1
|
Odendaal C, Reijngoud DJ, Bakker BM. How lipid transfer proteins and the mitochondrial membrane shape the kinetics of β-oxidation the liver. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1866:149519. [PMID: 39428049 DOI: 10.1016/j.bbabio.2024.149519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
The mitochondrial fatty acid β-oxidation (mFAO) is important for producing ATP under conditions of energetic stress, such as fasting and cold exposure. The regulation of this pathway is dependent on the kinetic properties of the enzymes involved. To better understand pathway behaviour, accurate enzyme kinetics is required. Setting up and interpreting such proper assays requires a good understanding of what influences the enzymes' kinetics. Often, knowing the buffer composition, pH, and temperature is considered to be sufficient. Many mFAO enzymes are membrane-bound, however, and their kinetic properties depend on the composition and curvature of the mitochondrial membranes. These properties are, in turn, affected by metabolite concentrations, but are rarely accounted for in kinetic assays. Especially for carnitine palmitoyltransferase 1 (CPT1), this has been shown to be of great consequence. Moreover, the enzymes of the mFAO metabolise water-insoluble acyl-CoA derivatives, which become toxic at high concentrations. In vivo, these are carried across the cytosol by intracellular lipid transfer proteins (iLTPs), such as the fatty-acid and acyl-CoA-binding proteins (FABP and ACBP, respectively). In vitro, this is often mimicked by using bovine serum albumin (BSA), which differs from the iLPTs in terms of its binding behaviour and subcellular localisation patterns. In this review, we argue that the iLTPs and membrane properties cannot be ignored when measuring or interpreting the kinetics of mFAO enzymes. They should be considered fundamental to the activity of mFAO enzymes just as pH, buffer composition, and temperature are.
Collapse
Affiliation(s)
- Christoff Odendaal
- Laboratory of Paediatrics, University Medical Centre Groningen, University of Groningen, the Netherlands
| | - Dirk-Jan Reijngoud
- Laboratory of Paediatrics, University Medical Centre Groningen, University of Groningen, the Netherlands
| | - Barbara M Bakker
- Laboratory of Paediatrics, University Medical Centre Groningen, University of Groningen, the Netherlands.
| |
Collapse
|
2
|
Yabut KCB, Martynova A, Nath A, Zercher BP, Bush MF, Isoherranen N. Drugs Form Ternary Complexes with Human Liver Fatty Acid Binding Protein 1 (FABP1) and FABP1 Binding Alters Drug Metabolism. Mol Pharmacol 2024; 105:395-410. [PMID: 38580446 PMCID: PMC11114116 DOI: 10.1124/molpharm.124.000878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024] Open
Abstract
Liver fatty acid binding protein 1 (FABP1) binds diverse endogenous lipids and is highly expressed in the human liver. Binding to FABP1 alters the metabolism and homeostasis of endogenous lipids in the liver. Drugs have also been shown to bind to rat FABP1, but limited data are available for human FABP1 (hFABP1). FABP1 has a large binding pocket, and up to two fatty acids can bind to FABP1 simultaneously. We hypothesized that drug binding to hFABP1 results in formation of ternary complexes and that FABP1 binding alters drug metabolism. To test these hypotheses, native protein mass spectrometry (MS) and fluorescent 11-(dansylamino)undecanoic acid (DAUDA) displacement assays were used to characterize drug binding to hFABP1, and diclofenac oxidation by cytochrome P450 2C9 (CYP2C9) was studied in the presence and absence of hFABP1. DAUDA binding to hFABP1 involved high (Kd,1 = 0.2 μM) and low (Kd,2 > 10 μM) affinity binding sites. Nine drugs bound to hFABP1 with equilibrium dissociation constant (Kd) values ranging from 1 to 20 μM. None of the tested drugs completely displaced DAUDA from hFABP1, and fluorescence spectra showed evidence of ternary complex formation. Formation of DAUDA-hFABP1-diclofenac ternary complex was verified with native MS. Docking predicted diclofenac binding in the portal region of FABP1 with DAUDA in the binding cavity. The catalytic rate constant of diclofenac hydroxylation by CYP2C9 was decreased by ∼50% (P < 0.01) in the presence of FABP1. Together, these results suggest that drugs form ternary complexes with hFABP1 and that hFABP1 binding in the liver will alter drug metabolism and clearance. SIGNIFICANCE STATEMENT: Many commonly prescribed drugs bind fatty acid binding protein 1 (FABP1), forming ternary complexes with FABP1 and the fluorescent fatty acid 11-(dansylamino)undecanoic acid. These findings suggest that drugs will bind to apo-FABP1 and fatty acid-bound FABP1 in the human liver. The high expression of FABP1 in the liver, together with drug binding to FABP1, may alter drug disposition processes in vivo.
Collapse
Affiliation(s)
- King Clyde B Yabut
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| | - Alice Martynova
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| | - Abhinav Nath
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| | - Benjamin P Zercher
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| | - Matthew F Bush
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| |
Collapse
|
3
|
Yabut KCB, Martynova A, Nath A, Zercher BP, Bush MF, Isoherranen N. Drugs Form Ternary Complexes with Human Liver Fatty Acid Binding Protein (FABP1) and FABP1 Binding Alters Drug Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576032. [PMID: 38293009 PMCID: PMC10827205 DOI: 10.1101/2024.01.17.576032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Liver fatty acid binding protein (FABP1) binds diverse endogenous lipids and is highly expressed in the human liver. Binding to FABP1 alters the metabolism and homeostasis of endogenous lipids in the liver. Drugs have also been shown to bind to rat FABP1, but limited data is available for human FABP1 (hFABP1). FABP1 has a large binding pocket and multiple fatty acids can bind to FABP1 simultaneously. We hypothesized that drug binding to hFABP1 results in formation of ternary complexes and that FABP1 binding alters drug metabolism. To test these hypotheses native protein mass spectrometry (MS) and fluorescent 11-(dansylamino)undecanoic acid (DAUDA) displacement assays were used to characterize drug binding to hFABP1 and diclofenac oxidation by cytochrome P450 2C9 (CYP2C9) was studied in the presence and absence of hFABP1. DAUDA binding to hFABP1 involved high (Kd,1=0.2 µM) and low affinity (Kd,2 >10 µM) binding sites. Nine drugs bound to hFABP1 with Kd values ranging from 1 to 20 µM. None of the tested drugs completely displaced DAUDA from hFABP1 and fluorescence spectra showed evidence of ternary complex formation. Formation of DAUDA-diclofenac-hFABP1 ternary complex was verified with native MS. Docking placed diclofenac in the portal region of FABP1 with DAUDA in the binding cavity. Presence of hFABP1 decreased the kcat and Km,u of diclofenac with CYP2C9 by ~50% suggesting that hFABP1 binding in the liver will alter drug metabolism and clearance. Together, these results suggest that drugs form ternary complexes with hFABP1 and that hFABP1 interacts with CYP2C9.
Collapse
Affiliation(s)
- King Clyde B. Yabut
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Alice Martynova
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Abhinav Nath
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Benjamin P. Zercher
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Matthew F. Bush
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Tian FM, Yi J, Tang Y, Chen BW, Long HP, Liu YF, Ou-Yang Y, Zhang WJ, Tang RM, Liu BY. A UPLC-Q-TOF/MS and network pharmacology method to explore the mechanism of Anhua fuzhuan tea intervention in nonalcoholic fatty liver disease. Food Funct 2023; 14:3686-3700. [PMID: 36971300 DOI: 10.1039/d2fo02774g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The possible mechanism by which the active components of Anhua fuzhuan tea act on FAM in NAFLD lesions was investigated.
Collapse
Affiliation(s)
- Feng-Ming Tian
- The First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, China.
- Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, China.
| | - Jian Yi
- The First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, China.
- Hunan Academy of Chinese Medicine, 58 Lushan Road, Changsha, China.
- Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, China.
| | - Yan Tang
- Yiyang Medical College, 516 Yingbin Road, Yiyang, China.
| | - Bo-Wei Chen
- The First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, China.
- Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, China.
| | - Hong-Ping Long
- The First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, China.
| | - Ying-Fei Liu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, China.
- Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, China.
| | - Yin Ou-Yang
- The First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, China.
- Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, China.
| | - Wen-Jiang Zhang
- Shaanxi University of Chinese Medicine, Xixian Avenue, Xixian New Area, China.
| | - Rong-Mei Tang
- The First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, China.
- Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, China.
| | - Bai-Yan Liu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, China.
- Hunan Academy of Chinese Medicine, 58 Lushan Road, Changsha, China.
| |
Collapse
|
5
|
Watts AJ, Logan SM, Kübber-Heiss A, Posautz A, Stalder G, Painer J, Gasch K, Giroud S, Storey KB. Regulation of Peroxisome Proliferator-Activated Receptor Pathway During Torpor in the Garden Dormouse, Eliomys quercinus. Front Physiol 2020; 11:615025. [PMID: 33408645 PMCID: PMC7779809 DOI: 10.3389/fphys.2020.615025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
Differential levels of n-6 and n-3 essential polyunsaturated fatty acids (PUFAs) are incorporated into the hibernator’s diet in the fall season preceding prolonged, multi-days bouts of torpor, known as hibernation. Peroxisome proliferator-activated receptor (PPAR) transcriptional activators bind lipids and regulate genes involved in fatty acid transport, beta-oxidation, ketogenesis, and insulin sensitivity; essential processes for survival during torpor. Thus, the DNA-binding activity of PPARα, PPARδ, PPARγ, as well as the levels of PPARγ coactivator 1α (PGC-1α) and L-fatty acid binding protein (L-FABP) were investigated in the hibernating garden dormouse (Eliomys quercinus). We found that dormice were hibernating in a similar way regardless of the n-6/n-3 PUFA diets fed to the animals during the fattening phase prior to hibernation. Further, metabolic rates and body mass loss during hibernation did not differ between dietary groups, despite marked differences in fatty acid profiles observed in white adipose tissue prior and at mid-hibernation. Overall, maintenance of PPAR DNA-binding activity was observed during torpor, and across three n-6/n-3 ratios, suggesting alternate mechanisms for the prioritization of lipid catabolism during torpor. Additionally, while no change was seen in L-FABP, significantly altered levels of PGC-1α were observed within the white adipose tissue and likely contributes to enhanced lipid metabolism when the diet favors n-6 PUFAs, i.e., high n-6/n-3 ratio, in both the torpid and euthermic state. Altogether, the maintenance of lipid metabolism during torpor makes it likely that consistent activity or levels of the investigated proteins are in aid of this metabolic profile.
Collapse
Affiliation(s)
| | | | - Anna Kübber-Heiss
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Annika Posautz
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gabrielle Stalder
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Johanna Painer
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kristina Gasch
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sylvain Giroud
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | |
Collapse
|
6
|
Tillman MC, Imai N, Li Y, Khadka M, Okafor CD, Juneja P, Adhiyaman A, Hagen SJ, Cohen DE, Ortlund EA. Allosteric regulation of thioesterase superfamily member 1 by lipid sensor domain binding fatty acids and lysophosphatidylcholine. Proc Natl Acad Sci U S A 2020; 117:22080-22089. [PMID: 32820071 PMCID: PMC7486800 DOI: 10.1073/pnas.2003877117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nonshivering thermogenesis occurs in brown adipose tissue to generate heat in response to cold ambient temperatures. Thioesterase superfamily member 1 (Them1) is transcriptionally up-regulated in brown adipose tissue upon exposure to the cold and suppresses thermogenesis in order to conserve energy reserves. It hydrolyzes long-chain fatty acyl-CoAs that are derived from lipid droplets, preventing their use as fuel for thermogenesis. In addition to its enzymatic domains, Them1 contains a C-terminal StAR-related lipid transfer (START) domain with unknown ligand or function. By complementary biophysical approaches, we show that the START domain binds to long-chain fatty acids, products of Them1's enzymatic reaction, as well as lysophosphatidylcholine (LPC), lipids shown to activate thermogenesis in brown adipocytes. Certain fatty acids stabilize the START domain and allosterically enhance Them1 catalysis of acyl-CoA, whereas 18:1 LPC destabilizes and inhibits activity, which we verify in cell culture. Additionally, we demonstrate that the START domain functions to localize Them1 near lipid droplets. These findings define the role of the START domain as a lipid sensor that allosterically regulates Them1 activity and spatially localizes it in proximity to the lipid droplet.
Collapse
Affiliation(s)
- Matthew C Tillman
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Norihiro Imai
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Yue Li
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Manoj Khadka
- Emory Integrated Lipidomics Core, Emory University, Atlanta, GA 30322
| | - C Denise Okafor
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Puneet Juneja
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, GA 30322
| | - Akshitha Adhiyaman
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Susan J Hagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - David E Cohen
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322;
| |
Collapse
|
7
|
Lai MP, Katz FS, Bernard C, Storch J, Stark RE. Two fatty acid-binding proteins expressed in the intestine interact differently with endocannabinoids. Protein Sci 2020; 29:1606-1617. [PMID: 32298508 DOI: 10.1002/pro.3875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/08/2020] [Accepted: 04/12/2020] [Indexed: 11/07/2022]
Abstract
Two different members of the fatty acid-binding protein (FABP) family are found in enterocyte cells of the gastrointestinal system, namely liver-type and intestinal fatty acid-binding proteins (LFABP and IFABP, also called FABP1 and FABP2, respectively). Striking phenotypic differences have been observed in knockout mice for either protein, for example, high fat-fed IFABP-null mice remained lean, whereas LFABP-null mice were obese, correlating with differences in food intake. This finding prompted us to investigate the role each protein plays in directing the specificity of binding to ligands involved in appetite regulation, such as fatty acid ethanolamides and related endocannabinoids. We determined the binding affinities for nine structurally related ligands using a fluorescence competition assay, revealing tighter binding to IFABP than LFABP for all ligands tested. We found that the head group of the ligand had more impact on binding affinity than the alkyl chain, with the strongest binding observed for the carboxyl group, followed by the amide, and then the glycerol ester. These trends were confirmed using two-dimensional 1 H-15 N nuclear magnetic resonance (NMR) to monitor chemical shift perturbation of the protein backbone resonances upon titration with ligand. Interestingly, the NMR data revealed that different residues of IFABP were involved in the coordination of endocannabinoids than those implicated for fatty acids, whereas the same residues of LFABP were involved for both classes of ligand. In addition, we identified residues that are uniquely affected by binding of all types of ligand to IFABP, suggesting a rationale for its tighter binding affinity compared with LFABP.
Collapse
Affiliation(s)
- May Poh Lai
- Department of Chemistry and Biochemistry, CUNY City College of New York, New York, New York, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York (CUNY), New York, New York, USA.,CUNY Institute for Macromolecular Assemblies, New York, New York, USA
| | - Francine S Katz
- Department of Chemistry and Biochemistry, CUNY City College of New York, New York, New York, USA.,CUNY Institute for Macromolecular Assemblies, New York, New York, USA
| | - Cédric Bernard
- Department of Chemistry and Biochemistry, CUNY City College of New York, New York, New York, USA.,CUNY Institute for Macromolecular Assemblies, New York, New York, USA
| | - Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Ruth E Stark
- Department of Chemistry and Biochemistry, CUNY City College of New York, New York, New York, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York (CUNY), New York, New York, USA.,CUNY Institute for Macromolecular Assemblies, New York, New York, USA
| |
Collapse
|
8
|
Davidi D, Schechter M, Elhadi SA, Matatov A, Nathanson L, Sharon R. α-Synuclein Translocates to the Nucleus to Activate Retinoic-Acid-Dependent Gene Transcription. iScience 2020; 23:100910. [PMID: 32120069 PMCID: PMC7052517 DOI: 10.1016/j.isci.2020.100910] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/06/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
α-Synuclein (α-Syn) protein is implicated in the pathogenesis of Parkinson disease (PD). It is primarily cytosolic and interacts with cell membranes. α-Syn also occurs in the nucleus. Here we investigated the mechanisms involved in nuclear translocation of α-Syn. We analyzed alterations in gene expression following induced α-Syn expression in SH-SY5Y cells. Analysis of upstream regulators pointed at alterations in transcription activity of retinoic acid receptors (RARs) and additional nuclear receptors. We show that α-Syn binds RA and translocates to the nucleus to selectively enhance gene transcription. Nuclear translocation of α-Syn is regulated by calreticulin and is leptomycin-B independent. Importantly, nuclear translocation of α-Syn following RA treatment enhances its toxicity in cultured neurons and the expression levels of PD-associated genes, including ATPase cation transporting 13A2 (ATP13A2) and PTEN-induced kinase1 (PINK1). The results link a physiological role for α-Syn in the regulation of RA-mediated gene transcription and its toxicity in the synucleinopathies.
Collapse
Affiliation(s)
- Dana Davidi
- Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Ein Kerem, 9112001 Jerusalem, Israel
| | - Meir Schechter
- Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Ein Kerem, 9112001 Jerusalem, Israel
| | - Suaad Abd Elhadi
- Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Ein Kerem, 9112001 Jerusalem, Israel
| | - Adar Matatov
- Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Ein Kerem, 9112001 Jerusalem, Israel
| | - Lubov Nathanson
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ronit Sharon
- Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Ein Kerem, 9112001 Jerusalem, Israel.
| |
Collapse
|
9
|
Knight JM, Ivanov I, Triff K, Chapkin RS, Dougherty ER. Detecting Multivariate Gene Interactions in RNA-Seq Data Using Optimal Bayesian Classification. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:484-493. [PMID: 26441451 PMCID: PMC4818202 DOI: 10.1109/tcbb.2015.2485223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Differential gene expression testing is an analysis commonly applied to RNA-Seq data. These statistical tests identify genes that are significantly different across phenotypes. We extend this testing paradigm to multivariate gene interactions from a classification perspective with the goal to detect novel gene interactions for the phenotypes of interest. This is achieved through our novel computational framework comprised of a hierarchical statistical model of the RNA-Seq processing pipeline and the corresponding optimal Bayesian classifier. Through Markov Chain Monte Carlo sampling and Monte Carlo integration, we compute quantities where no analytical formulation exists. The performance is then illustrated on an expression dataset from a dietary intervention study where we identify gene pairs that have low classification error yet were not identified as differentially expressed. Additionally, we have released the software package to perform OBC classification on RNA-Seq data under an open source license and is available at http://bit.ly/obc_package.
Collapse
|
10
|
Sato E, Kamijo-Ikemori A, Oikawa T, Okuda A, Sugaya T, Kimura K, Nakamura T, Shibagaki Y. Urinary excretion of liver-type fatty acid-binding protein reflects the severity of sepsis. RENAL REPLACEMENT THERAPY 2017. [DOI: 10.1186/s41100-017-0107-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
11
|
Fasting enriches liver triacylglycerol with n-3 polyunsaturated fatty acids: implications for understanding the adipose-liver axis in serum docosahexaenoic acid regulation. GENES AND NUTRITION 2015; 10:39. [PMID: 26386841 DOI: 10.1007/s12263-015-0490-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/29/2015] [Indexed: 01/11/2023]
Abstract
We investigated the effect of short-term fasting on coordinate changes in the fatty acid composition of adipose triacylglycerol (TAG), serum non-esterified fatty acids (NEFA), liver TAG, and serum TAG and phospholipids in mice fed ad libitum or fasted for 16 h overnight. In contrast to previous reports under conditions of maximal lipolysis, adipose tissue TAG was not preferentially depleted of n-3 PUFA or any specific fatty acids, nor were there any striking changes in the serum NEFA composition. Short-term fasting did, however, increase the hepatic proportion of n-3 PUFA, and almost all individual species of n-3 PUFA showed relative and absolute increases. The relative proportion of n-6 PUFA in liver TAG also increased but to a lesser extent, resulting in a significant decrease in the n-6:n-3 PUFA ratio (from 14.3 ± 2.54 to 9.6 ± 1.20), while the proportion of MUFA decreased significantly and SFA proportion did not change. Examination of genes involved in PUFA synthesis suggested that hepatic changes in the elongation and desaturation of precursor lipids could not explain this effect. Rather, an increase in the expression of fatty acid transporters specific for 22:6n-3 and other long-chain n-3 and n-6 PUFA likely mediated the observed hepatic enrichment. Analysis of serum phospholipids indicated a specific increase in the concentration of 22:6n-3 and 16:0, suggesting increased specific synthesis of DHA-enriched phospholipid by the liver for recirculation. Given the importance of blood phospholipid in distributing DHA to neural tissue, these findings have implications for understanding the adipose-liver-brain axis in n-3 PUFA metabolism.
Collapse
|
12
|
Rowland A, Hallifax D, Nussio MR, Shapter JG, Mackenzie PI, Brian Houston J, Knights KM, Miners JO. Characterization of the comparative drug binding to intra- (liver fatty acid binding protein) and extra- (human serum albumin) cellular proteins. Xenobiotica 2015; 45:847-57. [PMID: 25801059 DOI: 10.3109/00498254.2015.1021403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. This study compared the extent, affinity, and kinetics of drug binding to human serum albumin (HSA) and liver fatty acid binding protein (LFABP) using ultrafiltration and surface plasmon resonance (SPR). 2. Binding of basic and neutral drugs to both HSA and LFABP was typically negligible. Binding of acidic drugs ranged from minor (fu > 0.8) to extensive (fu < 0.1). Of the compounds screened, the highest binding to both HSA and LFABP was observed for the acidic drugs torsemide and sulfinpyrazone, and for β-estradiol (a polar, neutral compound). 3. The extent of binding of acidic drugs to HSA was up to 40% greater than binding to LFABP. SPR experiments demonstrated comparable kinetics and affinity for the binding of representative acidic drugs (naproxen, sulfinpyrazone, and torsemide) to HSA and LFABP. 4. Simulations based on in vitro kinetic constants derived from SPR experiments and a rapid equilibrium model were undertaken to examine the impact of binding characteristics on compartmental drug distribution. Simulations provided mechanistic confirmation that equilibration of intracellular unbound drug with the extracellular unbound drug is attained rapidly in the absence of active transport mechanisms for drugs bound moderately or extensively to HSA and LFABP.
Collapse
Affiliation(s)
- Andrew Rowland
- a Department of Clinical Pharmacology , Flinders University , Adelaide , Australia
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Patil R, Laguerre A, Wielens J, Headey SJ, Williams ML, Hughes MLR, Mohanty B, Porter CJH, Scanlon MJ. Characterization of two distinct modes of drug binding to human intestinal fatty acid binding protein. ACS Chem Biol 2014; 9:2526-34. [PMID: 25144524 DOI: 10.1021/cb5005178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aqueous cytoplasm of cells poses a potentially significant barrier for many lipophilic drugs to reach their sites of action. Fatty acid binding proteins (FABPs) bind to poorly water-soluble fatty acids (FAs) and lipophilic compounds and facilitate their intracellular transport. Several structures of FA in complex with FABPs have been described, but data describing the binding sites of other lipophilic ligands including drugs are limited. Here the environmentally sensitive fluorophores, 1-anilinonapthalene 8-sulfonic acid (ANS), and 11-dansylamino undecanoic acid (DAUDA) were used to investigate drug binding to human intestinal FABP (hIFABP). Most drugs that bound hIFABP were able to displace both ANS and DAUDA. A notable exception was ketorolac, a non-steroidal anti-inflammatory drug that bound to hIFABP and displaced DAUDA but failed to displace ANS. Isothermal titration calorimetry revealed that for the majority of ligands including FA, ANS, and DAUDA, binding to hIFABP was exothermic. In contrast, ketorolac binding to hIFABP was endothermic and entropy-driven. The X-ray crystal structure of DAUDA-hIFABP revealed a FA-like binding mode where the carboxylate of DAUDA formed a network of hydrogen bonds with residues at the bottom of the binding cavity and the dansyl group interacted with residues in the portal region. In contrast, NMR chemical shift perturbation (CSP) data suggested that ANS bound only toward the bottom of the hIFABP cavity, whereas ketorolac occupied only the portal region. The CSP data further suggested that ANS and ketorolac were able to bind simultaneously to hIFABP, consistent with the lack of displacement of ANS observed by fluorescence and supported by a model of the ternary complex. The NMR solution structure of the ketorolac-hIFABP complex therefore describes a newly characterized, hydrophobic ligand binding site in the portal region of hIFABP.
Collapse
Affiliation(s)
| | | | - Jerome Wielens
- ACRF
Rational Drug Discovery Centre and Biota Structural Biology Laboratory, St. Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3056, Australia
- Department
of Medicine, University of Melbourne, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia
| | | | | | | | | | | | | |
Collapse
|
14
|
Inhibitors of Fatty Acid Synthesis Induce PPAR α -Regulated Fatty Acid β -Oxidative Genes: Synergistic Roles of L-FABP and Glucose. PPAR Res 2013; 2013:865604. [PMID: 23533380 PMCID: PMC3600304 DOI: 10.1155/2013/865604] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/21/2012] [Indexed: 12/21/2022] Open
Abstract
While TOFA (acetyl CoA carboxylase inhibitor) and C75 (fatty acid synthase inhibitor) prevent lipid accumulation by inhibiting fatty acid synthesis, the mechanism of action is not simply accounted for by inhibition of the enzymes alone.
Liver fatty acid binding protein (L-FABP), a mediator of long chain fatty acid signaling to peroxisome
proliferator-activated receptor-α (PPARα) in the nucleus, was found to bind
TOFA and its activated CoA thioester, TOFyl-CoA, with high affinity while binding C75 and C75-CoA
with lower affinity. Binding of TOFA and C75-CoA significantly altered L-FABP secondary structure. High (20 mM) but not physiological
(6 mM) glucose conferred on both TOFA and C75 the ability to induce PPARα transcription of the fatty
acid β-oxidative enzymes CPT1A, CPT2, and ACOX1 in cultured primary hepatocytes from wild-type (WT) mice.
However, L-FABP gene ablation abolished the effects of TOFA and C75 in the context of high glucose. These effects were not associated
with an increased cellular level of unesterified fatty acids but rather by increased intracellular glucose. These findings suggested that L-FABP may function as an intracellular fatty acid synthesis inhibitor binding protein
facilitating TOFA and C75-mediated induction of PPARα in the context of high glucose at levels similar to those in uncontrolled diabetes.
Collapse
|
15
|
Petrescu AD, Huang H, Martin GG, McIntosh AL, Storey SM, Landrock D, Kier AB, Schroeder F. Impact of L-FABP and glucose on polyunsaturated fatty acid induction of PPARα-regulated β-oxidative enzymes. Am J Physiol Gastrointest Liver Physiol 2013; 304:G241-56. [PMID: 23238934 PMCID: PMC3566512 DOI: 10.1152/ajpgi.00334.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Liver fatty acid binding protein (L-FABP) is the major soluble protein that binds very-long-chain n-3 polyunsaturated fatty acids (n-3 PUFAs) in hepatocytes. However, nothing is known about L-FABP's role in n-3 PUFA-mediated peroxisome proliferator activated receptor-α (PPARα) transcription of proteins involved in long-chain fatty acid (LCFA) β-oxidation. This issue was addressed in cultured primary hepatocytes from wild-type, L-FABP-null, and PPARα-null mice with these major findings: 1) PUFA-mediated increase in the expression of PPARα-regulated LCFA β-oxidative enzymes, LCFA/LCFA-CoA binding proteins (L-FABP, ACBP), and PPARα itself was L-FABP dependent; 2) PPARα transcription, robustly potentiated by high glucose but not maltose, a sugar not taken up, correlated with higher protein levels of these LCFA β-oxidative enzymes and with increased LCFA β-oxidation; and 3) high glucose altered the potency of n-3 relative to n-6 PUFA. This was not due to a direct effect of glucose on PPARα transcriptional activity nor indirectly through de novo fatty acid synthesis from glucose. Synergism was also not due to glucose impacting other signaling pathways, since it was observed only in hepatocytes expressing both L-FABP and PPARα. Ablation of L-FABP or PPARα as well as treatment with MK886 (PPARα inhibitor) abolished/reduced PUFA-mediated PPARα transcription of these genes, especially at high glucose. Finally, the PUFA-enhanced L-FABP distribution into nuclei with high glucose augmentation of the L-FABP/PPARα interaction reveals not only the importance of L-FABP for PUFA induction of PPARα target genes in fatty acid β-oxidation but also the significance of a high glucose enhancement effect in diabetes.
Collapse
Affiliation(s)
- Anca D. Petrescu
- 1Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, Texas; and
| | - Huan Huang
- 1Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, Texas; and
| | - Gregory G. Martin
- 1Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, Texas; and
| | - Avery L. McIntosh
- 1Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, Texas; and
| | - Stephen M. Storey
- 1Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, Texas; and
| | - Danilo Landrock
- 1Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, Texas; and
| | - Ann B. Kier
- 2Department of Pathobiology, Texas A&M University, TVMC, College Station, Texas
| | - Friedhelm Schroeder
- 1Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, Texas; and
| |
Collapse
|
16
|
Comparative study of the fatty acid binding process of a new FABP from Cherax quadricarinatus by fluorescence intensity, lifetime and anisotropy. PLoS One 2012; 7:e51079. [PMID: 23284658 PMCID: PMC3528769 DOI: 10.1371/journal.pone.0051079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/29/2012] [Indexed: 12/31/2022] Open
Abstract
Fatty acid-binding proteins (FABPs) are small cytosolic proteins, largely distributed in invertebrates and vertebrates, which accomplish uptake and intracellular transport of hydrophobic ligands such as fatty acids. Although long chain fatty acids play multiple crucial roles in cellular functions (structural, energy metabolism, regulation of gene expression), the precise functions of FABPs, especially those of invertebrate species, remain elusive. Here, we have identified and characterized a novel FABP family member, Cq-FABP, from the hepatopancreas of red claw crayfish Cherax quadricarinatus. We report the characterization of fatty acid-binding affinity of Cq-FABP by four different competitive fluorescence-based assays. In the two first approaches, the fluorescent probe 8-Anilino-1-naphthalenesulfonate (ANS), a binder of internal cavities of protein, was used either by directly monitoring its fluorescence emission or by monitoring the fluorescence resonance energy transfer occurring between the single tryptophan residue of Cq-FABP and ANS. The third and the fourth approaches were based on the measurement of the fluorescence emission intensity of the naturally fluorescent cis-parinaric acid probe or the steady-state fluorescence anisotropy measurements of a fluorescently labeled fatty acid (BODIPY-C16), respectively. The four methodologies displayed consistent equilibrium constants for a given fatty acid but were not equivalent in terms of analysis. Indeed, the two first methods were complicated by the existence of non specific binding modes of ANS while BODIPY-C16 and cis-parinaric acid specifically targeted the fatty acid binding site. We found a relationship between the affinity and the length of the carbon chain, with the highest affinity obtained for the shortest fatty acid, suggesting that steric effects primarily influence the interaction of fatty acids in the binding cavity of Cq-FABP. Moreover, our results show that the binding affinities of several fatty acids closely parallel their prevalences in the hepatopancreas of C. quadricarinatus as measured under specific diet conditions.
Collapse
|
17
|
Storey SM, McIntosh AL, Huang H, Martin GG, Landrock KK, Landrock D, Payne HR, Kier AB, Schroeder F. Loss of intracellular lipid binding proteins differentially impacts saturated fatty acid uptake and nuclear targeting in mouse hepatocytes. Am J Physiol Gastrointest Liver Physiol 2012; 303:G837-50. [PMID: 22859366 PMCID: PMC3469595 DOI: 10.1152/ajpgi.00489.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The liver expresses high levels of two proteins with high affinity for long-chain fatty acids (LCFAs): liver fatty acid binding protein (L-FABP) and sterol carrier protein-2 (SCP-2). Real-time confocal microscopy of cultured primary hepatocytes from gene-ablated (L-FABP, SCP-2/SCP-x, and L-FABP/SCP-2/SCP-x null) mice showed that the loss of L-FABP reduced cellular uptake of 12-N-methyl-(7-nitrobenz-2-oxa-1,3-diazo)-aminostearic acid (a fluorescent-saturated LCFA analog) by ∼50%. Importantly, nuclear targeting of the LCFA was enhanced when L-FABP was upregulated (SCP-2/SCP-x null) but was significantly reduced when L-FABP was ablated (L-FABP null), thus impacting LCFA nuclear targeting. These effects were not associated with a net decrease in expression of key membrane proteins involved in LCFA or glucose transport. Since hepatic LCFA uptake and metabolism are closely linked to glucose uptake, the effect of glucose on L-FABP-mediated LCFA uptake and nuclear targeting was examined. Increasing concentrations of glucose decreased cellular LCFA uptake and even more extensively decreased LCFA nuclear targeting. Loss of L-FABP exacerbated the decrease in LCFA nuclear targeting, while loss of SCP-2 reduced the glucose effect, resulting in enhanced LCFA nuclear targeting compared with control. Simply, ablation of L-FABP decreases LCFA uptake and even more extensively decreases its nuclear targeting.
Collapse
Affiliation(s)
- Stephen M. Storey
- 1Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas; and
| | - Avery L. McIntosh
- 1Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas; and
| | - Huan Huang
- 1Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas; and
| | - Gregory G. Martin
- 1Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas; and
| | - Kerstin K. Landrock
- 1Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas; and
| | - Danilo Landrock
- 2Department of Pathobiology, Texas A & M University, College Station, Texas
| | - H. Ross Payne
- 2Department of Pathobiology, Texas A & M University, College Station, Texas
| | - Ann B. Kier
- 2Department of Pathobiology, Texas A & M University, College Station, Texas
| | - Friedhelm Schroeder
- 1Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas; and
| |
Collapse
|
18
|
Das UN. Essential fatty acids and their metabolites as modulators of stem cell biology with reference to inflammation, cancer, and metastasis. Cancer Metastasis Rev 2012; 30:311-24. [PMID: 22005953 DOI: 10.1007/s10555-011-9316-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Stem cells are pluripotent and expected to be of benefit in the management of coronary heart disease, stroke, diabetes mellitus, cancer, and Alzheimer's disease in which pro-inflammatory cytokines are increased. Identifying endogenous bioactive molecules that have a regulatory role in stem cell survival, proliferation, and differentiation may aid in the use of stem cells in various diseases including cancer. Essential fatty acids form precursors to both pro- and anti-inflammatory molecules have been shown to regulate gene expression, enzyme activity, modulate inflammation and immune response, gluconeogenesis via direct and indirect pathways, function directly as agonists of a number of G protein-coupled receptors, activate phosphatidylinositol 3-kinase/Akt and p44/42 mitogen-activated protein kinases, and stimulate cell proliferation via Ca(2+), phospholipase C/protein kinase, events that are also necessary for stem cell survival, proliferation, and differentiation. Hence, it is likely that bioactive lipids play a significant role in various diseases by modulating the proliferation and differentiation of embryonic stem cells in addition to their capacity to suppress inflammation. Ephrin Bs and reelin, adhesion molecules, and microRNAs regulate neuronal migration and cancer cell metastasis. Polyunsaturated fatty acids and their products seem to modulate the expression of ephrin Bs and reelin and several adhesion molecules and microRNAs suggesting that bioactive lipids participate in neuronal regeneration and stem cell proliferation, migration, and cancer cell metastasis. Thus, there appears to be a close interaction among essential fatty acids, their bioactive products, and inflammation and cancer growth and its metastasis.
Collapse
Affiliation(s)
- Undurti N Das
- School of Biotechnology, Jawaharlal Nehru Technological University, Kakinada 533 003, India.
| |
Collapse
|
19
|
Is PPARbeta/delta a Retinoid Receptor? PPAR Res 2011; 2007:73256. [PMID: 18274629 PMCID: PMC2233979 DOI: 10.1155/2007/73256] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 11/21/2007] [Indexed: 12/11/2022] Open
Abstract
The broad ligand-binding characteristic of PPARβ/δ has long hampered identification of physiologically-meaningful ligands for the receptor. The observations that the activity of PPARβ/δ is supported by fatty acid binding protein 5 (FABP5), which directly delivers ligands from the cytosol to the receptor, suggest that bona fide PPARβ/δ ligands both activate the receptor, and trigger the nuclear translocation of FABP5. Using these criteria, it was recently demonstrated that all-trans-retinoic acid (RA), the activator of the classical retinoic acid receptor RAR, also serves as a ligand for PPARβ/δ. Partitioning of RA between its two receptors was found to be regulated by FABP5, which delivers it to PPARβ/δ, and cellular RA binding protein II (CRABP-II), which targets it to RAR. Consequently, RA activates PPARβ/δ in cells that display a high FABP5/CRABP-II expression ratio. It remains to be clarified whether compounds other than RA may also serve as endogenous activators for this highly promiscuous protein.
Collapse
|
20
|
Atshaves B, Martin G, Hostetler H, McIntosh A, Kier A, Schroeder F. Liver fatty acid-binding protein and obesity. J Nutr Biochem 2010; 21:1015-32. [PMID: 20537520 PMCID: PMC2939181 DOI: 10.1016/j.jnutbio.2010.01.005] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 12/17/2022]
Abstract
While low levels of unesterified long chain fatty acids (LCFAs) are normal metabolic intermediates of dietary and endogenous fat, LCFAs are also potent regulators of key receptors/enzymes and at high levels become toxic detergents within the cell. Elevated levels of LCFAs are associated with diabetes, obesity and metabolic syndrome. Consequently, mammals evolved fatty acid-binding proteins (FABPs) that bind/sequester these potentially toxic free fatty acids in the cytosol and present them for rapid removal in oxidative (mitochondria, peroxisomes) or storage (endoplasmic reticulum, lipid droplets) organelles. Mammals have a large (15-member) family of FABPs with multiple members occurring within a single cell type. The first described FABP, liver-FABP (L-FABP or FABP1), is expressed in very high levels (2-5% of cytosolic protein) in liver as well as in intestine and kidney. Since L-FABP facilitates uptake and metabolism of LCFAs in vitro and in cultured cells, it was expected that abnormal function or loss of L-FABP would reduce hepatic LCFA uptake/oxidation and thereby increase LCFAs available for oxidation in muscle and/or storage in adipose. This prediction was confirmed in vitro with isolated liver slices and cultured primary hepatocytes from L-FABP gene-ablated mice. Despite unaltered food consumption when fed a control diet ad libitum, the L-FABP null mice exhibited age- and sex-dependent weight gain and increased fat tissue mass. The obese phenotype was exacerbated in L-FABP null mice pair fed a high-fat diet. Taken together with other findings, these data suggest that L-FABP could have an important role in preventing age- or diet-induced obesity.
Collapse
Affiliation(s)
- B.P. Atshaves
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| | - G.G. Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| | - H.A. Hostetler
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| | - A.L. McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| | - A.B. Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843-4467
| | - F. Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| |
Collapse
|
21
|
Woodcroft MW, Ellis DA, Rafferty SP, Burns DC, March RE, Stock NL, Trumpour KS, Yee J, Munro K. Experimental characterization of the mechanism of perfluorocarboxylic acids' liver protein bioaccumulation: the key role of the neutral species. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:1669-77. [PMID: 20821618 DOI: 10.1002/etc.199] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Perfluorocarboxylic acids (PFCAs) of chain length greater than seven carbon atoms bioconcentrate in the livers of fish. However, a mechanistic cause for the empirically observed increase in the bioconcentration potential of PFCAs as a function of chain length has yet to be determined. To this end, recombinant rat liver fatty acid-binding protein (L-FABP) was purified, and its interaction with PFCAs was characterized in an aqueous system at pH 7.4. Relative binding affinities of L-FABP with PFCAs of carbon chain lengths of five to nine were established fluorimetrically. The energetics, mechanism, and stoichiometry of the interaction of perfluorooctanoic acid (PFOA) with L-FABP were examined further by isothermal titration calorimetry (ITC) and electrospray ionization combined with tandem mass spectrometry (ESI-MS/MS). Perfluorooctanoic acid was shown to bind to L-FABP with an affinity approximately an order of magnitude less than the natural ligand, oleic acid, and to have at least 3:1 PFOA:L-FABP stoichiometry. Two distinct modes of PFOA binding to L-FABP were observed by ESI-MS/MS analysis; in both cases, PFOA binds solely as the neutral species under typical physiological pH and aqueous concentrations of the anion. A comparison of their chemical and physical properties with other well-studied biologically relevant chemicals showed that accumulation of PFCAs in proteins as the neutral species is predictable. For example, the interaction of PFOA with L-FABP is almost identical to that of the acidic ionizing drugs ketolac, ibuprofen, and warfarin that show specificity to protein partitioning with a magnitude that is proportional to the K(OW) (octanol-water partitioning) of the neutral species. The experimental results suggest that routine pharmacochemical models may be applicable to predicting the protein-based bioaccumulation of long-chain PFCAs.
Collapse
Affiliation(s)
- Mark W Woodcroft
- Department of Chemistry, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9J 7B8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
McIntosh AL, Huang H, Atshaves BP, Wellberg E, Kuklev DV, Smith WL, Kier AB, Schroeder F. Fluorescent n-3 and n-6 very long chain polyunsaturated fatty acids: three-photon imaging in living cells expressing liver fatty acid-binding protein. J Biol Chem 2010; 285:18693-708. [PMID: 20382741 PMCID: PMC2881794 DOI: 10.1074/jbc.m109.079897] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 03/10/2010] [Indexed: 01/24/2023] Open
Abstract
Despite the considerable beneficial effects of n-3 and n-6 very long chain polyunsaturated fatty acids (VLC-PUFAs), very little is known about the factors that regulate their uptake and intracellular distribution in living cells. This issue was addressed in cells expressing liver-type fatty acid-binding protein (L-FABP) by real time multiphoton laser scanning microscopy of novel fluorescent VLC-PUFAs containing a conjugated tetraene fluorophore near the carboxyl group and natural methylene-interrupted n-3 or n-6 grouping. The fluorescent VLC-PUFAs mimicked many properties of their native nonfluorescent counterparts, including uptake, distribution, and metabolism in living cells. The unesterified fluorescent VLC-PUFAs distributed either equally in nuclei versus cytoplasm (22-carbon n-3 VLC-PUFA) or preferentially to cytoplasm (20-carbon n-3 and n-6 VLC-PUFAs). L-FABP bound fluorescent VLC-PUFA with affinity and specificity similar to their nonfluorescent natural counterparts. Regarding n-3 and n-6 VLC-PUFA, L-FABP expression enhanced uptake into the cell and cytoplasm, selectively altered the pattern of fluorescent n-6 and n-3 VLC-PUFA distribution in cytoplasm versus nuclei, and preferentially distributed fluorescent VLC-PUFA into nucleoplasm versus nuclear envelope, especially for the 22-carbon n-3 VLC-PUFA, correlating with its high binding by L-FABP. Multiphoton laser scanning microscopy data showed for the first time VLC-PUFA in nuclei of living cells and suggested a model, whereby L-FABP facilitated VLC-PUFA targeting to nuclei by enhancing VLC-PUFA uptake and distribution into the cytoplasm and nucleoplasm.
Collapse
Affiliation(s)
| | - Huan Huang
- From the Departments of Physiology and Pharmacology and
| | - Barbara P. Atshaves
- the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, and
| | | | - Dmitry V. Kuklev
- the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - William L. Smith
- the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Ann B. Kier
- Pathobiology, Texas A & M University, Texas Veterinary Medical Center, College Station, Texas 77843-4466
| | | |
Collapse
|
23
|
Martin GG, Atshaves BP, Huang H, McIntosh AL, Williams BJ, Pai PJ, Russell DH, Kier AB, Schroeder F. Hepatic phenotype of liver fatty acid binding protein gene-ablated mice. Am J Physiol Gastrointest Liver Physiol 2009; 297:G1053-65. [PMID: 19815623 PMCID: PMC2850096 DOI: 10.1152/ajpgi.00116.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 10/06/2009] [Indexed: 01/31/2023]
Abstract
Although the function of liver fatty acid binding protein in hepatic fatty acid metabolism has been extensively studied, its potential role in hepatic cholesterol homeostasis is less clear. Although hepatic cholesterol accumulation was initially reported in L-FABP-null female mice, that study was performed with early N2 backcross generation mice. To resolve whether the hepatic cholesterol phenotype in these L-FABP(-/-) mice was attributable to genetic inhomogeneity, these L-FABP(-/-) mice were further backcrossed to C57Bl/6 mice up to the N10 (99.9% homogeneity) generation. Hepatic total cholesterol accumulation was observed in female, but not male, L-FABP(-/-) mice at all (N2, N4, N6, N10) backcross generations examined. The greater total cholesterol was due to increased hepatic levels of both unesterified (free) cholesterol and esterified cholesterol. Altered hepatic cholesterol accumulation correlated directly with L-FABP's ability to bind cholesterol with high affinity as shown by direct L-FABP binding of fluorescent cholesterol analogs (NBD-cholesterol, dansyl-cholesterol), a photoactivatable cholesterol analog [free cholesterol benzophenone (FCBP)], and free cholesterol (circular dichroism, isothermal titration microcalorimetry). One mole of fluorescent sterol was bound per mole of L-FABP. This was confirmed by photo-cross-linking studies with the photoactivatable cholesterol analog FCBP and by isothermal titration calorimetry with free cholesterol, which showed that L-FABP bound only one sterol molecule per L-FABP molecule. In contrast, the hepatic phenotype of male, but not female, L-FABP(-/-) mice was characterized by decreased hepatic triacylglycerol levels at all backcross generations examined. Taken together, these data support the hypothesis that L-FABP plays a role in physiological regulation of not only hepatic fatty acid metabolism, but also that of hepatic cholesterol.
Collapse
Affiliation(s)
- Gregory G Martin
- Dept. of Physiology & Pharmacology, Texas A&M Univ., College Station, 77843-4466, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Roberts-Crowley ML, Mitra-Ganguli T, Liu L, Rittenhouse AR. Regulation of voltage-gated Ca2+ channels by lipids. Cell Calcium 2009; 45:589-601. [PMID: 19419761 PMCID: PMC2964877 DOI: 10.1016/j.ceca.2009.03.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 03/23/2009] [Accepted: 03/24/2009] [Indexed: 11/23/2022]
Abstract
Great skepticism has surrounded the question of whether modulation of voltage-gated Ca(2+) channels (VGCCs) by the polyunsaturated free fatty acid arachidonic acid (AA) has any physiological basis. Here we synthesize findings from studies of both native and recombinant channels where micromolar concentrations of AA consistently inhibit both native and recombinant activity by stabilizing VGCCs in one or more closed states. Structural requirements for these inhibitory actions include a chain length of at least 18 carbons and multiple double bonds located near the fatty acid's carboxy terminus. Acting at a second site, AA increases the rate of VGCC activation kinetics, and in Ca(V)2.2 channels, increases current amplitude. We present evidence that phosphatidylinositol 4,5-bisphosphate (PIP(2)), a palmitoylated accessory subunit (beta(2a)) of VGCCs and AA appear to have overlapping sites of action giving rise to complex channel behavior. Their actions converge in a physiologically relevant manner during muscarinic modulation of VGCCs. We speculate that M(1) muscarinic receptors may stimulate multiple lipases to break down the PIP(2) associated with VGCCs and leave PIP(2)'s freed fatty acid tails bound to the channels to confer modulation. This unexpectedly simple scheme gives rise to unanticipated predictions and redirects thinking about lipid regulation of VGCCs.
Collapse
Affiliation(s)
- Mandy L. Roberts-Crowley
- Program in Neuroscience, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655 USA
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655 USA
| | - Tora Mitra-Ganguli
- Program in Neuroscience, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655 USA
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655 USA
| | - Liwang Liu
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655 USA
| | - Ann R. Rittenhouse
- Program in Neuroscience, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655 USA
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655 USA
| |
Collapse
|
25
|
Peretti N, Roy CC, Sassolas A, Deslandres C, Drouin E, Rasquin A, Seidman E, Brochu P, Vohl MC, Labarge S, Bouvier R, Samson-Bouma ME, Charcosset M, Lachaux A, Levy E. Chylomicron retention disease: a long term study of two cohorts. Mol Genet Metab 2009; 97:136-42. [PMID: 19285442 DOI: 10.1016/j.ymgme.2009.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 02/09/2009] [Indexed: 10/21/2022]
Abstract
Lipoprotein assembly is critical for the intestinal absorption of dietary lipids and of fat-soluble vitamins. Through their inhibition of chylomicron secretion, mutations of the Sar1B gene coding for Sar1 GTPase are associated with chylomicron retention disease (CRD). The aim of this study was to describe the phenotypic expression of CRD in two clinically and genetically well characterized cohorts, and to compare their long term evolution. The study in 7 children from France (X age 11.3+/-1.7 years) and 9 from Quebec, Canada (X age 12+/-2.5 years) involved data collection from medical records for growth evaluation, neurological and ophthalmological status as well as bone density over an average follow-up period of 4.9 years for the French cohort and of 10.6 years for the Canadian one. All CRD patients presented within the first few months of life with diarrhea and failure to thrive. Severe hypocholesterolemia coupled with normal triglycerides was associated with low LDL and HDL-cholesterol, as well as with low apolipoproteins A-I and B. Varying degrees of essential fatty acid and of vitamin E deficiency were observed. The earlier diagnosis in the Canadian cohort (1.3+/-0.04 years) than in the French one (6.3+/-1.3 years) was unrelated with the severity of presenting symptoms. The fact that the disease had more impact on growth and bone density in the latter group may be related to delayed diagnosis of the disease. Vitamin E deficiency led to functional neurological and ophthalmic changes in a small number of patients but only one developed areflexia. Finally, genotype-phenotype correlation is not obvious in our cohort with CRD; even if, the Canadian subjects with the allele 409G>A had a more severe degree (P<0.001) of hypocholesterolemia than the other patients, many clinical data are inconsistent with a hypothetical genotype-phenotype correlation. This study provides new insights on the phenotypic expression of CRD over time and emphasizes the need to screen the lipid profile of infants with chronic diarrhea and failure to thrive.
Collapse
Affiliation(s)
- Noel Peretti
- Department of Nutrition, CHU Sainte-Justine, Université de Montréal, GI-Nutrition Unit, 3175 Ste-Catherine Road, Montreal, Que., Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yan J, Gong Y, She YM, Wang G, Roberts MS, Burczynski FJ. Molecular mechanism of recombinant liver fatty acid binding protein's antioxidant activity. J Lipid Res 2009; 50:2445-54. [PMID: 19474456 DOI: 10.1194/jlr.m900177-jlr200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatocytes expressing liver fatty acid binding protein (L-FABP) are known to be more resistant to oxidative stress than those devoid of this protein. The mechanism for the observed antioxidant activity is not known. We examined the antioxidant mechanism of a recombinant rat L-FABP in the presence of a hydrophilic (AAPH) or lipophilic (AMVN) free radical generator. Recombinant L-FABP amino acid sequence and its amino acid oxidative products following oxidation were identified by MALDI quadrupole time-of-flight MS after being digested by endoproteinase Glu-C. L-FABP was observed to have better antioxidative activity when free radicals were generated by the hydrophilic generator than by the lipophilic generator. Oxidative modification of L-FABP included up to five methionine oxidative peptide products with a total of approximately 80 Da mass shift compared with native L-FABP. Protection against lipid peroxidation of L-FABP after binding with palmitate or alpha-bromo-palmitate by the AAPH or AMVN free radical generators indicated that ligand binding can partially block antioxidant activity. We conclude that the mechanism of L-FABP's antioxidant activity is through inactivation of the free radicals by L-FABP's methionine and cysteine amino acids. Moreover, exposure of the L-FABP binding site further promotes its antioxidant activity. In this manner, L-FABP serves as a hepatocellular antioxidant.
Collapse
Affiliation(s)
- Jing Yan
- Faculty of Pharmacy, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Rowland A, Knights KM, Mackenzie PI, Miners JO. Characterization of the Binding of Drugs to Human Intestinal Fatty Acid Binding Protein (IFABP): Potential Role of IFABP as an Alternative to Albumin for in Vitro-in Vivo Extrapolation of Drug Kinetic Parameters. Drug Metab Dispos 2009; 37:1395-403. [DOI: 10.1124/dmd.109.027656] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
28
|
McIntosh AL, Atshaves BP, Hostetler HA, Huang H, Davis J, Lyuksyutova OI, Landrock D, Kier AB, Schroeder F. Liver type fatty acid binding protein (L-FABP) gene ablation reduces nuclear ligand distribution and peroxisome proliferator-activated receptor-alpha activity in cultured primary hepatocytes. Arch Biochem Biophys 2009; 485:160-73. [PMID: 19285478 DOI: 10.1016/j.abb.2009.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/03/2009] [Accepted: 03/05/2009] [Indexed: 11/29/2022]
Abstract
The effect of liver type fatty acid binding protein (L-FABP) gene ablation on the uptake and distribution of long chain fatty acids (LCFA) to the nucleus by real-time laser scanning confocal imaging and peroxisome proliferator-activated receptor-alpha (PPARalpha) activity was examined in cultured primary hepatocytes from livers wild-type L-FABP+/+ and gene ablated L-FABP-/- mice. Cultured primary hepatocytes from livers of L-FABP-/- mice exhibited: (i) reduced oxidation of palmitic acid, a common dietary long chain fatty acid (LCFA); (ii) reduced expression of fatty acid oxidative enzymes-proteins transcriptionally regulated by PPARalpha; (iii) reduced palmitic acid-induced PPARalpha co-immunoprecipitation with coactivator SRC-1 concomitant with increased PPARalpha co-immunoprecipitation with coinhibitor N-CoR; (iv) reduced palmitic acid-induced PPARalpha. Diminished PPARalpha activation in L-FABP null hepatocytes was associated with lower uptake of common dietary LCFA (palmitic acid as well as its fluorescent derivative BODIPY FL C(16)), reduced level of total unesterified LCFA, and real-time redistribution of BODIPY FL C(16) from the central nucleoplasm to the nuclear envelope. Taken together, these studies support the hypothesis that L-FABP may facilitate ligand (LCFA)-activated PPARalpha transcriptional activity at least in part by increasing total LCFA ligand available to PPARalpha for inducing PPARalpha-mediated transcription of proteins involved in LCFA metabolism.
Collapse
Affiliation(s)
- Avery L McIntosh
- Department of Physiology and Pharmacology, TVMC College Station, TX 77843-4466, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Polozova A, Salem N. Role of liver and plasma lipoproteins in selective transport of n-3 fatty acids to tissues: a comparative study of 14C-DHA and 3H-oleic acid tracers. J Mol Neurosci 2008; 33:56-66. [PMID: 17901547 DOI: 10.1007/s12031-007-0039-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
Abstract
We conducted a study aimed at a direct comparison of the plasma dynamics and uptake of docosahexaenoic (DHA) and oleic (OA) fatty acids by various organs. 14C-DHA and 3H-OA were intravenously co-injected into mice. At 5 min after injection, more than 40% of the 14C-DHA, but less than 20% of the 3H-OA, labels was associated with the liver. Heart uptake of 14C-DHA was three to four times greater compared to the 3H-OA label. Brain incorporation of 14C-DHA slowly rose to 0.7% at 24 h, but it remained at the 1-1.5% level for 3H-OA. Total 14C activity in plasma reached 2% of the injected dose at 20 min and leveled off at 0.5% after 1.5 h. Fifteen percent of 14C-DHA plasma activity at 30 min was associated with non-esterified fatty acids, whereas about 85% was recovered in triglycerides in very low-density lipoprotein (VLDL) and LDL fractions. Only 30% of 3H-OA derived activity was found in the VLDL fraction at 30 min. All 3H activity in plasma at later time points was in catabolite fractions. These findings demonstrate that liver plays an important role in the initial selectivity for DHA. It is likely that DHA is specifically taken up by liver, esterified, loaded into lipoproteins, and then delivered to brain, heart, and other target tissues.
Collapse
Affiliation(s)
- Alla Polozova
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 5625 Fishers Lane, Bethesda, MD 20892-9410, USA
| | | |
Collapse
|
30
|
Schug TT, Berry DC, Shaw NS, Travis SN, Noy N. Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell 2007; 129:723-33. [PMID: 17512406 PMCID: PMC1948722 DOI: 10.1016/j.cell.2007.02.050] [Citation(s) in RCA: 514] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 11/21/2006] [Accepted: 02/23/2007] [Indexed: 02/07/2023]
Abstract
Transcriptional activation of the nuclear receptor RAR by retinoic acid (RA) often leads to inhibition of cell growth. However, in some tissues, RA promotes cell survival and hyperplasia, activities that are unlikely to be mediated by RAR. Here, we show that, in addition to functioning through RAR, RA activates the "orphan" nuclear receptor PPARbeta/delta, which, in turn, induces the expression of prosurvival genes. Partitioning of RA between the two receptors is regulated by the intracellular lipid binding proteins CRABP-II and FABP5. These proteins specifically deliver RA from the cytosol to nuclear RAR and PPARbeta/delta, respectively, thereby selectively enhancing the transcriptional activity of their cognate receptors. Consequently, RA functions through RAR and is a proapoptotic agent in cells with high CRABP-II/FABP5 ratio, but it signals through PPARbeta/delta and promotes survival in cells that highly express FABP5. Opposing effects of RA on cell growth thus emanate from alternate activation of two different nuclear receptors.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Active Transport, Cell Nucleus/physiology
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Line, Tumor
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cell Survival/genetics
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/metabolism
- Fatty Acid-Binding Proteins/genetics
- Fatty Acid-Binding Proteins/metabolism
- Female
- Gene Expression Regulation, Neoplastic/physiology
- Humans
- Keratinocytes
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/physiopathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/physiopathology
- Mice
- PPAR-beta/drug effects
- PPAR-beta/metabolism
- Receptors, Retinoic Acid/drug effects
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Transcriptional Activation/drug effects
- Transcriptional Activation/physiology
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- Thaddeus T Schug
- Division of Nutritional Sciences, Cornell University, Ithaca NY 14850
| | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca NY 14850
| | - Natacha S. Shaw
- Division of Nutritional Sciences, Cornell University, Ithaca NY 14850
| | - Skylar N. Travis
- Division of Nutritional Sciences, Cornell University, Ithaca NY 14850
| | - Noa Noy
- Division of Nutritional Sciences, Cornell University, Ithaca NY 14850
- and Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
- *Address correspondence to this author at: 724 Biomedical Research Building, Case, Western Reserve University School of Medicine, 10900 Euclid Ave. Cleveland, OH, 44106-4965. Tel: 216-368-0302, Fax: 216-368-1300, E. mail:
| |
Collapse
|
31
|
Maté SM, Layerenza JP, Ves-Losada A. Incorporation of arachidonic and stearic acids bound to L-FABP into nuclear and endonuclear lipids from rat liver cells. Lipids 2007; 42:589-602. [PMID: 17551764 DOI: 10.1007/s11745-007-3063-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Accepted: 04/09/2007] [Indexed: 10/23/2022]
Abstract
The incorporation of exogenous fatty acids bound to L-FABP into nuclei was studied. Rat liver cell nuclei and nuclear matrices (membrane depleted nuclei) were incubated in vitro with [1-(14)C]18:0 and 20:4n-6 either free or bound to L-FABP, ATP and CoA. FA esterification in whole nuclei and endonuclear lipids was ATP-CoA-dependent, and with specificity regarding fatty acid type and lipid class. 18:0 and 20:4n-6, free or L-FABP bound, showed the same incorporation and esterification pattern in lipids of whole nuclei. Only 20:4n-6 L-FABP bound was less incorporated into TAG with respect to free 20:4n-6. In the nuclear matrix, 18:0 free or L-FABP bound was esterified with a higher specific activity (SA) into: PtdEtn > PtdIns, PtdSer > PtdCho. 20:4n-6 free or L-FABP bound was esterified into: PtdIns > PtdEtn > PtdCho. 20:4n-6:L-FABP was esterified in endonuclear total-PL and PtdIns with a greater SA with respect to free 20:4n-6 and with a minor one as FFA. To summarize, trafficking of FA to nuclei includes esterification of 18:0 and 20:4n-6 either free or L-FABP-bound, into nuclear and endonuclear lipids by an ATP-CoA-dependent pathway. Endonuclear fatty acid esterification was more active than that in whole nuclei, and independent of the nuclear membrane. Esterification patterns of fatty acids L-FABP-bound or free into whole nuclear lipids were the same whereas in the nuclear matrix, L-FABP could play an important role in the mobilization of 20:4n-6 into specific sites of utilization such as the PtdIns pools.
Collapse
Affiliation(s)
- Sabina M Maté
- Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, 60 y 120, 1900 La Plata, Argentina
| | | | | |
Collapse
|
32
|
Ayers SD, Nedrow KL, Gillilan RE, Noy N. Continuous nucleocytoplasmic shuttling underlies transcriptional activation of PPARgamma by FABP4. Biochemistry 2007; 46:6744-52. [PMID: 17516629 DOI: 10.1021/bi700047a] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FABP4 delivers specific ligands from the cytosol to the nuclear receptor PPARgamma in the nucleus, thereby facilitating the ligation and enhancing the transcriptional activity of the receptor. Here, we delineate the structural features that underlie the nucleocytoplasmic transport of FABP4. The primary sequence of FABP4 does not harbor a readily identifiable nuclear localization signal (NLS). However, such a signal could be found in the three-dimensional structure of the protein and was mapped to three basic residues that form a functional NLS stabilized by the FABP4/PPARgamma ligand troglitazone. We show that FABP4 is also subject to active nuclear export. Similarly to the NLS, the nuclear export signal (NES) is not apparent in the primary sequence, but assembles in the tertiary structure from three nonadjacent leucine residues to form a motif reminiscent of established NES. The data demonstrate that both nuclear export and nuclear import are critical for enabling FABP4 to enhance the transcriptional activity of PPARgamma. Additionally, the observations provide insight into the fundamental question of how proteins are activated by ligands. Such an activation may be understood by the "induced-fit" model, which states that ligand-induced conformational changes precede activation of a protein. Alternatively, the "pre-existing equilibrium" hypothesis postulates that activated conformations exist within the repertoire of apoproteins, and that ligands do not induce these but merely stabilize them. Studies of the subcellular localization of FABP4 support the validity of the "pre-existing equilibrium" model for the ligand-controlled activation of the nuclear import of FABP4.
Collapse
Affiliation(s)
- Stephen D Ayers
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
33
|
Donato LJ, Noy N. A fluorescence-based method for analyzing retinoic acid in biological samples. Anal Biochem 2006; 357:249-56. [PMID: 16919229 DOI: 10.1016/j.ab.2006.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 07/04/2006] [Accepted: 07/18/2006] [Indexed: 11/18/2022]
Abstract
Retinoic acid (RA) modulates the rates of transcription of numerous genes and thus plays key roles in multiple biological processes and is used in therapy of a number of diseases. However, RA therapy is often confounded by toxicity, raising the need for methodologies for its ready quantitation in biological samples. We describe a fluorescence-based method for quantitating RA that takes advantage of the high affinity and selectivity of the intracellular lipid-binding protein termed CRABP-I and CRABP-II and that uses them as RA sensors. L28C CRABP mutants were generated, and the inserted cysteine was covalently labeled with an environmentally sensitive fluorescent probe. The label was introduced into a region of the protein that undergoes a conformational shift on ligation. Consequently, RA binding resulted in distinct changes in the fluorescence of the protein-bound probe, allowing direct quantitation of RA. We show that the method can be used to monitor the biosynthesis of RA from its precursor retinal in cultured mammalian cells as well as the detection of exogenous RA in serum. The assay provides ease of use and sensitivity that enable quantitation of RA in biological samples of limited size, and it should prove to be useful in a variety of research and clinical applications.
Collapse
Affiliation(s)
- Leslie J Donato
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
34
|
Larsen LN, Granlund L, Holmeide AK, Skattebøl L, Nebb HI, Bremer J. Sulfur-substituted and alpha-methylated fatty acids as peroxisome proliferator-activated receptor activators. Lipids 2005; 40:49-57. [PMID: 15825830 DOI: 10.1007/s11745-005-1359-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
FA with varying chain lengths and an alpha-methyl group and/or a sulfur in the beta-position were tested as peroxisome proliferator-activated receptor (PPAR)alpha, -delta(beta), and -gamma ligands by transient transfection in COS-1 cells using chimeric receptor expression plasmids, containing cDNAs encoding the ligand-binding domain of PPARalpha, -delta, and -gamma. For PPARalpha, an increasing activation was found with increasing chain length of the sulfur-substituted FA up to C14-S acetic acid (tetradecylthioacetic acid = TTA). The derivatives were poor, and nonsignificant, activators of PPARdelta. For PPARgamma, activation increased with increasing chain length up to C16-S acetic acid. A methyl group was introduced in the alpha-position of palmitic acid, TTA, EPA, DHA, cis9,trans11 CLA, and trans10,cis12 CLA. An increased activation of PPARalpha was obtained for the alpha-methyl derivatives compared with the unmethylated FA. This increase also resulted in increased expression of the two PPARalpha target genes acyl-CoA oxidase and liver FA-binding protein for alpha-methyl TTA, alpha-methyl EPA, and alpha-methyl DHA. Decreased or altered metabolism of these derivatives in the cells cannot be excluded. In conclusion, saturated FA with sulfur in the beta-position and increasing carbon chain length from C9-S acetic acid to C14-S acetic acid have increasing effects as activators of PPARalpha and -gamma in transfection assays. Furthermore, alpha-methyl FA derivatives of a saturated natural FA (palmitic acid), a sulfur-substituted FA (TTA), and PUFA (EPA, DHA, c9,t11 CLA, and t10,c12 CLA) are stronger PPARalpha activators than the unmethylated compounds.
Collapse
Affiliation(s)
- Laila N Larsen
- Institute of Basic Medical Sciences, Department of Biochemistry, University of Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
35
|
Sessler RJ, Noy N. A Ligand-Activated Nuclear Localization Signal in Cellular Retinoic Acid Binding Protein-II. Mol Cell 2005; 18:343-53. [PMID: 15866176 DOI: 10.1016/j.molcel.2005.03.026] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 12/28/2004] [Accepted: 03/31/2005] [Indexed: 12/30/2022]
Abstract
Primary sequences of proteins often contain motifs that serve as "signatures" for subcellular targeting, such as a nuclear localization signal (NLS). However, many nuclear proteins do not harbor a recognizable NLS, and the pathways that mediate their nuclear translocation are unknown. This work focuses on CRABP-II, a cytosolic protein that moves to the nucleus upon binding of retinoic acid. While CRABP-II does not contain an NLS in its primary sequence, such a motif could be recognized in the protein's tertiary structure. We map the retinoic acid-induced structural rearrangements that result in the presence of this NLS in holo- but not apo-CRABP-II. The signal, whose three-dimensional configuration aligns strikingly well with a "classical" NLS, mediates ligand-induced association of CRABP-II with importin alpha and is critical for nuclear localization of the protein. The ligand-controlled NLS "switch" of CRABP-II may represent a general mechanism for posttranslational regulation of the subcellular distribution of a protein.
Collapse
Affiliation(s)
- Richard J Sessler
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
36
|
Robitaille J, Brouillette C, Lemieux S, Pérusse L, Gaudet D, Vohl MC. Plasma concentrations of apolipoprotein B are modulated by a gene--diet interaction effect between the LFABP T94A polymorphism and dietary fat intake in French-Canadian men. Mol Genet Metab 2004; 82:296-303. [PMID: 15308127 DOI: 10.1016/j.ymgme.2004.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 05/25/2004] [Accepted: 06/02/2004] [Indexed: 10/26/2022]
Abstract
Hyperapobetalipoproteinemia is a common feature of the metabolic syndrome and could result from the interaction between genetic and dietary factors. The objective of this study was to verify whether dietary fat intake interacts with the T94A polymorphism of the liver fatty acid-binding protein (LFABP) gene to modulate plasma apolipoprotein (apo) B levels. Dietary fat and saturated fat intakes were obtained by a dietitian-administered food frequency questionnaire and the LFABP T94A genotype was determined by a PCR-RFLP based method in 623 French-Canadian men recruited through the Chicoutimi Lipid Clinic (279 T94/T94, 285 T94/A94, and 59 A94/A94). The LFABP T94A polymorphism was not associated with plasma apo B levels when fat intake was not taken into consideration. However, in a model including the polymorphism, fat intake expressed as a percentage of total energy intake, the interaction term and covariates, the variance in apo B concentrations was partly explained by the LFABP T94A polymorphism (5.24%, p = 0.01) and by the LFABP T94A*fat interaction (6.25%, p = 0.005). Results were similar when saturated fat replaced fat intake in the model (4.49%, p = 0.02 for LFABP T94A and 6.43%, p = 0.004 for the interaction). Moreover, in men consuming more than 30% of energy from fat, the odds ratio for having plasma apo B levels above 1.04 g/L for A94 carriers was of 0.40 (p = 0.02) compared to T94/T94 homozygotes. Results were similar for carriers of the A94 allele consuming more than 10% of energy from saturated fat (OR: 0.32, p = 0.005). In conclusion, T94/T94 exhibit higher apo B levels whereas carriers of the A94 allele seem to be protected against high apo B levels when consuming a high fat and saturated fat diet. These findings reinforce the importance to take into account gene-diet interactions in the prevention and management of the metabolic syndrome.
Collapse
Affiliation(s)
- J Robitaille
- Lipid Research Center, CHUQ-CHUL Pavilion, Ste-Foy, Que., Canada G1V 4G2
| | | | | | | | | | | |
Collapse
|
37
|
Newberry EP, Xie Y, Kennedy S, Han X, Buhman KK, Luo J, Gross RW, Davidson NO. Decreased Hepatic Triglyceride Accumulation and Altered Fatty Acid Uptake in Mice with Deletion of the Liver Fatty Acid-binding Protein Gene. J Biol Chem 2003; 278:51664-72. [PMID: 14534295 DOI: 10.1074/jbc.m309377200] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Liver fatty acid-binding protein (L-Fabp) is an abundant cytosolic lipid-binding protein with broad substrate specificity, expressed in mammalian enterocytes and hepatocytes. We have generated mice with a targeted deletion of the endogenous L-Fabp gene and have characterized their response to alterations in hepatic fatty acid flux following prolonged fasting. Chow-fed L-Fabp-/- mice were indistinguishable from wild-type littermates with regard to growth, serum and tissue lipid profiles, and fatty acid distribution within hepatic complex lipid species. In response to 48-h fasting, however, wild-type mice demonstrated a approximately 10-fold increase in hepatic triglyceride content while L-Fabp-/- mice demonstrated only a 2-fold increase. Hepatic VLDL secretion was decreased in L-Fabp-/- mice suggesting that the decreased accumulation of hepatic triglyceride was not the result of increased secretion. Fatty acid oxidation, as inferred from serum beta-hydroxybutyrate levels, was increased in response to fasting, although the increase in L-Fabp-/- mice was significantly reduced in comparison to wild-type controls, despite comparable induction of PPAR alpha target genes. Studies in primary hepatocytes revealed indistinguishable initial rates of oleate uptake, but longer intervals revealed reduced rates of uptake in fasted L-Fabp-/- mice. Oleate incorporation into cellular triglyceride and diacylglycerol was reduced in L-Fabp-/- mice although incorporation into phospholipid and cholesterol ester was no different than wild-type controls. These data point to an inducible defect in fatty acid utilization in fasted L-Fabp-/- mice that involves targeting of substrate for use in triglyceride metabolism.
Collapse
Affiliation(s)
- Elizabeth P Newberry
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Pawar A, Jump DB. Unsaturated fatty acid regulation of peroxisome proliferator-activated receptor alpha activity in rat primary hepatocytes. J Biol Chem 2003; 278:35931-9. [PMID: 12853447 DOI: 10.1074/jbc.m306238200] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs alpha, beta, gamma1, and gamma2) are widely regarded as monitors of intracellular nonesterified fatty acid (NEFA) levels. As such, fatty acid binding to PPAR leads to changes in the transcription of many genes involved in lipid metabolism and storage. Although the composition of the intracellular NEFA pool is likely an important factor controlling PPAR activity, little information is available on factors affecting its composition. Accordingly, we have examined the effects of exogenous fatty acids on PPARalpha activity and NEFA pool composition in rat primary hepatocytes. Prior to the addition of fatty acids to primary hepatocytes, nonesterified unsaturated fatty acid levels are very low, representing </=0.5% of the total fatty acid in the cell. The relative abundance of putative PPARalpha ligands in the NEFA pool is 20:4n-6 = 18:2n-6 = 18:1n-9 > 22:6n-3 > 18:3n-3/6 = 20:5n-3. Of these fatty acids, only 20:5n-3 and 22:6n-3 consistently induced PPARalpha activity. Metabolic labeling of primary hepatocytes indicated that both 14C-18:1n-9 and 14C-20:5n-3 are rapidly assimilated into neutral and polar lipids. Although the addition of 18:1n-9 had no effect on NEFA pool composition, 20:5n-3 mass increased >15-fold within 90 min. Changes in NEFA pool 20:5n-3 mass correlated with dynamic changes in the PPARalpha-regulated transcript mRNACYP4A. Metabolic labeling also indicated that a significant fraction of 14C-20:5n-3 was elongated to 22:5n-3. Cells treated with 22:5n-3 or 22:6n-3 led to a significant accumulation of 20:5n-3 in the NEFA pool through a process that requires peroxisomal beta-oxidation and fatty acyl CoA thioesterase activity. Further analyses suggest that 20:5n-3 and 22:6n-3, but not 22:5n-3, are active ligands for PPARalpha. These studies suggest that basal fatty acid levels in the NEFA pool coupled with rates of fatty acid esterification, elongation, desaturation, peroxisomal beta-oxidation, and fatty acyl thioestease activity are important determinants controlling NEFA pool composition and PPARalpha activity.
Collapse
Affiliation(s)
- Anjali Pawar
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
39
|
Panagabko C, Morley S, Hernandez M, Cassolato P, Gordon H, Parsons R, Manor D, Atkinson J. Ligand specificity in the CRAL-TRIO protein family. Biochemistry 2003; 42:6467-74. [PMID: 12767229 DOI: 10.1021/bi034086v] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intracellular trafficking of hydrophobic ligands is often mediated by specific binding proteins. The CRAL-TRIO motif is common to several lipid binding proteins including the cellular retinaldehyde binding protein (CRALBP), the alpha-tocopherol transfer protein (alpha-TTP), yeast phosphatidylinositol transfer protein (Sec14p), and supernatant protein factor (SPF). To examine the ligand specificity of these proteins, we measured their affinity toward a variety of hydrophobic ligands using a competitive [(3)H]-RRR-alpha-tocopherol binding assay. Alpha-TTP preferentially bound RRR-alpha-tocopherol over all other tocols assayed, exhibiting a K(d) of 25 nM. Binding affinities of other tocols for alphaTTP closely paralleled their ability to inhibit in vitro intermembrane transfer and their potency in biological assays. All other homologous proteins studied bound alpha-tocopherol but with pronouncedly weaker (> 10-fold) affinities than alpha-TTP. Sec14p demonstrated a K(d) of 373 nM for alpha-tocopherol, similar to that for its native ligand, phosphatidylinositol (381 nM). Human SPF had the highest affinity for phosphatidylinositol (216 nM) and gamma-tocopherol (268 nM) and significantly weaker affinity for alpha-tocopherol (K(d) 615 nM). SPF bound [(3)H]-squalene more weakly (879 nM) than the other ligands. Our data suggest that of all known CRAL-TRIO proteins, only alphaTTP is likely to serve as the physiological mediator of alpha-tocopherol's biological activity. Further, ligand promiscuity observed within this family suggests that caution should be exercised when suggesting protein function(s) from measurements utilizing a single ligand.
Collapse
Affiliation(s)
- Candace Panagabko
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, Ontario, Canada, L2S 3A1
| | | | | | | | | | | | | | | |
Collapse
|