhidizhi Agricultural Technology Co., Ltd., Jinhua 321000, China
| | - Yun Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fen Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bruce D. Hammock
- Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
6
|
Lei X, Li P, Abd El-Aty AM, Zhao J, Xu L, Gao S, Li J, Zhao Y, She Y, Jin F, Wang J, Zheng L, Hammock BD, Jin M. Generation of a highly specific recombinant full-length antibody for detecting ethirimol in fruit and environmental water. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134067. [PMID: 38513441 PMCID: PMC11062638 DOI: 10.1016/j.jhazmat.2024.134067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/03/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
High-performance antibodies are core reagents for highly sensitive immunoassays. Herein, based on a novel hapten, a hybridoma secreting the high-affinity anti-ethirimol monoclonal antibody (mAb-14G5F6) was isolated with an IC50 value of 1.35 μg/L and cross-reactivity below 0.20% for 13 analogs. To further address the challenge of hybridoma preservation and antibody immortalization, a recombinant full-length antibody (rAb-14G5F6) was expressed using the HEK293(F) expression system based on the mAb-14G5F6 gene. The affinity, specificity, and tolerance of rAb-14G5F6, as characterized by indirect competitive enzyme-linked immunosorbent assay and noncompetitive surface plasmon resonance, exhibited high concordance with those of mAb-14G5F6. Further immunoassays based on rAb-14G5F6 were developed for irrigation water and strawberry fruit with limits of detection of 0.0066 and 0.036 mg/kg, respectively, recoveries of 80100%, and coefficients of variation below 10%. Furthermore, homology simulation and molecular docking revealed that GLU(L40), GLY(L107), GLY(H108), and ASP(H114) play important roles in forming hydrogen bonds and pi-anion ionic bonds between rAb-14G5F6 and ethirimol, resulting in the high specificity and affinity of rAb-14G5F6 for ethirimol, with a KD of 5.71 × 10-10 mol/L. Overall, a rAb specific for ethirimol was expressed successfully in this study, laying the groundwork for rAb-based immunoassays for monitoring fungicide residues in agricultural products and the environment.
Collapse
Affiliation(s)
- Xingmei Lei
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peipei Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Jing Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lingyuan Xu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Song Gao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Li
- Jinhua Miaozhidizhi Agricultural Technology Co., Ltd., Jinhua, Zhejiang 321000, China
| | - Yun Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fen Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lufei Zheng
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bruce D Hammock
- Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Research Center of Quality Standards for Agro-Products, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
7
|
Boyd LF, Jiang J, Ahmad J, Natarajan K, Margulies DH. Experimental Structures of Antibody/MHC-I Complexes Reveal Details of Epitopes Overlooked by Computational Prediction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1366-1380. [PMID: 38456672 PMCID: PMC10982845 DOI: 10.4049/jimmunol.2300839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
mAbs to MHC class I (MHC-I) molecules have proved to be crucial reagents for tissue typing and fundamental studies of immune recognition. To augment our understanding of epitopic sites seen by a set of anti-MHC-I mAb, we determined X-ray crystal structures of four complexes of anti-MHC-I Fabs bound to peptide/MHC-I/β2-microglobulin (pMHC-I). An anti-H2-Dd mAb, two anti-MHC-I α3 domain mAbs, and an anti-β2-microglobulin mAb bind pMHC-I at sites consistent with earlier mutational and functional experiments, and the structures explain allelomorph specificity. Comparison of the experimentally determined structures with computationally derived models using AlphaFold Multimer showed that although predictions of the individual pMHC-I heterodimers were quite acceptable, the computational models failed to properly identify the docking sites of the mAb on pMHC-I. The experimental and predicted structures provide insight into strengths and weaknesses of purely computational approaches and suggest areas that merit additional attention.
Collapse
Affiliation(s)
- Lisa F. Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Javeed Ahmad
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
8
|
Wang Z, Huang AS, Tang L, Wang J, Wang G. Microfluidic-assisted single-cell RNA sequencing facilitates the development of neutralizing monoclonal antibodies against SARS-CoV-2. LAB ON A CHIP 2024; 24:642-657. [PMID: 38165771 DOI: 10.1039/d3lc00749a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
As a class of antibodies that specifically bind to a virus and block its entry, neutralizing monoclonal antibodies (neutralizing mAbs) have been recognized as a top choice for combating COVID-19 due to their high specificity and efficacy in treating serious infections. Although conventional approaches for neutralizing mAb development have been optimized for decades, there is an urgent need for workflows with higher efficiency due to time-sensitive concerns, including the high mutation rate of SARS-CoV-2. One promising approach is the identification of neutralizing mAb candidates via single-cell RNA sequencing (RNA-seq), as each B cell has a unique transcript sequence corresponding to its secreted antibody. The state-of-the-art high-throughput single-cell sequencing technologies, which have been greatly facilitated by advances in microfluidics, have greatly accelerated the process of neutralizing mAb development. Here, we provide an overview of the general procedures for high-throughput single-cell RNA-seq enabled by breakthroughs in droplet microfluidics, introduce revolutionary approaches that combine single-cell RNA-seq to facilitate the development of neutralizing mAbs against SARS-CoV-2, and outline future steps that need to be taken to further improve development strategies for effective treatments against infectious diseases.
Collapse
Affiliation(s)
- Ziwei Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Amelia Siqi Huang
- Dalton Academy, The Affiliated High School of Peking University, Beijing, 100190, China
| | - Lingfang Tang
- Dalton Academy, The Affiliated High School of Peking University, Beijing, 100190, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guanbo Wang
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
9
|
Koelbel C, Ruiz Y, Wan Z, Wang S, Ho T, Lake D. Development of tandem antigen capture ELISAs measuring QSOX1 isoforms in plasma and serum. Free Radic Biol Med 2024; 210:212-220. [PMID: 38036070 PMCID: PMC10843750 DOI: 10.1016/j.freeradbiomed.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/12/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
QSOX1 is a sulfhydryl oxidase that has been identified as a potential biomarker in multiple cancer types as well as acute decompensated heart failure. Three anti-QSOX1 monoclonal antibodies (mAbs) were generated: 2F1, 3A10, and 56-3. MAbs 2F1 and 3A10 were generated against the short isoform of recombinant QSOX1 (rQSOX1-S), and mAb 56-3 was generated against a peptide (NEQEQPLGQWHLS) from the long isoform of QSOX1 (QSOX1-L). Using these mAbs, tandem antigen capture ELISAs were developed to quantify both short and long isoforms of QSOX1 (Total QSOX1 ELISA) and QSOX1-L (QSOX1-L ELISA) in serum and plasma samples. The Total QSOX1 ELISA pairs mAbs 2F1 and 3A10 and has a limit of detection of 109.5 pM, while the QSOX1-L ELISA pairs mAbs 2F1 and 56-3 and has a limit of detection of 10 pM. The levels of total QSOX1 and QSOX1-L were measured in a cohort of paired sera and plasma from 61 donors ≥40 years old and 15 donors <40 years old. No difference in QSOX1 levels was detected between QSOX1-L and QSOX1-S in serum, but the mean concentration of QSOX1-L was found to be 3.21 nM in serum and 5.63 nM in plasma (**p = 0.006). Our tandem ELISAs demonstrate the wide range of concentrations of QSOX1-L and QSOX1-S among individual serum and plasma samples. Since the epitope of mAb 2F1 was mapped to the first CxxC motif at residues C70 and C73 and mAb 56-3 was generated against NEQEQPLGQWHLS in QSOX1-L, our findings support previous research which suggested that QSOX1-L is secreted from cells despite a putative transmembrane domain. The ELISAs reported here may be a useful tool for investigating QSOX1 isoforms as potential biomarkers in cancer and/or heart failure.
Collapse
Affiliation(s)
- Calvin Koelbel
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Yvette Ruiz
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Zijian Wan
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ, USA
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Thai Ho
- Divison of Hematology and Medical Oncology, Hollings Cancer Center, Medical University of South Carolina College of Medicine, Charleston, SC, USA
| | - Douglas Lake
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
10
|
Boyd LF, Jiang J, Ahmad J, Natarajan K, Margulies DH. Experimental structures of antibody/MHC-I complexes reveal details of epitopes overlooked by computational prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569627. [PMID: 38106040 PMCID: PMC10723347 DOI: 10.1101/2023.12.01.569627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Monoclonal antibodies (mAb) to major histocompatibility complex class I (MHC-I) molecules have proved to be crucial reagents for tissue typing and fundamental studies of immune recognition. To augment our understanding of epitopic sites seen by a set of anti-MHC-I mAb, we determined X-ray crystal structures of four complexes of anti-MHC-I antigen-binding fragments (Fab) bound to peptide/MHC-I/β2m (pMHC-I). An anti-H2-Dd mAb, two anti-MHC-I α3 domain mAb, and an anti-β2-microglobulin (β2m) mAb bind pMHC-I at sites consistent with earlier mutational and functional experiments, and the structures explain allelomorph specificity. Comparison of the experimentally determined structures with computationally derived models using AlphaFold Multimer (AF-M) showed that although predictions of the individual pMHC-I heterodimers were quite acceptable, the computational models failed to properly identify the docking sites of the mAb on pMHC-I. The experimental and predicted structures provide insight into strengths and weaknesses of purely computational approaches and suggest areas that merit additional attention.
Collapse
Affiliation(s)
| | | | - Javeed Ahmad
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD, 20892-1892
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD, 20892-1892
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD, 20892-1892
| |
Collapse
|
11
|
Choi MJ, You TM, Jang YJ. Galectin-3 Plays an Important Role in BMP7-Induced Cementoblastic Differentiation of Human Periodontal Ligament Cells by Interacting with Extracellular Components. Stem Cells Int 2023; 2023:5924286. [PMID: 37396953 PMCID: PMC10313471 DOI: 10.1155/2023/5924286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/01/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023] Open
Abstract
Human periodontal ligament stem cells (hPDLSCs) contain multipotent postnatal stem cells that differentiate into PDL progenitors, osteoblasts, and cementoblasts. Previously, we obtained cementoblast-like cells from hPDLSCs using bone morphogenetic protein 7 (BMP7) treatment. Differentiation into appropriate progenitor cells requires interactions and changes between stem or progenitor cells and their so-called environment niches, and cell surface markers play an important role. However, cementoblast-specific cell surface markers have not yet been fully studied. Through decoy immunization with intact cementoblasts, we developed a series of monoclonal antibodies against cementoblast-specific membrane/extracellular matrix (ECM) molecules. One of these antibodies, the anti-CM3 antibody, recognized an approximate 30 kDa protein in a mouse cementoblast cell line, and the CM3 antigenic molecule accumulated in the cementum region of human tooth roots. Using mass spectrometric analysis, we found that the antigenic molecules recognized by the anti-CM3 antibody were galectin-3. As cementoblastic differentiation progressed, the expression of galectin-3 increased, and it localized at the cell surface. Inhibition of galectin-3 via siRNA and a specific inhibitor showed the complete blockage of cementoblastic differentiation and mineralization. In contrast, ectopic expression of galectin-3 induced cementoblastic differentiation. Galectin-3 interacted with laminin α2 and BMP7, and these interactions were diminished by galectin-3 inhibitors. These results suggested that galectin-3 participates in binding to the ECM component and trapping BMP7 to induce, in a sustained fashion, the upregulation of cementoblastic differentiation. Finally, galectin-3 could be a potential cementoblast-specific cell surface marker, with functional importance in cell-to-ECM interactions.
Collapse
Affiliation(s)
- Min-Jeong Choi
- Department of Nanobiomedical Science and BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Tae Min You
- Department of Advanced General Dentistry, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science and BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Department of Oral Biochemistry, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
12
|
Caniels TG, Medina-Ramírez M, Zhang J, Sarkar A, Kumar S, LaBranche A, Derking R, Allen JD, Snitselaar JL, Capella-Pujol J, Sánchez IDM, Yasmeen A, Diaz M, Aldon Y, Bijl TPL, Venkatayogi S, Martin Beem JS, Newman A, Jiang C, Lee WH, Pater M, Burger JA, van Breemen MJ, de Taeye SW, Rantalainen K, LaBranche C, Saunders KO, Montefiori D, Ozorowski G, Ward AB, Crispin M, Moore JP, Klasse PJ, Haynes BF, Wilson IA, Wiehe K, Verkoczy L, Sanders RW. Germline-targeting HIV-1 Env vaccination induces VRC01-class antibodies with rare insertions. Cell Rep Med 2023; 4:101003. [PMID: 37044090 PMCID: PMC10140475 DOI: 10.1016/j.xcrm.2023.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/23/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023]
Abstract
Targeting germline (gl-) precursors of broadly neutralizing antibodies (bNAbs) is acknowledged as an important strategy for HIV-1 vaccines. The VRC01-class of bNAbs is attractive because of its distinct genetic signature. However, VRC01-class bNAbs often require extensive somatic hypermutation, including rare insertions and deletions. We describe a BG505 SOSIP trimer, termed GT1.2, to optimize binding to gl-CH31, the unmutated common precursor of the CH30-34 bNAb lineage that acquired a large CDRH1 insertion. The GT1.2 trimer activates gl-CH31 naive B cells in knock-in mice, and B cell responses could be matured by selected boosting immunogens to generate cross-reactive Ab responses. Next-generation B cell sequencing reveals selection for VRC01-class mutations, including insertions in CDRH1 and FWR3 at positions identical to VRC01-class bNAbs, as well as CDRL1 deletions and/or glycine substitutions to accommodate the N276 glycan. These results provide proof of concept for vaccine-induced affinity maturation of B cell lineages that require rare insertions and deletions.
Collapse
Affiliation(s)
- Tom G Caniels
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Max Medina-Ramírez
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Jinsong Zhang
- Applied Biomedical Science Institute, San Diego, CA, USA
| | - Anita Sarkar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Sonu Kumar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Alex LaBranche
- Applied Biomedical Science Institute, San Diego, CA, USA
| | - Ronald Derking
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Jonne L Snitselaar
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Joan Capella-Pujol
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Iván Del Moral Sánchez
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Marilyn Diaz
- Applied Biomedical Science Institute, San Diego, CA, USA
| | - Yoann Aldon
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Tom P L Bijl
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | | | | | - Amanda Newman
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Chuancang Jiang
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Maarten Pater
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Judith A Burger
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Mariëlle J van Breemen
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Steven W de Taeye
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Kimmo Rantalainen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Celia LaBranche
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Kevin O Saunders
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - David Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Per Johan Klasse
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
13
|
Jugler C, Sun H, Nguyen K, Palt R, Felder M, Steinkellner H, Chen Q. A novel plant-made monoclonal antibody enhances the synergetic potency of an antibody cocktail against the SARS-CoV-2 Omicron variant. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:549-559. [PMID: 36403203 PMCID: PMC9946148 DOI: 10.1111/pbi.13970] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 06/01/2023]
Abstract
This study describes a novel, neutralizing monoclonal antibody (mAb), 11D7, discovered by mouse immunization and hybridoma generation, against the parental Wuhan-Hu-1 RBD of SARS-CoV-2. We further developed this mAb into a chimeric human IgG and recombinantly expressed it in plants to produce a mAb with human-like, highly homogenous N-linked glycans that has potential to impart greater potency and safety as a therapeutic. The epitope of 11D7 was mapped by competitive binding with well-characterized mAbs, suggesting that it is a Class 4 RBD-binding mAb that binds to the RBD outside the ACE2 binding site. Of note, 11D7 maintains recognition against the B.1.1.529 (Omicron) RBD, as well neutralizing activity. We also provide evidence that this novel mAb may be useful in providing additional synergy to established antibody cocktails, such as Evusheld™ containing the antibodies tixagevimab and cilgavimab, against the Omicron variant. Taken together, 11D7 is a unique mAb that neutralizes SARS-CoV-2 through a mechanism that is not typical among developed therapeutic mAbs and by being produced in ΔXFT Nicotiana benthamiana plants, highlights the potential of plants to be an economic and safety-friendly alternative platform for generating mAbs to address the evolving SARS-CoV-2 crisis.
Collapse
Affiliation(s)
- Collin Jugler
- The Biodesign InstituteArizona State UniversityTempeArizonaUSA
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Haiyan Sun
- The Biodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Katherine Nguyen
- School of Molecular SciencesArizona State UniversityTempeArizonaUSA
| | - Roman Palt
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | - Herta Steinkellner
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Qiang Chen
- The Biodesign InstituteArizona State UniversityTempeArizonaUSA
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| |
Collapse
|
14
|
Design of a Diagnostic Immunoassay for Aflatoxin M1 Based on a Plant-Produced Antibody. Toxins (Basel) 2022; 14:toxins14120851. [PMID: 36548748 PMCID: PMC9781297 DOI: 10.3390/toxins14120851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
A new green competitive ELISA for aflatoxin M1 quantification in raw milk was developed. This diagnostic tool is based on an anti AFM1 mAb produced by plant molecular farming in alternative to classical systems. Our assay, showing an IC50 below 25 ng/L, fits with the requirements of EU legislation limits for AFM1 (50 ng/L). Optimal accuracy was achieved in correspondence of the decision levels (25 and 50 ng/L), and the assay enabled AFM1 quantification in the range 5-110 ng/L, with limit of detection 3 ng/L. Moreover, to evaluate a real applicability in diagnostics, raw milk-spiked samples were analysed, achieving satisfactory recovery rates of AFM1. In conclusion, an efficient and ready-to-use diagnostic assay for the quantification of aflatoxin M1 in milk, based on a plant-produced recombinant mAb, has been successfully developed.
Collapse
|
15
|
Jugler C, Grill FJ, Eidenberger L, Karr TL, Grys TE, Steinkellner H, Lake DF, Chen Q. Humanization and expression of IgG and IgM antibodies in plants as potential diagnostic reagents for Valley Fever. FRONTIERS IN PLANT SCIENCE 2022; 13:925008. [PMID: 36119630 PMCID: PMC9478164 DOI: 10.3389/fpls.2022.925008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/12/2022] [Indexed: 05/10/2023]
Abstract
Monoclonal antibodies (mAbs) are important proteins used in many life science applications, from diagnostics to therapeutics. High demand for mAbs for different applications urges the development of rapid and reliable recombinant production platforms. Plants provide a quick and inexpensive system for producing recombinant mAbs. Moreover, when paired with an established platform for mAb discovery, plants can easily be tailored to produce mAbs of different isotypes against the same target. Here, we demonstrate that a hybridoma-generated mouse mAb against chitinase 1 (CTS1), an antigen from Coccidioides spp., can be biologically engineered for use with serologic diagnostic test kits for coccidioidomycosis (Valley Fever) using plant expression. The original mouse IgG was modified and recombinantly produced in glycoengineered Nicotiana benthamiana plants via transient expression as IgG and IgM isotypes with human kappa, gamma, and mu constant regions. The two mAb isotypes produced in plants were shown to maintain target antigen recognition to CTS1 using similar reagents as the Food and Drug Administration (FDA)-approved Valley Fever diagnostic kits. As none of the currently approved kits provide antibody dilution controls, humanization of antibodies that bind to CTS1, a major component of the diagnostic antigen preparation, may provide a solution to the lack of consistently reactive antibody controls for Valley Fever diagnosis. Furthermore, our work provides a foundation for reproducible and consistent production of recombinant mAbs engineered to have a specific isotype for use in diagnostic assays.
Collapse
Affiliation(s)
- Collin Jugler
- The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Francisca J. Grill
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Lukas Eidenberger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Timothy L. Karr
- The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Thomas E. Grys
- Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ, United States
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Douglas F. Lake
- The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Qiang Chen
- The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
16
|
Golgin Subfamily A Member 5 Is Essential for Production of Extracellular Matrix Proteins during TGF-β1-Induced Periodontal Ligament-Fibroblastic Differentiation. Stem Cells Int 2022; 2022:3273779. [PMID: 35879965 PMCID: PMC9308542 DOI: 10.1155/2022/3273779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
Abstract
Human periodontal ligament stem cells (hPDLSCs) can be differentiated into periodontal ligament- (PDL-) fibroblastic progenitors by treatment with low concentrations of transforming growth factor beta 1 (TGF-β1). Although much is known about the profibrotic effects of TGF-β1, the molecular mechanisms mediating the activation of fibroblasts in periodontal ligament-fibroblastic differentiation are not well known. Our study was to investigate the mechanism of the fibroblastic process in the periodontal ligament differentiation of hPDLSCs through the discovery of novel markers. One of the monoclonal antibodies previously established through decoy immunization was the anti-LG11 antibody, which recognized Golgi subfamily A member 5 (GOLGA5) as a PDL-fibroblastic progenitor-specific antigen. GOLGA5/LG11 was significantly upregulated in TGF-β1-induced PDL-fibroblastic progenitors and accumulated in the PDL region of the tooth root. GOLGA5 plays a role in vesicle tethering and docking between the endoplasmic reticulum and the Golgi apparatus. siRNA-mediated depletion of endogenous GOLGA5 upregulated in TGF-β1-induced PDL-fibroblastic progenitors resulted in downregulation of representative PDL-fibroblastic markers and upregulation of osteoblast markers. When the TGF-β1 signaling pathway was blocked or GOLGA5 was depleted by siRNA, the levels of extracellular matrix (ECM) proteins, such as type I collagen and fibronectin, decreased in PDL-fibroblastic progenitors. In addition, Golgi structures in the perinuclear region underwent fragmentation under these conditions. These results suggest that GOLGA5/LG11 is a PDL-fibroblastic marker with functional importance in ECM protein production and secretion, which are important processes in PDL-fibroblastic differentiation.
Collapse
|
17
|
Can Modern Molecular Modeling Methods Help Find the Area of Potential Vulnerability of Flaviviruses? Int J Mol Sci 2022; 23:ijms23147721. [PMID: 35887069 PMCID: PMC9316223 DOI: 10.3390/ijms23147721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Flaviviruses are single-stranded RNA viruses that have emerged in recent decades and infect up to 400 million people annually, causing a variety of potentially severe pathophysiological processes including hepatitis, encephalitis, hemorrhagic fever, tissues and capillaries damage. The Flaviviridae family is represented by four genera comprising 89 known virus species. There are no effective therapies available against many pathogenic flaviviruses. One of the promising strategies for flavivirus infections prevention and therapy is the use of neutralizing antibodies (NAb) that can disable the virus particles from infecting the host cells. The envelope protein (E protein) of flaviviruses is a three-domain structure that mediates the fusion of viral and host membranes delivering the infectious material. We previously developed and characterized 10H10 mAb which interacts with the E protein of the tick-borne encephalitis virus (TBEV) and many other flaviviruses’ E proteins. The aim of this work was to analyze the structure of E protein binding sites recognized by the 10H10 antibody, which is reactive with different flavivirus species. Here, we present experimental data and 3D modeling indicating that the 10H10 antibody recognizes the amino acid sequence between the two cysteines C92-C116 of the fusion loop (FL) region of flaviviruses’ E proteins. Overall, our results indicate that the antibody-antigen complex can form a rigid or dynamic structure that provides antibody cross reactivity and efficient interaction with the fusion loop of E protein.
Collapse
|
18
|
Irani V, Soliman C, Raftis MA, Guy AJ, Elbourne A, Ramsland PA. Expression of monoclonal antibodies for functional and structural studies. METHODS IN MICROBIOLOGY 2022. [DOI: 10.1016/bs.mim.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Wu G, Li L, Qiu Y, Sun W, Ren T, Lv Y, Liu M, Wang X, Tao H, Zhao L, Cao J, He L, Li H, Gu H. A novel humanized MUC1 antibody-drug conjugate for the treatment of trastuzumab-resistant breast cancer. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1625-1639. [PMID: 34586349 DOI: 10.1093/abbs/gmab141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 01/10/2023] Open
Abstract
Mucin 1 (MUC1) has been regarded as an ideal target for cancer treatment, since it is overexpressed in a variety of different cancers including the majority of breast cancer. However, there are still no approved monoclonal antibody drugs targeting MUC1. In this study, we generated a humanized MUC1 (HzMUC1) antibody from our previously developed MUC1 mouse monoclonal antibody that only recognizes MUC1 on the surface of tumor cells. Furthermore, an antibody-drug conjugate (ADC) was generated by conjugating HzMUC1 with monomethyl auristatin (MMAE), and the efficacy of HzMUC1-MMAE on the MUC1-positive HER2+ breast cancer in vitro and in 'Xenograft' model was tested. Results from western blot analysis and immunoprecipitation revealed that the HzMUC1 antibody did not recognize cell-free MUC1-N in sera from breast cancer patients. Confocal microscopy analysis showed that HzMUC1 antibody bound to MUC1 on the surface of breast cancer cells. Results from mapping experiments suggested that HzMUC1 may recognize an epitope present in the interaction region between MUC1-N and MUC1-C. Results from colony formation assay and flow cytometry demonstrated that HzMUC1-MMAE significantly inhibited cell growth by inducing G2/M cell cycle arrest and apoptosis in trastuzumab-resistant HER2-positive breast cancer cells. Meanwhile, HzMUC1-MMAE significantly reduced the growth of HCC1954 xenograft tumors by inhibiting cell proliferation and enhancing cell death. In conclusion, our results indicate that HzMUC1-ADC is a novel therapeutic drug that can overcome trastuzumab resistance of breast cancer. HzMUC1-ADC should also be an effective therapeutic drug for the treatment of different MUC1-positive cancers in clinic.
Collapse
Affiliation(s)
- Guang Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Lan Li
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuxin Qiu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wei Sun
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Tianhao Ren
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yingshuai Lv
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Mengnan Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoxia Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Hongqun Tao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Lingjie Zhao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiawei Cao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Licai He
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hongzhi Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Haihua Gu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
20
|
Generation of a Novel High-Affinity Antibody Binding to PCSK9 Catalytic Domain with Slow Dissociation Rate by CDR-Grafting, Alanine Scanning and Saturated Site-Directed Mutagenesis for Favorably Treating Hypercholesterolemia. Biomedicines 2021; 9:biomedicines9121783. [PMID: 34944600 PMCID: PMC8698692 DOI: 10.3390/biomedicines9121783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) has become an attractive therapeutic strategy for lowering low-density lipoprotein cholesterol (LDL-C). In this study, a novel high affinity humanized IgG1 mAb (named h5E12-L230G) targeting the catalytic domain of human PCSK9 (hPCSK9) was generated by using CDR-grafting, alanine-scanning mutagenesis, and saturated site-directed mutagenesis. The heavy-chain constant region of h5E12-L230G was modified to eliminate the cytotoxic effector functions and mitigate the heterogeneity. The biolayer interferometry (BLI) binding assay and molecular docking study revealed that h5E12-L230G binds to the catalytic domain of hPCSK9 with nanomolar affinity (KD = 1.72 nM) and an extremely slow dissociation rate (koff, 4.84 × 10−5 s−1), which interprets its quite low binding energy (−54.97 kcal/mol) with hPCSK9. Additionally, h5E12-L230G elevated the levels of LDLR and enhanced the LDL-C uptake in HepG2 cells, as well as reducing the serum LDL-C and total cholesterol (TC) levels in hyperlipidemic mouse model with high potency comparable to the positive control alirocumab. Our data indicate that h5E12-L230G is a high-affinity anti-PCSK9 antibody candidate with an extremely slow dissociation rate for favorably treating hypercholesterolemia and relevant cardiovascular diseases.
Collapse
|
21
|
Figueiredo ABC, Fonseca FL, Kuczera D, Conte FDP, Arissawa M, Rodrigues ML. Monoclonal Antibodies against Cell Wall Chitooligomers as Accessory Tools for the Control of Cryptococcosis. Antimicrob Agents Chemother 2021; 65:e0118121. [PMID: 34570650 PMCID: PMC8597760 DOI: 10.1128/aac.01181-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/21/2021] [Indexed: 11/20/2022] Open
Abstract
Therapeutic strategies against systemic mycoses can involve antifungal resistance and significant toxicity. Thus, novel therapeutic approaches to fight fungal infections are urgent. Monoclonal antibodies (MAbs) are promising tools to fight systemic mycoses. In this study, MAbs of the IgM isotype were developed against chitin oligomers. Chitooligomers derive from chitin, an essential component of the fungal cell wall and a promising therapeutic target, as it is not synthesized by humans or animals. Surface plasmon resonance (SPR) assays and cell-binding tests showed that the MAbs recognizing chitooligomers have high affinity and specificity for the chitin derivatives. In vitro tests showed that the chitooligomer MAbs increased the fungicidal capacity of amphotericin B against Cryptococcus neoformans. The chitooligomer-binding MAbs interfered with two essential properties related to cryptococcal pathogenesis: biofilm formation and melanin production. In a murine model of C. neoformans infection, the combined administration of the chitooligomer-binding MAb and subinhibitory doses of amphotericin B promoted disease control. The data obtained in this study support the hypothesis that chitooligomer antibodies have great potential as accessory tools in the control of cryptococcosis.
Collapse
Affiliation(s)
| | - Fernanda L. Fonseca
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Diogo Kuczera
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil
| | - Fernando de Paiva Conte
- Projeto Implantação Planta Piloto, Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcia Arissawa
- Vice Diretoria de Desenvolvimento Técnologico, Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Chen Y, Zhao K, Huang J, Li M, Sun X, Li J. Detection of salinomycin and lasalocid in chicken liver by icELISA based on functional bispecific single-chain antibody (scDb) and interpretation of molecular recognition mechanism. Anal Bioanal Chem 2021; 413:7031-7041. [PMID: 34661725 DOI: 10.1007/s00216-021-03666-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Salinomycin (SAL) and lasalocid (LAS) are widely used as ionophore antibiotics for coccidiosis control. However, their common use as feed additives has led to the occurrence of feed cross-contamination, which has toxic effects on non-target animals. There have been few reports on multiple-residue detection for SAL and LAS in recent years. In this study, two single-chain antibody fragments (scFvs) capable of specifically recognizing SAL and LAS were constructed. Using LAS-scFv and SAL-scFv as parent antibodies, a complete bispecific single-chain diabody (scDb) against both LAS and SAL was built using splicing by overlap extension polymerase chain reaction (SOE-PCR). In addition, the key amino acid sites and interaction energy of antibody variable regions for small-molecule recognition were preliminarily studied by homology modeling and molecular docking. Finally, IC50 values of 12.9 and 8.6 ng/mL, with a linear range of 6.9-24.0 and 4.7-16.0 ng/mL, were obtained for LAS-scFv and SAL-scFv, respectively. An indirect competitive enzyme-linked immunosorbent assay (icELISA) method was established using scDb to obtain an IC50 of 3.5 ng/mL for LAS and 4.1 ng/mL for SAL, which showed better sensitivity and specificity than those of the parent scFv antibodies. The recoveries of LAS and SAL in chicken liver were 89.2-92.7%(CV<4.7%) and 88.6-90.2% (CV<6.8%)), respectively.
Collapse
Affiliation(s)
- Yingxian Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, 100193, Beijing, People's Republic of China
| | - Kunxia Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, 100193, Beijing, People's Republic of China
| | - Jingjie Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, 100193, Beijing, People's Republic of China
| | - Miao Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, 100193, Beijing, People's Republic of China
| | - Xiaojuan Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, 100193, Beijing, People's Republic of China
| | - Jiancheng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, 100193, Beijing, People's Republic of China.
| |
Collapse
|
23
|
Van Lent J, Breukers J, Ven K, Ampofo L, Horta S, Pollet F, Imbrechts M, Geukens N, Vanhoorelbeke K, Declerck P, Lammertyn J. Miniaturized single-cell technologies for monoclonal antibody discovery. LAB ON A CHIP 2021; 21:3627-3654. [PMID: 34505611 DOI: 10.1039/d1lc00243k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antibodies (Abs) are among the most important class of biologicals, showcasing a high therapeutic and diagnostic value. In the global therapeutic Ab market, fully-human monoclonal Abs (FH-mAbs) are flourishing thanks to their low immunogenicity and high specificity. The rapidly emerging field of single-cell technologies has paved the way to efficiently discover mAbs by facilitating a fast screening of the antigen (Ag)-specificity and functionality of Abs expressed by B cells. This review summarizes the principles and challenges of the four key concepts to discover mAbs using these technologies, being confinement of single cells using either droplet microfluidics or microstructure arrays, identification of the cells of interest, retrieval of those cells and single-cell sequence determination required for mAb production. This review reveals the enormous potential for mix-and-matching of the above-mentioned strategies, which is illustrated by the plethora of established, highly integrated devices. Lastly, an outlook is given on the many opportunities and challenges that still lie ahead to fully exploit miniaturized single-cell technologies for mAb discovery.
Collapse
Affiliation(s)
- Julie Van Lent
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Jolien Breukers
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Karen Ven
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Louanne Ampofo
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Leuven 3000, Belgium
| | - Sara Horta
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk 8500, Belgium
| | - Francesca Pollet
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Maya Imbrechts
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Leuven 3000, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Leuven 3000, Belgium
| | - Nick Geukens
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Leuven 3000, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk 8500, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Leuven 3000, Belgium
| | - Paul Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Leuven 3000, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Leuven 3000, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| |
Collapse
|
24
|
Eaglesham JB, Garcia A, Berkmen M. Production of antibodies in SHuffle Escherichia coli strains. Methods Enzymol 2021; 659:105-144. [PMID: 34752282 DOI: 10.1016/bs.mie.2021.06.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibodies are globally important macromolecules, used for research, diagnostics, and as therapeutics. The common mammalian antibody immunoglobulin G (IgG) is a complex glycosylated macromolecule, composed of two heavy chains and two light chains held together by multiple disulfide bonds. For this reason, IgG and related antibody fragments are usually produced through secretion from mammalian cell lines, such as Chinese Hamster Ovary cells. However, there is growing interest in production of antibodies in prokaryotic systems due to the potential for rapid and cheap production in a highly genetically manipulable system. Research on oxidative protein folding in prokaryotes has enabled engineering of Escherichia coli strains capable of producing IgG and other disulfide bonded proteins in the cytoplasm, known as SHuffle. In this protocol, we provide a review of research on prokaryotic antibody production, guidelines on cloning of antibody expression constructs, conditions for an initial expression and purification experiment, and parameters which may be optimized for increased purification yields. Last, we discuss the limitations of prokaryotic antibody production, and highlight potential future avenues for research on antibody expression and folding.
Collapse
|
25
|
Mii Y, Nakazato K, Pack CG, Ikeda T, Sako Y, Mochizuki A, Taira M, Takada S. Quantitative analyses reveal extracellular dynamics of Wnt ligands in Xenopus embryos. eLife 2021; 10:55108. [PMID: 33904408 PMCID: PMC8139832 DOI: 10.7554/elife.55108] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
The mechanism of intercellular transport of Wnt ligands is still a matter of debate. To better understand this issue, we examined the distribution and dynamics of Wnt8 in Xenopus embryos. While Venus-tagged Wnt8 was found on the surfaces of cells close to Wnt-producing cells, we also detected its dispersal over distances of 15 cell diameters. A combination of fluorescence correlation spectroscopy and quantitative imaging suggested that only a small proportion of Wnt8 ligands diffuses freely, whereas most Wnt8 molecules are bound to cell surfaces. Fluorescence decay after photoconversion showed that Wnt8 ligands bound on cell surfaces decrease exponentially, suggesting a dynamic exchange of bound forms of Wnt ligands. Mathematical modeling based on this exchange recapitulates a graded distribution of bound, but not free, Wnt ligands. Based on these results, we propose that Wnt distribution in tissues is controlled by a dynamic exchange of its abundant bound and rare free populations.
Collapse
Affiliation(s)
- Yusuke Mii
- National Institute for Basic Biology and Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan.,The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Japan Science and Technology Agency (JST), PRESTO, Kawaguchi, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | - Chan-Gi Pack
- Cellular Informatics Laboratory, RIKEN, Wako, Japan.,ASAN Institute for Life Sciences, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Takafumi Ikeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN, Wako, Japan
| | - Atsushi Mochizuki
- Theoretical Biology Laboratory, RIKEN, Wako, Japan.,Laboratory of Mathematical Biology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Shinji Takada
- National Institute for Basic Biology and Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan.,The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| |
Collapse
|
26
|
Antibody Screening System Using a Herpes Simplex Virus (HSV)-Based Probe To Identify a Novel Target for Receptor-Retargeted Oncolytic HSVs. J Virol 2021; 95:JVI.01766-20. [PMID: 33627393 DOI: 10.1128/jvi.01766-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/07/2021] [Indexed: 12/13/2022] Open
Abstract
Herpes simplex virus (HSV) is a promising tool for developing oncolytic virotherapy. We recently reported a platform for receptor-retargeted oncolytic HSVs that incorporates single-chain antibodies (scFvs) into envelope glycoprotein D (gD) to mediate virus entry via tumor-associated antigens. Therefore, it would be useful to develop an efficient system that can screen antibodies that might mediate HSV entry when they are incorporated as scFvs into gD. We created an HSV-based screening probe by the genetic fusion of a gD mutant with ablated binding capability to the authentic HSV entry receptors and the antibody-binding C domain of streptococcal protein G. This engineered virus failed to enter cells through authentic receptors. In contrast, when this virus was conjugated with an antibody specific to an antigen on the cell membrane, it specifically entered cells expressing the cognate antigen. This virus was used as a probe to identify antibodies that mediate virus entry via recognition of certain molecules on the cell membrane other than authentic receptors. Using this method, we identified an antibody specific to epiregulin (EREG), which has been investigated mainly as a secreted growth factor and not necessarily for its precursor that is expressed in a transmembrane form. We constructed an scFv from the anti-EREG antibody for insertion into the retargeted HSV platform and found that the recombinant virus entered cells specifically through EREG expressed by the cells. This novel antibody-screening system may contribute to the discovery of unique and unexpected molecules that might be used for the entry of receptor-retargeted oncolytic HSVs.IMPORTANCE The tropism of the cellular entry of HSV is dependent on the binding of the envelope gD to one of its authentic receptors. This can be fully retargeted to other receptors by inserting scFvs into gD with appropriate modifications. In theory, upon binding to the engineered gD, receptors other than authentic receptors should induce a conformational change in the gD, which activates downstream mechanisms required for viral entry. However, prerequisite factors for receptors to be used as targets of a retargeted virus remain poorly understood, and it is difficult to predict which molecules might be suitable for our retargeted HSV construct. Our HSV-based probe will allow unbiased screening of antibody-antigen pairs that mediate virus entry and might be a useful tool to identify suitable pairs for our construct and to enhance our understanding of virus-cell interactions during infection by HSV and possibly other viruses.
Collapse
|
27
|
Kyrklund M, Kaski H, Akhi R, Nissinen AE, Kummu O, Bergmann U, Pussinen P, Hörkkö S, Wang C. Existence of natural mouse IgG mAbs recognising epitopes shared by malondialdehyde acetaldehyde adducts and Porphyromonas gingivalis. Innate Immun 2021; 27:158-169. [PMID: 33445998 PMCID: PMC7882809 DOI: 10.1177/1753425920981133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Natural Abs are produced by B lymphocytes in the absence of external Ag stimulation. They recognise self, altered self and foreign Ags, comprising an important first-line defence against invading pathogens and serving as innate recognition receptors for tissue homeostasis. Natural IgG Abs have been found in newborns and uninfected individuals. Yet, their physiological role remains unclear. Previously, no natural IgG Abs to oxidation-specific epitopes have been reported. Here, we show the cloning and characterisation of mouse IgG mAbs against malondialdehyde acetaldehyde (MAA)-modified low-density lipoprotein. Sequence analysis reveals high homology with germline genes, suggesting that they are natural. Further investigation shows that the MAA-specific natural IgG Abs cross-react with the major periodontal pathogen Porphyromonas gingivalis and recognise its principle virulence factors gingipain Kgp and long fimbriae. The study provides evidence that natural IgGs may play an important role in innate immune defence and in regulation of tissue homeostasis by recognising and removing invading pathogens and/or modified self-Ags, thus being involved in the development of periodontitis and atherosclerosis.
Collapse
MESH Headings
- Acetaldehyde/chemistry
- Acetaldehyde/metabolism
- Animals
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal/metabolism
- Clone Cells
- Epitopes, B-Lymphocyte/metabolism
- Fimbriae Proteins/metabolism
- Gingipain Cysteine Endopeptidases/metabolism
- Immunity, Innate
- Immunoglobulin G/isolation & purification
- Immunoglobulin G/metabolism
- Lipoproteins, LDL/chemistry
- Lipoproteins, LDL/metabolism
- Malondialdehyde/chemistry
- Malondialdehyde/metabolism
- Mice
- Mice, Knockout
- Oxidation-Reduction
- Periodontitis/immunology
- Porphyromonas gingivalis/physiology
- Receptors, LDL/genetics
- Receptors, Pattern Recognition/isolation & purification
- Receptors, Pattern Recognition/metabolism
Collapse
Affiliation(s)
- Mikael Kyrklund
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Finland
- Medical Research Centre and Nordlab Oulu, University Hospital and University of Oulu, Finland
| | - Heidi Kaski
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Finland
| | - Ramin Akhi
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Finland
- Medical Research Centre and Nordlab Oulu, University Hospital and University of Oulu, Finland
| | - Antti E Nissinen
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Finland
- Medical Research Centre and Nordlab Oulu, University Hospital and University of Oulu, Finland
| | - Outi Kummu
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Finland
- Medical Research Centre and Nordlab Oulu, University Hospital and University of Oulu, Finland
| | - Ulrich Bergmann
- Protein Analysis Core Facility, Biocentre Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Pirkko Pussinen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Finland
| | - Sohvi Hörkkö
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Finland
- Medical Research Centre and Nordlab Oulu, University Hospital and University of Oulu, Finland
| | - Chunguang Wang
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Finland
- Medical Research Centre and Nordlab Oulu, University Hospital and University of Oulu, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Finland
- Chunguang Wang, Cardiovascular Research Unit, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, Helsinki 00290, Finland.
| |
Collapse
|
28
|
Stravinskiene D, Sliziene A, Baranauskiene L, Petrikaite V, Zvirbliene A. Inhibitory Monoclonal Antibodies and Their Recombinant Derivatives Targeting Surface-Exposed Carbonic Anhydrase XII on Cancer Cells. Int J Mol Sci 2020; 21:ijms21249411. [PMID: 33321910 PMCID: PMC7763246 DOI: 10.3390/ijms21249411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 01/17/2023] Open
Abstract
Monoclonal and recombinant antibodies are widely used for the diagnostics and therapy of cancer. They are generated to interact with cell surface proteins which are usually involved in the development and progression of cancer. Carbonic anhydrase XII (CA XII) contributes to the survival of tumors under hypoxic conditions thus is considered a candidate target for antibody-based therapy. In this study, we have generated a novel collection of monoclonal antibodies (MAbs) against the recombinant extracellular domain of CA XII produced in HEK-293 cells. Eighteen out of 24 MAbs were reactive with cellular CA XII on the surface of live kidney and lung cancer cells as determined by flow cytometry. One MAb 14D6 also inhibited the enzymatic activity of recombinant CA XII as measured by the stopped-flow assay. MAb 14D6 showed the migrastatic effect on human lung carcinoma A549 and renal carcinoma A498 cell lines in a ‘wound healing’ assay. It did not reduce the growth of multicellular lung and renal cancer spheroids but reduced the cell viability by the ATP Bioluminescence assay. Epitope mapping revealed the surface-exposed amino acid sequence (35-FGPDGENS-42) close to the catalytic center of CA XII recognized by the MAb 14D6. The variable regions of the heavy and light chains of MAb 14D6 were sequenced and their complementarity-determining regions were defined. The obtained variable sequences were used to generate recombinant antibodies in two formats: single-chain fragment variable (scFv) expressed in E. coli and scFv fused to human IgG1 Fc fragment (scFv-Fc) expressed in Chinese Hamster Ovary (CHO) cells. Both recombinant antibodies maintained the same specificity for CA XII as the parental MAb 14D6. The novel antibodies may represent promising tools for CA XII-related cancer research and immunotherapy.
Collapse
Affiliation(s)
- Dovile Stravinskiene
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania; (A.S.); (A.Z.)
- Correspondence:
| | - Aiste Sliziene
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania; (A.S.); (A.Z.)
| | - Lina Baranauskiene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania; (L.B.); (V.P.)
| | - Vilma Petrikaite
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania; (L.B.); (V.P.)
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50162 Kaunas, Lithuania
| | - Aurelija Zvirbliene
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania; (A.S.); (A.Z.)
| |
Collapse
|
29
|
Nannini F, Parekh F, Wawrzyniecka P, Mekkaoui L, Righi M, Dastjerdi FV, Yeung J, Roddie C, Bai Y, Ma B, Ferrari M, Onuoha S, Chester K, Pule M. A primer set for the rapid isolation of scFv fragments against cell surface antigens from immunised rats. Sci Rep 2020; 10:19168. [PMID: 33154441 PMCID: PMC7644676 DOI: 10.1038/s41598-020-76069-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Antibody phage display is a powerful platform for discovery of clinically applicable high affinity monoclonal antibodies against a broad range of targets. Libraries generated from immunized animals offer the advantage of in vivo affinity-maturation of V regions prior to library generation. Despite advantages, few studies have described isolation of antibodies from rats using immune phage display. In our study, we describe a novel primer set, covering the full rat heavy chain variable and kappa light chain variable regions repertoire for the generation of an unbiased immune libraries. Since the immune repertoire of rats is poorly understood, we first performed a deep sequencing analysis of the V(D)J regions of VH and VLK genes, demonstrating the high abundance of IGVH2 and IGVH5 families for VH and IGVLK12 and IGVLK22 for VLK. The comparison of gene's family usage in naïve rats have been used to validate the frequency's distribution of the primer set, confirming the absence of PCR-based biases. The primers were used to generate and assemble a phage display library from human CD160-vaccinated rats. CD160 represents a valid therapeutic target as it has been shown to be expressed on chronic lymphocytic leukaemia cells and on the surface of newly formed vessels. We utilised a novel phage display panning strategy to isolate a high affinity pool (KD range: 0.399-233 nM) of CD160 targeting monoclonal antibodies. Subsequently, identified binders were tested for function as third generation Chimeric Antigen Receptors (CAR) T cells demonstrating specific cytolytic activity. Our novel primer set coupled with a streamlined strategy for phage display panning enable the rapid isolation and identification of high affinity antibodies from immunised rats. The therapeutic utility of these antibodies was demonstrated in CAR format.
Collapse
Affiliation(s)
- Francesco Nannini
- Research Department of Haematology, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK
| | - Farhaan Parekh
- Research Department of Haematology, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK
| | - Patrycja Wawrzyniecka
- Research Department of Haematology, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK
| | - Leila Mekkaoui
- Research Department of Haematology, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK
| | - Matteo Righi
- Research Department of Haematology, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK
| | | | - Jenny Yeung
- Research Department of Oncology, UCL Cancer Institute, London, UK
| | - Claire Roddie
- Research Department of Haematology, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK
| | | | - Biao Ma
- Autolus Therapeutics, London, UK
| | | | | | - Kerry Chester
- Research Department of Oncology, UCL Cancer Institute, London, UK
| | - Martin Pule
- Research Department of Haematology, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK.
- Autolus Therapeutics, London, UK.
| |
Collapse
|
30
|
Lauver MD, Goetschius DJ, Netherby-Winslow CS, Ayers KN, Jin G, Haas DG, Frost EL, Cho SH, Bator CM, Bywaters SM, Christensen ND, Hafenstein SL, Lukacher AE. Antibody escape by polyomavirus capsid mutation facilitates neurovirulence. eLife 2020; 9:e61056. [PMID: 32940605 PMCID: PMC7541085 DOI: 10.7554/elife.61056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022] Open
Abstract
JCPyV polyomavirus, a member of the human virome, causes progressive multifocal leukoencephalopathy (PML), an oft-fatal demyelinating brain disease in individuals receiving immunomodulatory therapies. Mutations in the major viral capsid protein, VP1, are common in JCPyV from PML patients (JCPyV-PML) but whether they confer neurovirulence or escape from virus-neutralizing antibody (nAb) in vivo is unknown. A mouse polyomavirus (MuPyV) with a sequence-equivalent JCPyV-PML VP1 mutation replicated poorly in the kidney, a major reservoir for JCPyV persistence, but retained the CNS infectivity, cell tropism, and neuropathology of the parental virus. This mutation rendered MuPyV resistant to a monoclonal Ab (mAb), whose specificity overlapped the endogenous anti-VP1 response. Using cryo-EM and a custom sub-particle refinement approach, we resolved an MuPyV:Fab complex map to 3.2 Å resolution. The structure revealed the mechanism of mAb evasion. Our findings demonstrate convergence between nAb evasion and CNS neurovirulence in vivo by a frequent JCPyV-PML VP1 mutation.
Collapse
Affiliation(s)
- Matthew D Lauver
- Department of Microbiology and Immunology, Penn State College of MedicineHersheyUnited States
| | - Daniel J Goetschius
- Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
| | | | - Katelyn N Ayers
- Department of Microbiology and Immunology, Penn State College of MedicineHersheyUnited States
| | - Ge Jin
- Department of Microbiology and Immunology, Penn State College of MedicineHersheyUnited States
| | - Daniel G Haas
- Department of Microbiology and Immunology, Penn State College of MedicineHersheyUnited States
| | - Elizabeth L Frost
- Department of Microbiology and Immunology, Penn State College of MedicineHersheyUnited States
| | - Sung Hyun Cho
- Huck Institutes of the Life Sciences, Pennsylvania State UniversityUniversity ParkUnited States
| | - Carol M Bator
- Huck Institutes of the Life Sciences, Pennsylvania State UniversityUniversity ParkUnited States
| | - Stephanie M Bywaters
- Department of Pathology, Penn State College of MedicineHersheyUnited States
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
| | - Neil D Christensen
- Department of Pathology, Penn State College of MedicineHersheyUnited States
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
| | - Susan L Hafenstein
- Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
- Huck Institutes of the Life Sciences, Pennsylvania State UniversityUniversity ParkUnited States
- Department of Medicine, Penn State College of MedicineHersheyUnited States
| | - Aron E Lukacher
- Department of Microbiology and Immunology, Penn State College of MedicineHersheyUnited States
| |
Collapse
|
31
|
Johnson JL, Rosenthal RL, Knox JJ, Myles A, Naradikian MS, Madej J, Kostiv M, Rosenfeld AM, Meng W, Christensen SR, Hensley SE, Yewdell J, Canaday DH, Zhu J, McDermott AB, Dori Y, Itkin M, Wherry EJ, Pardi N, Weissman D, Naji A, Prak ETL, Betts MR, Cancro MP. The Transcription Factor T-bet Resolves Memory B Cell Subsets with Distinct Tissue Distributions and Antibody Specificities in Mice and Humans. Immunity 2020; 52:842-855.e6. [PMID: 32353250 DOI: 10.1016/j.immuni.2020.03.020] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/28/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022]
Abstract
B cell subsets expressing the transcription factor T-bet are associated with humoral immune responses and autoimmunity. Here, we examined the anatomic distribution, clonal relationships, and functional properties of T-bet+ and T-bet- memory B cells (MBCs) in the context of the influenza-specific immune response. In mice, both T-bet- and T-bet+ hemagglutinin (HA)-specific B cells arose in germinal centers, acquired memory B cell markers, and persisted indefinitely. Lineage tracing and IgH repertoire analyses revealed minimal interconversion between T-bet- and T-bet+ MBCs, and parabionts showed differential tissue residency and recirculation properties. T-bet+ MBCs could be subdivided into recirculating T-betlo MBCs and spleen-resident T-bethi MBCs. Human MBCs displayed similar features. Conditional gene deletion studies revealed that T-bet expression in B cells was required for nearly all HA stalk-specific IgG2c antibodies and for durable neutralizing titers to influenza. Thus, T-bet expression distinguishes MBC subsets that have profoundly different homing, residency, and functional properties, and mediate distinct aspects of humoral immune memory.
Collapse
Affiliation(s)
- John L Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca L Rosenthal
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James J Knox
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arpita Myles
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Joanna Madej
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariya Kostiv
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron M Rosenfeld
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Scott E Hensley
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David H Canaday
- Division of Infectious Disease, Case Western Reserve University School of Medicine, and Cleveland VA Hospital, Cleveland, OH 45106, USA
| | - Jinfang Zhu
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoav Dori
- Center for Lymphatic Imaging and Intervention, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Max Itkin
- Division of Interventional Radiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E John Wherry
- Institute for Immunology, Parker Institute for Cancer Immunotherapy at University of Pennsylvania, and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, 19104, USA
| | - Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ali Naji
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael R Betts
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
32
|
Neutralization Mechanism of a Monoclonal Antibody Targeting a Porcine Circovirus Type 2 Cap Protein Conformational Epitope. J Virol 2020; 94:JVI.01836-19. [PMID: 32075932 DOI: 10.1128/jvi.01836-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/22/2020] [Indexed: 12/31/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is an important pathogen in swine herds, and its infection of pigs has caused severe economic losses to the pig industry worldwide. The capsid protein of PCV2 is the only structural protein that is associated with PCV2 infection and immunity. Here, we report a neutralizing monoclonal antibody (MAb), MAb 3A5, that binds to intact PCV2 virions of the PCV2a, PCV2b, and PCV2d genotypes. MAb 3A5 neutralized PCV2 by blocking viral attachment to PK15 cells. To further explore the neutralization mechanism, we resolved the structure of the PCV2 virion in complex with MAb 3A5 Fab fragments by using cryo-electron microscopy single-particle analysis. The binding sites were located at the topmost edges around 5-fold icosahedral symmetry axes, with each footprint covering amino acids from two adjacent capsid proteins. Most of the epitope residues (15/18 residues) were conserved among 2,273 PCV2 strains. Mutations of some amino acids within the epitope had significant effects on the neutralizing activity of MAb 3A5. This study reveals the molecular and structural bases of this PCV2-neutralizing antibody and provides new and important information for vaccine design and therapeutic antibody development against PCV2 infections.IMPORTANCE PCV2 is associated with several clinical manifestations collectively known as PCV2-associated diseases (PCVADs). Neutralizing antibodies play a crucial role in the prevention of PCVADs. We demonstrated previously that a MAb, MAb 3A5, neutralizes the PCV2a, PCV2b, and PCV2d genotypes with different degrees of efficiency, but the underlying mechanism remains elusive. Here, we report the neutralization mechanism of this MAb and the structure of the PCV2 virion in complex with MAb 3A5 Fabs, showing a binding mode in which one Fab interacted with more than two loops from two adjacent capsid proteins. This binding mode has not been observed previously for PCV2-neutralizing antibodies. Our work provides new and important information for vaccine design and therapeutic antibody development against PCV2 infections.
Collapse
|
33
|
Liu Z, Liu Y, Li T, Wang P, Mo X, Lv P, Ma D, Han W. Essential role for Cmtm7 in cell-surface phenotype, BCR signaling, survival and Igμ repertoire of splenic B-1a cells. Cell Immunol 2020; 352:104100. [PMID: 32305130 DOI: 10.1016/j.cellimm.2020.104100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 11/26/2022]
Abstract
B-1a cells represent a distinct B cell population with unique phenotype, self-renewing capacity and restricted Igμ repertoire. They primarily locate in body cavity and also exist in spleen. The different subpopulations of B-1a cells are heavily affected by local environment. Our previous studies revealed that MARVEL-domain-containing membrane protein, CMTM7, was involved in B-1a cell development. Here, we focused its influence on peritoneal and splenic B-1a cells. Unlike peritoneal B-1a cells, we found that splenic Cmtm7-/- B-1a cells expressed higher level of CD5, CD80 and CD86 compared with WT counterparts. They also exhibited an enhanced tonic BCR signals in steady state. Though the cell viability was unaffected in vitro, Cmtm7 knockout markedly promoted splenic B-1a cell apoptosis in situ, which was likely associated with down-regulation of Il-5rα. With regard to Igμ repertoire, peritoneal and splenic Cmtm7-/- B-1a cells exhibit similar changes exemplified by the loss of VH11 and gain of VH12, whereas an increase in VH1 usage and skewed J segments from JH1 to JH2 and JH4 families could only be detected within splenic Cmtm7-/- B-1a cells. Overall, these data indicate that Cmtm7 functions differently in peritoneal and splenic B-1a cells and plays a more important role in splenic cells.
Collapse
Affiliation(s)
- Zhengyang Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China
| | - Yuan Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China
| | - Ting Li
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China
| | - Pingzhang Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China
| | - Xiaoning Mo
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China
| | - Ping Lv
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China
| | - Dalong Ma
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China
| | - Wenling Han
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China.
| |
Collapse
|
34
|
Baboci L, Capolla S, Di Cintio F, Colombo F, Mauro P, Dal Bo M, Argenziano M, Cavalli R, Toffoli G, Macor P. The Dual Role of the Liver in Nanomedicine as an Actor in the Elimination of Nanostructures or a Therapeutic Target. JOURNAL OF ONCOLOGY 2020; 2020:4638192. [PMID: 32184825 PMCID: PMC7060440 DOI: 10.1155/2020/4638192] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
The development of nanostructures for therapeutic purpose is rapidly growing, following the results obtained in vivo in animal models and in the clinical trials. Unfortunately, the potential therapeutic efficacy is not completely exploited, yet. This is mainly due to the fast clearance of the nanostructures in the body. Nanoparticles and the liver have a unique interaction because the liver represents one of the major barriers for drug delivery. This interaction becomes even more relevant and complex when the drug delivery strategies employing nanostructures are proposed for the therapy of liver diseases, such as hepatocellular carcinoma (HCC). In this case, the selective delivery of therapeutic nanoparticles to the tumor microenvironment collides with the tendency of nanostructures to be quickly eliminated by the organ. The design of a new therapeutic approach based on nanoparticles to treat HCC has to particularly take into consideration passive and active mechanisms to avoid or delay liver elimination and to specifically address cancer cells or the cancer microenvironment. This review will analyze the different aspects concerning the dual role of the liver, both as an organ carrying out a clearance activity for the nanostructures and as target for therapeutic strategies for HCC treatment.
Collapse
Affiliation(s)
- Lorena Baboci
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Sara Capolla
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Federica Di Cintio
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Federico Colombo
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Prisca Mauro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Paolo Macor
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
35
|
An antibody against the F glycoprotein inhibits Nipah and Hendra virus infections. Nat Struct Mol Biol 2019; 26:980-987. [PMID: 31570878 PMCID: PMC6858553 DOI: 10.1038/s41594-019-0308-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 12/02/2022]
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are zoonotic henipaviruses (HNVs) responsible for outbreaks of encephalitis and respiratory illness with fatality rates of 50–100%. No vaccines or licensed therapeutics currently exist to protect humans against NiV or HeV. HNVs enter host cells by fusing the viral and cellular membranes via the concerted action of the attachment (G) and fusion (F) glycoproteins, the main targets of the humoral immune response. Here, we describe the isolation and humanization of a potent monoclonal antibody cross-neutralizing NiV and HeV. Cryo-electron microscopy, triggering and fusion studies show the antibody binds to a prefusion-specific quaternary epitope, conserved in NiV F and HeV F glycoproteins, and prevents membrane fusion and viral entry. This work supports the importance of the HNV prefusion F conformation for eliciting a robust immune response and paves the way for using this antibody for prophylaxis and post-exposure therapy with NiV- and HeV-infected individuals. An antibody that recognizes the F glycoproteins from Nipah and Hendra viruses can neutralize both viruses and recognizes a quaternary epitope in the prefusion F trimer, preventing conformational changes required for fusion.
Collapse
|
36
|
Meyer L, López T, Espinosa R, Arias CF, Vollmers C, DuBois RM. A simplified workflow for monoclonal antibody sequencing. PLoS One 2019; 14:e0218717. [PMID: 31233538 PMCID: PMC6590890 DOI: 10.1371/journal.pone.0218717] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/07/2019] [Indexed: 11/19/2022] Open
Abstract
The diversity of antibody variable regions makes cDNA sequencing challenging, and conventional monoclonal antibody cDNA amplification requires the use of degenerate primers. Here, we describe a simplified workflow for amplification of IgG antibody variable regions from hybridoma RNA by a specialized RT-PCR followed by Sanger sequencing. We perform three separate reactions for each hybridoma: one each for kappa, lambda, and heavy chain transcripts. We prime reverse transcription with a primer specific to the respective constant region and use a template-switch oligonucleotide, which creates a custom sequence at the 5’ end of the antibody cDNA. This template-switching circumvents the issue of low sequence homology and the need for degenerate primers. Instead, subsequent PCR amplification of the antibody cDNA molecules requires only two primers: one primer specific for the template-switch oligonucleotide sequence and a nested primer to the respective constant region. We successfully sequenced the variable regions of five mouse monoclonal IgG antibodies using this method, which enabled us to design chimeric mouse/human antibody expression plasmids for recombinant antibody production in mammalian cell culture expression systems. All five recombinant antibodies bind their respective antigens with high affinity, confirming that the amino acid sequences determined by our method are correct and demonstrating the high success rate of our method. Furthermore, we also designed RT-PCR primers and amplified the variable regions from RNA of cells transfected with chimeric mouse/human antibody expression plasmids, showing that our approach is also applicable to IgG antibodies of human origin. Our monoclonal antibody sequencing method is highly accurate, user-friendly, and very cost-effective.
Collapse
Affiliation(s)
- Lena Meyer
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Tomás López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Rafaela Espinosa
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Carlos F. Arias
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Christopher Vollmers
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (RMD); (CV)
| | - Rebecca M. DuBois
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (RMD); (CV)
| |
Collapse
|
37
|
Miura K, Tsuji Y, Mitsui H, Oshima T, Noshi Y, Arisawa Y, Okano K, Okano T. THETA system allows one-step isolation of tagged proteins through temperature-dependent protein-peptide interaction. Commun Biol 2019; 2:207. [PMID: 31240245 PMCID: PMC6572768 DOI: 10.1038/s42003-019-0457-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/09/2019] [Indexed: 11/09/2022] Open
Abstract
Tools to control protein-protein interactions by external stimuli have been extensively developed. For this purpose, thermal stimulation can be utilized in addition to light. In this study, we identify a monoclonal antibody termed C13 mAb, which shows an approximately 480-fold decrease in the affinity constant at 37 °C compared to that at 4 °C. Next, we apply this temperature-dependent protein-peptide interaction for one-step protein purifications. We term this THermal-Elution-based TAg system as the THETA system, in which gel-immobilized C13 mAb-derived single-chain variable fragment (scFv) (termed THETAL) is able to bind with proteins tagged by C13 mAb-epitope(s) (THETAS) at 4 °C and thermally release at 37-42 °C. Moreover, to reveal the temperature-dependent interaction mechanism, molecular dynamics simulations are performed along with epitope mapping experiments. Overall, the high specificity and reversibility of the temperature-dependent features of the THETA system will support a wide variety of future applications such as thermogenetics.
Collapse
Affiliation(s)
- Kota Miura
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo 162-8480 Japan
| | - Yusuke Tsuji
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo 162-8480 Japan
| | - Hiromasa Mitsui
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo 162-8480 Japan
| | - Takuya Oshima
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo 162-8480 Japan
| | - Yosei Noshi
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo 162-8480 Japan
| | - Yudai Arisawa
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo 162-8480 Japan
| | - Keiko Okano
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo 162-8480 Japan
| | - Toshiyuki Okano
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo 162-8480 Japan
| |
Collapse
|
38
|
Humanization of Murine Neutralizing Antibodies against Human Herpesvirus 6B. J Virol 2019; 93:JVI.02270-18. [PMID: 30842329 DOI: 10.1128/jvi.02270-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/26/2019] [Indexed: 12/20/2022] Open
Abstract
Exanthem subitum is a common childhood illness caused by primary infection with human herpesvirus 6B (HHV-6B). It is occasionally complicated by febrile seizures and even encephalitis. HHV-6B reactivation also causes encephalitis, especially after allogeneic hematopoietic stem cell transplantation. However, no adequate antiviral treatment for HHV-6B has yet been established. Mouse-derived monoclonal antibodies (MAbs) against the HHV-6B envelope glycoprotein complex gH/gL/gQ1/gQ2 have been shown to neutralize the viral infection. These antibodies have the potential to become antiviral agents against HHV-6B despite their inherent immunogenicity to the human immune system. Humanization of MAbs derived from other species is one of the proven solutions to such a dilemma. In this study, we constructed chimeric forms of two neutralizing MAbs against HHV-6B to make humanized antibodies. Both showed neutralizing activities equivalent to those of their original forms. This is the first report of humanized antibodies against HHV-6B and provides a basis for the further development of HHV-6B-specific antivirals.IMPORTANCE Human herpesvirus 6B (HHV-6B) establishes lifelong latent infection in most individuals after the primary infection. Encephalitis is the most severe complication caused by both the primary infection and the reactivation of HHV-6B and is the cause of considerable mortality in patients, without any established treatments to date. The humanization of the murine neutralizing antibodies described in this research provided a feasible way to reduce the inherent immunogenicity of the antibodies without changing their neutralizing activities. These newly designed chimeric antibodies against HHV-6B have the potential to be candidates for antivirals for future use.
Collapse
|
39
|
Kang KJ, Ryu CJ, Jang YJ. Identification of dentinogenic cell-specific surface antigens in odontoblast-like cells derived from adult dental pulp. Stem Cell Res Ther 2019; 10:128. [PMID: 31029165 PMCID: PMC6487011 DOI: 10.1186/s13287-019-1232-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 01/09/2023] Open
Abstract
Background Odontoblast is a unique progenitor that plays a role in dentin formation. So far, the dentinogenic differentiation of dental pulp stem cells and the role of surface molecules of odontoblasts in dentinogenesis are not well known yet. In this study, we obtained odontoblast-like cells from human dental pulp cells and screened odontoblast-specific cell surface antigens by decoy immunization. Methods Through decoy immunization with intact odontoblast-like cells derived from human dental pulp cells, we constructed 12 monoclonal antibodies (mAbs) of IgG type, and their binding affinities for cell surface of odontoblast-like cells were analyzed by flow cytometry. Immunoprecipitation, mass spectrometry, and immunohistochemistry were performed to demonstrate odontoblast-specific antigens. Odontoblasts were sorted by these mAbs using magnetic-activated cell sorting system, and their mineralization efficiency was increased after sorting. Results We constructed 12 mAbs of IgG type, which had a strong binding affinity for cell surface antigens of odontoblast-like cells. In human adult tooth, these mAbs accumulated in the odontoblastic layer between dentin and pulp and in the perivascular region adjacent to the blood vessels in the pulp core. Cell surface expression of the antigenic molecules was increased during odontogenic cytodifferentiation and decreased gradually as dentinogenic maturation progressed. Proteomic analysis showed that two representative antigenic molecules, OD40 and OD46, had the potential to be components for cell adhesion and extracellular matrix structures. Conclusion These results suggest that mAbs will be useful for detecting and separating odontoblasts from the primary pulp cells and other lineage cells and will provide information on the structures of extracellular matrix and microenvironment that appears during the dentinogenic differentiation. Electronic supplementary material The online version of this article (10.1186/s13287-019-1232-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyung-Jung Kang
- Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Chun-Jeih Ryu
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, 05006, South Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea.
| |
Collapse
|
40
|
Matveev AL, Krylov VB, Khlusevich YA, Baykov IK, Yashunsky DV, Emelyanova LA, Tsvetkov YE, Karelin AA, Bardashova AV, Wong SSW, Aimanianda V, Latgé JP, Tikunova NV, Nifantiev NE. Novel mouse monoclonal antibodies specifically recognizing β-(1→3)-D-glucan antigen. PLoS One 2019; 14:e0215535. [PMID: 31022215 PMCID: PMC6483564 DOI: 10.1371/journal.pone.0215535] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/03/2019] [Indexed: 01/27/2023] Open
Abstract
β-(1→3)-D-Glucan is an essential component of the fungal cell wall. Mouse monoclonal antibodies (mAbs) against synthetic nona-β-(1→3)-D-glucoside conjugated with bovine serum albumin (BSA) were generated using hybridoma technology. The affinity constants of two selected mAbs, 3G11 and 5H5, measured by a surface plasmon resonance biosensor assay using biotinylated nona-β-(1→3)-D-glucan as the ligand, were approximately 11 nM and 1.9 nM, respectively. The glycoarray, which included a series of synthetic oligosaccharide derivatives representing β-glucans with different lengths of oligo-β-(1→3)-D-glucoside chains, demonstrated that linear tri-, penta- and nonaglucoside, as well as a β-(1→6)-branched octasaccharide, were recognized by mAb 5H5. By contrast, only linear oligo-β-(1→3)-D-glucoside chains that were not shorter than pentaglucosides (but not the branched octaglucoside) were ligands for mAb 3G11. Immunolabelling indicated that 3G11 and 5H5 interact with both yeasts and filamentous fungi, including species from Aspergillus, Candida, Penicillium genera and Saccharomyces cerevisiae, but not bacteria. Both mAbs could inhibit the germination of Aspergillus fumigatus conidia during the initial hours and demonstrated synergy with the antifungal fluconazole in killing C. albicans in vitro. In addition, mAbs 3G11 and 5H5 demonstrated protective activity in in vivo experiments, suggesting that these β-glucan-specific mAbs could be useful in combinatorial antifungal therapy.
Collapse
Affiliation(s)
- Andrey L. Matveev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Vadim B. Krylov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yana A. Khlusevich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Ivan K. Baykov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Dmitry V. Yashunsky
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ljudmila A. Emelyanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Yury E. Tsvetkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A. Karelin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alevtina V. Bardashova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Sarah S. W. Wong
- Aspergillus Unit, Institut Pasteur, Paris, France
- Molecular Mycology Unit, Institut Pasteur, Paris, France
| | - Vishukumar Aimanianda
- Aspergillus Unit, Institut Pasteur, Paris, France
- Molecular Mycology Unit, Institut Pasteur, Paris, France
| | - Jean-Paul Latgé
- Aspergillus Unit, Institut Pasteur, Paris, France
- * E-mail: (JPL); (NVT); (NEN)
| | - Nina V. Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- * E-mail: (JPL); (NVT); (NEN)
| | - Nikolay E. Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (JPL); (NVT); (NEN)
| |
Collapse
|
41
|
Differential Antibody-Based Immune Response against Isolated GP1 Receptor-Binding Domains from Lassa and Junín Viruses. J Virol 2019; 93:JVI.00090-19. [PMID: 30728269 DOI: 10.1128/jvi.00090-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 01/30/2019] [Indexed: 01/10/2023] Open
Abstract
There are two predominant subgroups in the Arenaviridae family of viruses, the Old World and the New World viruses, that use distinct cellular receptors for entry. While New World viruses typically elicit good neutralizing antibody responses, the Old World viruses generally evade such responses. Antibody-based immune responses are directed against the glycoprotein spike complexes that decorate the viruses. A thick coat of glycans reduces the accessibility of antibodies to the surface of spike complexes from Old World viruses, but other mechanisms may further hamper the development of efficient humoral responses. Specifically, it was suggested that the GP1 receptor-binding module of the Old World Lassa virus might help with evasion of the humoral response. Here we investigated the immunogenicity of the GP1 domain from Lassa virus and compared it to that of the GP1 domain from the New World Junín virus. We found striking differences in the ability of antibodies that were developed against these immunogens to target the same GP1 receptor-binding domains in the context of the native spike complexes. Whereas GP1 from Junín virus elicited productive neutralizing responses, GP1 from Lassa virus elicited only nonproductive responses. These differences can be rationalized by the conformational changes that GP1 from Lassa virus but not GP1 from Junín virus undergoes after dissociating from the trimeric spike complex. Hence, shedding of GP1 in the case of Lassa virus can indeed serve as a mechanism to subvert the humoral immune response. Moreover, the realization that a recombinant protein may be used to elicit a productive response against the New World Junín virus may suggest a novel and safe way to design future vaccines.IMPORTANCE Some viruses that belong to the Arenaviridae family, like Lassa and Junín viruses, are notorious human pathogens, which may lead to fatal outcomes when they infect people. It is thus important to develop means to combat these viruses. For developing effective vaccines, it is vital to understand the basic mechanisms that these viruses utilize in order to evade or overcome host immune responses. It was previously noted that the GP1 receptor-binding domain from Lassa virus is shed and accumulates in the serum of infected individuals. This raised the possibility that Lassa virus GP1 may function as an immunological decoy. Here we demonstrate that mice develop nonproductive immune responses against GP1 from Lassa virus, which is in contrast to the effective neutralizing responses that GP1 from Junín virus elicits. Thus, GP1 from Lassa virus is indeed an immunological decoy and GP1 from Junín virus may serve as a constituent of a future vaccine.
Collapse
|
42
|
Epitope mapping of anti-PGRMC1 antibodies reveals the non-conventional membrane topology of PGRMC1 on the cell surface. Sci Rep 2019; 9:653. [PMID: 30679694 PMCID: PMC6345922 DOI: 10.1038/s41598-018-37441-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/26/2018] [Indexed: 01/30/2023] Open
Abstract
Progesterone receptor membrane component1 (PGRMC1) is a heme-binding protein involved in cancers and Alzheimer's disease. PGRMC1 consists of a short N-terminal extracellular or luminal domain, a single membrane-spanning domain, and a long cytoplasmic domain. Previously, we generated two monoclonal antibodies (MAbs) 108-B6 and 4A68 that recognize cell surface-expressed PGRMC1 (csPGRMC1) on human pluripotent stem cells and some cancer cells. In this study, flow cytometric analysis found that an anti-PGRMC1 antibody recognizing the N-terminus of PGRMC1 could not bind to csPGRMC1 on cancer cells, and 108-B6 and 4A68 binding to csPGRMC1 was inhibited by trypsin treatment, suggesting that the epitopes of 108-B6 and 4A68 are trypsin-sensitive. To examine the epitope specificity of 108-B6 and 4A68, glutathione-S-transferase (GST)-fused PGRMC1 mutants were screened to identify the epitopes targeted by the antibodies. The result showed that 108-B6 and 4A68 recognized C-terminal residues 183-195 and 171-182, respectively, of PGRMC1, where trypsin-sensitive sites are located. A polyclonal anti-PGRMC1 antibody raised against the C-terminus of PGRMC1 could also recognized csPGRMC1 in a trypsin-sensitive manner, suggesting that the C-terminus of csPGRMC1 is exposed on the cell surface. This finding reveals that csPGRMC1 has a non-conventional plasma membrane topology, which is different from that of intracellular PGRMC1.
Collapse
|
43
|
Tang F, LeBlanc ME, Wang W, Liang D, Chen P, Chou TH, Tian H, Li W. Anti-secretogranin III therapy of oxygen-induced retinopathy with optimal safety. Angiogenesis 2019; 22:369-382. [PMID: 30644010 DOI: 10.1007/s10456-019-09662-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/07/2019] [Indexed: 12/17/2022]
Abstract
Retinopathy of prematurity (ROP) with pathological retinal neovascularization is the most common cause of blindness in children. ROP is currently treated with laser therapy or cryotherapy, both of which may adversely affect the peripheral vision with limited efficacy. Owing to the susceptibility of the developing retina and vasculatures to pharmacological intervention, there is currently no approved drug therapy for ROP in preterm infants. Secretogranin III (Scg3) was recently discovered as a highly disease-restricted angiogenic factor, and a Scg3-neutralizing monoclonal antibody (mAb) was reported with high efficacy to alleviate oxygen-induced retinopathy (OIR) in mice, a surrogate model of ROP. Herein we independently investigated the efficacy of anti-Scg3 mAb in OIR mice and characterized its safety in neonatal mice. We developed a new Scg3-neutralizing mAb recognizing a distinct epitope and independently established the therapeutic activity of anti-Scg3 therapy to alleviate OIR-induced pathological retinal neovascularization in mice. Importantly, anti-Scg3 mAb showed no detectable adverse effects on electroretinography and developing retinal vasculature. Furthermore, systemic anti-Scg3 mAb induced no renal tubular injury or abnormality in kidney vessel development and body weight gain of neonatal mice. In contrast, anti-vascular endothelial growth factor drug aflibercept showed significant side effects in neonatal mice. These results suggest that anti-Scg3 mAb may have the safety and efficacy profiles required for ROP therapy.
Collapse
Affiliation(s)
- Fen Tang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Michelle E LeBlanc
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
| | - Weiwen Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Ping Chen
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
- Department of Ophthalmology, Renji Hospital of Shanghai Jiaotong University, Shanghai, China
| | - Tsung-Han Chou
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
| | - Hong Tian
- Everglades Biopharma, LLC, Miami, FL, USA
| | - Wei Li
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA.
| |
Collapse
|
44
|
Warda W, Larosa F, Neto Da Rocha M, Trad R, Deconinck E, Fajloun Z, Faure C, Caillot D, Moldovan M, Valmary-Degano S, Biichle S, Daguindau E, Garnache-Ottou F, Tabruyn S, Adotevi O, Deschamps M, Ferrand C. CML Hematopoietic Stem Cells Expressing IL1RAP Can Be Targeted by Chimeric Antigen Receptor-Engineered T Cells. Cancer Res 2018; 79:663-675. [PMID: 30514753 DOI: 10.1158/0008-5472.can-18-1078] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/09/2018] [Accepted: 11/29/2018] [Indexed: 12/16/2022]
Abstract
Chronic myeloid leukemia (CML) is a chronic disease resulting in myeloid cell expansion through expression of the BCR-ABL1 fusion transcript. Tyrosine kinase inhibitors (TKI) have significantly increased survival of patients with CML, and deep responders may consider stopping the treatment. However, more than 50% of patients relapse and restart TKI, subsequently suffering unknown toxicity. Because CML is a model immune system-sensitive disease, we hypothesize that chimeric antigen receptor (CAR) T cells targeting IL1 receptor-associated protein (IL1RAP) in quiescent CML stem cells may offer an opportunity for a permanent cure. In this study, we produced and molecularly characterized a specific monoclonal anti-IL1RAP antibody from which fragment antigen-binding nucleotide coding sequences were cloned as a single chain into a lentiviral backbone and secured with the suicide gene iCASP9/rimiducid system. Our CAR T-cell therapy exhibited cytotoxicity against both leukemic stem cells and, to a lesser extent, monocytes expressing IL1RAP, with no apparent effect on the hematopoietic system, including CD34+ stem cells. This suggests IL1RAP as a tumor-associated antigen for immunotherapy cell targeting. IL1RAP CAR T cells were activated in the presence of IL1RAP+ cell lines or primary CML cells, resulting in secretion of proinflammatory cytokines and specifically killing in vitro and in a xenograft murine model. Overall, we demonstrate the proof of concept of a CAR T-cell immunotherapy approach in the context of CML that is applicable for young patients and primary TKI-resistant, intolerant, or allograft candidate patients. SIGNIFICANCE: These findings present the first characterization and proof of concept of a chimeric antigen receptor directed against IL1RAP expressed by leukemic stem cells in the context of CML.
Collapse
Affiliation(s)
- Walid Warda
- INSERM UMR1098, EFS BFC, University of Bourgogne Franche-Comté, Besançon, France.,Laboratory of Applied Biotechnology, Azm Centre for Research in Biotechnology and its Applications, EDST and Faculty of Sciences 3, Lebanese University, Tripoli, Liban
| | - Fabrice Larosa
- Department of Hematology, University Hospital of Besancon, Besancon, France
| | | | - Rim Trad
- INSERM UMR1098, EFS BFC, University of Bourgogne Franche-Comté, Besançon, France
| | - Eric Deconinck
- INSERM UMR1098, EFS BFC, University of Bourgogne Franche-Comté, Besançon, France.,Department of Hematology, University Hospital of Besancon, Besancon, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology, Azm Centre for Research in Biotechnology and its Applications, EDST and Faculty of Sciences 3, Lebanese University, Tripoli, Liban
| | - Cyril Faure
- Department of Internal Medicine, Hospital of Haute Saone, Vesoul, France
| | - Denis Caillot
- Department of Hematology, University Hospital of Dijon, Dijon, France
| | - Marius Moldovan
- Department of Internal Medicine, Hospital Nord Franche-Comté, Belfort, France
| | | | - Sabeha Biichle
- INSERM UMR1098, EFS BFC, University of Bourgogne Franche-Comté, Besançon, France
| | - Etienne Daguindau
- INSERM UMR1098, EFS BFC, University of Bourgogne Franche-Comté, Besançon, France.,Department of Hematology, University Hospital of Besancon, Besancon, France
| | | | | | - Olivier Adotevi
- INSERM UMR1098, EFS BFC, University of Bourgogne Franche-Comté, Besançon, France
| | - Marina Deschamps
- INSERM UMR1098, EFS BFC, University of Bourgogne Franche-Comté, Besançon, France
| | - Christophe Ferrand
- INSERM UMR1098, EFS BFC, University of Bourgogne Franche-Comté, Besançon, France.
| |
Collapse
|
45
|
Generation and characterization of novel recombinant anti-hERG1 scFv antibodies for cancer molecular imaging. Oncotarget 2018; 9:34972-34989. [PMID: 30405887 PMCID: PMC6201861 DOI: 10.18632/oncotarget.26200] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/21/2018] [Indexed: 01/12/2023] Open
Abstract
Modern molecular imaging techniques have greatly improved tumor detection and post-treatment follow-up of cancer patients. In this context, antibody-based imaging is rapidly becoming the gold standard, since it combines the unique specificity of antibodies with the sensitivity of the different imaging technologies. The aim of this study was to generate and characterize antibodies in single chain Fragment variable (scFv) format directed to an emerging cancer biomarker, the human ether-à-go-go-related gene-1 (hERG1) potassium channel, and to obtain a proof of concept for their potential use for in vivo molecular imaging. The anti-hERG1scFv was generated from a full length monoclonal antibody and then mutagenized, substituting a Phenylalanine residue in the third framework of the VH domain with a Cysteine residue. The resulting scFv-hERG1-Cys showed much higher stability and protein yield, increased affinity and more advantageous binding kinetics, compared to the “native” anti-hERG1scFv. The scFv-hERG1-Cys was hence chosen and characterized: it showed a good binding to the native hERG1 antigen expressed on cells, was stable in serum and displayed a fast pharmacokinetic profile once injected intravenously in nude mice. The calculated half-life was 3.1 hours and no general toxicity or cardiac toxic effects were detected. Finally, the in vivo distribution of an Alexa Fluor 750 conjugated scFv-hERG1-Cys was evaluated both in healthy and tumor-bearing nude mice, showing a good tumor-to-organ ratio, ideal for visualizing hERG1-expressing tumor masses in vivo. In conclusion, the scFv-hERG1-Cys possesses features which make it a suitable tool for application in cancer molecular imaging.
Collapse
|
46
|
Liu Z, O’Rourke J. Expediting Antibody Discovery with a Cell and Bead Multiplexed Competition Assay. SLAS DISCOVERY 2018; 23:667-675. [DOI: 10.1177/2472555218776308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With advances in molecular engineering and humanization, monoclonal antibodies are one of the fastest-growing classes of biopharmaceuticals. During antibody discovery, antibody from hybridoma or primary B-cell supernatants is screened for the desired binding characteristics, and secondary screens measure antibody function and concentration, identify immunoglobulin G (IgG) isotype, and assess cell health. In order to expedite the antibody discovery process, we developed a high-throughput, multiplexed cell and bead-based competition assay that identifies and quantitates mouse IgG isotypes and assesses cell health. No differences in assay performance were observed between single and multiplex formats. The linear range of the assay was from 0.5 to 50 µg/mL, and washing was not required, decreasing assay time and variability. Slight modifications to the protocol allowed quantification of dilute antibody supernatants (0.1–5 µg/mL). Using hybridoma cultures, we showed that cell viability measurements in the assay did not interfere with the bead-based IgG measurements. The assay described here is a simple mix-and-read, no-dilution screen that can reduce the time to antibody cloning and production. The high-content data can differentiate monoclonal and polyclonal wells, determine IgG quantity for downstream functional assays, provide isotype information, and monitor cell proliferation and viability.
Collapse
Affiliation(s)
- Zhaoping Liu
- Intellicyt, A Sartorius Brand, Albuquerque, NM, USA
| | | |
Collapse
|
47
|
Matveev AL, Krylov VB, Emelyanova LA, Solovev AS, Khlusevich YA, Baykov IK, Fontaine T, Latgé JP, Tikunova NV, Nifantiev NE. Novel mouse monoclonal antibodies specifically recognize Aspergillus fumigatus galactomannan. PLoS One 2018. [PMID: 29518144 PMCID: PMC5843280 DOI: 10.1371/journal.pone.0193938] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A panel of specific monoclonal antibodies (mAbs) against synthetic pentasaccharide β-D-Galf-(1→5)-[β-D-Galf-(1→5)]3-α-D-Manp, structurally related to Aspergillus fumigatus galactomannan, was generated using mice immunized with synthetic pentasaccharide-BSA conjugate and by hybridoma technology. Two selected mAbs, 7B8 and 8G4, could bind with the initial pentasaccharide with affinity constants of approximately 5.3 nM and 6.4 nM, respectively, based on surface plasmon resonance-based biosensor assay. The glycoarray, built from a series of synthetic oligosaccharide derivatives representing different galactomannan fragments, demonstrated that mAb 8G4 could effectively recognize the parental pentasaccharide while mAb 7B8 recognizes its constituting trisaccharide parts. Immunofluorescence studies showed that both 7B8 and 8G4 could stain A. fumigatus cells in culture efficiently, but not the mutant strain lacking galactomannan. In addition, confocal microscopy demonstrated that Candida albicans, Bifidobacterium longum, Lactobacillus plantarum, and numerous gram-positive and gram-negative bacteria were not labeled by mAbs 7B8 and 8G4. The generated mAbs can be considered promising for the development of a new specific enzyme-linked assay for detection of A. fumigatus, which is highly demanded for medical and environmental controls.
Collapse
Affiliation(s)
- Andrey L. Matveev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, prosp. Lavrentieva 8, Novosibirsk, Russia
| | - Vadim B. Krylov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, Russia
| | - Ljudmila A. Emelyanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, prosp. Lavrentieva 8, Novosibirsk, Russia
- Novosibirsk State University, Pirogova str., Novosibirsk, Russia
| | - Arsenii S. Solovev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, Russia
| | - Yana A. Khlusevich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, prosp. Lavrentieva 8, Novosibirsk, Russia
| | - Ivan K. Baykov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, prosp. Lavrentieva 8, Novosibirsk, Russia
| | | | | | - Nina V. Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, prosp. Lavrentieva 8, Novosibirsk, Russia
- Novosibirsk State University, Pirogova str., Novosibirsk, Russia
- * E-mail: (NVT); (NEN)
| | - Nikolay E. Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, Russia
- * E-mail: (NVT); (NEN)
| |
Collapse
|
48
|
Structure of tick-borne encephalitis virus and its neutralization by a monoclonal antibody. Nat Commun 2018; 9:436. [PMID: 29382836 PMCID: PMC5789857 DOI: 10.1038/s41467-018-02882-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 01/03/2018] [Indexed: 02/04/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) causes 13,000 cases of human meningitis and encephalitis annually. However, the structure of the TBEV virion and its interactions with antibodies are unknown. Here, we present cryo-EM structures of the native TBEV virion and its complex with Fab fragments of neutralizing antibody 19/1786. Flavivirus genome delivery depends on membrane fusion that is triggered at low pH. The virion structure indicates that the repulsive interactions of histidine side chains, which become protonated at low pH, may contribute to the disruption of heterotetramers of the TBEV envelope and membrane proteins and induce detachment of the envelope protein ectodomains from the virus membrane. The Fab fragments bind to 120 out of the 180 envelope glycoproteins of the TBEV virion. Unlike most of the previously studied flavivirus-neutralizing antibodies, the Fab fragments do not lock the E-proteins in the native-like arrangement, but interfere with the process of virus-induced membrane fusion. The tick-borne encephalitis virus (TBEV) causes thousands of cases of meningitis and encephalitis annually. Here, the authors describe a cryo-EM structure of the TBEV virion bound by Fab fragments of the neutralizing antibody 19/1786, revealing a mechanism whereby this antibody prevents virus membrane fusion.
Collapse
|
49
|
The structure of serum resistance-associated protein and its implications for human African trypanosomiasis. Nat Microbiol 2018; 3:295-301. [PMID: 29358741 DOI: 10.1038/s41564-017-0085-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/27/2017] [Indexed: 11/08/2022]
Abstract
Only two trypanosome subspecies are able to cause human African trypanosomiasis. To establish an infection in human blood, they must overcome the innate immune system by resisting the toxic effects of trypanolytic factor 1 and trypanolytic factor 2 (refs. 1,2). These lipoprotein complexes contain an active, pore-forming component, apolipoprotein L1 (ApoL1), that causes trypanosome cell death 3 . One of the two human-infective subspecies, Trypanosoma brucei rhodesiense, differs from non-infective trypanosomes solely by the presence of the serum resistance-associated protein, which binds directly to ApoL1 and blocks its pore-forming capacity3-5. Since this interaction is the single critical event that renders T. b. rhodesiense human- infective, detailed structural information that allows identification of binding determinants is crucial to understand immune escape by the parasite. Here, we present the structure of serum resistance-associated protein and reveal the adaptations that occurred as it diverged from other trypanosome surface molecules to neutralize ApoL1. We also present our mapping of residues important for ApoL1 binding, giving molecular insight into this interaction at the heart of human sleeping sickness.
Collapse
|
50
|
Wang C, Kankaanpää J, Kummu O, Turunen SP, Akhi R, Bergmann U, Pussinen P, Remes AM, Hörkkö S. Characterization of a natural mouse monoclonal antibody recognizing epitopes shared by oxidized low-density lipoprotein and chaperonin 60 of Aggregatibacter actinomycetemcomitans. Immunol Res 2017; 64:699-710. [PMID: 26786003 DOI: 10.1007/s12026-015-8781-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural antibodies are predominantly antibodies of the IgM isotype present in the circulation of all vertebrates that have not been previously exposed to exogenous antigens. They are often directed against highly conserved epitopes and bind to ligands of varying chemical composition with low affinity. In this study we cloned and characterized a natural mouse monoclonal IgM antibody selected by binding to malondialdehyde acetaldehyde epitopes on low-density lipoprotein (LDL). Interestingly, the IgM antibody cross-reacted with Aggregatibacter actinomycetemcomitans (Aa) bacteria, a key pathogenic microbe in periodontitis reported to be associated with risk factor for atherosclerosis, thus being named as Aa_Mab. It is more intriguing that the binding molecule of Aa to Aa_Mab IgM was found to be Aa chaperonin 60 or HSP60, a member of heat-shock protein family, behaving not only as a chaperone for correct protein folding but also as a powerful virulence factor of the bacteria for inducing bone resorption and as a putative pathogenic factor in atherosclerosis. The findings will highlight the question of whether molecular mimicry between pathogen components and oxidized LDL could lead to atheroprotective immune activity, and also would be of great importance in potential application of immune response-based preventive and therapeutic strategies against atherosclerosis and periodontal disease.
Collapse
Affiliation(s)
- Chunguang Wang
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland. .,Medical Research Center and Nordlab Oulu, University Hospital and University of Oulu, Oulu, Finland.
| | - Jari Kankaanpää
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center and Nordlab Oulu, University Hospital and University of Oulu, Oulu, Finland.,Department of Neurology, Oulu University Hospital, Oulu, Finland.,Research Unit of Clinical Neuroscience and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Outi Kummu
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center and Nordlab Oulu, University Hospital and University of Oulu, Oulu, Finland
| | - S Pauliina Turunen
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center and Nordlab Oulu, University Hospital and University of Oulu, Oulu, Finland.,Genome-scale Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Ramin Akhi
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center and Nordlab Oulu, University Hospital and University of Oulu, Oulu, Finland.,Research Unit of Oral Health Sciences, University of Oulu, Oulu, Finland
| | - Ulrich Bergmann
- Protein Analysis Core Facility, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Pirkko Pussinen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne M Remes
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland.,Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Sohvi Hörkkö
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center and Nordlab Oulu, University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|