1
|
Liu L, Xu Y, Ma Y, Duan F, Wang C, Feng J, Yin H, Sun L, Li P, Li ZH. Fate of polystyrene micro- and nanoplastics in zebrafish liver cells: Influence of protein corona on transport, oxidative stress, and glycolipid metabolism. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137596. [PMID: 39952126 DOI: 10.1016/j.jhazmat.2025.137596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/25/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Micro- and nanoplastics (MNPs) form protein corona (PC) upon contact with biological fluids, but their impact on the intracellular transport, distribution, and toxicity of MNPs remains unclear. Fetal bovine serum (FBS) and bovine serum albumin (BSA) were used to simulate in vivo environment, this study explored their influence on the transport and toxicity of polystyrene (PS) MNPs in zebrafish liver (ZFL) cells. Results showed PS MNPs were wrapped by proteins into stable complexes. Nanoparticles (NP, 50 nm) and their protein complexes (NP@PC) were internalized by cells within 6 h, with PC formation enhancing NP uptake. NP primarily entered cells through clathrin- and caveolae-mediated endocytosis, while NP@PC via clathrin-mediated pathways. Internalized particles were predominantly in lysosomes where PC degraded and some were also in mitochondria. Eventually, particles were expelled from cells through energy-dependent lysosomal pathways and energy-independent membrane penetration mechanisms. Notably, PC formation limited the clearance of NP. In toxicity, NP had a more severe impact than microplastics (MP, 5 μm). FBS more effectively mitigated PS MNPs-induced reactive oxygen species accumulation, subcellular structural damage, and dysregulation of glycolipid metabolism than BSA did. This study elucidates the modulatory role of PC on biological effects of MNPs, providing safety and risk management strategies.
Collapse
Affiliation(s)
- Ling Liu
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Yanan Xu
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Yuqing Ma
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Fengshang Duan
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Cunlong Wang
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Jianxue Feng
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Haiyang Yin
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Le Sun
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Ping Li
- Marine College, Shandong University, Shandong, Weihai 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Shandong, Weihai 264209, China.
| |
Collapse
|
2
|
Morales-Paytuví F, Fajardo A, Ruiz-Mirapeix C, Rae J, Tebar F, Bosch M, Enrich C, Collins BM, Parton RG, Pol A. Early proteostasis of caveolins synchronizes trafficking, degradation, and oligomerization to prevent toxic aggregation. J Cell Biol 2023; 222:e202204020. [PMID: 37526691 PMCID: PMC10394380 DOI: 10.1083/jcb.202204020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/05/2023] [Accepted: 06/09/2023] [Indexed: 08/02/2023] Open
Abstract
Caveolin-1 (CAV1) and CAV3 are membrane-sculpting proteins driving the formation of the plasma membrane (PM) caveolae. Within the PM mosaic environment, caveola assembly is unique as it requires progressive oligomerization of newly synthesized caveolins while trafficking through the biosynthetic-secretory pathway. Here, we have investigated these early events by combining structural, biochemical, and microscopy studies. We uncover striking trafficking differences between caveolins, with CAV1 rapidly exported to the Golgi and PM while CAV3 is initially retained in the endoplasmic reticulum and laterally moves into lipid droplets. The levels of caveolins in the endoplasmic reticulum are controlled by proteasomal degradation, and only monomeric/low oligomeric caveolins are exported into the cis-Golgi with higher-order oligomers assembling beyond this compartment. When any of those early proteostatic mechanisms are compromised, chemically or genetically, caveolins tend to accumulate along the secretory pathway forming non-functional aggregates, causing organelle damage and triggering cellular stress. Accordingly, we propose a model in which disrupted proteostasis of newly synthesized caveolins contributes to pathogenesis.
Collapse
Affiliation(s)
- Frederic Morales-Paytuví
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alba Fajardo
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carles Ruiz-Mirapeix
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - James Rae
- Institute for Molecular Bioscience (IMB), The University of Queensland (UQ) , Brisbane, Australia
| | - Francesc Tebar
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Enrich
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Brett M Collins
- Institute for Molecular Bioscience (IMB), The University of Queensland (UQ) , Brisbane, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience (IMB), The University of Queensland (UQ) , Brisbane, Australia
- Centre for Microscopy and Microanalysis (CMM), The University of Queensland (UQ), Brisbane, Australia
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) , Barcelona, Spain
| |
Collapse
|
3
|
Suter C, Colakovic M, Bieri J, Gultom M, Dijkman R, Ros C. Globoside and the mucosal pH mediate parvovirus B19 entry through the epithelial barrier. PLoS Pathog 2023; 19:e1011402. [PMID: 37220143 DOI: 10.1371/journal.ppat.1011402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/03/2023] [Indexed: 05/25/2023] Open
Abstract
Parvovirus B19 (B19V) is transmitted primarily via the respiratory route, however, the mechanism involved remains unknown. B19V targets a restricted receptor expressed in erythroid progenitor cells in the bone marrow. However, B19V shifts the receptor under acidic conditions and targets the widely expressed globoside. The pH-dependent interaction with globoside may allow virus entry through the naturally acidic nasal mucosa. To test this hypothesis, MDCK II cells and well-differentiated human airway epithelial cell (hAEC) cultures were grown on porous membranes and used as models to study the interaction of B19V with the epithelial barrier. Globoside expression was detected in polarized MDCK II cells and the ciliated cell population of well-differentiated hAEC cultures. Under the acidic conditions of the nasal mucosa, virus attachment and transcytosis occurred without productive infection. Neither virus attachment nor transcytosis was observed under neutral pH conditions or in globoside knockout cells, demonstrating the concerted role of globoside and acidic pH in the transcellular transport of B19V. Globoside-dependent virus uptake involved VP2 and occurred by a clathrin-independent pathway that is cholesterol and dynamin-dependent. This study provides mechanistic insight into the transmission of B19V through the respiratory route and reveals novel vulnerability factors of the epithelial barrier to viruses.
Collapse
Affiliation(s)
- Corinne Suter
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Minela Colakovic
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Jan Bieri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Mitra Gultom
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Ronald Dijkman
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Carlos Ros
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Pasello M, Giudice AM, Cristalli C, Manara MC, Mancarella C, Parra A, Serra M, Magagnoli G, Cidre-Aranaz F, Grünewald TGP, Bini C, Lollini PL, Longhi A, Donati DM, Scotlandi K. ABCA6 affects the malignancy of Ewing sarcoma cells via cholesterol-guided inhibition of the IGF1R/AKT/MDM2 axis. Cell Oncol (Dordr) 2022; 45:1237-1251. [PMID: 36149602 DOI: 10.1007/s13402-022-00713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The relevance of the subfamily A members of ATP-binding cassette (ABCA) transporters as biomarkers of risk and response is emerging in different tumors, but their mechanisms of action have only been partially defined. In this work, we investigated their role in Ewing sarcoma (EWS), a pediatric cancer with unmet clinical issues. METHODS The expression of ABC members was evaluated by RT-qPCR in patients with localized EWS. The correlation with clinical outcome was established in different datasets using univariate and multivariate statistical methods. Functional studies were conducted in cell lines from patient-derived xenografts (PDXs) using gain- or loss-of-function approaches. The impact of intracellular cholesterol levels and cholesterol lowering drugs on malignant parameters was considered. RESULTS We found that ABCA6, which is usually poorly expressed in EWS, when upregulated became a prognostic factor of a favorable outcome in patients. Mechanistically, high expression of ABCA6 impaired cell migration and increased cell chemosensitivity by diminishing the intracellular levels of cholesterol and by constitutive IGF1R/AKT/mTOR expression/activation. Accordingly, while exposure of cells to exogenous cholesterol increased AKT/mTOR activation, the cholesterol lowering drug simvastatin inhibited IGF1R/AKT/mTOR signaling and prevented Ser166 phosphorylation of MDM2. This, in turn, favored p53 activation and enhanced pro-apoptotic effects of doxorubicin. CONCLUSIONS Our study reveals that ABCA6 acts as tumor suppressor in EWS cells via cholesterol-mediated inhibition of IGF1R/AKT/MDM2 signaling, which promotes the pro-apoptotic effects of doxorubicin and reduces cell migration. Our findings also support a role of ABCA6 as biomarker of EWS progression and sustains its assessment for a more rational use of statins as adjuvant drugs.
Collapse
Affiliation(s)
- Michela Pasello
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| | - Anna Maria Giudice
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.,Alma Mater Institute On Healthy Planet - Alma Healthy Planet, University of Bologna, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Camilla Cristalli
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - Maria Cristina Manara
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - Caterina Mancarella
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - Alessandro Parra
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - Massimo Serra
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - Giovanna Magagnoli
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Florencia Cidre-Aranaz
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.,Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Thomas G P Grünewald
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.,Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Carla Bini
- Laboratory of Forensic Genetics, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Pier-Luigi Lollini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Alessandra Longhi
- Osteoncologia, Sarcomi dell'osso e dei Tessuti Molli e Terapie Innovative, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Davide Maria Donati
- Unit of 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Katia Scotlandi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| |
Collapse
|
5
|
Ganapathy AS, Saha K, Suchanec E, Singh V, Verma A, Yochum G, Koltun W, Nighot M, Ma T, Nighot P. AP2M1 mediates autophagy-induced CLDN2 (claudin 2) degradation through endocytosis and interaction with LC3 and reduces intestinal epithelial tight junction permeability. Autophagy 2022; 18:2086-2103. [PMID: 34964704 PMCID: PMC9466623 DOI: 10.1080/15548627.2021.2016233] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The intestinal epithelial tight junctions (TJs) provide barrier against paracellular permeation of lumenal antigens. Defects in TJ barrier such as increased levels of pore-forming TJ protein CLDN2 (claudin-2) is associated with inflammatory bowel disease. We have previously reported that starvation-induced macroautophagy/autophagy enhances the TJ barrier by degrading pore-forming CLDN2. In this study, we examined the molecular mechanism underlying autophagy-induced CLDN2 degradation. CLDN2 degradation was persistent in multiple modes of autophagy induction. Immunolocalization, membrane fractionation, and pharmacological inhibition studies showed increased clathrin-mediated CLDN2 endocytosis upon starvation. Inhibition of clathrin-mediated endocytosis negated autophagy-induced CLDN2 degradation and enhancement of the TJ barrier. The co-immunoprecipitation studies showed increased association of CLDN2 with clathrin and adaptor protein AP2 (AP2A1 and AP2M1 subunits) as well as LC3 and lysosomes upon starvation, signifying the role of clathrin-mediated endocytosis in autophagy-induced CLDN2 degradation. The expression and phosphorylation of AP2M1 was increased upon starvation. In-vitro, in-vivo (mouse colon), and ex-vivo (human colon) inhibition of AP2M1 activation prevented CLDN2 degradation. AP2M1 knockout prevented autophagy-induced CLDN2 degradation via reduced CLDN2-LC3 interaction. Site-directed mutagenesis revealed that AP2M1 binds to CLDN2 tyrosine motifs (YXXФ) (67-70 and 148-151). Increased baseline expression of CLDN2 and TJ permeability along with reduced CLDN2-AP2M1-LC3 interactions in ATG7 knockout cells validated the role of autophagy in modulation of CLDN2 levels. Acute deletion of Atg7 in mice increased CLDN2 levels and the susceptibility to experimental colitis. The autophagy-regulated molecular mechanisms linking CLDN2, AP2M1, and LC3 may provide therapeutic tools against intestinal inflammation.Abbreviations: Amil: amiloride; AP2: adaptor protein complex 2; AP2A1: adaptor related protein complex 2 subunit alpha 1; AP2M1: adaptor related protein complex 2 subunit mu 1; ATG7: autophagy related 7; CAL: calcitriol; Cas9: CRISPR-associated protein 9; Con: control; CPZ: chlorpromazine; DSS: dextran sodium sulfate; EBSS: Earle's balanced salt solution; IBD: inflammatory bowel disease; TER: trans-epithelial resistance; KD: knockdown; KO: knockout; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MβCD: Methyl-β-cyclodextrin; MET: metformin; MG132: carbobenzoxy-Leu-Leu-leucinal; MTOR: mechanistic target of rapamycin kinase; NT: non target; RAPA: rapamycin; RES: resveratrol; SMER: small-molecule enhancer 28; SQSTM1: sequestosome 1; ST: starvation; ULK1: unc-51 like autophagy activating kinase 1; WT: wild type.
Collapse
Affiliation(s)
| | - Kushal Saha
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Eric Suchanec
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Vikash Singh
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State College of Medicine, Hershey, Pa, USA
| | - Aayush Verma
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Gregory Yochum
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Walter Koltun
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Meghali Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Thomas Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA,CONTACT Prashant Nighot Department of Medicine, College of Medicine, Penn State University, Hershey, PA17033, USA
| |
Collapse
|
6
|
Mai M, Guo X, Huang Y, Zhang W, Xu Y, Zhang Y, Bai X, Wu J, Zu H. DHCR24 Knockdown Induces Tau Hyperphosphorylation at Thr181, Ser199, Ser262, and Ser396 Sites via Activation of the Lipid Raft-Dependent Ras/MEK/ERK Signaling Pathway in C8D1A Astrocytes. Mol Neurobiol 2022; 59:5856-5873. [PMID: 35804281 PMCID: PMC9395500 DOI: 10.1007/s12035-022-02945-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/28/2022] [Indexed: 02/01/2023]
Abstract
The synthetase 3β-hydroxysterol-Δ24 reductase (DHCR24) is a key regulator involved in cholesterol synthesis and homeostasis. A growing body of evidence indicates that DHCR24 is downregulated in the brain of various models of Alzheimer's disease (AD), such as astrocytes isolated from AD mice. For the past decades, astrocytic tau pathology has been found in AD patients, while the origin of phosphorylated tau in astrocytes remains unknown. A previous study suggests that downregulation of DHCR24 is associated with neuronal tau hyperphosphorylation. Herein, the present study is to explore whether DHCR24 deficiency can also affect tau phosphorylation in astrocytes. Here, we showed that DHCR24 knockdown could induce tau hyperphosphorylation at Thr181, Ser199, Thr231, Ser262, and Ser396 sites in C8D1A astrocytes. Meanwhile, we found that DHCR24-silencing cells had reduced the level of free cholesterol in the plasma membrane and intracellular organelles, as well as cholesterol esters. Furthermore, reduced cellular cholesterol level caused a decreased level of the caveolae-associated protein, cavin1, which disrupted lipid rafts/caveolae and activated rafts/caveolae-dependent Ras/MEK/ERK signaling pathway. In contrast, overexpression of DHCR24 prevented the overactivation of Ras/MEK/ERK signaling by increasing cellular cholesterol content, therefore decreasing tau hyperphosphorylation in C8D1A astrocytes. Herein, we firstly found that DHCR24 knockdown can lead to tau hyperphosphorylation in the astrocyte itself by activating lipid raft-dependent Ras/MEK/ERK signaling, which might contribute to the pathogenesis of AD and other degenerative tauopathies.
Collapse
Affiliation(s)
- Meiting Mai
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-hang Road, Jinshan district, Shanghai, 201508 China
| | - Xiaorou Guo
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-hang Road, Jinshan district, Shanghai, 201508 China
| | - Yue Huang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-hang Road, Jinshan district, Shanghai, 201508 China
| | - Wenbin Zhang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-hang Road, Jinshan district, Shanghai, 201508 China
| | - Yixuan Xu
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-hang Road, Jinshan district, Shanghai, 201508 China
| | - Ying Zhang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-hang Road, Jinshan district, Shanghai, 201508 China
| | - Xiaojing Bai
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-hang Road, Jinshan district, Shanghai, 201508 China
| | - Junfeng Wu
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-hang Road, Jinshan district, Shanghai, 201508 China
| | - Hengbing Zu
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-hang Road, Jinshan district, Shanghai, 201508 China
| |
Collapse
|
7
|
Chen L, Zhao ZW, Zeng PH, Zhou YJ, Yin WJ. Molecular mechanisms for ABCA1-mediated cholesterol efflux. Cell Cycle 2022; 21:1121-1139. [PMID: 35192423 PMCID: PMC9103275 DOI: 10.1080/15384101.2022.2042777] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The maintenance of cellular cholesterol homeostasis is essential for normal cell function and viability. Excessive cholesterol accumulation is detrimental to cells and serves as the molecular basis of many diseases, such as atherosclerosis, Alzheimer's disease, and diabetes mellitus. The peripheral cells do not have the ability to degrade cholesterol. Cholesterol efflux is therefore the only pathway to eliminate excessive cholesterol from these cells. This process is predominantly mediated by ATP-binding cassette transporter A1 (ABCA1), an integral membrane protein. ABCA1 is known to transfer intracellular free cholesterol and phospholipids to apolipoprotein A-I (apoA-I) for generating nascent high-density lipoprotein (nHDL) particles. nHDL can accept more free cholesterol from peripheral cells. Free cholesterol is then converted to cholesteryl ester by lecithin:cholesterol acyltransferase to form mature HDL. HDL-bound cholesterol enters the liver for biliary secretion and fecal excretion. Although how cholesterol is transported by ABCA1 to apoA-I remains incompletely understood, nine models have been proposed to explain this effect. In this review, we focus on the current view of the mechanisms underlying ABCA1-mediated cholesterol efflux to provide an important framework for future investigation and lipid-lowering therapy.
Collapse
Affiliation(s)
- Lei Chen
- Department of Cardiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Zhen-Wang Zhao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Peng-Hui Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ying-Jie Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wen-Jun Yin
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China,CONTACT Wen-Jun Yin Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan421001, China
| |
Collapse
|
8
|
Rincón-López J, Martínez-Aguilera M, Guadarrama P, Juarez-Moreno K, Rojas-Aguirre Y. Exploring In Vitro Biological Cellular Responses of Pegylated β-Cyclodextrins. Molecules 2022; 27:molecules27093026. [PMID: 35566378 PMCID: PMC9101635 DOI: 10.3390/molecules27093026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
βCDPEG5 and βCDPEG2 are two derivatives comprising seven PEG linear chains of 5 and 2 kDa, respectively, conjugated to βCD. As βCDPEGs display different physicochemical properties than their precursors, they could also trigger distinct cellular responses. To investigate the biological behavior of βCDPEGs in comparison to their parent compounds, we performed broad toxicological assays on RAW 264.7 macrophages, MC3T3-E1 osteoblasts, and MDCK cells. By analyzing ROS and NO2− overproduction in macrophages, we found that βCDPEGs induced a moderate stress response without affecting cell viability. Although MC3T3-E1 osteoblasts were more sensitive than MDCK cells to βCDPEGs and the parent compounds, a similar pattern was observed: the effect of βCDPEG5 on cell viability and cell cycle progression was larger than that of βCDPEG2; PEG2 affected cell viability and cell cycle more than βCDPEG2; cell post-treatment recovery was favorable in all cases, and the compounds had similar behaviors regarding ROS generation. The effect on MDCK cell migration followed a similar pattern. In contrast, for osteoblasts, the interference of βCDPEG5 with cell migration was smaller than that of βCDPEG2; likewise, the effect of PEG2 was shorter than its conjugate. Overall, the covalent conjugation of βCD and PEGs, particularly to yield βCDPEG2, improved the biocompatibility profile, evidencing that a favorable biological response can be tuned through a thoughtful combination of materials. Moreover, this is the first time that an in vitro evaluation of βCD and PEG has been presented for MC3T3-E1 and MDCK cells, thus providing valuable knowledge for designing biocompatible nanomaterials constructed from βCD and PEGs.
Collapse
Affiliation(s)
- Juliana Rincón-López
- Laboratorio de Materiales Supramoleculares (SupraMatLab), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Coyoacán 04510, Mexico; (J.R.-L.); (M.M.-A.); (P.G.)
| | - Miguelina Martínez-Aguilera
- Laboratorio de Materiales Supramoleculares (SupraMatLab), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Coyoacán 04510, Mexico; (J.R.-L.); (M.M.-A.); (P.G.)
| | - Patricia Guadarrama
- Laboratorio de Materiales Supramoleculares (SupraMatLab), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Coyoacán 04510, Mexico; (J.R.-L.); (M.M.-A.); (P.G.)
| | - Karla Juarez-Moreno
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, (CFATA-UNAM), Blvd. Juriquilla #3001 Col. Jurica La Mesa CP, Querétaro 76230, Mexico
- Correspondence: (K.J.-M.); (Y.R.-A.); Tel.: +52-(442)-192-6128 (ext. 140) (K.J.-M.); +52-5556-2266-66 (ext. 45675) (Y.R.-A.)
| | - Yareli Rojas-Aguirre
- Laboratorio de Materiales Supramoleculares (SupraMatLab), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Coyoacán 04510, Mexico; (J.R.-L.); (M.M.-A.); (P.G.)
- Correspondence: (K.J.-M.); (Y.R.-A.); Tel.: +52-(442)-192-6128 (ext. 140) (K.J.-M.); +52-5556-2266-66 (ext. 45675) (Y.R.-A.)
| |
Collapse
|
9
|
Gupta S, Mallick D, Banerjee K, Mukherjee S, Sarkar S, Lee STM, Basuchowdhuri P, Jana SS. D155Y substitution of SARS-CoV-2 ORF3a weakens binding with Caveolin-1. Comput Struct Biotechnol J 2022; 20:766-778. [PMID: 35126886 PMCID: PMC8802530 DOI: 10.1016/j.csbj.2022.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 02/08/2023] Open
Abstract
The clinical manifestation of the recent pandemic COVID-19, caused by the novel SARS-CoV-2 virus, varies from mild to severe respiratory illness. Although environmental, demographic and co-morbidity factors have an impact on the severity of the disease, contribution of the mutations in each of the viral genes towards the degree of severity needs a deeper understanding for designing a better therapeutic approach against COVID-19. Open Reading Frame-3a (ORF3a) protein has been found to be mutated at several positions. In this work, we have studied the effect of one of the most frequently occurring mutants, D155Y of ORF3a protein, found in Indian COVID-19 patients. Using computational simulations we demonstrated that the substitution at 155th changed the amino acids involved in salt bridge formation, hydrogen-bond occupancy, interactome clusters, and the stability of the protein compared with the other substitutions found in Indian patients. Protein-protein docking using HADDOCK analysis revealed that substitution D155Y weakened the binding affinity of ORF3a with caveolin-1 compared with the other substitutions, suggesting its importance in the overall stability of ORF3a-caveolin-1 complex, which may modulate the virulence property of SARS-CoV-2.
Collapse
Key Words
- ARL6IP6, ADP Ribosylation Factor Like GTPase 6 interacting protein 6
- ASC, Apoptosis associated speck-like protein containing a caspase recruitment domain
- BLAST, Basic Local Alignment Search Tool
- CD4+, Cluster of Differentiation 4+
- CD8+, Cluster of Differentiation 8+
- COVID-19, Coronavirus Disease 2019
- Caveolin-1
- Cryo-EM, Cryo Electron Microscope
- Graph theory
- HMOX1, Heme Oxygenase 1
- IFN, Interferon
- MERS-CoV, Middle East respiratory syndrome coronavirus
- MMGBSA, Molecular mechanics with generalized Born and surface area solvation
- Molecular dynamics simulation
- Mutation
- NCBI, National Centre for Biotechnology Information
- NF-
κ
B, Nuclear factor kappa light chain enhancer of activated B cells
- NLRP3, Nucleotide-binding oligomerization domain, Leucine rich repeat and Pyrin domain containing
- ORF, Open Reading Frame
- ORF3a
- PDB, Protein Data Bank
- PISA, Protein Interfaces Surfaces and Assemblies
- PROVEAN, Protein Variation Effect Analyzer
- RMSD, Root Mean Square Deviation
- SARS-CoV-2
- SUN2, SUN domain-containing protein 2
- TRIM59, Tripartite motif-containing protein 59.
Collapse
Affiliation(s)
- Suchetana Gupta
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, India
| | - Ditipriya Mallick
- School of Biological Sciences, Indian Association for the Cultivation of Science, India
| | - Kumarjeet Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, India
| | - Shrimon Mukherjee
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, India
| | | | - Sonny TM Lee
- Division of Biology, Kansas State University, USA
| | - Partha Basuchowdhuri
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, India
| | - Siddhartha S Jana
- School of Biological Sciences, Indian Association for the Cultivation of Science, India
| |
Collapse
|
10
|
Silva LND, Garcia IJP, Valadares JMM, Pessoa MTC, Toledo MM, Machado MV, Busch MS, Rocha I, Villar JAFP, Atella GC, Santos HL, Cortes VF, Barbosa LA. Evaluation of Cardiotonic Steroid Modulation of Cellular Cholesterol and Phospholipid. J Membr Biol 2021; 254:499-512. [PMID: 34716469 DOI: 10.1007/s00232-021-00203-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/09/2021] [Indexed: 02/05/2023]
Abstract
We have previously shown that 21-benzylidene digoxin (21-BD) increases the total cholesterol and phospholipid content on the membrane of HeLa cells. Lipid modulation caused by cardiotonic steroids (CTS) is still unexplored. Therefore, the aim of the present study was to evaluate the cholesterol and phospholipid modulation of the cell membrane caused by ouabain and 21-BD and the possible involvement of the caveolae on this modulation. For this, one cell line containing caveolae (HeLa) and other not containing (Caco-2) were used. The modulation of the lipid profile was evaluated by total cholesterol and phospholipids measurements, and identification of membrane phospholipids by HPTLC. The cholesterol distribution was evaluated by filipin staining. The caveolin-1 expression was evaluated by Western Blotting. Ouabain had no effect on the total membrane lipid content in both cell lines. However, 21-BD increased total membrane phospholipid content and had no effect on the membrane cholesterol content in Caco-2 cells. CTS were not able to alter the specific phospholipids content. In the filipin experiments, 21-BD provoked a remarkable redistribution of cholesterol to the perinuclear region of HeLa cells. In Caco-2 cells, it was observed only a slight increase in cholesterol, especially as intracellular vesicles. The caveolin-1 expression was not altered by any of the compounds. Our data mainly show different effects of two cardiotonic steroids. Ouabain had no effect on the lipid profile of cells, whereas 21-BD causes important changes in cholesterol and phospholipid content. Therefore, the modulation of cholesterol content in the plasma membrane of HeLa cells is not correlated with the expression of caveolin-1.
Collapse
Affiliation(s)
- Lilian N D Silva
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, Zip Code: 35501-296, Brazil.,Laboratório de Bioquímica de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Israel J P Garcia
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, Zip Code: 35501-296, Brazil.,Laboratório de Bioquímica de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Jessica M M Valadares
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, Zip Code: 35501-296, Brazil.,Laboratório de Bioquímica de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Marco Tulio C Pessoa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, Zip Code: 35501-296, Brazil.,Laboratório de Bioquímica de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Marina Marques Toledo
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, Zip Code: 35501-296, Brazil.,Laboratório de Bioquímica de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Matheus V Machado
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Mileane Souza Busch
- Laboratório de Bioquímica de Lipídios, Instituto de Bioquímica Médica Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabella Rocha
- Laboratório de Bioquímica de Lipídios, Instituto de Bioquímica Médica Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Augusto F P Villar
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Georgia C Atella
- Laboratório de Bioquímica de Lipídios, Instituto de Bioquímica Médica Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Herica L Santos
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, Zip Code: 35501-296, Brazil.,Laboratório de Bioquímica de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Vanessa F Cortes
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, Zip Code: 35501-296, Brazil. .,Laboratório de Bioquímica de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil.
| | - Leandro A Barbosa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, Zip Code: 35501-296, Brazil. .,Laboratório de Bioquímica de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil.
| |
Collapse
|
11
|
Liu L, Xu K, Zhang B, Ye Y, Zhang Q, Jiang W. Cellular internalization and release of polystyrene microplastics and nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146523. [PMID: 34030247 DOI: 10.1016/j.scitotenv.2021.146523] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Microplastics and nanoplastics can accumulate in organisms after being ingested, be transported in the food web, and ultimately threaten human health. An understanding of the cellular internalization and release of micro(nano)plastics is important to predict their cytotoxicity. In this study, 50 nm, 500 nm and 5 μm polystyrene particles (PS50, PS500 and PS5000) were exposed to both model cell membranes and rat basophilic leukemia (RBL-2H3) cells. PS50 and PS500 absorb on the model membrane due to hydrophobic interactions and Van der Waals' forces, and may also penetrate the model membrane. PS50 and PS500 are internalized into living cells via both passive membrane penetration and active endocytosis. The passive membrane penetration is due to the partition of polystyrene particles in the water-phospholipid system. The endocytosis of PS50 occurs through the clathrin-mediated pathway, the caveolin-mediated pathway and macropinocytosis, but endocytosis of PS500 is mainly via the macropinocytosis. PS5000 cannot adhere to the cell membrane or be internalized into cells due to its large size and weak Brownian motion. The endocytosed PS50 and PS500 mainly accumulate in the lysosomes. The passively internalized PS50 and PS500 initially distribute in the cytoplasm not in lysosomes, but are transported to lysosomes with energy supply. PS50 and PS500 are excreted from cells via energy-free penetration and energy-dependent lysosomal exocytosis. The masses of the internalized PS50 inside the cells and the excreted PS50 outside the cells were both higher than the masses of PS500, indicating that the smaller particles are more easily enter or leave cells than do their larger counterparts. Our findings will contribute to the risk assessment of micro(nano)plastics and their safe application.
Collapse
Affiliation(s)
- Ling Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Kexin Xu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Bowen Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yiyuan Ye
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Qiu Zhang
- School of Environmental Sciences and Engineering, Shandong University, Qingdao 266237, China
| | - Wei Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
12
|
Åberg M, Edén D, Siegbahn A. Activation of β1 integrins and caveolin-1 by TF/FVIIa promotes IGF-1R signaling and cell survival. Apoptosis 2021; 25:519-534. [PMID: 32458278 PMCID: PMC7347522 DOI: 10.1007/s10495-020-01611-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tissue factor/coagulation factor VIIa (TF/FVIIa) complex induces transactivation of the IGF-1 receptor (IGF-1R) in a number of different cell types. The mechanism is largely unknown. The transactivation leads to protection from apoptosis and nuclear translocation of the IGF-1R. The aim of this study was to clarify the signaling pathway between TF and IGF-1R after FVIIa treatment with PC3 and DU145 prostate or MDA-MB-231 breast cancer cells as model systems. Protein interactions, levels, and phosphorylations were assessed by proximity ligation assay or flow cytometry in intact cells and by western blot on cell lysates. The transactivation of the IGF-1R was found dependent on TF/FVIIa-induced activation of β1-integrins. A series of experiments led to the conclusion that the caveolae protein caveolin-1 prevented IGF-1R activation in resting cells via its scaffolding domain. TF/FVIIa/β1-integrins terminated this inhibition by activation of Src family kinases and subsequent phosphorylation of caveolin-1 on tyrosine 14. This phosphorylation was not seen after treatment with PAR1 or PAR2 agonists. Consequently, the protective effect of FVIIa against apoptosis induced by the death receptor agonist TRAIL and the de novo synthesis of cyclin D1 induced by nuclear IGF-1R accumulation were both significantly reduced by down-regulation of β1-integrins or overexpression of the caveolin-1 scaffolding domain. In conclusion, we present a plausible mechanism for the interplay between TF and IGF-1R involving FVIIa, β1-integrins, Src family proteins, and caveolin-1. Our results increase the knowledge of diseases associated with TF and IGF-1R overexpression in general but specifically of TF-mediated signaling with focus on cell survival.
Collapse
Affiliation(s)
- Mikael Åberg
- Department of Medical Sciences, Clinical Chemistry and Science for Life Laboratory, Uppsala University Hospital, Entr. 61 3rd floor, 751 85, Uppsala, Sweden.
| | - Desirée Edén
- Department of Medical Sciences, Clinical Chemistry and Science for Life Laboratory, Uppsala University Hospital, Entr. 61 3rd floor, 751 85, Uppsala, Sweden
| | - Agneta Siegbahn
- Department of Medical Sciences, Clinical Chemistry and Science for Life Laboratory, Uppsala University Hospital, Entr. 61 3rd floor, 751 85, Uppsala, Sweden
| |
Collapse
|
13
|
Abstract
Caveolae are specialised and dynamic plasma membrane subdomains, involved in many cellular functions including endocytosis, signal transduction, mechanosensing and lipid storage, trafficking, and metabolism. Two protein families are indispensable for caveola formation and function, namely caveolins and cavins. Mutations of genes encoding these caveolar proteins cause serious pathological conditions such as cardiomyopathies, skeletal muscle diseases, and lipodystrophies. Deregulation of caveola-forming protein expression is associated with many types of cancers including prostate cancer. The distinct function of secretion of the prostatic fluid, and the unique metabolic phenotype of prostate cells relying on lipid metabolism as a main bioenergetic pathway further suggest a significant role of caveolae and caveolar proteins in prostate malignancy. Accumulating in vitro, in vivo, and clinical evidence showed the association of caveolin-1 with prostate cancer grade, stage, metastasis, and drug resistance. In contrast, cavin-1 was found to exhibit tumour suppressive roles. Studies on prostate cancer were the first to show the distinct function of the caveolar proteins depending on their localisation within the caveolar compartment or as cytoplasmic or secreted proteins. In this review, we summarise the roles of caveola-forming proteins in prostate cancer and the potential of exploiting them as therapeutic targets or biological markers.
Collapse
|
14
|
Lipid Rafts and Dopamine Receptor Signaling. Int J Mol Sci 2020; 21:ijms21238909. [PMID: 33255376 PMCID: PMC7727868 DOI: 10.3390/ijms21238909] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
The renal dopaminergic system has been identified as a modulator of sodium balance and blood pressure. According to the Centers for Disease Control and Prevention, in 2018 in the United States, almost half a million deaths included hypertension as a primary or contributing cause. Renal dopamine receptors, members of the G protein-coupled receptor family, are divided in two groups: D1-like receptors that act to keep the blood pressure in the normal range, and D2-like receptors with a variable effect on blood pressure, depending on volume status. The renal dopamine receptor function is regulated, in part, by its expression in microdomains in the plasma membrane. Lipid rafts form platforms within the plasma membrane for the organization and dynamic contact of molecules involved in numerous cellular processes such as ligand binding, membrane sorting, effector specificity, and signal transduction. Understanding all the components of lipid rafts, their interaction with renal dopamine receptors, and their signaling process offers an opportunity to unravel potential treatment targets that could halt the progression of hypertension, chronic kidney disease (CKD), and their complications.
Collapse
|
15
|
Gusmira A, Takemura K, Lee SY, Inaba T, Hanawa-Suetsugu K, Oono-Yakura K, Yasuhara K, Kitao A, Suetsugu S. Regulation of caveolae through cholesterol-depletion-dependent tubulation mediated by PACSIN2. J Cell Sci 2020; 133:jcs246785. [PMID: 32878944 DOI: 10.1242/jcs.246785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/24/2020] [Indexed: 01/09/2023] Open
Abstract
The membrane-shaping ability of PACSIN2 (also known as syndapin II), which is mediated by its F-BAR domain, has been shown to be essential for caveolar morphogenesis, presumably through the shaping of the caveolar neck. Caveolar membranes contain abundant cholesterol. However, the role of cholesterol in PACSIN2-mediated membrane deformation remains unclear. Here, we show that the binding of PACSIN2 to the membrane can be negatively regulated by cholesterol. We prepared reconstituted membranes based on the lipid composition of caveolae. The reconstituted membrane with cholesterol had a weaker affinity for the F-BAR domain of PACSIN2 than a membrane without cholesterol. Consistent with this, upon depletion of cholesterol from the plasma membrane, PACSIN2 localized at tubules that had caveolin-1 at their tips, suggesting that cholesterol inhibits membrane tubulation mediated by PACSIN2. The tubules induced by PACSIN2 could be representative of an intermediate of caveolae endocytosis. Consistent with this, the removal of caveolae from the plasma membrane upon cholesterol depletion was diminished in the PACSIN2-deficient cells. These data suggest that PACSIN2-mediated caveolae internalization is dependent on the amount of cholesterol, providing a mechanism for cholesterol-dependent regulation of caveolae.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Aini Gusmira
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kazuhiro Takemura
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Shin Yong Lee
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takehiko Inaba
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kyoko Hanawa-Suetsugu
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kayoko Oono-Yakura
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kazuma Yasuhara
- Division of Material Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Shiro Suetsugu
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
16
|
Lange Y, Steck TL. Active cholesterol 20 years on. Traffic 2020; 21:662-674. [PMID: 32930466 DOI: 10.1111/tra.12762] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
This review considers the following hypotheses, some well-supported and some speculative. Almost all of the sterol molecules in plasma membranes are associated with bilayer phospholipids in complexes of varied strength and stoichiometry. These complexes underlie many of the material properties of the bilayer. The small fraction of cholesterol molecules exceeding the binding capacity of the phospholipids is thermodynamically active and serves diverse functions. It circulates briskly among the cell membranes, particularly through contact sites linking the organelles. Active cholesterol provides the upstream feedback signal to multiple mechanisms governing plasma membrane homeostasis, pegging the sterol level to a threshold set by its phospholipids. Active cholesterol could also be the cargo for various inter-organelle transporters and the form excreted from cells by reverse transport. Furthermore, it is integral to the function of caveolae; a mediator of Hedgehog regulation; and a ligand for the binding of cytolytic toxins to membranes. Active cholesterol modulates a variety of plasma membrane proteins-receptors, channels and transporters-at least in vitro.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
17
|
Pol A, Morales-Paytuví F, Bosch M, Parton RG. Non-caveolar caveolins – duties outside the caves. J Cell Sci 2020; 133:133/9/jcs241562. [DOI: 10.1242/jcs.241562] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ABSTRACT
Caveolae are invaginations of the plasma membrane that are remarkably abundant in adipocytes, endothelial cells and muscle. Caveolae provide cells with resources for mechanoprotection, can undergo fission from the plasma membrane and can regulate a variety of signaling pathways. Caveolins are fundamental components of caveolae, but many cells, such as hepatocytes and many neurons, express caveolins without forming distinguishable caveolae. Thus, the function of caveolins goes beyond their roles as caveolar components. The membrane-organizing and -sculpting capacities of caveolins, in combination with their complex intracellular trafficking, might contribute to these additional roles. Furthermore, non-caveolar caveolins can potentially interact with proteins normally excluded from caveolae. Here, we revisit the non-canonical roles of caveolins in a variety of cellular contexts including liver, brain, lymphocytes, cilia and cancer cells, as well as consider insights from invertebrate systems. Non-caveolar caveolins can determine the intracellular fluxes of active lipids, including cholesterol and sphingolipids. Accordingly, caveolins directly or remotely control a plethora of lipid-dependent processes such as the endocytosis of specific cargoes, sorting and transport in endocytic compartments, or different signaling pathways. Indeed, loss-of-function of non-caveolar caveolins might contribute to the common phenotypes and pathologies of caveolin-deficient cells and animals.
Collapse
Affiliation(s)
- Albert Pol
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Frederic Morales-Paytuví
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
| | - Marta Bosch
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Robert G. Parton
- Institute for Molecular Bioscience (IMB), The University of Queensland (UQ), Brisbane, Queensland 4072, Australia
- Centre for Microscopy and Microanalysis (CMM) IMB, The University of Queensland (UQ), Brisbane, Queensland 4072, Australia
| |
Collapse
|
18
|
Hubert M, Larsson E, Vegesna NVG, Ahnlund M, Johansson AI, Moodie LW, Lundmark R. Lipid accumulation controls the balance between surface connection and scission of caveolae. eLife 2020; 9:55038. [PMID: 32364496 PMCID: PMC7239661 DOI: 10.7554/elife.55038] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Caveolae are bulb-shaped invaginations of the plasma membrane (PM) that undergo scission and fusion at the cell surface and are enriched in specific lipids. However, the influence of lipid composition on caveolae surface stability is not well described or understood. Accordingly, we inserted specific lipids into the cell PM via membrane fusion and studied their acute effects on caveolae dynamics. We demonstrate that sphingomyelin stabilizes caveolae to the cell surface, whereas cholesterol and glycosphingolipids drive caveolae scission from the PM. Although all three lipids accumulated specifically in caveolae, cholesterol and sphingomyelin were actively sequestered, whereas glycosphingolipids diffused freely. The ATPase EHD2 restricts lipid diffusion and counteracts lipid-induced scission. We propose that specific lipid accumulation in caveolae generates an intrinsically unstable domain prone to scission if not restrained by EHD2 at the caveolae neck. This work provides a mechanistic link between caveolae and their ability to sense the PM lipid composition.
Collapse
Affiliation(s)
- Madlen Hubert
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Elin Larsson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | - Maria Ahnlund
- Swedish Metabolomics Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Annika I Johansson
- Swedish Metabolomics Centre, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | - Richard Lundmark
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
19
|
Haddad D, Al Madhoun A, Nizam R, Al-Mulla F. Role of Caveolin-1 in Diabetes and Its Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9761539. [PMID: 32082483 PMCID: PMC7007939 DOI: 10.1155/2020/9761539] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/10/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022]
Abstract
It is estimated that in 2017 there were 451 million people with diabetes worldwide. These figures are expected to increase to 693 million by 2045; thus, innovative preventative programs and treatments are a necessity to fight this escalating pandemic disorder. Caveolin-1 (CAV1), an integral membrane protein, is the principal component of caveolae in membranes and is involved in multiple cellular functions such as endocytosis, cholesterol homeostasis, signal transduction, and mechanoprotection. Previous studies demonstrated that CAV1 is critical for insulin receptor-mediated signaling, insulin secretion, and potentially the development of insulin resistance. Here, we summarize the recent progress on the role of CAV1 in diabetes and diabetic complications.
Collapse
Affiliation(s)
- Dania Haddad
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Ashraf Al Madhoun
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rasheeba Nizam
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
20
|
Norton CE, Weise-Cross L, Ahmadian R, Yan S, Jernigan NL, Paffett ML, Naik JS, Walker BR, Resta TC. Altered Lipid Domains Facilitate Enhanced Pulmonary Vasoconstriction after Chronic Hypoxia. Am J Respir Cell Mol Biol 2020; 62:709-718. [PMID: 31945301 DOI: 10.1165/rcmb.2018-0318oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic hypoxia (CH) augments depolarization-induced pulmonary vasoconstriction through superoxide-dependent, Rho kinase-mediated Ca2+ sensitization. Nicotinamide adenine dinucleotide phosphate oxidase and EGFR (epidermal growth factor receptor) signaling contributes to this response. Caveolin-1 regulates the activity of a variety of proteins, including EGFR and nicotinamide adenine dinucleotide phosphate oxidase, and membrane cholesterol is an important regulator of caveolin-1 protein interactions. We hypothesized that derangement of these membrane lipid domain components augments depolarization-induced Ca2+ sensitization and resultant vasoconstriction after CH. Although exposure of rats to CH (4 wk, ∼380 mm Hg) did not alter caveolin-1 expression in intrapulmonary arteries or the incidence of caveolae in arterial smooth muscle, CH markedly reduced smooth muscle membrane cholesterol content as assessed by filipin fluorescence. Effects of CH on vasoreactivity and superoxide generation were examined using pressurized, Ca2+-permeabilized, endothelium-disrupted pulmonary arteries (∼150 μm inner diameter) from CH and control rats. Depolarizing concentrations of KCl evoked greater constriction in arteries from CH rats than in those obtained from control rats, and increased superoxide production as assessed by dihydroethidium fluorescence only in arteries from CH rats. Both cholesterol supplementation and the caveolin-1 scaffolding domain peptide antennapedia-Cav prevented these effects of CH, with each treatment restoring membrane cholesterol in CH arteries to control levels. Enhanced EGF-dependent vasoconstriction after CH similarly required reduced membrane cholesterol. However, these responses to CH were not associated with changes in EGFR expression or activity, suggesting that cholesterol regulates this signaling pathway downstream of EGFR. We conclude that alterations in membrane lipid domain signaling resulting from reduced cholesterol content facilitate enhanced depolarization- and EGF-induced pulmonary vasoconstriction after CH.
Collapse
Affiliation(s)
- Charles E Norton
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Laura Weise-Cross
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Rosstin Ahmadian
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Simin Yan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Michael L Paffett
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Jay S Naik
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
21
|
Lingemann M, McCarty T, Liu X, Buchholz UJ, Surman S, Martin SE, Collins PL, Munir S. The alpha-1 subunit of the Na+,K+-ATPase (ATP1A1) is required for macropinocytic entry of respiratory syncytial virus (RSV) in human respiratory epithelial cells. PLoS Pathog 2019; 15:e1007963. [PMID: 31381610 PMCID: PMC6695199 DOI: 10.1371/journal.ppat.1007963] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/15/2019] [Accepted: 07/05/2019] [Indexed: 01/07/2023] Open
Abstract
Human respiratory syncytial virus (RSV) is the leading viral cause of acute pediatric lower respiratory tract infections worldwide, with no available vaccine or effective antiviral drug. To gain insight into virus-host interactions, we performed a genome-wide siRNA screen. The expression of over 20,000 cellular genes was individually knocked down in human airway epithelial A549 cells, followed by infection with RSV expressing green fluorescent protein (GFP). Knockdown of expression of the cellular ATP1A1 protein, which is the major subunit of the Na+,K+-ATPase of the plasma membrane, had one of the strongest inhibitory effects on GFP expression and viral titer. Inhibition was not observed for vesicular stomatitis virus, indicating that it was RSV-specific rather than a general effect. ATP1A1 formed clusters in the plasma membrane very early following RSV infection, which was independent of replication but dependent on the attachment glycoprotein G. RSV also triggered activation of ATP1A1, resulting in signaling by c-Src-kinase activity that transactivated epidermal growth factor receptor (EGFR) by Tyr845 phosphorylation. ATP1A1 signaling and activation of both c-Src and EGFR were found to be required for efficient RSV uptake. Signaling events downstream of EGFR culminated in the formation of macropinosomes. There was extensive uptake of RSV virions into macropinosomes at the beginning of infection, suggesting that this is a major route of RSV uptake, with fusion presumably occurring in the macropinosomes rather than at the plasma membrane. Important findings were validated in primary human small airway epithelial cells (HSAEC). In A549 cells and HSAEC, RSV uptake could be inhibited by the cardiotonic steroid ouabain and the digitoxigenin derivative PST2238 (rostafuroxin) that bind specifically to the ATP1A1 extracellular domain and block RSV-triggered EGFR Tyr845 phosphorylation. In conclusion, we identified ATP1A1 as a host protein essential for macropinocytic entry of RSV into respiratory epithelial cells, and identified PST2238 as a potential anti-RSV drug. RSV continues to be the most important viral cause of severe bronchiolitis and pneumonia in infants and young children, and also has a substantial impact in the elderly. It is estimated to claim the lives of ~118,000 children under five years of age annually. No vaccine or antiviral drug suitable for general use is available. The involvement of host factors in RSV infection and replication is not well understood, but this knowledge might lead to intervention strategies to prevent infection. Using a genome-wide siRNA screen to knock down the expression of over 20,000 individual cellular genes, we identified ATP1A1, the major subunit of the Na+,K+-ATPase, as an important host protein for RSV entry. We showed that ATP1A1 activation by RSV resulted in transactivation of EGFR by Src-kinase activity, resulting in the uptake of RSV particles into the host cell through macropinocytosis. We also showed that the cardiotonic steroid ouabain and the synthetic digitoxigenin derivative PST2238, which bind specifically to the extracellular domain of ATP1A1, significantly reduced RSV entry. Taken together, we describe a novel ATP1A1-enabled mechanism used by RSV to enter the host cell, and describe candidate antiviral drugs that block this entry.
Collapse
Affiliation(s)
- Matthias Lingemann
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Thomas McCarty
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xueqiao Liu
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ursula J. Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sonja Surman
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Scott E. Martin
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, Rockville, Maryland, United States of America
| | - Peter L. Collins
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shirin Munir
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
22
|
Degreif D, Cucu B, Budin I, Thiel G, Bertl A. Lipid determinants of endocytosis and exocytosis in budding yeast. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1005-1016. [DOI: 10.1016/j.bbalip.2019.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/23/2019] [Accepted: 03/18/2019] [Indexed: 01/10/2023]
|
23
|
Zhang B, Paffett ML, Naik JS, Jernigan NL, Walker BR, Resta TC. Cholesterol Regulation of Pulmonary Endothelial Calcium Homeostasis. CURRENT TOPICS IN MEMBRANES 2018; 82:53-91. [PMID: 30360783 DOI: 10.1016/bs.ctm.2018.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cholesterol is a key structural component and regulator of lipid raft signaling platforms critical for cell function. Such regulation may involve changes in the biophysical properties of lipid microdomains or direct protein-sterol interactions that alter the function of ion channels, receptors, enzymes, and membrane structural proteins. Recent studies have implicated abnormal membrane cholesterol levels in mediating endothelial dysfunction that is characteristic of pulmonary hypertensive disorders, including that resulting from long-term exposure to hypoxia. Endothelial dysfunction in this setting is characterized by impaired pulmonary endothelial calcium entry and an associated imbalance that favors production vasoconstrictor and mitogenic factors that contribute to pulmonary hypertension. Here we review current knowledge of cholesterol regulation of pulmonary endothelial Ca2+ homeostasis, focusing on the role of membrane cholesterol in mediating agonist-induced Ca2+ entry and its components in the normal and hypertensive pulmonary circulation.
Collapse
Affiliation(s)
- Bojun Zhang
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Michael L Paffett
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Jay S Naik
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
24
|
Abstract
The plasma membrane of eukaryotic cells is not a simple sheet of lipids and proteins but is differentiated into subdomains with crucial functions. Caveolae, small pits in the plasma membrane, are the most abundant surface subdomains of many mammalian cells. The cellular functions of caveolae have long remained obscure, but a new molecular understanding of caveola formation has led to insights into their workings. Caveolae are formed by the coordinated action of a number of lipid-interacting proteins to produce a microdomain with a specific structure and lipid composition. Caveolae can bud from the plasma membrane to form an endocytic vesicle or can flatten into the membrane to help cells withstand mechanical stress. The role of caveolae as mechanoprotective and signal transduction elements is reviewed in the context of disease conditions associated with caveola dysfunction.
Collapse
Affiliation(s)
- Robert G. Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4060, Australia
| |
Collapse
|
25
|
Xu Q, Du F, Zhang Y, Teng Y, Tao M, Chen AF, Jiang R. Preeclampsia serum induces human glomerular vascular endothelial cell hyperpermeability via the HMGB1-Caveolin-1 pathway. J Reprod Immunol 2018; 129:1-8. [PMID: 30007203 DOI: 10.1016/j.jri.2018.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/13/2018] [Accepted: 07/03/2018] [Indexed: 01/01/2023]
Abstract
To explore new ideas about the pathogeny of preeclampsia (PE) proteinuria, this study focused on whether severe PE serum (PES) could induce high-molecular-weight protein (HMWP) hyperpermeability in glomerular endothelial cells (GEC) via the HMGB1-Caveolin-1 (CAV-1) pathway. Normal pregnancy serum (NPS) and severe PES were used to treat primary human GEC monolayer for 24 h. The CAV-1 inhibitor methyl-beta-cyclodextrin (MBCD), the HMGB1 inhibitor glycyrrhizicacid (GA), recombinant HMGB1 (rHMGB1) were also used to treat GEC monolayer that were stimulated by NPS or severe PES. The dynamic permeability of GEC to HMWP was detected by Evans blue-labeled BSA and CAV-1 expression in GEC was analyzed by immunofluorescence staining and Western blotting. We detected HMGB1 expression in placenta and serum in normal pregnancy and severe PE. The results showed that severe PES significantly promoted GEC hyperpermeability and CAV-1 expression. By inhibiting CAV-1 expression, MBCD reversed severe PES-induced GEC monolayer permeability. HMGB1 expression in PE placenta and serum was significantly increased. Compared with that in normal placenta, HMGB1expression was increased in the cytoplasm of syncytiotrophoblast cells in PE placenta. GA decreased the severe PES-induced hyperpermeability and CAV-1 expression in GEC. rHMGB1 induced high expression levels of CAV-1 and HMWP hyperpermeability in GEC. In conclusion, HMGB1 is increased in severe PE patients and induces the expression of CAV-1 in GEC. High expression of CAV-1 in GEC can promote HMWP hyperpermeability, which may contribute to the development of PE proteinuria.
Collapse
Affiliation(s)
- Qinyang Xu
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Du
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ye Zhang
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yincheng Teng
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Minfang Tao
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Alex F Chen
- Department of Surgery, McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rongzhen Jiang
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
26
|
Jung W, Sierecki E, Bastiani M, O'Carroll A, Alexandrov K, Rae J, Johnston W, Hunter DJB, Ferguson C, Gambin Y, Ariotti N, Parton RG. Cell-free formation and interactome analysis of caveolae. J Cell Biol 2018; 217:2141-2165. [PMID: 29716956 PMCID: PMC5987714 DOI: 10.1083/jcb.201707004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/24/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023] Open
Abstract
Caveolae are linked to signaling protein regulation through interactions with caveolins. We describe a cell-free system for the biogenesis of caveolae and show phosphorylated-caveolins preferentially bind signaling proteins. Our validation in vivo shows that phosphorylated CAV1 recruits TRAF2 to the endosome to form a signaling platform. Caveolae have been linked to the regulation of signaling pathways in eukaryotic cells through direct interactions with caveolins. Here, we describe a cell-free system based on Leishmania tarentolae (Lt) extracts for the biogenesis of caveolae and show its use for single-molecule interaction studies. Insertion of expressed caveolin-1 (CAV1) into Lt membranes was analogous to that of caveolin in native membranes. Electron tomography showed that caveolins generate domains of precise size and curvature. Cell-free caveolae were used in quantitative assays to test the interaction of membrane-inserted caveolin with signaling proteins and to determine the stoichiometry of interactions. Binding of membrane-inserted CAV1 to several proposed binding partners, including endothelial nitric-oxide synthase, was negligible, but a small number of proteins, including TRAF2, interacted with CAV1 in a phosphorylation-(CAV1Y14)–stimulated manner. In cells subjected to oxidative stress, phosphorylated CAV1 recruited TRAF2 to the early endosome forming a novel signaling platform. These findings lead to a novel model for cellular stress signaling by CAV1.
Collapse
Affiliation(s)
- WooRam Jung
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Emma Sierecki
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Michele Bastiani
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Ailis O'Carroll
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Kirill Alexandrov
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - James Rae
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Wayne Johnston
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Dominic J B Hunter
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Charles Ferguson
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Yann Gambin
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Nicholas Ariotti
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Robert G Parton
- The University of Queensland, The Institute for Molecular Bioscience, Brisbane, Queensland, Australia .,The University of Queensland, The Centre for Microscopy and Microanalysis, Brisbane, Queensland, Australia
| |
Collapse
|
27
|
Sohn J, Lin H, Fritch MR, Tuan RS. Influence of cholesterol/caveolin-1/caveolae homeostasis on membrane properties and substrate adhesion characteristics of adult human mesenchymal stem cells. Stem Cell Res Ther 2018; 9:86. [PMID: 29615119 PMCID: PMC5883280 DOI: 10.1186/s13287-018-0830-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/03/2018] [Accepted: 03/08/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Adult mesenchymal stem cells (MSCs) are an important resource for tissue growth, repair, and regeneration. To utilize MSCs more effectively, a clear understanding of how they react to environmental cues is essential. Currently, relatively little is known about how the composition of the plasma membranes affects stem cell phenotype and properties. The presence of lipid molecules, including cholesterol in particular, in the plasma membrane plays a crucial role in regulating a variety of physiological processes in cells. In this study, we examined the effects of perturbations in cholesterol/caveolin-1 (CAV-1)/caveolae homeostasis on the membrane properties and adhesive characteristics of MSCs. Findings from this study will contribute to the understanding of how cholesterol/CAV-1/caveolae regulates aspects of the cell membrane important to cell adhesion, substrate sensing, and microenvironment interaction. METHODS We generated five experimental MSC groups: 1) untreated MSCs; 2) cholesterol-depleted MSCs; 3) cholesterol-supplemented MSCs; 4) MSCs transfected with control, nonspecific small interfering (si)RNA; and 5) MSCs transfected with CAV-1 siRNA. Each cell group was analyzed for perturbation of cholesterol status and CAV-1 expression by performing Amplex Red cholesterol assay, filipin fluorescence staining, and real-time polymerase chain reaction (PCR). The membrane fluidity in the five experimental cell groups were measured using pyrene fluorescence probe staining followed by FACS analysis. Cell adhesion to collagen and fibronectin as well as cell surface integrin expression were examined. RESULTS Cholesterol supplementation to MSCs increased membrane cholesterol, and resulted in decreased membrane fluidity and localization of elevated numbers of caveolae and CAV-1 to the cell membrane. These cells showed increased expression of α1, α4, and β1 integrins, and exhibited higher adhesion rates to fibronectin and collagen. Conversely, knockdown of CAV-1 expression or cholesterol depletion on MSCs caused a parallel decrease in caveolae content and an increase in membrane fluidity due to decreased delivery of cholesterol to the cell membrane. Cells with depleted CAV-1 expression showed decreased cell surface integrin expression and slower adhesion to different substrates. CONCLUSIONS Our results demonstrate that perturbations in cholesterol/CAV-1 levels significantly affect the membrane properties of MSCs. These findings suggest that modification of membrane cholesterol and/or CAV-1 and caveolae may be used to manipulate the biological activities of MSCs.
Collapse
Affiliation(s)
- Jihee Sohn
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 221, Pittsburgh, PA, 15219, USA
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 221, Pittsburgh, PA, 15219, USA
| | - Madalyn Rose Fritch
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 221, Pittsburgh, PA, 15219, USA. .,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
28
|
de Castro GS, Calder PC. Non-alcoholic fatty liver disease and its treatment with n-3 polyunsaturated fatty acids. Clin Nutr 2018; 37:37-55. [DOI: 10.1016/j.clnu.2017.01.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 12/12/2016] [Accepted: 01/10/2017] [Indexed: 02/08/2023]
|
29
|
The Effect of Methyl-β-cyclodextrin on Apoptosis, Proliferative Activity, and Oxidative Stress in Adipose-Derived Mesenchymal Stromal Cells of Horses Suffering from Metabolic Syndrome (EMS). Molecules 2018; 23:molecules23020287. [PMID: 29385746 PMCID: PMC6017619 DOI: 10.3390/molecules23020287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 11/29/2022] Open
Abstract
Methyl-β-cyclodextrin (MβCD) is a cyclic oligosaccharide, commonly used as a pharmacological agent to deplete membrane cholesterol. In this study, we examined the effect of MβCD on adipose-derived mesenchymal stromal cells (ASCs) isolated form healthy horses (ASCCTRL) and from horses suffering from metabolic syndrome (ASCEMS). We investigated the changes in the mRNA levels of the glucose transporter 4 (GLUT4) and found that MβCD application may lead to a significant improvement in glucose transport in ASCEMS. We also showed that MβCD treatment affected GLUT4 upregulation in an insulin-independent manner via an NO-dependent signaling pathway. Furthermore, the analysis of superoxide dismutase activity (SOD) and reactive oxygen species (ROS) levels showed that MβCD treatment was associated with an increased antioxidant capacity in ASCEMS. Moreover, we indicated that methyl-β-cyclodextrin treatment did not cause a dysfunction of the endoplasmic reticulum and lysosomes. Thereby, we propose the possibility of improving the functionality of ASCEMS by increasing their metabolic stability.
Collapse
|
30
|
Morimoto N, Takei R, Wakamura M, Oishi Y, Nakayama M, Suzuki M, Yamamoto M, Winnik FM. Fast and effective mitochondrial delivery of ω-Rhodamine-B-polysulfobetaine-PEG copolymers. Sci Rep 2018; 8:1128. [PMID: 29348616 PMCID: PMC5773493 DOI: 10.1038/s41598-018-19598-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/04/2018] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial targeting and entry, two crucial steps in fighting severe diseases resulting from mitochondria dysfunction, pose important challenges in current nanomedicine. Cell-penetrating peptides or targeting groups, such as Rhodamine-B (Rho), are known to localize in mitochondria, but little is known on how to enhance their effectiveness through structural properties of polymeric carriers. To address this issue, we prepared 8 copolymers of 3-dimethyl(methacryloyloxyethyl)ammonium propane sulfonate and poly(ethyleneglycol) methacrylate, p(DMAPS-ran-PEGMA) (molecular weight, 18.0 < M n < 74.0 kg/mol) with two different endgroups. We labeled them with Rho groups attached along the chain or on one of the two endgroups (α or ω). From studies by flow cytometry and confocal fluorescence microscopy of the copolymers internalization in HeLa cells in the absence and presence of pharmacological inhibitors, we established that the polymers cross the cell membrane foremost by translocation and also by endocytosis, primarily clathrin-dependent endocytosis. The most effective mitochondrial entry was achieved by copolymers of M n < 30.0 kg/mol, lightly grafted with PEG chains (< 5 mol %) labeled with Rho in the ω-position. Our findings may be generalized to the uptake and mitochondrial targeting of prodrugs and imaging agents with a similar polymeric scaffold.
Collapse
Affiliation(s)
- Nobuyuki Morimoto
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan.
| | - Riho Takei
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Masaru Wakamura
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Yoshifumi Oishi
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Masafumi Nakayama
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, 980-8578, Japan
| | - Makoto Suzuki
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Masaya Yamamoto
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Françoise M Winnik
- Department of Chemistry, University of Montreal, CP6128 Succursale Center Ville, Montreal, QC, H3C 3J7, Canada.
- Department of Chemistry and Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland.
- Center for Materials Nanoarchitectonics, NIMS, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| |
Collapse
|
31
|
Linan-Rico A, Ochoa-Cortes F, Beyder A, Soghomonyan S, Zuleta-Alarcon A, Coppola V, Christofi FL. Mechanosensory Signaling in Enterochromaffin Cells and 5-HT Release: Potential Implications for Gut Inflammation. Front Neurosci 2016; 10:564. [PMID: 28066160 PMCID: PMC5165017 DOI: 10.3389/fnins.2016.00564] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022] Open
Abstract
Enterochromaffin (EC) cells synthesize 95% of the body 5-HT and release 5-HT in response to mechanical or chemical stimulation. EC cell 5-HT has physiological effects on gut motility, secretion and visceral sensation. Abnormal regulation of 5-HT occurs in gastrointestinal disorders and Inflammatory Bowel Diseases (IBD) where 5-HT may represent a key player in the pathogenesis of intestinal inflammation. The focus of this review is on mechanism(s) involved in EC cell "mechanosensation" and critical gaps in our knowledge for future research. Much of our knowledge and concepts are from a human BON cell model of EC, although more recent work has included other cell lines, native EC cells from mouse and human and intact mucosa. EC cells are "mechanosensors" that respond to physical forces generated during peristaltic activity by translating the mechanical stimulus (MS) into an intracellular biochemical response leading to 5-HT and ATP release. The emerging picture of mechanosensation includes Piezo 2 channels, caveolin-rich microdomains, and tight regulation of 5-HT release by purines. The "purinergic hypothesis" is that MS releases purines to act in an autocrine/paracrine manner to activate excitatory (P2Y1, P2Y4, P2Y6, and A2A/A2B) or inhibitory (P2Y12, A1, and A3) receptors to regulate 5-HT release. MS activates a P2Y1/Gαq/PLC/IP3-IP3R/SERCA Ca2+signaling pathway, an A2A/A2B-Gs/AC/cAMP-PKA signaling pathway, an ATP-gated P2X3 channel, and an inhibitory P2Y12-Gi/o/AC-cAMP pathway. In human IBD, P2X3 is down regulated and A2B is up regulated in EC cells, but the pathophysiological consequences of abnormal mechanosensory or purinergic 5-HT signaling remain unknown. EC cell mechanosensation remains poorly understood.
Collapse
Affiliation(s)
- Andromeda Linan-Rico
- Department of Anesthesiology, Wexner Medical Center at Ohio State UniversityColumbus, OH, USA; CONACYT-Centro Universitario de Investigaciones Biomedicas, University of ColimaColima, Mexico
| | - Fernando Ochoa-Cortes
- Department of Anesthesiology, Wexner Medical Center at Ohio State University Columbus, OH, USA
| | - Arthur Beyder
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, MN, USA
| | - Suren Soghomonyan
- Department of Anesthesiology, Wexner Medical Center at Ohio State University Columbus, OH, USA
| | - Alix Zuleta-Alarcon
- Department of Anesthesiology, Wexner Medical Center at Ohio State University Columbus, OH, USA
| | - Vincenzo Coppola
- SBS-Cancer Biology and Genetics, Ohio State University Columbus, OH, USA
| | - Fievos L Christofi
- Department of Anesthesiology, Wexner Medical Center at Ohio State University Columbus, OH, USA
| |
Collapse
|
32
|
See Hoe LE, May LT, Headrick JP, Peart JN. Sarcolemmal dependence of cardiac protection and stress-resistance: roles in aged or diseased hearts. Br J Pharmacol 2016; 173:2966-91. [PMID: 27439627 DOI: 10.1111/bph.13552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/25/2022] Open
Abstract
Disruption of the sarcolemmal membrane is a defining feature of oncotic death in cardiac ischaemia-reperfusion (I-R), and its molecular makeup not only fundamentally governs this process but also affects multiple determinants of both myocardial I-R injury and responsiveness to cardioprotective stimuli. Beyond the influences of membrane lipids on the cytoprotective (and death) receptors intimately embedded within this bilayer, myocardial ionic homeostasis, substrate metabolism, intercellular communication and electrical conduction are all sensitive to sarcolemmal makeup, and critical to outcomes from I-R. As will be outlined in this review, these crucial sarcolemmal dependencies may underlie not only the negative effects of age and common co-morbidities on myocardial ischaemic tolerance but also the on-going challenge of implementing efficacious cardioprotection in patients suffering accidental or surgically induced I-R. We review evidence for the involvement of sarcolemmal makeup changes in the impairment of stress-resistance and cardioprotection observed with ageing and highly prevalent co-morbid conditions including diabetes and hypercholesterolaemia. A greater understanding of membrane changes with age/disease, and the inter-dependences of ischaemic tolerance and cardioprotection on sarcolemmal makeup, can facilitate the development of strategies to preserve membrane integrity and cell viability, and advance the challenging goal of implementing efficacious 'cardioprotection' in clinically relevant patient cohorts. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- Louise E See Hoe
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Chermside, Queensland, Australia
| | - Lauren T May
- Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, VIC, Australia
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
| |
Collapse
|
33
|
Levi L, Castro-Parodi M, Martínez N, Piehl LL, Rubín De Celis E, Herlax V, Mate S, Farina M, Damiano AE. The unfavorable lipid environment reduced caveolin-1 expression in apical membranes from human preeclamptic placentas. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2171-2180. [DOI: 10.1016/j.bbamem.2016.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/27/2016] [Accepted: 06/17/2016] [Indexed: 01/29/2023]
|
34
|
Molecular Changes Associated with the Protective Effects of Angiopoietin-1 During Blood-Brain Barrier Breakdown Post-Injury. Mol Neurobiol 2016; 54:4232-4242. [DOI: 10.1007/s12035-016-9973-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/09/2016] [Indexed: 11/30/2022]
|
35
|
Gilliam AJH, Smith JN, Flather D, Johnston KM, Gansmiller AM, Fishman DA, Edgar JM, Balk M, Majumdar S, Weiss GA. Affinity-Guided Design of Caveolin-1 Ligands for Deoligomerization. J Med Chem 2016; 59:4019-25. [PMID: 27010220 DOI: 10.1021/acs.jmedchem.5b01536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Caveolin-1 is a target for academic and pharmaceutical research due to its many cellular roles and associated diseases. We report peptide WL47 (1), a small, high-affinity, selective disrupter of caveolin-1 oligomers. Developed and optimized through screening and analysis of synthetic peptide libraries, ligand 1 has 7500-fold improved affinity compared to its T20 parent ligand and an 80% decrease in sequence length. Ligand 1 will permit targeted study of caveolin-1 function.
Collapse
Affiliation(s)
- Amanda J H Gilliam
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Joshua N Smith
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Dylan Flather
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Kevin M Johnston
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Andrew M Gansmiller
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Dmitry A Fishman
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Joshua M Edgar
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Mark Balk
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Sudipta Majumdar
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Gregory A Weiss
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| |
Collapse
|
36
|
Eberhart JK, Parnell SE. The Genetics of Fetal Alcohol Spectrum Disorders. Alcohol Clin Exp Res 2016; 40:1154-65. [PMID: 27122355 DOI: 10.1111/acer.13066] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/04/2016] [Indexed: 12/29/2022]
Abstract
The term "fetal alcohol spectrum disorders" (FASD) defines the full range of ethanol (EtOH)-induced birth defects. Numerous variables influence the phenotypic outcomes of embryonic EtOH exposure. Among these variables, genetics appears to play an important role, yet our understanding of the genetic predisposition to FASD is still in its infancy. We review the current literature that relates to the genetics of FASD susceptibility and gene-EtOH interactions. Where possible, we comment on potential mechanisms of reported gene-EtOH interactions. Early indications of genetic sensitivity to FASD came from human and animal studies using twins or inbred strains, respectively. These analyses prompted searches for susceptibility loci involved in EtOH metabolism and analyses of candidate loci, based on phenotypes observed in FASD. More recently, genetic screens in animal models have provided an additional insight into the genetics of FASD. Understanding FASD requires that we understand the many factors influencing phenotypic outcome following embryonic EtOH exposure. We are gaining ground on understanding some of the genetics behind FASD, yet much work remains to be carried out. Coordinated analyses using human patients and animal models are likely to be highly fruitful in uncovering the genetics behind FASD.
Collapse
Affiliation(s)
- Johann K Eberhart
- Department of Molecular Biosciences, Institute for Cell and Molecular Biology, Institute for Neuroscience, Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas
| | - Scott E Parnell
- Bowles Center for Alcohol Studies, Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
37
|
Kovtun O, Tillu VA, Ariotti N, Parton RG, Collins BM. Cavin family proteins and the assembly of caveolae. J Cell Sci 2016; 128:1269-78. [PMID: 25829513 DOI: 10.1242/jcs.167866] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Caveolae are an abundant feature of the plasma membrane in many cells. Until recently, they were generally considered to be membrane invaginations whose formation primarily driven by integral membrane proteins called caveolins. However, the past decade has seen the emergence of the cavin family of peripheral membrane proteins as essential coat components and regulators of caveola biogenesis. In this Commentary, we summarise recent data on the role of cavins in caveola formation, highlighting structural studies that provide new insights into cavin coat assembly. In mammals, there are four cavin family members that associate through homo- and hetero-oligomerisation to form distinct subcomplexes on caveolae, which can be released into the cell in response to stimuli. Studies from several labs have provided a better understanding of cavin stoichiometry and the molecular basis for their oligomerisation, as well as identifying interactions with membrane phospholipids that may be important for caveola function. We propose a model in which coincident, low-affinity electrostatically controlled protein-protein and protein-lipid interactions allow the formation of caveolae, generating a meta-stable structure that can respond to plasma membrane stress by release of cavins.
Collapse
Affiliation(s)
- Oleksiy Kovtun
- The University of Queensland, Institute for Molecular Bioscience, Brisbane St Lucia, QLD, 4072, Australia
| | - Vikas A Tillu
- The University of Queensland, Institute for Molecular Bioscience, Brisbane St Lucia, QLD, 4072, Australia
| | - Nicholas Ariotti
- The University of Queensland, Institute for Molecular Bioscience, Brisbane St Lucia, QLD, 4072, Australia
| | - Robert G Parton
- The University of Queensland, Institute for Molecular Bioscience, Brisbane St Lucia, QLD, 4072, Australia Centre for Microscopy and Microanalysis, St. Lucia, QLD, 4072, Australia
| | - Brett M Collins
- The University of Queensland, Institute for Molecular Bioscience, Brisbane St Lucia, QLD, 4072, Australia
| |
Collapse
|
38
|
Lange Y, Steck TL. Active membrane cholesterol as a physiological effector. Chem Phys Lipids 2016; 199:74-93. [PMID: 26874289 DOI: 10.1016/j.chemphyslip.2016.02.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 02/05/2023]
Abstract
Sterols associate preferentially with plasma membrane sphingolipids and saturated phospholipids to form stoichiometric complexes. Cholesterol in molar excess of the capacity of these polar bilayer lipids has a high accessibility and fugacity; we call this fraction active cholesterol. This review first considers how active cholesterol serves as an upstream regulator of cellular sterol homeostasis. The mechanism appears to utilize the redistribution of active cholesterol down its diffusional gradient to the endoplasmic reticulum and mitochondria, where it binds multiple effectors and directs their feedback activity. We have also reviewed a broad literature in search of a role for active cholesterol (as opposed to bulk cholesterol or lipid domains such as rafts) in the activity of diverse membrane proteins. Several systems provide such evidence, implicating, in particular, caveolin-1, various kinds of ABC-type cholesterol transporters, solute transporters, receptors and ion channels. We suggest that this larger role for active cholesterol warrants close attention and can be tested easily.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, 1653 W. Congress Parkway, Chicago, IL 60612, USA.
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
39
|
Lee EJ, Park MK, Kim HJ, Kim EJ, Kang GJ, Byun HJ, Lee CH. Epithelial membrane protein 2 regulates sphingosylphosphorylcholine-induced keratin 8 phosphorylation and reorganization: Changes of PP2A expression by interaction with alpha4 and caveolin-1 in lung cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1157-69. [PMID: 26876307 DOI: 10.1016/j.bbamcr.2016.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 12/13/2022]
Abstract
Sphingosylphosphorylcholine (SPC) is found at increased in the malignant ascites of tumor patients and induces perinuclear reorganization of keratin 8 (K8) filaments that contribute to the viscoelasticity of metastatic cancer cells. However, the detailed mechanism of SPC-induced K8 phosphorylation and reorganization is not clear. We observed that SPC dose-dependently reduced the expression of epithelial membrane protein 2 (EMP2) in lung cancer cells. Then, we examined the role of EMP2 in SPC-induced phosphorylation and reorganization of K8 in lung cancer cells. We found that SPC concentration-dependently reduced EMP2 in A549, H1299, and other lung cancer cells. This was verified at the mRNA level by RT-PCR and real-time PCR (qPCR), and intracellular variation through confocal microscopy. EMP2 gene silencing and stable lung cancer cell lines established using EMP2 lentiviral shRNA induced K8 phosphorylation and reorganization. EMP2 overexpression reduced K8 phosphorylation and reorganization. We also observed that SPC-induced loss of EMP2 induces phosphorylation of JNK and ERK via reduced expression of protein phosphatase 2A (PP2A). Loss of EMP2 induces ubiquitination of protein phosphatase 2A (PP2A). SPC induced caveolin-1 (cav-1) expression and EEA1 endosome marker protein but not cav-2. SPC treatment enhanced the binding of cav-1 and PP2A and lowered binding of PP2A and alpha4. Gene silencing of EMP2 increased and gene silencing of cav-1 reduced migration of A549 lung cancer cells. Overall, these results suggest that SPC induces EMP2 down-regulation which reduces the PP2A via ubiquitination induced by cav-1, which sequestered alpha4, leading to the activation of ERK and JNK.
Collapse
Affiliation(s)
- Eun Ji Lee
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Mi Kyung Park
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Hyun Ji Kim
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Eun Ji Kim
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Gyeoung-Jin Kang
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Hyun Jung Byun
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Chang Hoon Lee
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea.
| |
Collapse
|
40
|
Martins IJ. Overnutrition Determines LPS Regulation of Mycotoxin Induced Neurotoxicity in Neurodegenerative Diseases. Int J Mol Sci 2015; 16:29554-73. [PMID: 26690419 PMCID: PMC4691133 DOI: 10.3390/ijms161226190] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/19/2015] [Accepted: 12/01/2015] [Indexed: 12/11/2022] Open
Abstract
Chronic neurodegenerative diseases are now associated with obesity and diabetes and linked to the developing and developed world. Interests in healthy diets have escalated that may prevent neurodegenerative diseases such as Parkinson's and Alzheimer's disease. The global metabolic syndrome involves lipoprotein abnormalities and insulin resistance and is the major disorder for induction of neurological disease. The effects of bacterial lipopolysaccharides (LPS) on dyslipidemia and NAFLD indicate that the clearance and metabolism of fungal mycotoxins are linked to hypercholesterolemia and amyloid beta oligomers. LPS and mycotoxins are associated with membrane lipid disturbances with effects on cholesterol interacting proteins, lipoprotein metabolism, and membrane apo E/amyloid beta interactions relevant to hypercholesterolemia with close connections to neurological diseases. The influence of diet on mycotoxin metabolism has accelerated with the close association between mycotoxin contamination from agricultural products such as apple juice, grains, alcohol, and coffee. Cholesterol efflux in lipoproteins and membrane cholesterol are determined by LPS with involvement of mycotoxin on amyloid beta metabolism. Nutritional interventions such as diets low in fat/carbohydrate/cholesterol have become of interest with relevance to low absorption of lipophilic LPS and mycotoxin into lipoproteins with rapid metabolism of mycotoxin to the liver with the prevention of neurodegeneration.
Collapse
Affiliation(s)
- Ian James Martins
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027, Australia.
- School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Nedlands 6009, Australia.
- McCusker Alzheimer's Research Foundation, Hollywood Medical Centre, 85 Monash Avenue, Suite 22, Nedlands 6009, Australia.
| |
Collapse
|
41
|
Murfitt L, Whiteley G, Iqbal MM, Kitmitto A. Targeting caveolin-3 for the treatment of diabetic cardiomyopathy. Pharmacol Ther 2015; 151:50-71. [PMID: 25779609 DOI: 10.1016/j.pharmthera.2015.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 12/21/2022]
Abstract
Diabetes is a global health problem with more than 550 million people predicted to be diabetic by 2030. A major complication of diabetes is cardiovascular disease, which accounts for over two-thirds of mortality and morbidity in diabetic patients. This increased risk has led to the definition of a diabetic cardiomyopathy phenotype characterised by early left ventricular dysfunction with normal ejection fraction. Here we review the aetiology of diabetic cardiomyopathy and explore the involvement of the protein caveolin-3 (Cav3). Cav3 forms part of a complex mechanism regulating insulin signalling and glucose uptake, processes that are impaired in diabetes. Further, Cav3 is key for stabilisation and trafficking of cardiac ion channels to the plasma membrane and so contributes to the cardiac action potential shape and duration. In addition, Cav3 has direct and indirect interactions with proteins involved in excitation-contraction coupling and so has the potential to influence cardiac contractility. Significantly, both impaired contractility and rhythm disturbances are hallmarks of diabetic cardiomyopathy. We review here how changes to Cav3 expression levels and altered relationships with interacting partners may be contributory factors to several of the pathological features identified in diabetic cardiomyopathy. Finally, the review concludes by considering ways in which levels of Cav3 may be manipulated in order to develop novel therapeutic approaches for treating diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Lucy Murfitt
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Gareth Whiteley
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Mohammad M Iqbal
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Ashraf Kitmitto
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK.
| |
Collapse
|
42
|
Potential Signal Transduction Regulation by HDL of the β2-Adrenergic Receptor Pathway. Implications in Selected Pathological Situations. Arch Med Res 2015; 46:361-71. [PMID: 26009249 DOI: 10.1016/j.arcmed.2015.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/12/2015] [Indexed: 01/09/2023]
Abstract
The main atheroprotective mechanism of high-density lipoprotein (HDL) has been regarded as reverse cholesterol transport, whereby cholesterol from peripheral tissues is removed and transported to the liver for elimination. Although numerous additional atheroprotective mechanisms have been suggested, the role of HDL in modulating signal transduction of cell membrane-bound receptors has received little attention to date. This potential was recently highlighted following the identification of a polymorphism in the adenylyl cyclase 9 gene (ADCY9) that was shown to be a determining factor in the risk of cardiovascular (CV) events in patients treated with the HDL-raising compound dalcetrapib. Indeed, ADCY9 is part of the signaling pathway of the β2-adrenergic receptor (β2-AR) and both are membrane-bound proteins affected by changes in membrane-rich cholesterol plasma membrane domains (caveolae). Numerous G-protein-coupled receptors (GPCRs) and ion channels are affected by caveolae, with caveolae composition acting as a 'signalosome'. Polymorphisms in the genes encoding ADCY9 and β2-AR are associated with response to β2-agonist drugs in patients with asthma, malaria and with sickle cell disease. Crystallization of the β2-AR has found cholesterol tightly bound to transmembrane structures of the receptor. Cholesterol has also been shown to modulate the activity of this receptor. Apolipoprotein A1 (ApoA1), the major protein component of HDL, destabilizes and removes cholesterol from caveolae with high affinity through interaction with ATP-binding cassette transporter. Furthermore, β2-AR activity may be affected by ApoA1/HDL-targeted therapies. Taken together, these observations suggest a common pathway that potentially links a primary HDL function to the regulation of signal transduction.
Collapse
|
43
|
Avaritt BR, Swaan PW. Internalization and Subcellular Trafficking of Poly-l-lysine Dendrimers Are Impacted by the Site of Fluorophore Conjugation. Mol Pharm 2015; 12:1961-9. [DOI: 10.1021/mp500765e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Brittany R. Avaritt
- Department
of Pharmaceutical
Sciences, Center for Nanobiotechnology, University of Maryland, Baltimore, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Peter W. Swaan
- Department
of Pharmaceutical
Sciences, Center for Nanobiotechnology, University of Maryland, Baltimore, 20 Penn Street, Baltimore, Maryland 21201, United States
| |
Collapse
|
44
|
Pan CS, Liu YH, Liu YY, Zhang Y, He K, Yang XY, Hu BH, Chang X, Wang MX, Wei XH, Fan JY, Wu XM, Han JY. Salvianolic Acid B Ameliorates Lipopolysaccharide-Induced Albumin Leakage from Rat Mesenteric Venules through Src-Regulated Transcelluar Pathway and Paracellular Pathway. PLoS One 2015; 10:e0126640. [PMID: 25992563 PMCID: PMC4438061 DOI: 10.1371/journal.pone.0126640] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 04/05/2015] [Indexed: 12/15/2022] Open
Abstract
Lipopolysaccharide (LPS) causes microvascular barrier disruption, leading to albumin leakage from microvessels resulting in a range of disastrous sequels. Salvianolic acid B (SalB) is a major water-soluble component derived from Salvia miltiorrhiza. Previous studies showed its potential to attenuate microvascular barrier dysfunction, but the underlying mechanism is not fully understood. The present study was intended to investigate the impact of SalB on endothelial cell barrier in vivo in rat mesenteric venules as well as in vitro in human umbilical vein endothelial cells (HUVECs), aiming at disclosing the mechanism thereof, particularly the role of Src in its action. Male Wistar rats were challenged by infusion of LPS (2 mg/kg/h) through left femoral vein for 90 min. SalB (5 mg/kg/h) was administrated either simultaneously with LPS or 30 min after LPS infusion through the left jugular vein. Vesicles in venular walls were observed by electron microscopy. HUVECs were incubated with LPS with or without SalB. The expression of Zonula occluden-1 (ZO-1), VE-cadherin, caveolin-1 and Src in HUVECs was assessed by Western blot and confocal microscopy, binding of SalB to Src was measured using Surface Plasmon Resonance and BioLayer Interferometry. Treatment with SalB inhibited albumin leakage from rat mesenteric venules and inhibited the increase of vesicle number in venular endothelial cells induced by LPS. In addition, SalB inhibited the degradation of ZO-1, the phosphorylation and redistribution of VE-cadherin, the expression and phosphorylation of caveolin-1, and phosphoirylation of Src in HUVECs exposed to LPS. Furthermore, SalB was found able to bind to Src. This study demonstrates that protection of SalB against microvascular barrier disruption is a process involving both para- and trans-endothelial cell pathway, and highly suggests Src as the key enzyme for SalB to work.
Collapse
Affiliation(s)
- Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Ying-Hua Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital& Institute, Beijing, China
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Yu Zhang
- Department of Integration of Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Ke He
- Department of Integration of Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Xiao-Yuan Yang
- Department of Integration of Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Bai-He Hu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Xin Chang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Ming-Xia Wang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Xiao-Hong Wei
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Xin-Min Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital& Institute, Beijing, China
| | - Jing-Yan Han
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Department of Integration of Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- * E-mail:
| |
Collapse
|
45
|
|
46
|
Kovtun O, Tillu VA, Jung W, Leneva N, Ariotti N, Chaudhary N, Mandyam RA, Ferguson C, Morgan GP, Johnston WA, Harrop SJ, Alexandrov K, Parton RG, Collins BM. Structural insights into the organization of the cavin membrane coat complex. Dev Cell 2014; 31:405-19. [PMID: 25453557 DOI: 10.1016/j.devcel.2014.10.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/29/2014] [Accepted: 10/02/2014] [Indexed: 01/10/2023]
Abstract
Caveolae are cell-surface membrane invaginations that play critical roles in cellular processes including signaling and membrane homeostasis. The cavin proteins, in cooperation with caveolins, are essential for caveola formation. Here we show that a minimal N-terminal domain of the cavins, termed HR1, is required and sufficient for their homo- and hetero-oligomerization. Crystal structures of the mouse cavin1 and zebrafish cavin4a HR1 domains reveal highly conserved trimeric coiled-coil architectures, with intersubunit interactions that determine the specificity of cavin-cavin interactions. The HR1 domain contains a basic surface patch that interacts with polyphosphoinositides and coordinates with additional membrane-binding sites within the cavin C terminus to facilitate membrane association and remodeling. Electron microscopy of purified cavins reveals the existence of large assemblies, composed of a repeating rod-like structural element, and we propose that these structures polymerize through membrane-coupled interactions to form the unique striations observed on the surface of caveolae in vivo.
Collapse
Affiliation(s)
- Oleksiy Kovtun
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Vikas A Tillu
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - WooRam Jung
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Natalya Leneva
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Nicholas Ariotti
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Natasha Chaudhary
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Ramya A Mandyam
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Charles Ferguson
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Garry P Morgan
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Wayne A Johnston
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Stephen J Harrop
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Kirill Alexandrov
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
47
|
Suresh D, Zambre A, Chanda N, Hoffman TJ, Smith CJ, Robertson JD, Kannan R. Bombesin peptide conjugated gold nanocages internalize via clathrin mediated endocytosis. Bioconjug Chem 2014; 25:1565-79. [PMID: 25020251 DOI: 10.1021/bc500295s] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The nature of interaction and mechanism of internalization of receptor-avid peptide nanoparticles with cells is not yet completely understood. This article describes the cellular internalization mechanism and intracellular trafficking of peptide conjugated receptor targeted porous Gold nanocages (AuNCs) in cancer cells. We synthesized and characterized a library of AuNCs conjugated with bombesin (BBN) peptide. Evidence of selective affinity of AuNC-BBN toward gastrin releasing peptide receptors (GRPR) was obtained using radiolabeled competitive cell binding assay. Endocytic mechanism was investigated using cell inhibitor studies and monitored using optical and transmission electron microscopy (TEM). Results show AuNC-BBN uptake in PC3 cells is mediated by clathrin mediated endocytosis (CME). Indeed, in the presence of CME inhibitors, AuNC-BBN uptake in cells is reduced up to 84%. TEM images further confirm CME characteristic clathrin coated pits and lysosomal release of AuNCs. These results demonstrate that peptide ligands conjugated to the surface of nanoparticles maintain their target specificity. This bolsters the case for peptide robustness and its persisting functionality in intracellular vehicular delivery systems.
Collapse
Affiliation(s)
- Dhananjay Suresh
- Departments of †Bioengineering, ‡Radiology, ¥Medicine and §Chemistry, ⊥University of Missouri Research Reactor, and #International Center for Nano/Micro Systems and Nanotechnology, University of Missouri , Columbia, Missouri 65211, United States
| | | | | | | | | | | | | |
Collapse
|
48
|
Gu HM, Wang FQ, Zhang DW. Caveolin-1 interacts with ATP binding cassette transporter G1 (ABCG1) and regulates ABCG1-mediated cholesterol efflux. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:847-58. [DOI: 10.1016/j.bbalip.2014.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 02/06/2014] [Accepted: 02/12/2014] [Indexed: 01/19/2023]
|
49
|
Chaudhary N, Gomez GA, Howes MT, Lo HP, McMahon KA, Rae JA, Schieber NL, Hill MM, Gaus K, Yap AS, Parton RG. Endocytic crosstalk: cavins, caveolins, and caveolae regulate clathrin-independent endocytosis. PLoS Biol 2014; 12:e1001832. [PMID: 24714042 PMCID: PMC3979662 DOI: 10.1371/journal.pbio.1001832] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 02/25/2014] [Indexed: 12/18/2022] Open
Abstract
Caveolar proteins and caveolae negatively regulate a second clathrin-independent endocytic CLIC/GEEC pathway; caveolin-1 affects membrane diffusion properties of raft-associated CLIC cargo, and the scaffolding domain of caveolin-1 is required and sufficient for endocytic inhibition. Several studies have suggested crosstalk between different clathrin-independent endocytic pathways. However, the molecular mechanisms and functional relevance of these interactions are unclear. Caveolins and cavins are crucial components of caveolae, specialized microdomains that also constitute an endocytic route. Here we show that specific caveolar proteins are independently acting negative regulators of clathrin-independent endocytosis. Cavin-1 and Cavin-3, but not Cavin-2 or Cavin-4, are potent inhibitors of the clathrin-independent carriers/GPI-AP enriched early endosomal compartment (CLIC/GEEC) endocytic pathway, in a process independent of caveola formation. Caveolin-1 (CAV1) and CAV3 also inhibit the CLIC/GEEC pathway upon over-expression. Expression of caveolar protein leads to reduction in formation of early CLIC/GEEC carriers, as detected by quantitative electron microscopy analysis. Furthermore, the CLIC/GEEC pathway is upregulated in cells lacking CAV1/Cavin-1 or with reduced expression of Cavin-1 and Cavin-3. Inhibition by caveolins can be mimicked by the isolated caveolin scaffolding domain and is associated with perturbed diffusion of lipid microdomain components, as revealed by fluorescence recovery after photobleaching (FRAP) studies. In the absence of cavins (and caveolae) CAV1 is itself endocytosed preferentially through the CLIC/GEEC pathway, but the pathway loses polarization and sorting attributes with consequences for membrane dynamics and endocytic polarization in migrating cells and adult muscle tissue. We also found that noncaveolar Cavin-1 can act as a modulator for the activity of the key regulator of the CLIC/GEEC pathway, Cdc42. This work provides new insights into the regulation of noncaveolar clathrin-independent endocytosis by specific caveolar proteins, illustrating multiple levels of crosstalk between these pathways. We show for the first time a role for specific cavins in regulating the CLIC/GEEC pathway, provide a new tool to study this pathway, identify caveola-independent functions of the cavins and propose a novel mechanism for inhibition of the CLIC/GEEC pathway by caveolin. Endocytosis is the process that allows cells to take up molecules from the environment. Several endocytic pathways exist in mammalian cells. While the best understood endocytic pathway uses clathrin, recent years have seen a great increase in our understanding of clathrin-independent endocytic pathways. Here we characterize the crosstalk between caveolae, flask-shaped specialized microdomains present at the plasma membrane, and a second clathrin-independent pathway, the CLIC/GEEC Cdc42-regulated endocytic pathway. These pathways are segregated in migrating cells with caveolae at the rear and CLIC/GEEC endocytosis at the leading edge. Here we find that specific caveolar proteins, caveolins and cavins, can also negatively regulate the CLIC/GEEC pathway. With the help of several techniques, including quantitative electron microscopy analysis and real-time live-cell imaging, we demonstrate that expression of caveolar proteins affects early carrier formation, causes cellular lipid changes, and changes the activity of the key regulator of the CLIC/GEEC pathway, Cdc42. The functional consequences of loss of caveolar proteins on the CLIC/GEEC pathway included inhibition of polarized cell migration and increased endocytosis in tissue explants.
Collapse
Affiliation(s)
- Natasha Chaudhary
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Guillermo A. Gomez
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Mark T. Howes
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Harriet P. Lo
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Kerrie-Ann McMahon
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - James A. Rae
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Nicole L. Schieber
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Michelle M. Hill
- The University of Queensland, Diamantina Institute, Queensland, Australia
| | - Katharina Gaus
- The University of New South Wales, Centre for Vascular Research and Australian Centre for Nanomedicine, New South Wales, Australia
| | - Alpha S. Yap
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Robert G. Parton
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
- Centre for Microscopy and Microanalysis, Queensland, Australia
- * E-mail:
| |
Collapse
|
50
|
García Cordero J, León Juárez M, González-Y-Merchand JA, Cedillo Barrón L, Gutiérrez Castañeda B. Caveolin-1 in lipid rafts interacts with dengue virus NS3 during polyprotein processing and replication in HMEC-1 cells. PLoS One 2014; 9:e90704. [PMID: 24643062 PMCID: PMC3958351 DOI: 10.1371/journal.pone.0090704] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/18/2014] [Indexed: 01/10/2023] Open
Abstract
Lipid rafts are ordered microdomains within cellular membranes that are rich in cholesterol and sphingolipids. Caveolin (Cav-1) and flotillin (Flt-1) are markers of lipid rafts, which serve as an organizing center for biological phenomena and cellular signaling. Lipid rafts involvement in dengue virus (DENV) processing, replication, and assembly remains poorly characterized. Here, we investigated the role of lipid rafts after DENV endocytosis in human microvascular endothelial cells (HMEC-1). The non-structural viral proteins NS3 and NS2B, but not NS5, were associated with detergent-resistant membranes. In sucrose gradients, both NS3 and NS2B proteins appeared in Cav-1 and Flt-1 rich fractions. Additionally, double immunofluorescence staining of DENV-infected HMEC-1 cells showed that NS3 and NS2B, but not NS5, colocalized with Cav-1 and Flt-1. Furthermore, in HMEC-1cells transfected with NS3 protease, shown a strong overlap between NS3 and Cav-1, similar to that in DENV-infected cells. In contrast, double-stranded viral RNA (dsRNA) overlapped weakly with Cav-1 and Flt-1. Given these results, we investigated whether Cav-1 directly interacted with NS3. Cav-1 and NS3 co-immunoprecipitated, indicating that they resided within the same complex. Furthermore, when cellular cholesterol was depleted by methyl-beta cyclodextrin treatment after DENV entrance, lipid rafts were disrupted, NS3 protein level was reduced, besides Cav-1 and NS3 were displaced to fractions 9 and 10 in sucrose gradient analysis, and we observed a dramatically reduction of DENV particles release. These data demonstrate the essential role of caveolar cholesterol-rich lipid raft microdomains in DENV polyprotein processing and replication during the late stages of the DENV life cycle.
Collapse
Affiliation(s)
- Julio García Cordero
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN, México City, México
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas IPN, México City, México
| | - Moisés León Juárez
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN, México City, México
| | | | - Leticia Cedillo Barrón
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN, México City, México
- * E-mail: (BGC); (LCB)
| | - Benito Gutiérrez Castañeda
- Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala Universidad Autónoma de México, Tlalnepantla Estado de México, México
- * E-mail: (BGC); (LCB)
| |
Collapse
|