1
|
Bureau JA, Oliva ME, Dong Y, Ignea C. Engineering yeast for the production of plant terpenoids using synthetic biology approaches. Nat Prod Rep 2023; 40:1822-1848. [PMID: 37523210 DOI: 10.1039/d3np00005b] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Covering: 2011-2022The low amounts of terpenoids produced in plants and the difficulty in synthesizing these complex structures have stimulated the production of terpenoid compounds in microbial hosts by metabolic engineering and synthetic biology approaches. Advances in engineering yeast for terpenoid production will be covered in this review focusing on four directions: (1) manipulation of host metabolism, (2) rewiring and reconstructing metabolic pathways, (3) engineering the catalytic activity, substrate selectivity and product specificity of biosynthetic enzymes, and (4) localizing terpenoid production via enzymatic fusions and scaffolds, or subcellular compartmentalization.
Collapse
Affiliation(s)
| | | | - Yueming Dong
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0C3, Canada.
| | - Codruta Ignea
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0C3, Canada.
| |
Collapse
|
2
|
Mohammadi S, Leduc A, Charette SJ, Barbeau J, Vincent AT. Amino acid substitutions in specific proteins correlate with farnesol unresponsiveness in Candida albicans. BMC Genomics 2023; 24:93. [PMID: 36859182 PMCID: PMC9979538 DOI: 10.1186/s12864-023-09174-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND The quorum-sensing molecule farnesol, in opportunistic yeast Candida albicans, modulates its dimorphic switch between yeast and hyphal forms, and biofilm formation. Although there is an increasing interest in farnesol as a potential antifungal drug, the molecular mechanism by which C. albicans responds to this molecule is still not fully understood. RESULTS A comparative genomic analysis between C. albicans strains that are naturally unresponsive to 30 µM of farnesol on TYE plates at 37 °C versus responsive strains uncovered new molecular determinants involved in the response to farnesol. While no signature gene was identified, amino acid changes in specific proteins were shown to correlate with the unresponsiveness to farnesol, particularly with substitutions in proteins known to be involved in the farnesol response. Although amino acid changes occur primarily in disordered regions of proteins, some amino acid changes were also found in known domains. Finally, the genomic investigation of intermediate-response strains showed that the non-response to farnesol occurs gradually following the successive accumulation of amino acid changes at specific positions. CONCLUSION It is known that large genomic changes, such as recombinations and gene flow (losses and gains), can cause major phenotypic changes in pathogens. However, it is still not well known or documented how more subtle changes, such as amino acid substitutions, play a role in the adaptation of pathogens. The present study shows that amino acid changes can modulate C. albicans yeast's response to farnesol. This study also improves our understanding of the network of proteins involved in the response to farnesol, and of the involvement of amino acid substitutions in cellular behavior.
Collapse
Affiliation(s)
- Sima Mohammadi
- grid.23856.3a0000 0004 1936 8390Département des sciences animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Pavillon Paul-Comtois, 2425 rue de l’Agriculture, G1V 0A6 Quebec City, QC Canada ,grid.23856.3a0000 0004 1936 8390Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, QC Canada
| | - Annie Leduc
- grid.14848.310000 0001 2292 3357Département de stomatologie, Faculté de Médecine Dentaire, Université de Montréal, Montreal City, QC Canada
| | - Steve J. Charette
- grid.23856.3a0000 0004 1936 8390Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, QC Canada ,grid.421142.00000 0000 8521 1798Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, QC Canada ,grid.23856.3a0000 0004 1936 8390Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Quebec City, QC Canada
| | - Jean Barbeau
- grid.14848.310000 0001 2292 3357Département de stomatologie, Faculté de Médecine Dentaire, Université de Montréal, Montreal City, QC Canada
| | - Antony T. Vincent
- grid.23856.3a0000 0004 1936 8390Département des sciences animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Pavillon Paul-Comtois, 2425 rue de l’Agriculture, G1V 0A6 Quebec City, QC Canada ,grid.23856.3a0000 0004 1936 8390Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, QC Canada
| |
Collapse
|
3
|
Expression of Saccharomyces cerevisiae RER2 Gene Encoding Cis-Prenyltransferase in Trichoderma atroviride Increases the Activity of Secretory Hydrolases and Enhances Antimicrobial Features. J Fungi (Basel) 2022; 9:jof9010038. [PMID: 36675859 PMCID: PMC9860738 DOI: 10.3390/jof9010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Some Trichoderma spp. exhibit natural abilities to reduce fungal diseases of plants through their mycoparasitic and antagonistic properties. In this study, we created new Trichoderma atroviride strains with elevated antifungal activity. This effect was achieved by improving the activity of cis-prenyltransferase, the main enzyme in dolichol synthesis, by expressing the RER2 gene from Saccharomyces cerevisiae. Since dolichyl phosphate is the carrier of carbohydrate residues during protein glycosylation, activation of its synthesis enhanced the activities of dolichyl-dependent enzymes, DPM synthase and N-acetylglucosamine transferase, as well as stimulated glycosylation of secretory proteins. Cellulases secreted by the transformants revealed significantly higher levels or activities compared to the control strain. Consequently, the resulting Trichoderma strains were more effective against the plant pathogens Pythium ultimum.
Collapse
|
4
|
Effect of Farnesol in Trichoderma Physiology and in Fungal-Plant Interaction. J Fungi (Basel) 2022; 8:jof8121266. [PMID: 36547599 PMCID: PMC9783820 DOI: 10.3390/jof8121266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Farnesol is an isoprenoid intermediate in the mevalonate (MVA) pathway and is produced by the dephosphorylation of farnesyl diphosphate. Farnesol plays a central role in cell growth and differentiation, controls production of ubiquinone and ergosterol, and participates in the regulation of filamentation and biofilm formation. Despite these important functions, studies of farnesol in filamentous fungi are limited, and information on its effects on antifungal and/or biocontrol activity is scarce. In the present article, we identified the Trichoderma harzianum gene dpp1, encoding a diacylglycerol pyrophosphatase that catalyzes production of farnesol from farnesol diphosphate. We analyzed the function of dpp1 to address the importance of farnesol in Trichoderma physiology and ecology. Overexpression of dpp1 in T. harzianum caused an expected increase in farnesol production as well as a marked change in squalene and ergosterol levels, but overexpression did not affect antifungal activity. In interaction with plants, a dpp1-overexpressing transformant acted as a sensitizing agent in that it up-regulated expression of plant defense salicylate-related genes in the presence of a fungal plant pathogen. In addition, toxicity of farnesol on Trichoderma and plants was examined. Finally, a phylogenetic study of dpp1 was performed to understand its evolutionary history as a primary metabolite gene. This article represents a step forward in the acquisition of knowledge on the role of farnesol in fungal physiology and in fungus-environment interactions.
Collapse
|
5
|
Yang S, Cao X, Yu W, Li S, Zhou YJ. Efficient targeted mutation of genomic essential genes in yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2020; 104:3037-3047. [PMID: 32043190 DOI: 10.1007/s00253-020-10405-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
Targeted gene mutation by allelic replacement is important for functional genomic analysis and metabolic engineering. However, it is challenging in mutating the essential genes with the traditional method by using a selection marker, since the first step of essential gene knockout will result in a lethal phenotype. Here, we developed a two-end selection marker (Two-ESM) method for site-directed mutation of essential genes in Saccharomyces cerevisiae with the aid of the CRISPR/Cas9 system. With this method, single and double mutations of the essential gene ERG20 (encoding farnesyl diphosphate synthase) in S. cerevisiae were successfully constructed with high efficiencies of 100%. In addition, the Two-ESM method significantly improved the mutation efficiency and simplified the genetic manipulation procedure compared with traditional methods. The genome integration and mutation efficiencies were further improved by dynamic regulation of mutant gene expression and optimization of the integration modules. This Two-ESM method will facilitate the construction of genomic mutations of essential genes for functional genomic analysis and metabolic flux regulation in yeasts. KEY POINTS: • A Two-ESM strategy achieves mutations of essential genes with high efficiency of 100%. • The optimized three-module method improves the integration efficiency by more than three times. • This method will facilitate the functional genomic analysis and metabolic flux regulation.
Collapse
Affiliation(s)
- Shan Yang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Cao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Shengying Li
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, Shandong, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
6
|
Graczyk S, Perlińska-Lenart U, Górka-Nieć W, Lichota R, Piłsyk S, Zembek P, Lenart J, Bernat P, Gryz E, Augustyniak J, Palamarczyk G, Kruszewska JS. Increased activity of the sterol branch of the mevalonate pathway elevates glycosylation of secretory proteins and improves antifungal properties of Trichoderma atroviride. Fungal Genet Biol 2020; 137:103334. [PMID: 31958566 DOI: 10.1016/j.fgb.2020.103334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/18/2019] [Accepted: 01/05/2020] [Indexed: 11/29/2022]
Abstract
Some Trichoderma spp. have an ability to inhibit proliferation of fungal plant pathogens in the soil. Numerous compounds with a proven antifungal activity are synthesized via the terpene pathway. Here, we stimulated the activity of the mevalonate pathway in T. atroviride P1 by expressing the Saccharomyces cerevisiae ERG20 gene coding for farnesyl pyrophosphate (FPP) synthase, a key enzyme of this pathway. ERG20-expressing Trichoderma strains showed higher activities of FPP synthase and squalene synthase, the principal recipient of FPP in the mevalonate pathway. We also observed activation of dolichyl phosphate mannose (DPM) synthase, an enzyme in protein glycosylation, and significantly increased O- and N-glycosylation of secreted proteins. The hyper-glycosylation of secretory hydrolases could explain their increased activity observed in the ERG20 transformants. Analysis of the antifungal properties of the new strains revealed that the hydrolases secreted by the transformants inhibited growth of a plant pathogen, Pythium ultimum more efficiently compared to the control strain. Consequently, the biocontrol activity of the transgenic strains, determined as their ability to protect bean seeds and seedlings against harmful action of P. ultimum, was also improved substantially.
Collapse
Affiliation(s)
- Sebastian Graczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Urszula Perlińska-Lenart
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Wioletta Górka-Nieć
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Renata Lichota
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Patrycja Zembek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Jacek Lenart
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Przemysław Bernat
- Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Elżbieta Gryz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Justyna Augustyniak
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Grażyna Palamarczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Joanna S Kruszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
7
|
Levisson M, Araya-Cloutier C, de Bruijn WJC, van der Heide M, Salvador López JM, Daran JM, Vincken JP, Beekwilder J. Toward Developing a Yeast Cell Factory for the Production of Prenylated Flavonoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13478-13486. [PMID: 31016981 PMCID: PMC6909231 DOI: 10.1021/acs.jafc.9b01367] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Prenylated flavonoids possess a wide variety of biological activities, including estrogenic, antioxidant, antimicrobial, and anticancer activities. Hence, they have potential applications in food products, medicines, or supplements with health-promoting activities. However, the low abundance of prenylated flavonoids in nature is limiting their exploitation. Therefore, we investigated the prospect of producing prenylated flavonoids in the yeast Saccharomyces cerevisiae. As a proof of concept, we focused on the production of the potent phytoestrogen 8-prenylnaringenin. Introduction of the flavonoid prenyltransferase SfFPT from Sophora flavescens in naringenin-producing yeast strains resulted in de novo production of 8-prenylnaringenin. We generated several strains with increased production of the intermediate precursor naringenin, which finally resulted in a production of 0.12 mg L-1 (0.35 μM) 8-prenylnaringenin under shake flask conditions. A number of bottlenecks in prenylated flavonoid production were identified and are discussed.
Collapse
Affiliation(s)
- Mark Levisson
- Laboratory
of Plant Physiology and Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
| | - Carla Araya-Cloutier
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Wouter J. C. de Bruijn
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Menno van der Heide
- Laboratory
of Plant Physiology and Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
| | - José Manuel Salvador López
- Laboratory
of Plant Physiology and Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
| | - Jean-Marc Daran
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands
| | - Jean-Paul Vincken
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Jules Beekwilder
- Laboratory
of Plant Physiology and Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
| |
Collapse
|
8
|
Munakata R, Takemura T, Tatsumi K, Moriyoshi E, Yanagihara K, Sugiyama A, Suzuki H, Seki H, Muranaka T, Kawano N, Yoshimatsu K, Kawahara N, Yamaura T, Grosjean J, Bourgaud F, Hehn A, Yazaki K. Isolation of Artemisia capillaris membrane-bound di-prenyltransferase for phenylpropanoids and redesign of artepillin C in yeast. Commun Biol 2019; 2:384. [PMID: 31646187 PMCID: PMC6802118 DOI: 10.1038/s42003-019-0630-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/24/2019] [Indexed: 11/08/2022] Open
Abstract
Plants produce various prenylated phenolic metabolites, including flavonoids, phloroglucinols, and coumarins, many of which have multiple prenyl moieties and display various biological activities. Prenylated phenylpropanes, such as artepillin C (3,5-diprenyl-p-coumaric acid), exhibit a broad range of pharmaceutical effects. To date, however, no prenyltransferases (PTs) involved in the biosynthesis of phenylpropanes and no plant enzymes that introduce multiple prenyl residues to native substrates with different regio-specificities have been identified. This study describes the isolation from Artemisia capillaris of a phenylpropane-specific PT gene, AcPT1, belonging to UbiA superfamily. This gene encodes a membrane-bound enzyme, which accepts p-coumaric acid as its specific substrate and transfers two prenyl residues stepwise to yield artepillin C. These findings provide novel insights into the molecular evolution of this gene family, contributing to the chemical diversification of plant specialized metabolites. These results also enabled the design of a yeast platform for the synthetic biology of artepillin C.
Collapse
Affiliation(s)
- Ryosuke Munakata
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
- Université de Lorraine, INRA, LAE, F54000 Nancy, France
| | - Tomoya Takemura
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
| | - Kanade Tatsumi
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
| | - Eiko Moriyoshi
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
| | - Koki Yanagihara
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
| | - Akifumi Sugiyama
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
| | - Hideyuki Suzuki
- Department of Research & Development, Kazusa DNA Research Institute, Kisarazu, 292-0818 Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, 565-0871 Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, 565-0871 Japan
| | - Noriaki Kawano
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, 305-0843 Japan
| | - Kayo Yoshimatsu
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, 305-0843 Japan
| | - Nobuo Kawahara
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, 305-0843 Japan
| | - Takao Yamaura
- The Yamashina Botanical Research Institute, Nippon Shinyaku Co. Ltd., 39 Sakanotsuji-cho, Ohyake, Yamashina-ku Kyoto, 607-8182 Japan
| | | | - Frédéric Bourgaud
- Plant Advanced Technologies – PAT, 19 Avenue de la forêt de Haye, 54500 Vandoeuvre, France
| | - Alain Hehn
- Université de Lorraine, INRA, LAE, F54000 Nancy, France
| | - Kazufumi Yazaki
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
| |
Collapse
|
9
|
Inhibition of Dephosphorylation of Dolichyl Diphosphate Alters the Synthesis of Dolichol and Hinders Protein N-Glycosylation and Morphological Transitions in Candida albicans. Int J Mol Sci 2019; 20:ijms20205067. [PMID: 31614738 PMCID: PMC6829516 DOI: 10.3390/ijms20205067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 11/17/2022] Open
Abstract
The essential role of dolichyl phosphate (DolP) as a carbohydrate carrier during protein N-glycosylation is well established. The cellular pool of DolP is derived from de novo synthesis in the dolichol branch of the mevalonate pathway and from recycling of DolPP after each cycle of N-glycosylation, when the oligosaccharide is transferred from the lipid carrier to the protein and DolPP is released and then dephosphorylated. In Saccharomyces cerevisiae, the dephosphorylation of DolPP is known to be catalyzed by the Cwh8p protein. To establish the role of the Cwh8p orthologue in another distantly related yeast species, Candida albicans, we studied its mutant devoid of the CaCWH8 gene. A double Cacwh8∆/Cacwh8∆ strain was constructed by the URA-blaster method. As in S. cerevisiae, the mutant was impaired in DolPP recycling. This defect, however, was accompanied by an elevation of cis-prenyltransferase activity and higher de novo production of dolichols. Despite these compensatory changes, protein glycosylation, cell wall integrity, filamentous growth, and biofilm formation were impaired in the mutant. These results suggest that the defects are not due to the lack of DolP for the protein N-glycosylation but rather that the activity of oligosacharyltransferase could be inhibited by the excess DolPP accumulating in the mutant.
Collapse
|
10
|
Guo X, Shen H, Liu Y, Wang Q, Wang X, Peng C, Liu W, Zhao ZK. Enabling Heterologous Synthesis of Lupulones in the Yeast Saccharomyces cerevisiae. Appl Biochem Biotechnol 2019; 188:787-797. [PMID: 30684240 DOI: 10.1007/s12010-019-02957-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/11/2019] [Indexed: 01/26/2023]
Abstract
Lupulones, naturally produced by glandular trichomes of hop (Humulus lupulus), are prenylated phloroglucinol derivatives that contribute the bitter flavor of beer and demonstrate antimicrobial and anticancer activities. It is appealing to develop microbial cell factories such that lupulones may be produced via fermentation technology in lieu of extraction from limited plant resources. In this study, the yeast Saccharomyces cerevisiae transformants harboring a synthetic lupulone pathway that consisted of five genes from hop were constructed. The transformants accumulated several precursors but failed to accumulate lupulones. Overexpression of 3-hydroxy-3-methyl glutaryl co-enzyme A reductase, the key enzyme in precursor formation in the mevalonate pathway, also failed to achieve a detectable level of lupulones. To decrease the consumption of the precursors, the ergosterol biosynthesis pathway was chemically downregulated by a small molecule ketoconazole, leading to successful production of lupulones. Our study demonstrated a combination of molecular biology and chemical biology to regulate the metabolism for heterologous production of lupulones. The strategy may be valuable for future engineering microbial process for other prenylated natural products.
Collapse
Affiliation(s)
- Xiaojia Guo
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongwei Shen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuxue Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xueying Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chang Peng
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wujun Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zongbao K Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
11
|
Sagami H, Swiezewska E, Shidoji Y. The history and recent advances in research of polyprenol and its derivatives. Biosci Biotechnol Biochem 2018; 82:947-955. [DOI: 10.1080/09168451.2017.1411775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
The reduction pathway leading to the formation of dolichol was clarified in 2010 with the identification of SRD5A3, which is the polyprenol reductase. The finding inspired us to reanalyze the length of the major chain of polyprenol and dolichol from several plant leaves, including mangrove plants, as well as from animal and fish livers by 2D-TLC. Polyprenol- and dolichol-derived metabolites such as polyprenylacetone and epoxydolichol were found together with rubber-like prenol. This review focuses on analyses of polyprenol and its derivatives, including recently found epoxypolyprenol and polyprenylacetone. Attention has also been paid to the chromatographic behavior of rubber-like prenol on TLC.
Collapse
Affiliation(s)
- Hiroshi Sagami
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Yoshihiro Shidoji
- Graduate School of Human Health Sciences, University of Nagasaki, Nagasaki, Japan
| |
Collapse
|
12
|
Hoffmann R, Grabińska K, Guan Z, Sessa WC, Neiman AM. Long-Chain Polyprenols Promote Spore Wall Formation in Saccharomyces cerevisiae. Genetics 2017; 207:1371-1386. [PMID: 28978675 PMCID: PMC5714454 DOI: 10.1534/genetics.117.300322] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/03/2017] [Indexed: 11/18/2022] Open
Abstract
Dolichols are isoprenoid lipids of varying length that act as sugar carriers in glycosylation reactions in the endoplasmic reticulum. In Saccharomyces cerevisiae, there are two cis-prenyltransferases that synthesize polyprenol-an essential precursor to dolichol. These enzymes are heterodimers composed of Nus1 and either Rer2 or Srt1. Rer2-Nus1 and Srt1-Nus1 can both generate dolichol in vegetative cells, but srt1∆ cells grow normally while rer2∆ grows very slowly, indicating that Rer2-Nus1 is the primary enzyme used in mitotically dividing cells. In contrast, SRT1 performs an important function in sporulating cells, where the haploid genomes created by meiosis are packaged into spores. The spore wall is a multilaminar structure and SRT1 is required for the generation of the outer chitosan and dityrosine layers of the spore wall. Srt1 specifically localizes to lipid droplets associated with spore walls, and, during sporulation there is an SRT1-dependent increase in long-chain polyprenols and dolichols in these lipid droplets. Synthesis of chitin by Chs3, the chitin synthase responsible for chitosan layer formation, is dependent on the cis-prenyltransferase activity of Srt1, indicating that polyprenols are necessary to coordinate assembly of the spore wall layers. This work shows that a developmentally regulated cis-prenyltransferase can produce polyprenols that function in cellular processes besides protein glycosylation.
Collapse
Affiliation(s)
- Reuben Hoffmann
- Department of Biochemistry and Cell Biology, Stony Brook University, New York 11794-5215
| | - Kariona Grabińska
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520-8066
| | - Ziqiang Guan
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710
| | - William C Sessa
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520-8066
| | - Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, New York 11794-5215
| |
Collapse
|
13
|
Grabińska KA, Edani BH, Park EJ, Kraehling JR, Sessa WC. A conserved C-terminal R XG motif in the NgBR subunit of cis-prenyltransferase is critical for prenyltransferase activity. J Biol Chem 2017; 292:17351-17361. [PMID: 28842490 DOI: 10.1074/jbc.m117.806034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/16/2017] [Indexed: 11/06/2022] Open
Abstract
cis-Prenyltransferases (cis-PTs) constitute a large family of enzymes conserved during evolution and present in all domains of life. In eukaryotes and archaea, cis-PT is the first enzyme committed to the synthesis of dolichyl phosphate, an obligate lipid carrier in protein glycosylation reactions. The homodimeric bacterial enzyme, undecaprenyl diphosphate synthase, generates 11 isoprene units and has been structurally and mechanistically characterized in great detail. Recently, we discovered that unlike undecaprenyl diphosphate synthase, mammalian cis-PT is a heteromer consisting of NgBR (Nus1) and hCIT (dehydrodolichol diphosphate synthase) subunits, and this composition has been confirmed in plants and fungal cis-PTs. Here, we establish the first purification system for heteromeric cis-PT and show that both NgBR and hCIT subunits function in catalysis and substrate binding. Finally, we identified a critical RXG sequence in the C-terminal tail of NgBR that is conserved and essential for enzyme activity across phyla. In summary, our findings show that eukaryotic cis-PT is composed of the NgBR and hCIT subunits. The strong conservation of the RXG motif among NgBR orthologs indicates that this subunit is critical for the synthesis of polyprenol diphosphates and cellular function.
Collapse
Affiliation(s)
- Kariona A Grabińska
- From the Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Ban H Edani
- From the Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Eon Joo Park
- From the Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Jan R Kraehling
- From the Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut 06520
| | - William C Sessa
- From the Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
14
|
Niewiadomska M, Janik A, Perlińska-Lenart U, Piłsyk S, Palamarczyk G, Kruszewska JS. The role of Alg13 N-acetylglucosaminyl transferase in the expression of pathogenic features of Candida albicans. Biochim Biophys Acta Gen Subj 2017; 1861:789-801. [DOI: 10.1016/j.bbagen.2017.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 01/16/2017] [Accepted: 01/21/2017] [Indexed: 01/09/2023]
|
15
|
Lv X, Wang F, Zhou P, Ye L, Xie W, Xu H, Yu H. Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae. Nat Commun 2016; 7:12851. [PMID: 27650330 PMCID: PMC5036000 DOI: 10.1038/ncomms12851] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 08/08/2016] [Indexed: 12/18/2022] Open
Abstract
Microbial production of isoprene from renewable feedstock is a promising alternative to traditional petroleum-based processes. Currently, efforts to improve isoprenoid production in Saccharomyces cerevisiae mainly focus on cytoplasmic engineering, whereas comprehensive engineering of multiple subcellular compartments is rarely reported. Here, we propose dual metabolic engineering of cytoplasmic and mitochondrial acetyl-CoA utilization to boost isoprene synthesis in S. cerevisiae. This strategy increases isoprene production by 2.1-fold and 1.6-fold relative to the recombinant strains with solely mitochondrial or cytoplasmic engineering, respectively. By combining a modified reiterative recombination system for rapid pathway assembly, a two-phase culture process for dynamic metabolic regulation, and aerobic fed-batch fermentation for sufficient supply of acetyl-coA and carbon, we achieve 2527, mg l(-1) of isoprene, which is the highest ever reported in engineered eukaryotes. We propose this strategy as an efficient approach to enhancing isoprene production in yeast, which might open new possibilities for bioproduction of other value-added chemicals.
Collapse
Affiliation(s)
- Xiaomei Lv
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fan Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pingping Zhou
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| | - Wenping Xie
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haoming Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
16
|
Grabińska KA, Park EJ, Sessa WC. cis-Prenyltransferase: New Insights into Protein Glycosylation, Rubber Synthesis, and Human Diseases. J Biol Chem 2016; 291:18582-90. [PMID: 27402831 PMCID: PMC5000101 DOI: 10.1074/jbc.r116.739490] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
cis-Prenyltransferases (cis-PTs) constitute a large family of enzymes conserved during evolution and present in all domains of life. cis-PTs catalyze consecutive condensation reactions of allylic diphosphate acceptor with isopentenyl diphosphate (IPP) in the cis (Z) configuration to generate linear polyprenyl diphosphate. The chain lengths of isoprenoid carbon skeletons vary widely from neryl pyrophosphate (C10) to natural rubber (C>10,000). The homo-dimeric bacterial enzyme, undecaprenyl diphosphate synthase (UPPS), has been structurally and mechanistically characterized in great detail and serves as a model for understanding the mode of action of eukaryotic cis-PTs. However, recent experiments have revealed that mammals, fungal, and long-chain plant cis-PTs are heteromeric enzymes composed of two distantly related subunits. In this review, the classification, function, and evolution of cis-PTs will be discussed with a special emphasis on the role of the newly described NgBR/Nus1 subunit and its plants' orthologs as essential, structural components of the cis-PTs activity.
Collapse
Affiliation(s)
- Kariona A Grabińska
- From the Department of Pharmacology and Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520
| | - Eon Joo Park
- From the Department of Pharmacology and Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520
| | - William C Sessa
- From the Department of Pharmacology and Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
17
|
Short-chain polyisoprenoids in the yeast Saccharomyces cerevisiae - New companions of the old guys. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1296-303. [PMID: 26143379 DOI: 10.1016/j.bbalip.2015.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/16/2015] [Accepted: 06/25/2015] [Indexed: 11/20/2022]
Abstract
Dolichols are, among others, obligatory cofactors of protein glycosylation in eukaryotic cells. It is well known that yeast cells accumulate a family of dolichols with Dol-15/16 dominating while upon certain physiological conditions a second family with Dol-21 dominating is noted. In this report we identified the presence of additional short-chain length polyprenols - all-trans Pren-7 in three yeast strains (SS328, BY4741 and L5366), Pren-7 was accompanied by traces of putative Pren-6 and -8. Moreover, in two of these strains a single polyprenol mainly-cis-Pren-11 was synthesized at the stationary phase of growth. Identity of polyprenols was confirmed by HR-HPLC/MS, NMR and metabolic labeling. Additionally, simvastatin inhibited their biosynthesis.
Collapse
|
18
|
Park EJ, Grabińska KA, Guan Z, Stránecký V, Hartmannová H, Hodaňová K, Barešová V, Sovová J, Jozsef L, Ondrušková N, Hansíková H, Honzík T, Zeman J, Hůlková H, Wen R, Kmoch S, Sessa WC. Mutation of Nogo-B receptor, a subunit of cis-prenyltransferase, causes a congenital disorder of glycosylation. Cell Metab 2014; 20:448-57. [PMID: 25066056 PMCID: PMC4161961 DOI: 10.1016/j.cmet.2014.06.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/28/2014] [Accepted: 06/14/2014] [Indexed: 11/20/2022]
Abstract
Dolichol is an obligate carrier of glycans for N-linked protein glycosylation, O-mannosylation, and GPI anchor biosynthesis. cis-prenyltransferase (cis-PTase) is the first enzyme committed to the synthesis of dolichol. However, the proteins responsible for mammalian cis-PTase activity have not been delineated. Here we show that Nogo-B receptor (NgBR) is a subunit required for dolichol synthesis in yeast, mice, and man. Moreover, we describe a family with a congenital disorder of glycosylation caused by a loss of function mutation in the conserved C terminus of NgBR-R290H and show that fibroblasts isolated from patients exhibit reduced dolichol profiles and enhanced accumulation of free cholesterol identically to fibroblasts from mice lacking NgBR. Mutation of NgBR-R290H in man and orthologs in yeast proves the importance of this evolutionarily conserved residue for mammalian cis-PTase activity and function. Thus, these data provide a genetic basis for the essential role of NgBR in dolichol synthesis and protein glycosylation.
Collapse
Affiliation(s)
- Eon Joo Park
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06520, USA
| | - Kariona A Grabińska
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06520, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, DUMC 2927, Durham, NC 27710, USA
| | - Viktor Stránecký
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Hana Hartmannová
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Kateřina Hodaňová
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Veronika Barešová
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Jana Sovová
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Levente Jozsef
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06520, USA
| | - Nina Ondrušková
- Department of Pediatrics, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Hana Hansíková
- Department of Pediatrics, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Tomáš Honzík
- Department of Pediatrics, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Jiří Zeman
- Department of Pediatrics, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Helena Hůlková
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Rong Wen
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, 900 NW 17th Street, Miami, FL 33136, USA
| | - Stanislav Kmoch
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic.
| | - William C Sessa
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06520, USA.
| |
Collapse
|
19
|
Juchimiuk M, Orłowski J, Gawarecka K, Świeżewska E, Ernst JF, Palamarczyk G. Candida albicans cis-prenyltransferase Rer2 is required for protein glycosylation, cell wall integrity and hypha formation. Fungal Genet Biol 2014; 69:1-12. [DOI: 10.1016/j.fgb.2014.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/30/2014] [Accepted: 05/04/2014] [Indexed: 11/28/2022]
|
20
|
Lv X, Xie W, Lu W, Guo F, Gu J, Yu H, Ye L. Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy. J Biotechnol 2014; 186:128-36. [PMID: 25016205 DOI: 10.1016/j.jbiotec.2014.06.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/20/2014] [Accepted: 06/25/2014] [Indexed: 01/26/2023]
Abstract
To explore the capacity of isoprene production in Saccharomyces cerevisiae, a rational push-pull-restrain strategy was proposed to engineer the mevalonic acid (MVA) and acetyl-CoA pathways. The strategy can be decomposed into the up-regulation of precursor supply in the acetyl-CoA module and the MVA pathway (push-strategy), increase of the isoprene branch flux (pull-strategy), and down-regulation of the competing pathway (restrain-strategy). Furthermore, to reduce the production cost arising from galactose addition and meanwhile maintain the high expression of Gal promoters, the galactose regulatory network was modulated by Gal80p deletion. Finally, the engineered strain YXM10-ispS-ispS could accumulate up to 37 mg/L isoprene (about 782-fold increase compared to the parental strain) under aerobic conditions with glycerol-sucrose as carbon source. In this way, a new potential platform for isoprene production was established via metabolic engineering of the yeast native pathways.
Collapse
Affiliation(s)
- Xiaomei Lv
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Wenping Xie
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Wenqiang Lu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Fei Guo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Jiali Gu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Hongwei Yu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Lidan Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
21
|
Piłsyk S, Perlińska-Lenart U, Górka-Nieć W, Graczyk S, Antosiewicz B, Zembek P, Palamarczyk G, Kruszewska JS. Overexpression of erg20 gene encoding farnesyl pyrophosphate synthase has contrasting effects on activity of enzymes of the dolichyl and sterol branches of mevalonate pathway in Trichoderma reesei. Gene 2014; 544:114-22. [PMID: 24793581 DOI: 10.1016/j.gene.2014.04.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 11/18/2022]
Abstract
The mevalonate pathway is the most diverse metabolic route resulting in the biosynthesis of at least 30,000 isoprenoid compounds, many of which, such as sterols or dolichols, are indispensable for living cells. In the filamentous fungus Trichoderma of major biotechnological interest isoprenoid metabolites are also involved in the biocontrol processes giving the mevalonate pathway an additional significance. On the other hand, little is known about genes coding for enzymes of the mevalonate pathway in Trichoderma. Here, we present cloning and functional analysis of the erg20 gene from Trichoderma reesei coding for farnesyl pyrophosphate (FPP) synthase (EC 2.5.1.10), an enzyme located at the branching point of the mevalonate pathway. Expression of the gene in a thermosensitive erg20-2 mutant of Saccharomyces cerevisiae impaired in the FPP synthase activity suppressed the thermosensitive phenotype. The same gene overexpressed in T. reesei significantly enhanced the FPP synthase activity and also stimulated the activity of cis-prenyltransferase, an enzyme of the dolichyl branch of the mevalonate pathway. Unexpectedly, the activity of squalene synthase from the other, sterol branch, was significantly decreased without, however, affecting ergosterol level.
Collapse
Affiliation(s)
- Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Urszula Perlińska-Lenart
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Wioletta Górka-Nieć
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Sebastian Graczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Beata Antosiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Patrycja Zembek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Grażyna Palamarczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Joanna S Kruszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
22
|
Cohen Y, Megyeri M, Chen OCW, Condomitti G, Riezman I, Loizides-Mangold U, Abdul-Sada A, Rimon N, Riezman H, Platt FM, Futerman AH, Schuldiner M. The yeast p5 type ATPase, spf1, regulates manganese transport into the endoplasmic reticulum. PLoS One 2013; 8:e85519. [PMID: 24392018 PMCID: PMC3877380 DOI: 10.1371/journal.pone.0085519] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 11/27/2013] [Indexed: 12/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn(2+) homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn(2+) in ∆spf1 cells and an increase following it's overexpression. In agreement with the observed loss of luminal Mn(2+) we could observe concurrent reduction in many Mn(2+)-related process in the ER lumen. Conversely, cytosolic Mn(2+)-dependent processes were increased. Together, these data support a role for Spf1p in Mn(2+) transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn(2+)-dependent neurological disorders.
Collapse
Affiliation(s)
- Yifat Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Márton Megyeri
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Oscar C. W. Chen
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Giuseppe Condomitti
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Isabelle Riezman
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | - Alaa Abdul-Sada
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Nitzan Rimon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Howard Riezman
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Frances M. Platt
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Anthony H. Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
- The Joseph Meyerhoff Professor of Biochemistry at the Weizmann Institute of Science, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
23
|
Pasikowska M, Palamarczyk G, Lehle L. The essential endoplasmic reticulum chaperone Rot1 is required for protein N- and O-glycosylation in yeast. Glycobiology 2012; 22:939-47. [DOI: 10.1093/glycob/cws068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
24
|
Possible inhibitory molecular mechanism of farnesol on the development of fluconazole resistance in Candida albicans biofilm. Antimicrob Agents Chemother 2011; 56:770-5. [PMID: 22106223 DOI: 10.1128/aac.05290-11] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans biofilm infections are usually treated with azole antifungals such as fluconazole. However, the development of resistance to this drug in C. albicans biofilms is very common, especially in immunocompromised individuals. The upregulation of the sterol biosynthetic pathway gene ERG and the efflux pump genes CDR and MDR may contribute to this azole tolerance in Candida species. We hypothesize that farnesol, an endogenous quorum sensing molecule with possible antimicrobial properties which is also the precursor of ergosterols in C. albicans, may interfere with the development of fluconazole resistance in C. albicans biofilms. To test this hypothesis, MICs were compared and morphology changes were observed by confocal laser scanning microscopy (CLSM) for farnesol-treated and -untreated and fluconazole-resistant groups. The expression of possible target genes (ERG11, ERG25, ERG6, ERG5, ERG3, ERG1, MDR1, CDR1, and CDR2) in biofilms was analyzed by reverse transcription-PCR (RT-PCR) and quantitative PCR (qPCR) to investigate the molecular mechanisms of the inhibitory effects of farnesol. The results showed a decreased MIC of fluconazole and thinner biofilms for the farnesol-treated group, indicating that farnesol inhibited the development of fluconazole resistance. The sterol biosynthetic pathway may contribute to the inhibitory effects of farnesol, as the transcription levels of the ERG11, ERG25, ERG6, ERG3, and ERG1 genes decreased in the farnesol-treated group.
Collapse
|
25
|
Grabińska KA, Cui J, Chatterjee A, Guan Z, Raetz CRH, Robbins PW, Samuelson J. Molecular characterization of the cis-prenyltransferase of Giardia lamblia. Glycobiology 2010; 20:824-32. [PMID: 20308470 DOI: 10.1093/glycob/cwq036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Giardia lamblia, the protist that causes diarrhea, makes an Asn-linked-glycan (N-glycan) precursor that contains just two sugars (GlcNAc(2)) attached by a pyrophosphate linkage to a polyprenol lipid. Because the candidate cis-prenyltransferase of Giardia appears to be more similar to bacterial enzymes than to those of most eukaryotes and because Giardia is missing a candidate dolichol kinase (ortholog to Saccharomyces cerevisiae SEC59 gene product), we wondered how Giardia synthesizes dolichol phosphate (Dol-P), which is used to make N-glycans and glycosylphosphatidylinositol (GPI) anchors. Here we show that cultured Giardia makes an unsaturated polyprenyl pyrophosphate (dehydrodolichol), which contains 11 and 12 isoprene units and is reduced to dolichol. The Giardia cis-prenyltransferase that we have named Gl-UPPS because the enzyme primarily synthesizes undecaprenol pyrophosphate is phylogenetically related to those of bacteria and Trypanosoma rather than to those of other protists, metazoans and fungi. In transformed Saccharomyces, the Giardia cis-prenyltransferase also makes a polyprenol containing 11 and 12 isoprene units and supports normal growth, N-glycosylation and GPI anchor synthesis of a rer2Delta, srt1Delta double-deletion mutant. Finally, despite the absence of an ortholog to SEC59, Giardia has cytidine triphosphate-dependent dolichol kinase activity. These results suggest that the synthetic pathway for Dol-P is conserved in Giardia, even if some of the important enzymes are different from those of higher eukaryotes or remain unidentified.
Collapse
Affiliation(s)
- Kariona A Grabińska
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Kuranda K, François J, Palamarczyk G. The isoprenoid pathway and transcriptional response to its inhibitors in the yeastSaccharomyces cerevisiae. FEMS Yeast Res 2010; 10:14-27. [DOI: 10.1111/j.1567-1364.2009.00560.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
27
|
Overexpression of the gene encoding HMG-CoA reductase in Saccharomyces cerevisiae for production of prenyl alcohols. Appl Microbiol Biotechnol 2008; 82:837-45. [PMID: 19083230 DOI: 10.1007/s00253-008-1807-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 11/19/2008] [Accepted: 11/29/2008] [Indexed: 10/21/2022]
Abstract
To develop microbial production method for prenyl alcohols (e.g., (E,E)-farnesol (FOH), (E)-nerolidol (NOH), and (E,E,E)-geranylgeraniol (GGOH)), the genes encoding enzymes in the mevalonate and prenyl diphosphate pathways were overexpressed in Saccharomyces cerevisiae, and the resultant transformants were evaluated as to the production of these alcohols. Overexpression of the gene encoding hydroxymethylglutaryl (HMG)-CoA reductase was most effective among the genes tested. A derivative of S. cerevisiae ATCC 200589, which was selected through screening, was found to be the most suitable host for the production. On cultivation of the resultant transformant, in which the HMG-CoA reductase gene was overexpressed, in a 5-liter bench-scale jar fermenter for 7 d, the production of FOH, NOH, and GGOH reached 145.7, 98.8, and 2.46 mg/l, respectively.
Collapse
|
28
|
Dolichyl-phosphate-glucose is used to make O-glycans on glycoproteins of Trichomonas vaginalis. EUKARYOTIC CELL 2008; 7:1344-51. [PMID: 18552282 DOI: 10.1128/ec.00061-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Trichomonas vaginalis, the protist that causes vaginal itching, has a huge genome with numerous gene duplications. Recently we found that Trichomonas has numerous genes encoding putative dolichyl-phosphate-glucose (Dol-P-Glc) synthases (encoded by ALG5 genes) despite the fact that Trichomonas lacks the glycosyltransferases (encoded by ALG6, ALG8, and ALG10 genes) that use Dol-P-Glc to glucosylate dolichyl-PP-linked glycans. In addition, Trichomonas does not have a canonical DPM1 gene, encoding a dolichyl-P-mannose (Dol-P-Man) synthase. Here we show Trichomonas membranes have roughly 300 times the Dol-P-Glc synthase activity of Saccharomyces cerevisiae membranes and about one-fifth the Dol-P-Man synthase activity of Saccharomyces membranes. Endogenous Dol-P-hexoses of Trichomonas are relatively abundant and contain 16 isoprene units. Five paralogous Trichomonas ALG5 gene products have Dol-P-Glc synthase activity when expressed as recombinant proteins, and these Trichomonas Alg5s correct a carboxypeptidase N glycosylation defect in a Saccharomyces alg5 mutant in vivo. A recombinant Trichomonas Dpm1, which is deeply divergent in its sequence, has Dol-P-Man synthase activity. When radiolabeled Dol-P-Glc is incubated with Trichomonas membranes, Glc is incorporated into reducing and nonreducing sugars of O-glycans of endogenous glycoproteins. To our knowledge, this is the first demonstration of Dol-P-Glc as a sugar donor for O-glycans on glycoproteins.
Collapse
|
29
|
Górka-Nieć W, Bańkowska R, Palamarczyk G, Krotkiewski H, Kruszewska JS. Protein glycosylation in pmt mutants of Saccharomyces cerevisiae. Influence of heterologously expressed cellobiohydrolase II of Trichoderma reesei and elevated levels of GDP-mannose and cis-prenyltransferase activity. Biochim Biophys Acta Gen Subj 2007; 1770:774-80. [PMID: 17343985 DOI: 10.1016/j.bbagen.2007.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 01/09/2007] [Accepted: 01/19/2007] [Indexed: 10/23/2022]
Abstract
Protein O-mannosylation has been postulated to be critical for production and secretion of glycoproteins in fungi. Therefore, understanding the regulation of this process and the influence of heterologous expression of glycoproteins on the activity of enzymes engaged in O-glycosylation are of considerable interest. In this study we expressed cellobiohydrolase II (CBHII) of T. reesei, which is normally highly O-mannosylated, in Saccharomyces cerevisiae pmt mutants partially blocked in O-mannosylation. We found that the lack of Pmt1 or Pmt2 protein O-mannosyltransferase activity limited the glycosylation of CBHII, but it did not affect its secretion. The S. cerevisiae pmt1Delta and pmt2Delta mutants expressing T. reesei cbh2 gene showed a decrease of GDP-mannose level and a very high activity of cis-prenyltransferase compared to untransformed strains. On the other hand, elevation of cis-prenyltransferase activity by overexpression of the S. cerevisiae RER2 gene in these mutants led to an increase of dolichyl phosphate mannose synthase activity, but it did not influence the activity of O-mannosyltransferases. Overexpression of the MPG1 gene increased the level of GDP-mannose and stimulated the activity of mannosyltransferases elongating O-linked sugar chains, leading to partial restoration of CBHII glycosylation.
Collapse
Affiliation(s)
- Wioletta Górka-Nieć
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | | | | | | | | |
Collapse
|
30
|
Orłowski J, Machula K, Janik A, Zdebska E, Palamarczyk G. Dissecting the role of dolichol in cell wall assembly in the yeast mutants impaired in early glycosylation reactions. Yeast 2007; 24:239-52. [PMID: 17397129 DOI: 10.1002/yea.1479] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Evidence is presented that temperature-sensitive Saccharomyces cerevisiae mutants, impaired in dolichol kinase (Sec59p) or dolichyl phosphate mannose synthase (Dpm1p) activity have an aberrant cell wall composition and ultrastructure. The mutants were oversensitive to Calcofluor white, an agent interacting with the cell wall chitin. In accordance with this, chemical analysis of the cell wall alkali-insoluble fraction indicated an increased amount of chitin and changes in the quantity of beta1,6- and beta1,3-glucan in sec59-1 and dpm1-6 mutants. In order to unravel the link between the formation of dolichyl phosphate and dolichyl phosphate mannose and the cell wall assembly, we screened a yeast genomic library for a multicopy suppressors of the thermosensitive phenotype. The RER2 and SRT1 genes, encoding cis-prenyltransferases, were isolated. In addition, the ROT1 gene, encoding protein involved in beta1,6-glucan synthesis (Machi et al., 2004) and protein folding (Takeuchi et al., 2006) acted as a multicopy suppressor of the temperature-sensitive phenotype of the sec59-1 mutant. The cell wall of the mutants and of mutants bearing the multicopy suppressors was analysed for carbohydrate and mannoprotein content. We also examined the glycosylation status of the plasma membrane protein Gas1p, a beta1,3-glucan elongase, and the degree of phosphorylation of the Mpk1/Slt2 protein, involved in the cell wall integrity pathway.
Collapse
Affiliation(s)
- Jacek Orłowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw, Poland
| | | | | | | | | |
Collapse
|
31
|
Perlińska-Lenart U, Bańkowska R, Palamarczyk G, Kruszewska JS. Overexpression of the Saccharomyces cerevisiae RER2 gene in Trichoderma reesei affects dolichol dependent enzymes and protein glycosylation. Fungal Genet Biol 2006; 43:422-9. [PMID: 16527501 DOI: 10.1016/j.fgb.2006.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 01/04/2006] [Accepted: 01/16/2006] [Indexed: 10/24/2022]
Abstract
Protein secretion in Trichoderma reesei could be stimulated by overexpression of the yeast Saccharomyces cerevisiae DPM1 gene encoding dolichyl phosphate mannose synthase (DPMS) a key enzyme in the O-glycosylation pathway. The secreted proteins were glycosylated to the wild type level. On the other hand, the elevated concentration of GDP-mannose, a direct substrate for DPMS, resulting from overexpression in T. reesei of the mpg1 gene coding for guanyltransferase, did not affect secretion of proteins but did affect the degree of their O- and N-glycosylation. In this paper, we examined the effects of dolichol, an indispensable carrier of sugar residues in protein glycosylation, on the synthesis of glycosylated proteins. An increase in dolichol synthesis was obtained by overexpression of the yeast gene encoding cis-prenyltransferase, the first enzyme of the mevalonate pathway committed to dolichol biosynthesis. We observed that, an increased concentration of dolichol resulted in an increased expression of the dpm1 gene and DPMS activity and in overglycosylation of secreted proteins.
Collapse
Affiliation(s)
- Urszula Perlińska-Lenart
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | | | | | | |
Collapse
|
32
|
GrabiÅska K, Palamarczyk G. Dolichol biosynthesis in the yeastSaccharomyces cerevisiae: an insight into the regulatory role of farnesyl diphosphate synthase. FEMS Yeast Res 2002. [DOI: 10.1111/j.1567-1364.2002.tb00093.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
33
|
Kamińska J, Grabińska K, Kwapisz M, Sikora J, Smagowicz WJ, Palamarczyk G, Zoładek T, Boguta M. The isoprenoid biosynthetic pathway in Saccharomyces cerevisiae is affected in a maf1-1 mutant with altered tRNA synthesis. FEMS Yeast Res 2002; 2:31-7. [PMID: 12702319 DOI: 10.1111/j.1567-1364.2002.tb00066.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
tRNA isopentenylation is a branch of an isoprenoid pathway in yeast. There is a competition for a substrate between isoprenoid biosynthetic enzyme Erg20p and tRNA isopentenyltransferase. Here we studied the direct effect of elevated tRNA biosynthesis on ERG20 expression. The maf1-1 mutant of Saccharomyces cerevisiae that has enhanced cellular tRNA levels was used. We show that both ERG20 transcript and Erg20 protein levels are increased in maf1-1. Additionally, maf1-1 leads to decreased ergosterol content in the cells. These effects of maf1-1 are dependent on functional tRNA isopentenyltransferase. Our results indicate that a complex regulation of the isoprenoid pathway involves also an effect of changes in tRNA biosynthesis.
Collapse
Affiliation(s)
- Joanna Kamińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Schenk B, Fernandez F, Waechter CJ. The ins(ide) and out(side) of dolichyl phosphate biosynthesis and recycling in the endoplasmic reticulum. Glycobiology 2001; 11:61R-70R. [PMID: 11425794 DOI: 10.1093/glycob/11.5.61r] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The precursor oligosaccharide donor for protein N-glycosylation in eukaryotes, Glc3Man9GlcNAc(2)-P-P-dolichol, is synthesized in two stages on both leaflets of the rough endoplasmic reticulum (ER). There is good evidence that the level of dolichyl monophosphate (Dol-P) is one rate-controlling factor in the first stage of the assembly process. In the current topological model it is proposed that ER proteins (flippases) then mediate the transbilayer movement of Man-P-Dol, Glc-P-Dol, and Man5GlcNAc(2)-P-P-Dol from the cytoplasmic leaflet to the lumenal leaflet. The rate of flipping of the three intermediates could plausibly influence the conversion of Man5GlcNAc(2)-P-P-Dol to Glc3Man(9)GlcNAc(2)-P-P-Dol in the second stage on the lumenal side of the rough ER. This article reviews the current understanding of the enzymes involved in the de novo biosynthesis of Dol-P and other polyisoprenoid glycosyl carrier lipids and speculates about the role of membrane proteins and enzymes that could be involved in the transbilayer movement of the lipid intermediates and the recycling of Dol-P and Dol-P-P discharged during glycosylphosphatidylinositol anchor biosynthesis, N-glycosylation, and O- and C-mannosylation reactions on the lumenal surface of the rough ER.
Collapse
Affiliation(s)
- B Schenk
- Institute for Microbiology, ETH Zurich, 8092 Zurich, Switzerland
| | | | | |
Collapse
|
35
|
Schenk B, Rush JS, Waechter CJ, Aebi M. An alternative cis-isoprenyltransferase activity in yeast that produces polyisoprenols with chain lengths similar to mammalian dolichols. Glycobiology 2001; 11:89-98. [PMID: 11181565 DOI: 10.1093/glycob/11.1.89] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Dolichyl monophosphate (Dol-P) is a polyisoprenoid glycosyl carrier lipid essential for the assembly of a variety of glycoconjugates in the endoplasmic reticulum of eukaryotic cells. In yeast, dolichols with chain lengths of 14--17 isoprene units are predominant, whereas in mammalian cells they contain 19--22 isoprene units. In this biosynthetic pathway, t,t-farnesyl pyrophosphate is elongated to the appropriate long chain polyprenyl pyrophosphate by the sequential addition of cis-isoprene units donated by isopentenyl pyrophosphate with t,t,c-geranylgeranyl pyrophosphate being the initial intermediate formed. The condensation steps are catalyzed by cis-isoprenyltransferase (cis-IPTase). Genes encoding cis-IPTase activity have been identified in Micrococcus luteus, Escherichia coli, Arabidopsis thaliana, and Saccharomyces cerevisiae (RER2). Yeast cells deleted for the RER2 locus display a severe growth defect, but are still viable, possibly due to the activity of an homologous locus, SRT1. The dolichol and Dol-P content of exponentially growing revertants of RER2 deleted cells (Delta rer2) and of cells overexpressing SRT1 have been determined by HPLC analysis. Dolichols and Dol-Ps with 19--22 isoprene units, unusually long for yeast, were found, and shown to be utilized for the biosynthesis of lipid intermediates involved in protein N-glycosylation. In addition, cis-IPTase activity in microsomes from Delta rer2 cells overexpressing SRT1 was 7- to 17-fold higher than in microsomes from Delta rer2 cells. These results establish that yeast contains at least two cis-IPTases, and indicate that the chain length of dolichols is determined primarily by the enzyme catalyzing the chain elongation stage of the biosynthetic process.
Collapse
Affiliation(s)
- B Schenk
- Institute for Microbiology, ETH Zurich, CH-8092 Zurich, Switzerland
| | | | | | | |
Collapse
|
36
|
Faulkner A, Chen X, Rush J, Horazdovsky B, Waechter CJ, Carman GM, Sternweis PC. The LPP1 and DPP1 gene products account for most of the isoprenoid phosphate phosphatase activities in Saccharomyces cerevisiae. J Biol Chem 1999; 274:14831-7. [PMID: 10329682 DOI: 10.1074/jbc.274.21.14831] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two genes in Saccharomyces cerevisiae, LPP1 and DPP1, with homology to a mammalian phosphatidic acid (PA) phosphatase were identified and disrupted. Neither single nor combined deletions resulted in growth or secretion phenotypes. As observed previously (Toke, D. A., Bennett, W. L., Dillon, D. A., Wu, W.-I., Chen, X., Ostrander, D. B., Oshiro, J., Cremesti, A., Voelker, D. R., Fischl, A. S., and Carman, G. M. (1998) J. Biol. Chem. 273, 3278-3284; Toke, D. A., Bennett, W. L., Oshiro, J., Wu, W.-I., Voelker, D. R., and Carman, G. M. (1998) J. Biol. Chem. 273, 14331-14338), the disruption of DPP1 and LPP1 produced profound losses of Mg2+-independent PA phosphatase activity. The coincident attenuation of hydrolytic activity against diacylglycerol pyrophosphate prompted an examination of the effects of these disruptions on hydrolysis of isoprenoid pyrophosphates. Disruption of either LPP1 or DPP1 caused respective decreases of about 25 and 75% in Mg2+-independent hydrolysis of several isoprenoid phosphates by particulate fractions isolated from these cells. The particulate and cytosolic fractions from the double disruption (lpp1Delta dpp1Delta) showed essentially complete loss of Mg2+-independent hydrolytic activity toward dolichyl phosphate (dolichyl-P), dolichyl pyrophosphate (dolichyl-P-P), farnesyl pyrophosphate (farnesyl-P-P), and geranylgeranyl pyrophosphate (geranylgeranyl-P-P). However, a modest Mg2+-stimulated activity toward PA and dolichyl-P was retained in cytosol from lpp1Delta dpp1Delta cells. The action of Dpp1p on isoprenyl pyrophosphates was confirmed by characterization of the hydrolysis of geranylgeranyl-P-P by the purified protein. These results indicate that LPP1 and DPP1 account for most of the hydrolytic activities toward dolichyl-P-P, dolichyl-P, farnesyl-P-P, and geranylgeranyl-P-P but also suggest that yeast contain other enzymes capable of dephosphorylating these essential isoprenoid intermediates.
Collapse
Affiliation(s)
- A Faulkner
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9041, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Grabowska D, Karst F, Szkopińska A. Effect of squalene synthase gene disruption on synthesis of polyprenols in Saccharomyces cerevisiae. FEBS Lett 1998; 434:406-8. [PMID: 9742963 DOI: 10.1016/s0014-5793(98)01019-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Biosynthesis of polyprenols was investigated in a wild-type strain of Saccharomyces cerevisiae and a squalene synthase deficient strain auxotrophic for ergosterol. The quantitative data showed that disruption of squalene synthase gene caused a 6-fold increase in the synthesis of polyprenols in vitro in comparison with the wild-type strain. Microsomal preparation from the deleted strain only slightly reacted to the additional exogenous FPP, while that from the wild-type strain presented a 4-fold increase of polyprenol synthesis. Restoration of ergosterol synthesis, by introducing ERG9 functional allele into the deleted strain resulted in a significant lowering of polyprenol synthesis, indicating the immediate shift of the common substrate (FPP) to the sterol pathway. The role of squalene synthase in the regulation of polyprenol synthesis and 'flow diversion hypothesis' is discussed.
Collapse
Affiliation(s)
- D Grabowska
- Institute of Biochemistry and Biophysics, PAN, Warszawa, Poland
| | | | | |
Collapse
|