1
|
Kennelly JP, Tontonoz P. Cholesterol Transport to the Endoplasmic Reticulum. Cold Spring Harb Perspect Biol 2023; 15:cshperspect.a041263. [PMID: 35940908 PMCID: PMC9899650 DOI: 10.1101/cshperspect.a041263] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Most cholesterol in mammalian cells is stored in the plasma membrane (PM). Cholesterol transport from the PM to low-sterol regulatory regions of the endoplasmic reticulum (ER) controls cholesterol synthesis and uptake, and thereby influences the rates of cholesterol flux between tissues of complex organisms. Cholesterol transfer to the ER is also required for steroidogenesis, oxysterol and bile acid synthesis, and cholesterol esterification. The ER-resident Aster proteins (Aster-A, -B, and -C) form contacts with the PM to move cholesterol to the ER in mammals. Mice lacking Aster-B have low adrenal cholesteryl ester stores and impaired steroidogenesis because of a defect in cholesterol transport from high-density lipoprotein (HDL) to the ER. This work reviews the molecular characteristics of Asters, their role in HDL- and low-density lipoprotein (LDL)-cholesterol movement, and how cholesterol transferred to the ER is utilized by cells. The roles of other lipid transporters and of membrane lipid organization in maintaining aspects of cholesterol homeostasis are also highlighted.
Collapse
Affiliation(s)
- John P Kennelly
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
2
|
Vos DY, van de Sluis B. Function of the endolysosomal network in cholesterol homeostasis and metabolic-associated fatty liver disease (MAFLD). Mol Metab 2021; 50:101146. [PMID: 33348067 PMCID: PMC8324686 DOI: 10.1016/j.molmet.2020.101146] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023] Open
Abstract
Background Metabolic-associated fatty liver disease (MAFLD), also known as non-alcoholic fatty liver disease, has become the leading cause of chronic liver disease worldwide. In addition to hepatic accumulation of triglycerides, dysregulated cholesterol metabolism is an important contributor to the pathogenesis of MAFLD. Maintenance of cholesterol homeostasis is highly dependent on cellular cholesterol uptake and, subsequently, cholesterol transport to other membrane compartments, such as the endoplasmic reticulum (ER). Scope of review The endolysosomal network is key for regulating cellular homeostasis and adaptation, and emerging evidence has shown that the endolysosomal network is crucial to maintain metabolic homeostasis. In this review, we will summarize our current understanding of the role of the endolysosomal network in cholesterol homeostasis and its implications in MAFLD pathogenesis. Major conclusions Although multiple endolysosomal proteins have been identified in the regulation of cholesterol uptake, intracellular transport, and degradation, their physiological role is incompletely understood. Further research should elucidate their role in controlling metabolic homeostasis and development of fatty liver disease. The intracellular cholesterol transport is tightly regulated by the endocytic and lysosomal network. Dysfunction of the endolysosomal network affects hepatic lipid homeostasis. The endosomal sorting of lipoprotein receptors is precisely regulated and is not a bulk process.
Collapse
Affiliation(s)
- Dyonne Y Vos
- Department of Pediatrics, section Molecular Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bart van de Sluis
- Department of Pediatrics, section Molecular Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
3
|
Two polymorphic cholesterol monohydrate crystal structures form in macrophage culture models of atherosclerosis. Proc Natl Acad Sci U S A 2018; 115:7662-7669. [PMID: 29967179 DOI: 10.1073/pnas.1803119115] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The formation of atherosclerotic plaques in the blood vessel walls is the result of LDL particle uptake, and consequently of cholesterol accumulation in macrophage cells. Excess cholesterol accumulation eventually results in cholesterol crystal deposition, the hallmark of mature atheromas. We followed the formation of cholesterol crystals in J774A.1 macrophage cells with time, during accumulation of LDL particles, using a previously developed correlative cryosoft X-ray tomography (cryo-SXT) and stochastic optical reconstruction microscopy (STORM) technique. We show, in the initial accumulation stages, formation of small quadrilateral crystal plates associated with the cell plasma membrane, which may subsequently assemble into large aggregates. These plates match crystals of the commonly observed cholesterol monohydrate triclinic structure. Large rod-like cholesterol crystals form at a later stage in intracellular locations. Using cryotransmission electron microscopy (cryo-TEM) and cryoelectron diffraction (cryo-ED), we show that the structure of the large elongated rods corresponds to that of monoclinic cholesterol monohydrate, a recently determined polymorph of the triclinic crystal structure. These monoclinic crystals form with an unusual hollow cylinder or helical architecture, which is preserved in the mature rod-like crystals. The rod-like morphology is akin to that observed in crystals isolated from atheromas. We suggest that the crystals in the atherosclerotic plaques preserve in their morphology the memory of the structure in which they were formed. The identification of the polymorph structure, besides explaining the different crystal morphologies, may serve to elucidate mechanisms of cholesterol segregation and precipitation in atherosclerotic plaques.
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Cholesterol is delivered to the limiting membrane of late endosomes by Niemann-Pick Type C1 and C2 proteins. This review summarizes recent evidence that cholesterol transfer from endosomes to the endoplasmic reticulum and other organelles is mediated by lipid-binding proteins that localize to membrane contact sites (MCS). RECENT FINDINGS LDL-cholesterol in the late endosomal/lysosomes is exported to the plasma membrane, where most cholesterol resides, and the endoplasmic reticulum, which harbors the regulatory complexes and enzymes that control the synthesis and esterification of cholesterol. A major advance in dissecting these cholesterol transport pathways was identification of frequent and dynamic MCS between endosomes and the endoplasmic reticulum, peroxisomes and plasma membrane. Positioned at these MCS are members of the oxysterol-binding protein (OSBP) and steroidogenic acute regulatory protein-related lipid-transfer family of lipid transfer proteins that bridge the opposing membranes and directly or indirectly mediate cholesterol transfer. OSBP-related protein 1L (ORP1L), ORP5 and ORP6 mediate cholesterol transfer to the endoplasmic reticulum that regulates cholesterol homeostasis. ORP1L and STARD3 also move cholesterol from the endoplasmic reticulum-to-late endosomal/lysosomes under low-cholesterol conditions to facilitate intraluminal vesicle formation. Cholesterol transport also occurs at MCS with peroxisomes and possibly the plasma membrane. SUMMARY Frequent contacts between organelles and the endo-lysosomal vesicles are sites for bidirectional transfer of cholesterol.
Collapse
Affiliation(s)
- Neale D Ridgway
- Department of Biochemistry & Molecular Biology
- Department of Pediatrics, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kexin Zhao
- Department of Biochemistry & Molecular Biology
- Department of Pediatrics, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
5
|
Rahimi M, Regan D, Arroyo M, Subramaniam AB, Stone HA, Staykova M. Shape Transformations of Lipid Bilayers Following Rapid Cholesterol Uptake. Biophys J 2017; 111:2651-2657. [PMID: 28002741 DOI: 10.1016/j.bpj.2016.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 10/11/2016] [Accepted: 11/03/2016] [Indexed: 11/29/2022] Open
Abstract
High cholesterol levels in the blood increase the risk of atherosclerosis. A common explanation is that the cholesterol increase in the plasma membrane perturbs the shape and functions of cells by disrupting the cell signaling pathways and the formation of membrane rafts. In this work, we show that after enhanced transient uptake of cholesterol, mono-component lipid bilayers change their shape similarly to cell membranes in vivo. The bilayers either expel lipid protrusions or spread laterally as a result of the ensuing changes in their lipid density, the mechanical constraints imposed on them, and the properties of cyclodextrin used as a cholesterol donor. In light of the increasingly recognized link between membrane tension and cell behavior, we propose that the physical adaptation of the plasma membrane to cholesterol uptake may play a substantial role in the biological response.
Collapse
Affiliation(s)
- Mohammad Rahimi
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey
| | - David Regan
- Department of Physics, University of Durham, Durham, United Kingdom
| | - Marino Arroyo
- Universitat Politecnica de Catalunya, Barcelona, Spain
| | | | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey
| | | |
Collapse
|
6
|
Luo J, Jiang L, Yang H, Song BL. Routes and mechanisms of post-endosomal cholesterol trafficking: A story that never ends. Traffic 2017; 18:209-217. [DOI: 10.1111/tra.12471] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Jie Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; Wuhan University; Wuhan China
| | - Luyi Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; Wuhan University; Wuhan China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences; The University of New South Wales; Sydney Australia
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; Wuhan University; Wuhan China
| |
Collapse
|
7
|
Petersen W, Stenzel W, Silvie O, Blanz J, Saftig P, Matuschewski K, Ingmundson A. Sequestration of cholesterol within the host late endocytic pathway restricts liver-stage Plasmodium development. Mol Biol Cell 2017; 28:726-735. [PMID: 28122820 PMCID: PMC5349780 DOI: 10.1091/mbc.e16-07-0531] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 11/17/2022] Open
Abstract
While lysosomes are degradative compartments and one of the defenses against invading pathogens, they are also hubs of metabolic activity. Late endocytic compartments accumulate around Plasmodium berghei liver-stage parasites during development, and whether this is a host defense strategy or active recruitment by the parasites is unknown. In support of the latter hypothesis, we observed that the recruitment of host late endosomes (LEs) and lysosomes is reduced in uis4- parasites, which lack a parasitophorous vacuole membrane protein and arrest during liver-stage development. Analysis of parasite development in host cells deficient for late endosomal or lysosomal proteins revealed that the Niemann-Pick type C (NPC) proteins, which are involved in cholesterol export from LEs, and the lysosome-associated membrane proteins (LAMP) 1 and 2 are important for robust liver-stage P. berghei growth. Using the compound U18666A, which leads to cholesterol sequestration in LEs similar to that seen in NPC- and LAMP-deficient cells, we show that the restriction of parasite growth depends on cholesterol sequestration and that targeting this process can reduce parasite burden in vivo. Taken together, these data reveal that proper LE and lysosome function positively contributes to liver-stage Plasmodium development.
Collapse
Affiliation(s)
- Wiebke Petersen
- Molecular Parasitology, Humboldt University, 10115 Berlin, Germany
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Werner Stenzel
- Institute for Neuropathology, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Olivier Silvie
- Institut National de la Santé et de la Recherche Médicale, U1135, Centre d'Immunologie et des Maladies Infectieuses, F-75013 Paris, France
| | - Judith Blanz
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24098 Kiel, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24098 Kiel, Germany
| | - Kai Matuschewski
- Molecular Parasitology, Humboldt University, 10115 Berlin, Germany
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Alyssa Ingmundson
- Molecular Parasitology, Humboldt University, 10115 Berlin, Germany
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| |
Collapse
|
8
|
Varsano N, Dadosh T, Kapishnikov S, Pereiro E, Shimoni E, Jin X, Kruth HS, Leiserowitz L, Addadi L. Development of Correlative Cryo-soft X-ray Tomography and Stochastic Reconstruction Microscopy. A Study of Cholesterol Crystal Early Formation in Cells. J Am Chem Soc 2016; 138:14931-14940. [PMID: 27934213 DOI: 10.1021/jacs.6b07584] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have developed a high resolution correlative method involving cryo-soft X-ray tomography (cryo-SXT) and stochastic optical reconstruction microscopy (STORM), which provides information in three dimensions on large cellular volumes at 70 nm resolution. Cryo-SXT morphologically identified and localized aggregations of carbon-rich materials. STORM identified specific markers on the desired epitopes, enabling colocalization between the identified objects, in this case cholesterol crystals, and the cellular environment. The samples were studied under ambient and cryogenic conditions without dehydration or heavy metal staining. The early events of cholesterol crystal development were investigated in relation to atherosclerosis, using as model macrophage cell cultures enriched with LDL particles. Atherosclerotic plaques build up in arteries in a slow process involving cholesterol crystal accumulation. Cholesterol crystal deposition is a crucial stage in the pathological cascade. Our results show that cholesterol crystals can be identified and imaged at a very early stage on the cell plasma membrane and in intracellular locations. This technique can in principle be applied to other biological samples where specific molecular identification is required in conjunction with high resolution 3D-imaging.
Collapse
Affiliation(s)
| | | | - Sergey Kapishnikov
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin , Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - Eva Pereiro
- ALBA Synchrotron Light Source, MISTRAL Beamline-Experiments Division, 08290 Cerdanyola del Valles, Barcelona, Spain
| | | | - Xueting Jin
- Experimental Atherosclerosis Section, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892-1422, United States
| | - Howard S Kruth
- Experimental Atherosclerosis Section, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892-1422, United States
| | | | | |
Collapse
|
9
|
Zhu M, Zhao X, Chen J, Xu J, Hu G, Guo D, Li Q, Zhang X, Chang CCY, Song B, Xiong Y, Chang T, Li B. ACAT1 regulates the dynamics of free cholesterols in plasma membrane which leads to the APP-α-processing alteration. Acta Biochim Biophys Sin (Shanghai) 2015; 47:951-9. [PMID: 26474739 DOI: 10.1093/abbs/gmv101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/14/2015] [Indexed: 12/13/2022] Open
Abstract
Acyl-CoA:cholesterol acyltransferase 1 (ACAT1) is a key enzyme exclusively using free cholesterols as the substrates in cell and is involved in the cellular cholesterol homeostasis. In this study, we used human neuroblastoma cell line SK-N-SH as a model and first observed that inhibiting ACAT1 can decrease the amyloid precursor protein (APP)-α-processing. Meanwhile, the transfection experiments using the small interfering RNA and expression plasmid of ACAT1 indicated that ACAT1 can dependently affect the APP-α-processing. Furthermore, inhibiting ACAT1 was found to increase the free cholesterols in plasma membrane (PM-FC), and the increased PM-FC caused by inhibiting ACAT1 can lead to the decrease of the APP-α-processing, indicating that ACAT1 regulates the dynamics of PM-FC, which leads to the alteration of the APP-α-processing. More importantly, further results showed that under the ACAT1 inhibition, the alterations of the PM-FC and the subsequent APP-α-processing are not dependent on the cellular total cholesterol level, confirming that ACAT1 regulates the dynamics of PM-FC. Finally, we revealed that even when the Niemann-Pick-Type C-dependent pathway is blocked, the ACAT1 inhibition still obviously results in the PM-FC increase, suggesting that the ACAT1-dependent pathway is responsible for the shuttling of PM-FC to the intracellular pool. Our data provide a novel insight that ACAT1 which enzymatically regulates the dynamics of PM-FC may play important roles in the human neuronal cells.
Collapse
Affiliation(s)
- Ming Zhu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaonan Zhao
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia Chen
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiajia Xu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangjing Hu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongqing Guo
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qin Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaowei Zhang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Catherine C Y Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Baoliang Song
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China College of Life Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ying Xiong
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tayuan Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Boliang Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
10
|
Chang TY, Chang CC, Cadigan KM. The structure of acyl coenzyme A-cholesterol acyltransferase and its potential relevance to atherosclerosis. Trends Cardiovasc Med 2012; 4:223-30. [PMID: 21244871 DOI: 10.1016/1050-1738(94)90038-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Acyl coenzyme A-cholesterol acyltransferase (ACAT) catalyzes the formation of intracellular cholesterol esters. It is present in a variety of tissues and is believed to play significant roles in cholesterol homeostasis. Under pathologic conditions, accumulation of the ACAT reaction product as cytoplasmic cholesterol ester lipid droplets within macrophages and smooth muscle cells is a characteristic feature of early lesions of human atherosclerotic plaques. ACAT is a membrane protein located in the endoplasmic reticulum. Its activity is susceptible to inactivation by detergents, and it has never been purified to homogeneity; no antibodies directed against it have been reported. Through a somatic cell and molecular genetic approach, we have recently succeeded in molecular cloning and functional expression of a human macrophage ACAT cDNA. This cDNA contains an open reading frame of 1650 base pairs encoding an integral membrane protein of 550 amino acids. Protein homology analysis shows that the predicted protein sequence shares short regions of homology with other enzymes involved in the catalysis of acyl adenylate formation with subsequent acyl thioester formation and acyl transfer. The ACAT cDNA will enable the investigation of ACAT biochemistry and molecular biology. It will speed up the design of specific ACAT inhibitors as drugs that may provide more effective therapeutic treatment or prevention of atherosclerosis. In addition, studies on the physiologic roles of ACAT in various tissues can now be undertaken through transgenic animal research.
Collapse
Affiliation(s)
- T Y Chang
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755-3844, USA
| | | | | |
Collapse
|
11
|
Jelinek D, Patrick SM, Kitt KN, Chan T, Francis GA, Garver WS. Physiological and coordinate downregulation of the NPC1 and NPC2 genes are associated with the sequestration of LDL-derived cholesterol within endocytic compartments. J Cell Biochem 2010; 108:1102-16. [PMID: 19746448 DOI: 10.1002/jcb.22339] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The Niemann-Pick C1 and C2 (NPC1 and NPC2) proteins have a central role in regulating the transport of lipoprotein-derived cholesterol from endocytic compartments to the endoplasmic reticulum for esterification by acyl-CoA:cholesterol acyltransferase (ACAT) and feedback inhibition of the sterol regulatory element-binding protein (SREBP) pathway. Since the NPC1 gene/protein has recently been shown to be downregulated by feedback inhibition of the SREBP pathway, the present study was performed to determine whether physiological downregulation of the NPC1 gene/protein alters the transport and metabolism of low-density lipoprotein (LDL)-derived cholesterol in human fibroblasts. To perform this study, three different culture conditions were used that included fibroblasts grown in lipoprotein-deficient serum (LPDS), LPDS supplemented with LDL, and LPDS supplemented with LDL, followed by equilibration in the absence of LDL to allow the transport of LDL-derived cholesterol from endocytic compartments and equilibration of cellular sterol pools. The results from this study indicated that in addition to the NPC1 gene/protein, the NPC2 gene/protein was also downregulated by LDL-derived cholesterol-dependent feedback inhibition and that downregulation of both the NPC1 and NPC2 genes/proteins was associated with the sequestration of LDL-derived cholesterol within endocytic compartments, including late endosomes/lysosomes after equilibration. Therefore, it is proposed that physiological and coordinate downregulation of the NPC1 and NPC2 genes/proteins promotes the sequestration of LDL-derived cholesterol within endocytic compartments and serves a role in maintaining intracellular cholesterol homeostasis.
Collapse
Affiliation(s)
- David Jelinek
- Department of Pediatrics, The University of Arizona, 1501 N. Campbell Avenue, Tucson, Arizona 85724-5037, USA
| | | | | | | | | | | |
Collapse
|
12
|
Zhao YF, Wang L, Lee S, Sun Q, Tuo Y, Wang Y, Pei J, Chen C. Cholesterol induces mitochondrial dysfunction and apoptosis in mouse pancreatic beta-cell line MIN6 cells. Endocrine 2010; 37:76-82. [PMID: 19876772 DOI: 10.1007/s12020-009-9275-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 09/18/2009] [Indexed: 01/03/2023]
Abstract
Reduction of pancreatic β-cell mass is a key element leading to type 2 diabetes. Obesity and overweight with high levels of lipids including cholesterol are tightly linked to type 2 diabetes. The direct impact of cholesterol on pancreatic β-cells, however, has not been extensively studied. In this study, MIN6 mouse β-cell line was used to test the effect of cholesterol on pancreatic β-cell apoptosis over different doses and durations. It was found that cholesterol dose- and time-dependently induced cell death of MIN6 cells above 160 μM after 6 h treatment in vitro. Annexin-V staining revealed that cholesterol treatment significantly induced apoptosis in MIN6 cells. Cholesterol treatment resulted in the loss of the ability to retain Rhodamine 123, indicating mitochondrial damage in MIN6 cells. Cholesterol-induced cell apoptosis and mitochondrial damage were blocked by low-temperature condition. In addition, glutathione also protected MIN6 cells from cholesterol-induced cell death. It is concluded that high level of cholesterol induces cell apoptosis in MIN6 cells, which is in part due to mitochondrial dysfunction. We suggest that excessive uptake of cholesterol in β-cells may contribute to β-cell apoptosis and dysfunction and the deterioration of type 2 diabetes.
Collapse
Affiliation(s)
- Yu-Feng Zhao
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Lige B, Jayabalasingham B, Zhang H, Pypaert M, Coppens I. Role of an ancestral d-bifunctional protein containing two sterol-carrier protein-2 domains in lipid uptake and trafficking in Toxoplasma. Mol Biol Cell 2008; 20:658-72. [PMID: 19005217 DOI: 10.1091/mbc.e08-05-0482] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The inability to synthesize cholesterol is universal among protozoa. The intracellular pathogen Toxoplasma depends on host lipoprotein-derived cholesterol to replicate in mammalian cells. Mechanisms of cholesterol trafficking in this parasite must be important for delivery to proper organelles. We characterized a unique d-bifunctional protein variant expressed by Toxoplasma consisting of one N-terminal d-3-hydroxyacyl-CoA dehydrogenase domain fused to two tandem sterol carrier protein-2 (SCP-2) domains. This multidomain protein undergoes multiple cleavage steps to release free SCP-2. The most C-terminal SCP-2 carries a PTS1 that directs the protein to vesicles before processing. Abrogation of this signal results in SCP-2 accumulation in the cytoplasm. Cholesterol specifically binds to parasite SCP-2 but with 10-fold lower affinity than phosphatidylcholine. In mammalian cells and Toxoplasma, the two parasite SCP-2 domains promote the circulation of various lipids between organelles and to the surface. Compared with wild-type parasites, TgHAD-2SCP-2-transfected parasites replicate faster and show enhanced uptake of cholesterol and oleate, which are incorporated into neutral lipids that accumulate at the basal end of Toxoplasma. This work provides the first evidence that the lipid transfer capability of an ancestral eukaryotic SCP-2 domain can influence the lipid metabolism of an intracellular pathogen to promote its multiplication in mammalian cells.
Collapse
Affiliation(s)
- Bao Lige
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
14
|
Ivanov AI. Pharmacological inhibition of endocytic pathways: is it specific enough to be useful? Methods Mol Biol 2008; 440:15-33. [PMID: 18369934 DOI: 10.1007/978-1-59745-178-9_2] [Citation(s) in RCA: 453] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Eukaryotic cells constantly form and internalize plasma membrane vesicles in a process known as endocytosis. Endocytosis serves a variety of housekeeping and specialized cellular functions, and it can be mediated by distinct molecular pathways. Among them, internalization via clathrin-coated pits, lipid raft/caveolae-mediated endocytosis and macropinocytosis/phagocytosis are the most extensively characterized. The major endocytic pathways are usually distinguished on the basis of their differential sensitivity to pharmacological/chemical inhibitors, although the possibility of nonspecific effects of such inhibitors is frequently overlooked. This review provides a critical evaluation of the selectivity of the most widely used pharmacological inhibitors of clathrin-mediated, lipid raft/caveolae-mediated endocytosis and macropinocytosis/phagocytosis. The mechanisms of actions of these agents are described with special emphasis on their reported side effects on the alternative internalization modes and the actin cytoskeleton. The most and the least-selective inhibitors of each major endocytic pathway are highlighted.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Department of Medicine, Gastroenterology and Hepatology Division, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
15
|
Lee CY, Lesimple A, Denis M, Vincent J, Larsen A, Mamer O, Krimbou L, Genest J, Marcil M. Increased sphingomyelin content impairs HDL biogenesis and maturation in human Niemann-Pick disease type B. J Lipid Res 2006; 47:622-32. [PMID: 16319418 DOI: 10.1194/jlr.m500487-jlr200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that human Niemann-Pick Disease type B (NPD-B) is associated with low HDL. In this study, we investigated the pathophysiology of this HDL deficiency by examining both HDL samples from NPD-B patients and nascent high density lipoprotein (LpA-I) generated by incubation of lipid-free apolipoprotein A-I (apoA-I) with NPD-B fibroblasts. Interestingly, both LpA-I and HDL isolated from patient plasma had a significant increase in sphingomyelin (SM) mass ( approximately 50-100%). Analysis of LCAT kinetics parameters (V(max) and K(m)) revealed that either LpA-I or plasma HDL from NPD-B, as well as reconstituted HDL enriched with SM, exhibited severely decreased LCAT-mediated cholesterol esterification. Importantly, we documented that SM enrichment of NPD-B LpA-I was not attributable to increased cellular mass transfer of SM or unesterified cholesterol to lipid-free apoA-I. Finally, we obtained evidence that the conditioned medium from HUVEC, THP-1, and normal fibroblasts, but not NPD-B fibroblasts, contained active secretory sphingomyelinase (S-SMase) that mediated the hydrolysis of [(3)H]SM-labeled LpA-I and HDL(3). Furthermore, expression of mutant SMase (DeltaR608) in CHO cells revealed that DeltaR608 was synthesized normally but had defective secretion and activity. Our data suggest that defective S-SMase in NPD leads to SM enrichment of HDL that impairs LCAT-mediated nascent HDL maturation and contributes to HDL deficiency. Thus, S-SMase and LCAT may act in concert and play a crucial role in the biogenesis and maturation of nascent HDL particles.
Collapse
Affiliation(s)
- Ching Yin Lee
- Cardiovascular Genetics Laboratory, Department of Medicine, Division of Cardiology, McGill University Health Centre/Royal Victoria Hospital, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Saccharomyces cerevisiae, a model to study sterol uptake and transport in eukaryotes. Biochem Soc Trans 2005. [DOI: 10.1042/bst0331186] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The molecular mechanisms that govern intracellular transport of sterols in eukaryotic cells are only poorly understood. Saccharomyces cerevisiae is a facultative anaerobic organism that requires supplementation with unsaturated fatty acids and sterols to grow in the absence of oxygen, as the synthesis of these lipids requires molecular oxygen. The fact that yeast grows well under anaerobic conditions indicates that lipid uptake is rapid and efficient. To identify components in this lipid uptake and transport pathway, we screened the yeast mutant collection for genes that are essential under anaerobic conditions. Out of the approx. 4800 non-essential genes represented in the mutant collection, 37 were required for growth under anaerobic conditions. Uptake assays using radiolabelled cholesterol revealed that 16 of these genes are required for cholesterol uptake/transport and esterification. Further characterization of the precise role of these genes is likely to advance our understanding of this elusive pathway in yeast and may prove to be relevant to understand sterol homoeostasis in higher eukaryotic cells.
Collapse
|
17
|
Gallegos AM, Atshaves BP, Storey S, Schoer J, Kier AB, Schroeder F. Molecular and fluorescent sterol approaches to probing lysosomal membrane lipid dynamics. Chem Phys Lipids 2002; 116:19-38. [PMID: 12093533 DOI: 10.1016/s0009-3084(02)00018-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although the most exogenous lipids enter the cell via the LDL-receptor pathway, the mechanism(s) whereby lipids leave the lysosome for transport to intracellular sites are not clearly resolved. As shown herein, expression of sterol carrier protein-2 (SCP-2) in transfected L-cells altered lysosomal membrane lipid distribution, dynamics, and response to lipid transfer proteins. SCP-2 expression decreased the mass of cholesterol and lyso-bis-phosphatidic acid [LBPA], as well as the ratios of cholesterol/phospholipid and polyunsaturated/monounsaturated fatty acids esterified to lysosomal membrane phospholipids. Concomitantly, a fluorescent sterol transfer assay showed that SCP-2 expression decreased the initial rates of spontaneous and SCP-2-mediated sterol transfer 5.5- and 3.8-fold, respectively, from lysosomal membranes isolated from SCP-2 expressing cells as compared to controls. SCP-2, sphingomyelinase, low density lipoprotein, and high density lipoprotein directly enhanced the initial rates of sterol transfer from isolated lysosomal membranes by 50-, 12-, 4-, and 5-fold, respectively. In contrast, albumin and cholesterol esterase had no effect on lysosomal sterol transfer. Spontaneous sterol was very slow, t(1/2)>4 days, regardless of the source of the lysosomal membrane, while SCP-2 added in vitro induced formation of rapid and slowly transferable sterol pools in lysosomal membranes of control cells. In contrast, SCP-2 did not induce formation of a rapidly transferable sterol domain in lysosomal membranes isolated from SCP-2 expressing cells. These data suggest that SCP-2 expression selectively shifted the distribution of lipids (cholesterol, LBPA, esterified polyunsaturated fatty acids) away from lysosomal membranes. Furthermore, the cholesterol depleted lysosomal membrane isolated from SCP-2 expressing cells was resistant to additional direct action of SCP-2 to further enhance sterol transfer and induce rapidly transferable sterol pools in the lysosomal membrane.
Collapse
Affiliation(s)
- Adalberto M Gallegos
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, USA
| | | | | | | | | | | |
Collapse
|
18
|
Hao M, Lin SX, Karylowski OJ, Wüstner D, McGraw TE, Maxfield FR. Vesicular and non-vesicular sterol transport in living cells. The endocytic recycling compartment is a major sterol storage organelle. J Biol Chem 2002; 277:609-17. [PMID: 11682487 DOI: 10.1074/jbc.m108861200] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined the intracellular transport of sterol in living cells using a naturally fluorescent cholesterol analog, dehydroergosterol (DHE), which has been shown to mimic many of the properties of cholesterol. By using DHE loaded on methyl-beta-cyclodextrin, we followed this cholesterol analog in pulse-chase studies. At steady state, DHE co-localizes extensively with transferrin (Tf), a marker for the endocytic recycling compartment (ERC), and redistributes with Tf in cells with altered ERC morphology. Expression of a dominant-negative mutation of an ERC-associated protein, mRme-1 (G429R), results in the slowing of both DHE and Tf receptor return to the cell surface. [3H]Cholesterol is found in the same fraction as 125I-Tf on sucrose density gradients, and this fraction can be specifically shifted to a higher density based on the presence of horseradish peroxidase-conjugated Tf in the same organelle. Whereas vesicular transport of Tf and efflux of DHE from the ERC are entirely blocked in energy-depleted cells, delivery of DHE to the ERC from the plasma membrane is only slightly affected. Biochemical studies performed using [3H]cholesterol show that the energy dependence of cholesterol transport to and from the ERC is similar to DHE transport. We propose that a large portion of intracellular cholesterol is localized in the ERC, and this pool might be important in maintaining cellular cholesterol homeostasis.
Collapse
Affiliation(s)
- Mingming Hao
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
19
|
Schroeder F, Gallegos AM, Atshaves BP, Storey SM, McIntosh AL, Petrescu AD, Huang H, Starodub O, Chao H, Yang H, Frolov A, Kier AB. Recent advances in membrane microdomains: rafts, caveolae, and intracellular cholesterol trafficking. Exp Biol Med (Maywood) 2001; 226:873-90. [PMID: 11682693 DOI: 10.1177/153537020122601002] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cellular cholesterol homeostasis is a balance of influx, catabolism and synthesis, and efflux. Unlike vascular lipoprotein cholesterol transport, intracellular cholesterol trafficking is only beginning to be resolved. Exogenous cholesterol and cholesterol ester enter cells via the low-density lipoprotein (LDL) receptor/lysosomal and less so by nonvesicular, high-density lipoprotein (HDL) receptor/caveolar pathways. However, the mechanism(s) whereby cholesterol enters the lysosomal membrane, translocates, and transfers out of the lysosome to the cell interior are unknown. Likewise, the steps whereby cholesterol enters the cytofacial leaflet of the plasma membrane caveolae, rapidly translocates, leaves the exofacial leaflet, and transfers to extracellular HDL are unclear. Increasing evidence obtained with model and isolated cell membranes, transfected cells, genetic mutants, and gene-ablated mice suggests that proteins such as caveolin, sterol carrier protein-2 (SCP-2), Niemann-Pick C1 protein, steroidogenic acute regulatory protein (StAR), and other intracellular proteins mediate intracellular cholesterol transfer. While these proteins bind cholesterol and/or interact with cholesterol-rich membrane microdomains (e.g., caveolae, rafts, and annuli), their relative contributions to direct molecular versus vesicular cholesterol transfer remain to be resolved. The formation, regulation, and role of membrane microdomains in regulating cholesterol uptake/efflux and trafficking are unclear. Some cholesterol-binding proteins exert opposing effects on cellular cholesterol uptake/efflux, transfer of cholesterol out of the lysosomal membrane, and/or intracellular cholesterol trafficking to select membranous organelles. Resolving these cholesterol pathways and the role of membrane cholesterol microdomains is essential to our understanding not only of processes that affect cholesterol metabolism, but also of the abnormal regulation that may lead to disease (diabetes, obesity, atherosclerosis, neutral lipid storage, Niemann-Pick C, congenital lipoid adrenal hyperplasia, etc.).
Collapse
Affiliation(s)
- F Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, Texas 77843-4466, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gallegos AM, Atshaves BP, Storey SM, Starodub O, Petrescu AD, Huang H, McIntosh AL, Martin GG, Chao H, Kier AB, Schroeder F. Gene structure, intracellular localization, and functional roles of sterol carrier protein-2. Prog Lipid Res 2001; 40:498-563. [PMID: 11591437 DOI: 10.1016/s0163-7827(01)00015-7] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Since its discovery three decades ago, sterol carrier protein-2 (SCP-2) has remained a fascinating protein whose physiological function in lipid metabolism remains an enigma. Its multiple proposed functions arise from its complex gene structure, post-translational processing, intracellular localization, and ligand specificity. The SCP-2 gene has two initiation sites coding for proteins that share a common 13 kDa SCP-2 C-terminus: (1) One site codes for 58 kDa SCP-x which is partially post-translationally cleaved to 13 kDa SCP-2 and a 45 kDa protein. (2) A second site codes for 15 kDa pro-SCP-2 which is completely post-translationally cleaved to 13 kDa SCP-2. Very little is yet known regarding how the relative proportions of the two transcripts are regulated. Although all three proteins contain a C-terminal SKL peroxisomal targeting sequence, it is unclear why all three proteins are not exclusively localized in peroxisomes. However, the recent demonstration that the SCP-2 N-terminal presequence in pro-SCP-2 dramatically modulated the intracellular targeting coded by the C-terminal peroxisomal targeting sequence may account for the observation that as much as half of total SCP-2 is localized outside the peroxisome. The tertiary and secondary structure of the 13 kDa SCP-2, but not that of 15 kDa pro-SCP-2 and 58 kDa SCP-x, are now resolved. Increasing evidence suggests that the 58 kDa SCP-x and 45 kDa proteins are peroxisomal 3-ketoacyl-CoA-thiolases involved in the oxidation of branched chain fatty acids. Since 15 kDa pro-SCP-2 is post-translationally completely cleaved to 13 kDa SCP-2, relatively little attention has been focused on this protein. Finally, although the 13 kDa SCP-2 is the most studied of these proteins, because it exhibits diversity of its ligand partners (fatty acids, fatty acyl CoAs, cholesterol, phospholipids), new potential physiological function(s) are still being proposed and questions regarding potential compensation by other proteins with overlapping specificity are only beginning to be resolved.
Collapse
Affiliation(s)
- A M Gallegos
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4467, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kruth HS, Ifrim I, Chang J, Addadi L, Perl-Treves D, Zhang WY. Monoclonal antibody detection of plasma membrane cholesterol microdomains responsive to cholesterol trafficking. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)30283-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Gallegos AM, Atshaves BP, Storey SM, McIntosh AL, Petrescu AD, Schroeder F. Sterol Carrier Protein-2 Expression Alters Plasma Membrane Lipid Distribution and Cholesterol Dynamics. Biochemistry 2001; 40:6493-506. [PMID: 11371213 DOI: 10.1021/bi010217l] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although sterol carrier protein-2 (SCP-2) binds, transfers, and/or enhances the metabolism of many membrane lipid species (fatty acids, cholesterol, phospholipids), it is not known if SCP-2 expression actually alters the membrane distribution of lipids in living cells or tissues. As shown herein for the first time, expression of SCP-2 in transfected L-cell fibroblasts reduced the plasma membrane levels of lipid species known to traffic through the HDL-receptor-mediated efflux pathway: cholesterol, cholesteryl esters, and phospholipids. While the ratio of cholesterol/phospholipid in plasma membranes of intact cells was not changed by SCP-2 expression, phosphatidylinositol, a molecule important to intracellular signaling and vesicular trafficking, and anionic phospholipids were selectively retained. Only modest alterations in plasma membrane phospholipid percent fatty acid composition but no overall change in the proportion of saturated, unsaturated, monounsaturated, or polyunsaturated fatty acids were observed. The reduced plasma membrane content of cholesterol was not due to SCP-2 inhibition of sterol transfer from the lysosomes to the plasma membranes. SCP-2 dramatically enhanced sterol transfer from isolated lysosomal membranes to plasma membranes by eliciting detectable sterol transfer within 30 s, decreasing the t(1/2) for sterol transfer 364-fold from >4 days to 7-15 min, and inducing formation of rapidly transferable sterol domains. In summary, data obtained with intact transfected cells and in vitro sterol transfer assays showed that SCP-2 expression (i) selectively modulated plasma membrane lipid composition and (ii) decreased the plasma membrane content cholesterol, an effect potentially due to more rapid SCP-2-mediated cholesterol transfer from versus to the plasma membrane.
Collapse
Affiliation(s)
- A M Gallegos
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, Texas 77843-4466, USA
| | | | | | | | | | | |
Collapse
|
23
|
Li L, Pownall HJ. Regulation of acyl-coenzyme A:cholesterol acyltransferase (ACAT) synthesis, degradation, and translocation by high-density lipoprotein(2) at a low concentration. Arterioscler Thromb Vasc Biol 2000; 20:2636-42. [PMID: 11116065 DOI: 10.1161/01.atv.20.12.2636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
(,Although plasma HDL(2) cholesterol concentration stands in inverse relation to risk for atherosclerotic disease, little is known about the mechanism of the apparent cardioprotection. In mouse P388D1 macrophages, HDL(2) at a low concentration (< or = 40 microg/mL) inhibits macrophage acyl-coenzyme A:cholesterol acyltransferase (ACAT), the enzyme that catalyzes esterification of intracellular cholesterol. The effects of HDL(2) on ACAT synthesis, degradation, and intracellular translocation were investigated in mouse P388D1 macrophages. HDL(2) at a low concentration enhanced ACAT synthesis but not total ACAT mass. Immunocytochemical studies showed that in the absence of lipoproteins, ACAT associated primarily with the perinuclear region of the cell. The addition of HDL(2), however, induced the transfer of ACAT to vesicular structures and the cell periphery adjacent to the plasma membrane. Subfractionation combined with immunoprecipitation complemented these observations and showed that HDL(2) promoted the transfer of ACAT to the plasma membrane fraction. Brefeldin A, which inhibits vesicular protein transport from the endoplasmic reticulum to the Golgi compartment in mammalian cells, blocked ACAT translocation and partially restored ACAT activity. These results suggest that HDL(2) is an initiating factor in a signal transduction pathway that leads to intracellular ACAT translocation and inactivation.
Collapse
Affiliation(s)
- L Li
- Department of Medicine, Baylor College of Medicine, and The Methodist Hospital, Houston, TX 77030, USA
| | | |
Collapse
|
24
|
Atshaves BP, Starodub O, McIntosh A, Petrescu A, Roths JB, Kier AB, Schroeder F. Sterol carrier protein-2 alters high density lipoprotein-mediated cholesterol efflux. J Biol Chem 2000; 275:36852-61. [PMID: 10954705 DOI: 10.1074/jbc.m003434200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although sterol carrier protein-2 (SCP-2) participates in the uptake and intracellular trafficking of cholesterol, its effect on "reverse cholesterol transport" has not been explored. As shown herein, SCP-2 expression inhibited high density lipoprotein (HDL)-mediated efflux of [(3)H]cholesterol and fluorescent 22-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3b-ol (NBD-cholesterol) up to 61 and 157%, respectively. Confocal microscopy of living cells allowed kinetic analysis of two intracellular pools of HDL-mediated NBD-cholesterol efflux: the highly fluorescent lipid droplet pool and the less fluorescent pool outside the lipid droplets, designated the cytoplasmic compartment. Both the whole cell and the cytoplasmic compartment exhibited two similar kinetic pools, the half-times of which were consistent with protein (t(b)(12) near 1 min) and vesicular (t(d)(12) = 10-20 min) mediated sterol transfer. Although SCP-2 expression did not alter cytoplasmic sterol pool sizes, the rapid t(b)(12) decreased 36%, while the slower t(d)(12) increased 113%. Lipid droplets also exhibited two kinetic pools of NBD-cholesterol efflux but with half-times over 200% shorter than those of the cytoplasmic compartment. The lipid droplet slower effluxing pool size and t(d)(12) were increased 48% and 115%, respectively, in SCP-2-expressing cells. Concomitantly, the level of the lipid droplet-specific adipose differentiation-related protein decreased 70%. Overall, HDL-mediated sterol efflux from L-cell fibroblasts reflected that of the cytoplasmic rather than lipid droplet compartment. SCP-2 differentially modulated sterol efflux from the two cytoplasmic pools. However, net efflux was determined primarily by inhibition of the slowly effluxing pool rather than by acceleration of the rapid protein-mediated pool. Finally, SCP-2 expression also inhibited sterol efflux from lipid droplets, an effect related to decreased adipose differentiation-related protein, a lipid droplet surface protein that binds cholesterol with high affinity.
Collapse
Affiliation(s)
- B P Atshaves
- Department of Physiology and Pharmacology and the Department of Pathobiology, Texas A & M University, College Station, Texas 77843-4466, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Schoer JK, Gallegos AM, McIntosh AL, Starodub O, Kier AB, Billheimer JT, Schroeder F. Lysosomal membrane cholesterol dynamics. Biochemistry 2000; 39:7662-77. [PMID: 10869172 DOI: 10.1021/bi992686h] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although the majority of exogenous cholesterol and cholesterol ester enters the cell by LDL-receptor-mediated endocytosis and the lysosomal pathway, the assumption that cholesterol transfers out of the lysosome by rapid (minutes), spontaneous diffusion has heretofore not been tested. As shown herein, lysosomal membranes were unique among known organellar membranes in terms of cholesterol content, cholesterol dynamics, and response to cholesterol-mobilizing proteins. First, the lysosomal membrane cholesterol:phospholipid molar ratio, 0.38, was intermediate between those of the plasma membrane and other organellar membranes. Second, a fluorescence sterol exchange assay showed that the initial rate of spontaneous sterol transfer out of lysosomes and purified lysosomal membranes was extremely slow, t(1/2) >4 days. This was >100-fold longer than that reported in intact cells (2 min) and 40-60-fold longer than from any other known intracellular membrane. Third, when probed with several cholesterol-binding proteins, the initial rate of sterol transfer was maximally increased nearly 80-fold and the organization of cholesterol in the lysosomal membrane was rapidly altered. Nearly half of the essentially nonexchangeable sterol in the lysosomal membrane was converted to rapidly (t(1/2) = 6 min; fraction = 0.06) and slowly (t(1/2) = 154 min; fraction = 0.36) exchangeable sterol domains/pools. In summary, the data revealed that spontaneous cholesterol transfer out of the lysosome and lysosomal membrane was extremely slow, inconsistent with rapid spontaneous diffusion across the lysosomal membrane. In contrast, the very slow spontaneous transfer of sterol out of the lysosome and lysosomal membrane was consistent with cholesterol leaving the lysosome earlier in the endocytic process and/or with cholesterol transfer out of the lysosome being mediated by additional process(es) extrinsic to the lysosome and lysosomal membrane.
Collapse
Affiliation(s)
- J K Schoer
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, Texas 77843-4466, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Khelef N, Soe TT, Quehenberger O, Beatini N, Tabas I, Maxfield FR. Enrichment of acyl coenzyme A:cholesterol O-acyltransferase near trans-golgi network and endocytic recycling compartment. Arterioscler Thromb Vasc Biol 2000; 20:1769-76. [PMID: 10894815 DOI: 10.1161/01.atv.20.7.1769] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acyl coenzyme A:cholesterol O-acyltransferase (ACAT) is the enzyme responsible for cholesterol esterification in macrophages leading to foam cell formation. The determination of its localization is a critical step in understanding its regulation by cholesterol. Using immunofluorescence and confocal microscopy, we previously showed that the enzyme colocalized with markers of the endoplasmic reticulum, but in addition, ACAT was found in an unidentified paranuclear site. In the present study, we further define the localization of paranuclear ACAT. First, we found that ACAT does not colocalize with sorting endosomes or late endosomes labeled with fluorescent alpha(2)-macroglobulin. The paranuclear ACAT is close to the endocytic recycling compartment labeled with fluorescent transferrin. We also show that the paranuclear structure containing ACAT is very close to TGN38, a membrane protein of the trans-Golgi network (TGN), but farther from Gos28, a marker of cis, medial, and trans Golgi. After treatment with nocodazole, the central localization of ACAT did not colocalize with markers of the TGN. These data indicate that a significant fraction of ACAT resides in membranes that may be a subcompartment of the endoplasmic reticulum in proximity to the TGN and the endocytic recycling compartment. Because the TGN and the endocytic recycling compartment are engaged in extensive membrane traffic with the plasma membrane, esterification of cholesterol in these membranes may play an important role in macrophage foam cell formation during atherogenesis.
Collapse
Affiliation(s)
- N Khelef
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
27
|
Lange Y, Ye J, Rigney M, Steck T. Cholesterol movement in Niemann-Pick type C cells and in cells treated with amphiphiles. J Biol Chem 2000; 275:17468-75. [PMID: 10751394 DOI: 10.1074/jbc.m000875200] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cholesterol accumulates to massive levels in cells from Niemann-Pick type C (NP-C) patients and in cells treated with class 2 amphiphiles that mimic NP-C disease. This behavior has been attributed to the failure of cholesterol released from ingested low density lipoproteins to exit the lysosomes. However, we now show that the rate of movement of cholesterol from lysosomes to plasma membranes in NP-C cells is at least as great as normal, as was also found previously for amphiphile-treated cells. Furthermore, the lysosomes in these cells filled with plasma membrane cholesterol in the absence of lipoproteins. In addition, we showed that the size of the endoplasmic reticulum cholesterol pool and the set point of the homeostatic sensor of cell cholesterol were approximately normal in NP-C cells. The plasma membrane cholesterol pools in both NP-C and amphiphile-treated cells were also normal. Furthermore, the build up of cholesterol in NP-C lysosomes was not a physiological response to cholesterol overload. Rather, it appeared that the accumulation in NP-C lysosomes results from an imbalance in the brisk flow of cholesterol among membrane compartments. In related experiments, we found that NP-C cells did not respond to class 2 amphiphiles (e.g. trifluoperazine, imipramine, and U18666A); these agents may therefore act directly on the NPC1 protein or on its pathway. Finally, we showed that the lysosomal cholesterol pool in NP-C cells was substantially and preferentially reduced by incubating cells with the oxysterols, 25-hydroxycholesterol and 7-ketocholesterol; these findings suggest a new pharmacological approach to the treatment of NP-C disease.
Collapse
Affiliation(s)
- Y Lange
- Department of Pathology, Rush-Presbyterian-St. Luke's Medical Center University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
28
|
Garver WS, Heidenreich RA, Erickson RP, Thomas MA, Wilson JM. Localization of the murine Niemann-Pick C1 protein to two distinct intracellular compartments. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)32376-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Gallegos AM, Schoer JK, Starodub O, Kier AB, Billheimer JT, Schroeder F. A potential role for sterol carrier protein-2 in cholesterol transfer to mitochondria. Chem Phys Lipids 2000; 105:9-29. [PMID: 10727111 DOI: 10.1016/s0009-3084(99)00128-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mitochondrial cholesterol oxidation rapidly depletes cholesterol from the relatively cholesterol-poor mitochondrial membranes. However, almost nothing is known regarding potential mechanism(s) whereby the mitochondrial cholesterol pool is restored. Since most exogenous cholesterol enters the cell via the lysosomal pathway, this could be a source of mitochondrial cholesterol. In the present study, an in vitro fluorescent sterol transfer assay was used to examine whether the lysosomal membrane could be a putative cholesterol donor to mitochondria. First, it was shown that spontaneous sterol transfer from lysosomal to mitochondrial membranes was very slow (initial rate, 0.316 +/- 0.032 pmol/min). This was due, in part, to the fact that 90% of the lysosomal membrane sterol was not exchangeable, while the remaining 10% also had a relatively long half-time of exchange t(1/2) = 202 +/- 19 min. Second, the intracellular sterol carrier protein-2 (SCP-2) and its precursor (pro-SCP-2) increased the initial rate of sterol transfer from the lysosomal to mitochondrial membrane by 5.2- and 2.0-fold, respectively, but not in the reverse direction. The enhanced sterol transfer was due to a 3.5-fold increase in exchangeable sterol pool size and to induction of a very rapidly (t(1/2) = 4.1 +/- 0.6 min) exchangeable sterol pool. Confocal fluorescence imaging and indirect immunocytochemistry colocalized significant amounts of SCP-2 with the mitochondrial marker enzyme cytochrome oxidase in transfected L-cells overexpressing SCP-2. In summary, SCP-2 and pro-SCP-2 both stimulated molecular sterol transfer from lysosomal to mitochondrial membranes, suggesting a potential mechanism for replenishing mitochondrial cholesterol pools depleted by cholesterol oxidation.
Collapse
Affiliation(s)
- A M Gallegos
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station 77843-4466, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The Niemann-Pick C protein (NPC1) is required for cholesterol transport from late endosomes and lysosomes to other cellular membranes. Mutations in NPC1 cause lysosomal lipid storage and progressive neurological degeneration. Cloning of the NPC1 gene has given us tools with which to investigate the function of this putative cholesterol transporter. Here, we discuss recent studies indicating that NPC1 is not a cholesterol-specific transport molecule. Instead, NPC1 appears to be required for the vesicular shuttling of both lipids and fluid-phase constituents from multivesicular late endosomes to destinations such as the trans-Golgi network.
Collapse
Affiliation(s)
- L Liscum
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| |
Collapse
|
31
|
Cruz JC, Sugii S, Yu C, Chang TY. Role of Niemann-Pick type C1 protein in intracellular trafficking of low density lipoprotein-derived cholesterol. J Biol Chem 2000; 275:4013-21. [PMID: 10660558 DOI: 10.1074/jbc.275.6.4013] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Niemann-Pick type C (NPC) is a disease that affects intracellular cholesterol-trafficking pathways. By cloning the hamster ortholog of NPC1, we identified the molecular lesions in two independently isolated Chinese hamster ovary cell mutants, CT60 and CT43. Both mutants lead to premature translational terminations of the NPC1 protein. Transfecting hamster NPC1 cDNA complemented the defects of the mutants. Investigation of the CT mutants, their parental cells, and an NPC1-stable transfectant allow us to present evidence that NPC1 is involved in a post-plasma membrane cholesterol-trafficking pathway. We found that the initial movement of low density lipoprotein (LDL)-derived cholesterol to the plasma membrane (PM) did not require NPC1. After reaching the PM and subsequent internalization, however, cholesterol trafficking back to the PM did involve NPC1. Both LDL-derived cholesterol and cholesterol originating from the PM accumulated in a dense, intracellular compartment in the CT mutants. Cholesterol movement from this compartment to the PM or endoplasmic reticulum was defective in the CT mutants. Our results functionally distinguish the dense, intracellular compartment from the early endocytic hydrolytic organelle and imply that NPC1 is involved in sorting cholesterol from the intracellular compartment back to the PM or to the endoplasmic reticulum.
Collapse
Affiliation(s)
- J C Cruz
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | |
Collapse
|
32
|
Kellner-Weibel G, de La Llera-Moya M, Connelly MA, Stoudt G, Christian AE, Haynes MP, Williams DL, Rothblat GH. Expression of scavenger receptor BI in COS-7 cells alters cholesterol content and distribution. Biochemistry 2000; 39:221-9. [PMID: 10625497 DOI: 10.1021/bi991666c] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Previous studies have shown that scavenger receptor BI (SR-BI) stimulates the bidirectional flux of free cholesterol (FC) between HDL and SR-BI-expressing cells. A major component of the enhanced FC flux appears to occur independently of HDL binding to SR-BI and may be due to changes in membrane lipid domains resulting from SR-BI expression (1). In the present study, the impact of SR-BI on cellular cholesterol metabolism was determined by examining SR-BI-mediated changes in cellular cholesterol mass, the esterification of HDL-derived FC, and changes in membrane lipid pools. Growth of SR-BI-expressing cells in medium containing HDL led to increased cellular cholesterol mass, most of which accumulated as ester. The esterification of HDL-derived FC was enhanced by SR-BI-expression to a far greater extent than the SR-BI mediated increase in FC uptake, suggesting an SR-BI-mediated effect on cholesterol utilization in the cell. This observation was tested by comparing FC esterification rates in SR-BI positive and negative cells when equivalent amounts of extracellular FC were taken up via cyclodextrins or apolipoprotein AI/phospholipid disks, neither of which contained cholesteryl ester. Under these conditions, SR-BI did not preferentially stimulate cholesterol esterification. These results indicate that the enhanced esterification of HDL-derived FC in SR-BI-expressing cells is due to the expanded pool of cellular FC and not to a specific effect of SR-BI on cholesterol utilization. Two approaches were used to test the effects of SR-BI expression on membrane lipid organization. In the first, the sensitivity of cellular FC to exogenous cholesterol oxidase was tested under conditions in which there is a preferential oxidation of caveolar cholesterol. SR-BI-expression was found to greatly increase the fraction of cellular cholesterol available to the oxidase as compared to either vector-transfected cells or cells expressing the related class B scavenger receptor CD36. These results suggest that SR-BI expression alters the distribution of membrane-free cholesterol to a caveolar fraction or alters the accessibility of this membrane fraction to exogenous cholesterol oxidase. In the second approach, the efflux of cellular FC to high concentrations of cyclodextrins was monitored under conditions where desorption of FC from the plasma membrane is rate limiting for efflux. SR-BI-expressing cells showed a shift in the distribution of FC between two kinetic pools with more FC in the fast pool and less in the slow pool. These data support a model in which SR-BI expression leads to a redistribution of cholesterol to membrane domains that serve to facilitate the flux of FC between cells and lipoproteins.
Collapse
Affiliation(s)
- G Kellner-Weibel
- Department of Biochemistry, MCP Hahnemann University, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- L Liscum
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | | |
Collapse
|
34
|
Fielding CJ, Bist A, Fielding PE. Intracellular cholesterol transport in synchronized human skin fibroblasts. Biochemistry 1999; 38:2506-13. [PMID: 10029545 DOI: 10.1021/bi981012o] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Normal human skin fibroblasts maintained in serum-containing medium were synchronized with aphidicolin. After removal of inhibitor, free cholesterol (FC) homeostasis was determined at intervals during the following cell cycle. FC mass per cell doubled following S-phase, and reached its maximum well before mitosis. This increase was mainly the result of stimulation of the rate of selective uptake of FC from medium lipoproteins, and reduction of FC efflux. Rates of cholesterol synthesis, endocytosis of intact low-density lipoprotein, and HDL receptor (CLA-1) activity were relatively low and little changed during the cell cycle. The expression of caveolin (structural protein of cell surface caveolae) and caveolar FC were decreased along with FC efflux. To test the hypothesis that regulation of caveolin expression could contribute to changes in FC efflux during cell division, cells were transfected with human caveolin cDNA, synchronized with aphidicolin, and then allowed to divide. In the transfected cells, caveolar FC and FC efflux were both increased. FC accumulation and entry into mitosis were markedly inhibited compared to controls. The contribution of transcriptional regulation to caveolin mRNA levels was determined with a 705 bp caveolin 5'-flanking sequence ligated to the pGL3 luciferase expression vector. Expression of the reporter gene was downregulated at S-phase of synchronized cells. Deletion of a hybrid E2F/ Sp1-like site between -139 and -150 bp abolished this downregulation. These data are consistent with a role for caveolin in cell cycle kinetics, which may be mediated, at least in part, at the transcriptional level.
Collapse
Affiliation(s)
- C J Fielding
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco 94143, USA
| | | | | |
Collapse
|
35
|
Ridgway ND, Lagace TA, Cook HW, Byers DM. Differential effects of sphingomyelin hydrolysis and cholesterol transport on oxysterol-binding protein phosphorylation and Golgi localization. J Biol Chem 1998; 273:31621-8. [PMID: 9813079 DOI: 10.1074/jbc.273.47.31621] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The deposition of de novo synthesized and lipoprotein-derived cholesterol at the plasma membrane and transport to the endoplasmic reticulum is dependent on sphingomyelin (SM) content. Here we show that hydrolysis of plasma membrane SM in Chinese hamster ovary cells by exogenous bacterial sphingomyelinase resulted in enhanced cholesterol esterification at the endoplasmic reticulum and rapid dephosphorylation of the oxysterol-binding protein (OSBP), a cytosolic/Golgi receptor for oxysterols such as 25-hydroxycholesterol. After sphingomyelinase treatment, restoration of OSBP phosphorylation closely paralleled resynthesis of SM and down-regulation of cholesterol ester synthesis. SM hydrolysis activated an okadaic acid-sensitive phosphatase that was not stimulated in Chinese hamster ovary cells by short chain ceramides. Agents that specifically blocked sphingomyelinase-mediated delivery of cholesterol to acyl-CoA:cholesterol acyltransferase (U18666A) or promoted cholesterol efflux to the medium (cyclodextrin) did not inhibit OSBP dephosphorylation. SM hydrolysis also promoted OSBP translocation from a vesicular compartment to the Golgi apparatus. Cyclodextrin and U18666A also caused OSBP translocation to the Golgi apparatus, suggesting that OSBP movement is coupled to changes in the cholesterol content of the plasma membrane or Golgi apparatus. These results identify OSBP as a potential target of SM turnover and cholesterol mobilization at the plasma membrane and/or Golgi apparatus.
Collapse
Affiliation(s)
- N D Ridgway
- Atlantic Research Centre and Departments of Pediatrics and Biochemistry, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada.
| | | | | | | |
Collapse
|
36
|
Abstract
What is the connection among the following three medical conditions: Niemann-Pick type C disease (a cause of mental retardation and early death), systemic lipidosis (in which an obscure side effect of numerous drugs transforms lysosomes into lamellar bodies), and holoprosencephaly (a catastrophe in embryonic development)? Recent evidence suggests that the pathogenesis in each use involves impaired sensing of cellular cholesterol.
Collapse
Affiliation(s)
- Y Lange
- Department of Pathology, Rush Presbyterian St Luke's Medical Center, Chicago, IL 60612, USA.
| | | |
Collapse
|
37
|
Lange Y, Ye J, Steck TL. Circulation of cholesterol between lysosomes and the plasma membrane. J Biol Chem 1998; 273:18915-22. [PMID: 9668068 DOI: 10.1074/jbc.273.30.18915] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cholesterol in the lysosomes of cultured human fibroblasts was determined to constitute approximately 6% of the cell total. This pool was enlarged by as much as 10-fold in Niemann-Pick type C cells. Certain amphiphiles (e.g. U18666A, progesterone, and imipramine) caused lysosomal cholesterol to increase to similarly high levels at a rate of approximately 0.8% of cell cholesterol/h. Lysosomal cholesterol accumulated even in the absence of exogenous lipoproteins. Furthermore, nearly all of the lysosomal cholesterol in both of the two perturbed systems was shown to be derived from the plasma membrane. Oxysterols known to alter cholesterol movement and homeostasis blocked lysosomal cholesterol accretion in amphiphile-treated cells, suggesting that this process is regulated physiologically. Treating cells with amphiphiles slightly reduced the efflux of cholesterol from lysosomes and slightly increased the influx from the plasma membrane, causing the lysosomal cholesterol compartment to double in size in approximately 15 h. After more prolonged amphiphile treatments, a population of buoyant lysosomes appeared that exchanged cholesterol with the plasma membrane completely but slowly. Niemann-Pick type C lysosomes were similarly buoyant and sluggish. We conclude that cholesterol circulates bidirectionally between the plasma membrane and lysosomes. The massive accumulation of lysosomal cholesterol in the perturbed cells does not appear to reflect disabled lysosomal transport but rather the formation of lysosomes modified for lipid storage, i.e. lamellar bodies.
Collapse
Affiliation(s)
- Y Lange
- Departments of Pathology and Biochemistry, Rush-Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
38
|
Underwood KW, Jacobs NL, Howley A, Liscum L. Evidence for a cholesterol transport pathway from lysosomes to endoplasmic reticulum that is independent of the plasma membrane. J Biol Chem 1998; 273:4266-74. [PMID: 9461625 DOI: 10.1074/jbc.273.7.4266] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have studied the movement of low density lipoprotein (LDL)-derived cholesterol in cultured Chinese hamster ovary cells. Our hypothesis is that when LDL cholesterol is effluxed from lysosomes, the bulk of LDL cholesterol is mobilized to the plasma membrane, while another pathway delivers LDL cholesterol from lysosomes to acyl-CoA/cholesterol acyltransferase (ACAT) in the endoplasmic reticulum. Three lines of evidence support this model. First, LDL cholesterol transport to ACAT can be blocked without inhibiting the movement of cholesterol from lysosomes to plasma membrane or from plasma membrane to endoplasmic reticulum. Second, LDL cholesterol transport to ACAT is normal in a Chinese hamster ovary mutant with defective plasma membrane-to-ACAT movement. Third, LDL cholesterol is not diluted by the plasma membrane cholesterol pool before reaching ACAT. Our evidence supports a vesicular model of cholesterol transport from lysosomes to the endoplasmic reticulum that is independent of the plasma membrane.
Collapse
Affiliation(s)
- K W Underwood
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
39
|
Shamburek RD, Pentchev PG, Zech LA, Blanchette-Mackie J, Carstea ED, VandenBroek JM, Cooper PS, Neufeld EB, Phair RD, Brewer HB, Brady RO, Schwartz CC. Intracellular trafficking of the free cholesterol derived from LDL cholesteryl ester is defective in vivo in Niemann-Pick C disease: insights on normal metabolism of HDL and LDL gained from the NP-C mutation. J Lipid Res 1997. [DOI: 10.1016/s0022-2275(20)30027-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
40
|
|
41
|
Abstract
Cholesterol released from ingested low density lipoproteins in lysosomes moves both to the plasma membrane and to the endoplasmic reticulum (ER) where it is re-esterified. Whether cholesterol can move directly from lysosomes to ER or first must traverse the plasma membrane has not been established. To examine this question, the endocytic pathway of rat hepatoma cells was loaded at 18 degrees C with low density lipoproteins (LDL) labeled with [3H]cholesteryl linoleate, and the label then was chased at 37 degrees C. The hydrolysis of the accumulated ester proceeded linearly for several hours. Almost all of the released [3H]cholesterol moved to the plasma membrane rapidly and without a discernable lag. In contrast, the re-esterification in the ER of the released [3H]cholesterol showed a characteristic lag of 0.5-1 h. These data are inconsistent with direct cholesterol transfer from lysosomes to ER; rather, they suggest movement through the plasma membrane. Furthermore, we found that progesterone, imipramine and 3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one (U18666A) strongly inhibited the re-esterification of lysosomal cholesterol in the ER. However, contrary to previous reports, they did not block transfer of [3H]cholesterol from lysosomes to the cell surface. Therefore, the site of action of these agents was not at the lysosomes. We suggest instead that their known ability to block cholesterol movement from the plasma membrane to the ER accounts for the inhibition of lysosomal cholesterol esterification. These findings are consistent with the hypothesis that cholesterol released from lysosomes passes through the plasma membrane on its way to the ER rather than proceeding there directly. As a result, ingested cholesterol is subject to the same homeostatic regulation as the bulk of cell cholesterol, which is located in the plasma membrane.
Collapse
Affiliation(s)
- Y Lange
- Department of Pathology, Rush-Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
42
|
Zha X, Tabas I, Leopold PL, Jones NL, Maxfield FR. Evidence for prolonged cell-surface contact of acetyl-LDL before entry into macrophages. Arterioscler Thromb Vasc Biol 1997; 17:1421-31. [PMID: 9261276 DOI: 10.1161/01.atv.17.7.1421] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acetyl-LDL stimulates acyl-CoA:cholesterol acyltransferase (ACAT) much more effectively than LDL in mouse peritoneal macrophages. Previous work with another potent ACAT stimulator, beta-VLDL, suggested that atherogenic lipoproteins may use internalization pathways distinct from that of LDL. Brief incubation of fluorescently labeled acetyl-LDL and LDL followed by a short chase period without lipoproteins was used to compare endocytic pathways. LDL was delivered rapidly to perinuclear vesicles, corresponding to late endosomes and lysosomes. A substantial fraction (> 40%) of acetyl-LDL was initially retained in the cell periphery, while the rest was rapidly delivered to late endosomes that also contained LDL. Fluorescence of peripheral 1,1'-dioctadecyl-3,3,3', 3'-tetramethylindocarbocyanine perchlorate (DiI)-acetyl-LDL could be quenched by TNBS, indicating accessibility of the peripheral acetyl-LDL to the extracellular space. Quantification of fluorescence intensities demonstrated that > 40% of the cell-associated DiI-acetyl-LDL but only about 10% of DiI-LDL fluorescence was quenchable by TNBS after a 3-minute chase. Fucoidin can efficiently displace DiI-acetyl-LDL bound to cells at 0 degree C. DiI-acetyl-LDL in the TNBS-quenchable peripheral compartments, however, was resistant to fucoidin. Electron microscopy of colloidal gold-acetyl-LDL showed that acetyl-LDL on the cell surface was often associated with microvilli or ruffles. After clearance from the surface, the peripheral acetyl-LDL was also delivered to the late endosomes and lysosomes. These results indicate that a substantial portion of acetyl-LDL enters macrophages through a pathway that initially differs from that of LDL. This pathway involves a prolonged retention of acetyl-LDL on the plasma membrane. This surface retention may affect ACAT activation in macrophages.
Collapse
Affiliation(s)
- X Zha
- Department of Pathology, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | | | | | | | | |
Collapse
|
43
|
Ghoshroy KB, Zhu W, Sampson NS. Investigation of membrane disruption in the reaction catalyzed by cholesterol oxidase. Biochemistry 1997; 36:6133-40. [PMID: 9166784 DOI: 10.1021/bi962190p] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dye leakage experiments were undertaken to investigate the membrane disruption properties of cholesterol oxidase. Inspection of the X-ray crystal structures of cholesterol oxidase suggested that an active-site "lid" opens in order to bind substrate [Li, J., Vrielink, A., Brick, P., & Blow, D. M. (1993) Biochemistry 32, 11507-11515]. We tested whether the interaction of the putative active-site lid with the membrane was sufficiently disruptive of the membrane structure to cause leakage or lysis of the cell membrane. Vesicles (100 nm) composed of egg phosphatidylcholine, 2-palmitoyl-3-oleoyl-1-sn-phosphatidylethanolamine, and 2-palmitoyl-3-oleoyl-1-sn-phosphatidylcholine were used in this study to mimic biomembranes. To separate the effects of membrane binding from conversion of cholesterol to cholest-4-en-3-one, the active-site mutant E361Q was utilized. In the reaction catalyzed by E361Q, isomerization of the cholest-5-en-3-one intermediate is suppressed and cholest-5-en-3-one is the major product isolated. Furthermore, E361Q produces cholest-5-en-3-one 20-fold more slowly than wild type produces cholest-4-en-3-one from cholesterol. Wild-type and E361Q cholesterol oxidases bind to vesicles with an apparent K(D) of approximately 25 microM, as measured by quenching of intrinsic tryptophan fluorescence, irrespective of headgroup size and cholesterol content. Membrane disruption was measured by leakage of the encapsulated marker carboxyfluorescein. Leakage was observed with cholesterol-containing vesicles and wild-type enzyme only; the rate of leakage was dependent on the rate of cholest-4-en-3-one production. E361Q did not induce membrane disruption, regardless of vesicle type tested. Thus, binding of cholesterol oxidase to the membrane and partitioning of cholesterol into the active site does not sufficiently perturb the bilayer to cause leakage of vesicle contents. Formation of the product cholest-4-en-3-one, however, does increase membrane permeability. Expansion of the lipid bilayer upon conversion of cholesterol to cholest-4-en-3-one is the likely cause of this increased permeability.
Collapse
Affiliation(s)
- K B Ghoshroy
- Department of Chemistry, State University of New York, Stony Brook 11794-3400, USA
| | | | | |
Collapse
|
44
|
Murphy EJ, Schroeder F. Sterol carrier protein-2 mediated cholesterol esterification in transfected L-cell fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1345:283-92. [PMID: 9150248 DOI: 10.1016/s0005-2760(97)00003-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The relative function of the 15 and 13.2 kDa forms of SCP-2 in cholesterol trafficking and metabolism was assessed using L-cell fibroblasts permanently transfected with the cDNA encoding for either the mouse 15 kDa or 13.2 kDa SCP-2. Expression of the 15 kDa, but not the 13.2 kDa SCP-2 increased [3H]cholesteryl ester formation from medium derived cholesterol by 30% compared to control cells. In both SCP-2 expressing cell lines, sphingomyelinase treatment increased the initial rate of [3 H]cholesteryl ester formation from plasma membrane derived cholesterol more than 11-fold and elevated [3H]cholesteryl ester levels 1.5-fold compared to control cells. Expression of both proteins resulted in nearly a 1.5-fold increase in [3H]oleic acid esterification into cholesteryl esters, although [3H]oleic acid esterification into triacylglycerols was also increased in the 13.2 kDa SCP-2 expressing cells relative to control. In both transfected cell lines, the cholesteryl ester mass was increased nearly 2-fold compared to control cells, consistent with increased cholesteryl ester synthesis. Similarly, triacylglycerol levels were increased 1.3-fold in the 13.2 kDa SCP-2 expressing cells which is consistent with the increased [3H]oleic acid esterification into triacylglycerol. In the 15 kDa SCP-2 expressing cells, triacylglycerol levels were decreased 60%, but free cholesterol levels were increased 1.2-fold relative to control cells. Thus, only the 15 kDa expression product, containing the putative targeting sequence, specifically enhanced cholesteryl ester formation from either plasma membrane or medium-derived cholesterol. In contrast, the 13.2 kDa expression product, lacking the putative targeting sequence, stimulated an increase in [3H]oleic acid esterification into both cholesterol and triacylglycerol pools, suggesting a non-specific stimulation of fatty acid esterification.
Collapse
Affiliation(s)
- E J Murphy
- Department of Physiology and Pharmacology, Texas A and M University, TVMC, College Station 77843-4466, USA
| | | |
Collapse
|
45
|
Muriana FJ, Ruíz-Gutiérrez V, Guerrero A, Montilla C, León-Camacho M, Villar J. Olive oil normalizes the altered distribution of membrane cholesterol and Na+Li+ countertransport activity in erythrocyte of hypertensive patients. J Nutr Biochem 1997. [DOI: 10.1016/s0955-2863(97)00005-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Baum CL, Reschly EJ, Gayen AK, Groh ME, Schadick K. Sterol carrier protein-2 overexpression enhances sterol cycling and inhibits cholesterol ester synthesis and high density lipoprotein cholesterol secretion. J Biol Chem 1997; 272:6490-8. [PMID: 9045674 DOI: 10.1074/jbc.272.10.6490] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Recent data indicate that sterol carrier protein-2 (SCP-2) functions in the rapid movement of newly synthesized cholesterol to the plasma membrane (Puglielli, L., Rigotti, A., Greco, A. V., Santos, M. J., and Nervi, F. (1995) J. Biol. Chem. 270, 18723-18726). In order to further characterize the cellular function of SCP-2, we transfected McA-RH7777 rat hepatoma cells with a pre-SCP-2 cDNA expression construct. In stable transfectants, pre-SCP-2 processing resulted in an 8-fold increase in peroxisomal levels of SCP-2. SCP-2 overexpression increased the rates of newly synthesized cholesterol transfer to the plasma membrane and plasma membrane cholesterol internalization by 4-fold. There was no effect of SCP-2 overexpression on the microsomal levels of acyl-CoA:cholesterol acyltransferase and neutral cholesterol ester (CE) hydrolase; however, in the intact cell, CE synthesis and mass were reduced by 50%. SCP-2 overexpression also reduced high density lipoprotein-cholesterol secretion and apoA-I gene expression by 70% and doubled the rate of plasma membrane desmosterol conversion to cholesterol. We conclude that SCP-2 overexpression enhances the rate of cholesterol cycling, which reduces the availability of cholesterol for CE synthesis and alters the activity of a cellular cholesterol pool involved in regulating apoA-I-mediated high density lipoprotein cholesterol secretion. The net result of these changes in cholesterol metabolism is a 46% increase in plasma membrane cholesterol content, the implications of which are discussed.
Collapse
Affiliation(s)
- C L Baum
- Department of Medicine, Clinical Nutrition Research Unit and Section of Gastroenterology, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | |
Collapse
|
47
|
Sampson NS, Kass IJ. Isomerization, But Not Oxidation, Is Suppressed by a Single Point Mutation, E361Q, in the Reaction Catalyzed by Cholesterol Oxidase. J Am Chem Soc 1997. [DOI: 10.1021/ja962258o] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nicole S. Sampson
- Contribution from the Department of Chemistry, State University of New York, Stony Brook, New York 11794-3400
| | - Ignatius J. Kass
- Contribution from the Department of Chemistry, State University of New York, Stony Brook, New York 11794-3400
| |
Collapse
|
48
|
Abstract
Cholesterol homeostasis in peripheral cells involves a balance between the influx and efflux processes. The acquisition of cholesterol by such cells is mediated by a variety of receptor and non-receptor processes involving both normal and modified lipoproteins. The offsetting efflux process is mediated by HDL and especially particles containing only apo A-I. An efficient reverse cholesterol transport by HDL of cholesterol from peripheral cells to the liver protects against the development of atherosclerosis. In cells that do not contain excess cholesterol, the cholesterol is distributed as unesterified cholesterol molecules between the plasma membrane and the membranes of the intracellular organelles. In cholesterol-loaded cells such as macrophage foam cells, the membranes became enriched in unesterified cholesterol and, in addition, cytoplasmic CE droplets and lysosomal cholesterol crystals can form. The ways in which cholesterol molecules move between intracellular sites and the plasma membrane to become available for efflux to extracellular acceptor particles are becoming known. Cholesterol molecules in the plasma membrane can desorb and diffuse through the aqueous phase and be sequestered by HDL particles. The cell cholesterol available for efflux can exist in different kinetic pools, and these pools, such as those in various domains in the plasma membrane, require further definition. The cholesterol molecules present in intracellular pools also efflux with different kinetics and by different pathways. Thus, newly synthesized cholesterol is actively transported by a vesicle system from the ER to the plasma membrane, whereas lysosomal cholesterol seems to be transported to the plasma membrane by a protein-mediated, diffusional process. Clearance of cytoplasmic CE is dependent upon the rate of turnover of the CE cycle and the magnitude of the cholesterol gradient between the plasma membrane and the extracellular acceptor particle. It can be expected that the interdependence of the pathways and the molecular mechanisms underlying the intracellular trafficking of cholesterol will be elucidated in the near future.
Collapse
Affiliation(s)
- W J Johnson
- Department of Biochemistry, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19129, USA
| | | | | |
Collapse
|
49
|
Abstract
Due to its presumed role in regulating cellular cholesterol homeostasis, and in various pathophysiological conditions, acyl-coenzyme A:cholesterol acyltransferase (ACAT) has attracted much attention. Cloning the ACAT gene provides the necessary tool to advance molecular studies of this enzyme. The topics reviewed in this chapter include the pathophysiological roles of ACAT, the biochemistry and molecular biology of the ACAT protein and the ACAT gene, and the mode of regulation by sterol or nonsterol agents in mammalian cells. In addition, we present a working model linking the presumed allosteric property of ACAT with cholesterol trafficking into and out of the endoplasmic reticulum.
Collapse
Affiliation(s)
- T Y Chang
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
50
|
Neufeld EB, Cooney AM, Pitha J, Dawidowicz EA, Dwyer NK, Pentchev PG, Blanchette-Mackie EJ. Intracellular trafficking of cholesterol monitored with a cyclodextrin. J Biol Chem 1996; 271:21604-13. [PMID: 8702948 DOI: 10.1074/jbc.271.35.21604] [Citation(s) in RCA: 310] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The sterol binding agent 2-hydroxypropyl-beta-cyclodextrin is shown to be a convenient and useful experimental tool to probe intracellular pathways of cholesterol transport. Biochemical and cytochemical studies reveal that cyclodextrin specifically removes plasma membrane cholesterol. Depletion of plasma membrane sphingomyelin greatly accelerated cyclodextrin-mediated cholesterol removal. Cholesterol arriving at the plasma membrane from lysosomes and the endoplasmic reticulum was also removed by cyclodextrin. Cellular cholesterol esterification linked to the mobilization of cholesterol from lysosomes was strongly attenuated by cyclodextrin, suggesting that the major portion of endocytosed cholesterol is delivered from lysosomes to the endoplasmic reticulum via the plasma membrane. Evidence for translocation of lysosomal cholesterol to the endoplasmic reticulum by a plasma membrane-independent pathway is provided by the finding that cyclodextrin loses its ability to suppress esterification when plasma membrane sphingomyelin is depleted. The Golgi apparatus appears to play an active role in directing the relocation of lysosomal cholesterol to the plasma membrane since brefeldin A also abrogated cyclodextrin-mediated suppression of cholesterol esterification. Using cyclodextrin we further show that attenuated esterification of lysosomal cholesterol in Niemann-Pick C cells reflects defective translocation of cholesterol to the plasma membrane that may be linked to abnormal Golgi trafficking.
Collapse
Affiliation(s)
- E B Neufeld
- Lipid Cell Biology Section, Laboratory of Cell Biochemistry and Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|