1
|
Flores-Gómez GD, Apam-Castillejos DJ, Juárez-Díaz I, Fuentes-Medel E, Díaz A, Tendilla-Beltrán H, Flores G. Aripiprazole attenuates the medial prefrontal cortex morphological and biochemical alterations in rats with neonatal ventral hippocampus lesion. J Chem Neuroanat 2023; 132:102316. [PMID: 37481172 DOI: 10.1016/j.jchemneu.2023.102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Schizophrenia is a neurodevelopmental disorder characterized by a loss of dendritic spines in the medial prefrontal cortex (mPFC). Multiple subclinical and clinical studies have evidenced the ability of antipsychotics to improve neuroplasticity. In this study, it was evaluated the effect of the atypical antipsychotic aripiprazole (ARI) on the behavioral and mPFC neuronal disturbances of rats with neonatal ventral hippocampus lesion (nVHL), which is a heuristic developmental model relevant to the study of schizophrenia. ARI attenuated open field hyperlocomotion in the rats with nVHL. Also, ARI ameliorated structural neuroplasticity disturbances of the mPFC layer 3 pyramidal cells, but not in the layer 5 neurons. These effects can be associated with the ARI capability of increasing brain-derived neurotrophic factor (BDNF) levels. Moreover, in the animals with nVHL, ARI attenuated the immunoreactivity for some oxidative stress-related molecules such as the nitric oxide synthase 2 (NOS-2), 3-nitrotyrosine (3-NT), and cyclooxygenase 2 (COX-2), as well as the reactive astrogliosis in the mPFC. These results contribute to current knowledge about the neurotrophic, anti-inflammatory, and antioxidant properties of antipsychotics which may be contributing to their clinical effects and envision promising therapeutic targets for the treatment of schizophrenia.
Collapse
Affiliation(s)
| | | | - Ismael Juárez-Díaz
- Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Estefania Fuentes-Medel
- Facultad de Ciencias Químicas (FCQ), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas (FCQ), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Hiram Tendilla-Beltrán
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| |
Collapse
|
2
|
Doneray E, Yazici KU, Yazici IP, Ustundag B. Altered Arginine/Nitric Oxide Pathway in Children Diagnosed Attention Deficit Hyperactivity Disorder, and the Effect of 10 Weeks Methylphenidate Treatment. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2022; 20:350-363. [PMID: 35466106 PMCID: PMC9048004 DOI: 10.9758/cpn.2022.20.2.350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/26/2021] [Accepted: 07/02/2021] [Indexed: 11/23/2022]
Abstract
Objective In this study, we investigated the levels of arginine, nitric oxide (NO), asymmetric dimethylarginine (ADMA), and adrenomedullin that are presumed to play a role in attention deficit hyperactivity disorder (ADHD) etiology, and to compare the findings with healthy controls. Methods Thirty ADHD patients and thirty healthy control subjects aged 6−12 years were included in the study. Sociodemographic data form, Schedule for Affective Disorders and Schizophrenia for School Age Children-Present and Lifetime Version; Conners’ Parent/Teacher Rating Scale-Revised Long Form; Children’s Depression Inventory; and The State-Trait Anxiety Inventory for Children were applied to all cases. All participants included in the study were evaluated in terms of their serum arginine, NO, ADMA, and adrenomedullin levels. Subsequently, methylphenidate treatment was started in ADHD patients and blood parameters were tested again in the tenth week of treatment. Results At the start of the study, arginine and ADMA levels were significantly higher and NO and adrenomedullin levels were significantly lower in the ADHD group compared to the control group. Post-treatment arginine and ADMA levels were found to be significantly lower than in the pre-treatment period. There were no significant differences in NO and adrenomedullin levels before and after treatment. There was no correlation between scale scores and blood parameters. Conclusion These variations in the blood parameters of the ADHD group seem to be worth further investigation. Studies to be conducted with larger sample groups after longer-term treatment may provide new information about the alterations in neurobiological processes related to ADHD etiology and treatment.
Collapse
Affiliation(s)
- Ebru Doneray
- Department of Child and Adolescent Psychiatry, Sanliurfa Training and Research Hospital, Sanliurfa, Turkey
| | - Kemal Utku Yazici
- Department of Child and Adolescent Psychiatry, Firat University Faculty of Medicine, Elazig, Turkey
| | - Ipek Percinel Yazici
- Department of Child and Adolescent Psychiatry, Firat University Faculty of Medicine, Elazig, Turkey
| | - Bilal Ustundag
- Department of Biochemistry, Firat University Faculty of Medicine, Elazig, Turkey
| |
Collapse
|
3
|
Higgins-Chen AT, Boks MP, Vinkers CH, Kahn RS, Levine ME. Schizophrenia and Epigenetic Aging Biomarkers: Increased Mortality, Reduced Cancer Risk, and Unique Clozapine Effects. Biol Psychiatry 2020; 88:224-235. [PMID: 32199607 PMCID: PMC7368835 DOI: 10.1016/j.biopsych.2020.01.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Schizophrenia (SZ) is associated with increased all-cause mortality, smoking, and age-associated proteins, yet multiple previous studies found no association between SZ and biological age using Horvath's epigenetic clock, a well-established aging biomarker based on DNA methylation. However, numerous epigenetic clocks that may capture distinct aspects of aging have been developed. This study tested the hypothesis that altered aging in SZ manifests in these other clocks. METHODS We performed a comprehensive analysis of 14 epigenetic clocks categorized according to what they were trained to predict: chronological age, mortality, mitotic divisions, or telomere length. To understand the etiology of biological age differences, we also examined DNA methylation predictors of smoking, alcohol, body mass index, serum proteins, and cell proportions. We independently analyzed 3 publicly available multiethnic DNA methylation data sets from whole blood, a total of 567 SZ cases and 594 nonpsychiatric controls. RESULTS All data sets showed accelerations in SZ for the 3 mortality clocks up to 5 years, driven by smoking and elevated levels of 6 age-associated proteins. The 2 mitotic clocks were decelerated in SZ related to antitumor natural killer and CD8T cells, which may help explain conflicting reports about low cancer rates in epidemiological studies of SZ. One cohort with available medication data showed that clozapine is associated with male-specific decelerations up to 7 years in multiple chronological age clocks. CONCLUSIONS Our study demonstrates the utility of studying the various epigenetic clocks in tandem and highlights potential mechanisms by which mental illness influences long-term outcomes, including cancer and early mortality.
Collapse
Affiliation(s)
- Albert T Higgins-Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| | - Marco P Boks
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - Christiaan H Vinkers
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, The Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - Morgan E Levine
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
4
|
Extracellular elevation of adrenomedullin, a gene associated with schizophrenia, suppresses heat shock protein 1A/1B mRNA. Neuroreport 2018; 27:1312-1316. [PMID: 27776076 DOI: 10.1097/wnr.0000000000000699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Several recent gene expression studies on schizophrenia, including one using monozygotic twins discordant for the disease, have reported the upregulation of adrenomedullin (ADM), which was initially identified as a vasodilator hormone. It has been hypothesized that upregulation of ADM may be a susceptibility factor for schizophrenia, although the exact role of ADM in the central nervous system remains unclear. In this study, we used a microarray analysis to investigate the changes in global gene expression induced by the administration of exogenous ADM in SK-N-SH cells, which allowed us to evaluate the effects of elevated ADM on the central nervous system. A quantitative reverse-transcription PCR study showed that the levels of HSPA1A/1B mRNA, another gene that has been associated with schizophrenia, were significantly suppressed after exogenous ADM treatment. These results indicate that elevated ADM may be involved in the etiology of schizophrenia through the regulation of heat shock protein signaling.
Collapse
|
5
|
Gürbüz Özgür B, Aksu H, Yılmaz M, Karakoç Demirkaya S. The probable role of adrenomedullin and nitric oxide in childhood attention deficit hyperactivity disorder. Nord J Psychiatry 2017; 71:521-524. [PMID: 28670953 DOI: 10.1080/08039488.2017.1343382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND The role of adrenomedullin hormone, which has been shown to be associated with many psychiatric disorders, in the etiology of ADHD and its relation to disease is not yet known. AIM In this study, it was aimed to compare plasma adrenomedullin and nitric oxide (NO) levels of newly diagnosed, treatment-naive patients with ADHD with healthy children. METHODS A total of 45 children with ADHD and 45 healthy children were included. The Schedule for Affective Disorders and Schizophrenia Present and Lifetime Version (K-SADS), a semi-structured interview, was applied to all cases by child and adolescent psychiatrist. Age and gender matched participants who admitted to the hospital for any other reasons without any psychiatric diagnosis according to K-SADS were selected as a control group. Sociodemographic data form and The Turgay DSM-IV-Based Child and Adolescent Disruptive Behavioral Disorders Screening and Rating Scale-parental form were applied to the all groups. NO and adrenomedullin levels were analysed by ELISA method with specific commercial kits. RESULTS There was no statistically significant difference in NO and adrenomedullin levels, neither between the groups nor ADHD subtypes. A positive correlation between adrenomedullin and NO levels was found in both the case (r = 0.659) and the control groups (r = 0.494). CONCLUSIONS Besides being the first study to evaluate adrenomedullin levels to elucidate the etiology of childhood ADHD as well as NO, significant differences was not found between the case and the control groups in terms of NO and adrenomedullin levels.
Collapse
Affiliation(s)
- Börte Gürbüz Özgür
- a Department of Child and Adolescent Psychiatry, Medical Faculty , Adnan Menderes University , Aydın , Turkey
| | - Hatice Aksu
- a Department of Child and Adolescent Psychiatry, Medical Faculty , Adnan Menderes University , Aydın , Turkey
| | - Mustafa Yılmaz
- b Department of Biochemistry, Medical Faculty , Adnan Menderes University , Aydın , Turkey
| | - Sevcan Karakoç Demirkaya
- a Department of Child and Adolescent Psychiatry, Medical Faculty , Adnan Menderes University , Aydın , Turkey
| |
Collapse
|
6
|
Gunes M, Altindag A, Bulut M, Demir S, Ibiloglu AO, Kaya MC, Atli A, Aksoy N. Oxidative metabolism may be associated with negative symptoms in schizophrenia. PSYCHIAT CLIN PSYCH 2017. [DOI: 10.1080/24750573.2017.1293243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
7
|
Kul M, Kara M, Unal F, Tuzun Z, Akbiyik F. Serum Copper and Ceruloplasmin Levels in Children and Adolescents with Attention Deficit Hyperactivity Disorder. ACTA ACUST UNITED AC 2016. [DOI: 10.5455/bcp.20130614050435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Muslum Kul
- Umraniye Training and Research Hospital, Child and Adolescent Psychiatry Clinic, Istanbul - Turkey
| | - Mahmut Kara
- Hacettepe University School of Medicine, Department of Child and Adolescent Psychiatry, Ankara - Turkey
| | - Fatih Unal
- Hacettepe University School of Medicine, Department of Child and Adolescent Psychiatry, Ankara - Turkey
| | - Zeynep Tuzun
- Hacettepe University School of Medicine, Department of Pediatrics, Ankara - Turkey
| | - Filiz Akbiyik
- Hacettepe University School of Medicine, Department of Biochemistry, Ankara - Turkey
| |
Collapse
|
8
|
Koga M, Serritella AV, Sawa A, Sedlak TW. Implications for reactive oxygen species in schizophrenia pathogenesis. Schizophr Res 2016; 176:52-71. [PMID: 26589391 DOI: 10.1016/j.schres.2015.06.022] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 12/18/2022]
Abstract
Oxidative stress is a well-recognized participant in the pathophysiology of multiple brain disorders, particularly neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. While not a dementia, a wide body of evidence has also been accumulating for aberrant reactive oxygen species and inflammation in schizophrenia. Here we highlight roles for oxidative stress as a common mechanism by which varied genetic and epidemiologic risk factors impact upon neurodevelopmental processes that underlie the schizophrenia syndrome. While there is longstanding evidence that schizophrenia may not have a single causative lesion, a common pathway involving oxidative stress opens the possibility for intervention at susceptible phases.
Collapse
Affiliation(s)
- Minori Koga
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Anthony V Serritella
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Thomas W Sedlak
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA.
| |
Collapse
|
9
|
Güneş M, Bulut M, Demir S, İbiloğlu AO, Kaya MC, Atlı A, Kaplan İ, Camkurt MA, Sir A. Diagnostic performance of increased prolidase activity in schizophrenia. Neurosci Lett 2016; 613:36-40. [DOI: 10.1016/j.neulet.2015.12.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/22/2015] [Accepted: 12/17/2015] [Indexed: 12/22/2022]
|
10
|
Freudenberg F, Alttoa A, Reif A. Neuronal nitric oxide synthase (NOS1) and its adaptor, NOS1AP, as a genetic risk factors for psychiatric disorders. GENES BRAIN AND BEHAVIOR 2015; 14:46-63. [PMID: 25612209 DOI: 10.1111/gbb.12193] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/17/2014] [Accepted: 12/03/2014] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO) is a gaseous transmitter produced by nitric oxide synthases (NOSs). The neuronal isoform (NOS-I, encoded by NOS1) is the main source of NO in the central nervous system (CNS). Animal studies suggest that nitrinergic dysregulation may lead to behavioral abnormalities. Unfortunately, the large number of animal studies is not adequately reflected by publications concerning humans. These include post-mortem studies, determination of biomarkers, and genetic association studies. Here, we review the evidence for the role of NO in psychiatric disorders by focusing on the human NOS1 gene as well as biomarker studies. Owing to the complex regulation of NOS1 and the varying function of NOS-I in different brain regions, no simple, unidirectional association is expected. Rather, the 'where, when and how much' of NO formation is decisive. Present data, although still preliminary and partially conflicting, suggest that genetically driven reduced NO signaling in the prefrontal cortex is associated with schizophrenia and cognition. Both NOS1 and its interaction partner NOS1AP have a role therein. Also, reduced NOS1 expression in the striatum determined by a length polymorphism in a NOS1 promoter (NOS1 ex1f-VNTR) goes along with a variety of impulsive behaviors. An association of NOS1 with mood disorders, suggested by animal models, is less clear on the genetic level; however, NO metabolites in blood may serve as biomarkers for major depression and bipolar disorder. As the nitrinergic system comprises a relevant target for pharmacological interventions, further studies are warranted not only to elucidate the pathophysiology of mental disorders, but also to evaluate NO function as a biomarker.
Collapse
Affiliation(s)
- F Freudenberg
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | | | | |
Collapse
|
11
|
Akyol O, Erdemli HK. A new remedial approach to oxidant/antioxidant imbalance-based diseases: Wet-cupping therapy. Complement Ther Med 2015; 23:633. [PMID: 26275658 DOI: 10.1016/j.ctim.2015.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/08/2015] [Indexed: 10/23/2022] Open
Affiliation(s)
- Omer Akyol
- Department of Medical Biochemistry, School of Medicine, Hacettepe University, Ankara, Turkey.
| | - Haci Kemal Erdemli
- Department of Biochemistry Laboratory, Corum Training and Research Hospital, Corum, Turkey.
| |
Collapse
|
12
|
Guo J, Liu C, Wang Y, Feng B, Zhang X. Role of T helper lymphokines in the immune-inflammatory pathophysiology of schizophrenia: Systematic review and meta-analysis. Nord J Psychiatry 2015; 69:364-72. [PMID: 25529895 DOI: 10.3109/08039488.2014.986761] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Schizophrenia is highly complex multifactorial psychiatric disorder with poorly defined etiopathophysiology, which also has manifestations in the immune system. AIMS The aim of this review is to meta-analyze the available evidence regarding the role of immune activation indicated by the T helper cells in order to evaluate etiopathophysiological links between the immune system and schizophrenia. METHODS A literature search was performed in multiple electronic databases for relevant research papers published between 1990 and May 2014. Meta-analyses were conducted under both random- (REM) and fixed-effect models (FEM) by calculating weighted mean differences with 95% confidence intervals. Heterogeneity was assessed with the I(2) index. RESULTS Twenty-one studies were selected after observing inclusion and exclusion criteria. In vitro interferon-gamma (INF-γ) and interleukin (IL)-2 production was significantly lower in the schizophrenic patients compared with non-schizophrenic control individuals under both FEM and REM. Serum levels of IL-2 and serum/in vitro IL-4 were not significantly different in both groups under both FEM and REM. Overall Th1:Th2 ratio (INF-γ:IL-4 and IL-2:IL-4) in the serum samples was significantly deflected towards Th2 under both models in the serum samples (- 0.33 [- 0.59 to - 0.06]; P < 0.03, FEM and - 2.44 [- 4.27 to - 0.60]; P < 0.009, REM) but in vitro production Th1:Th2 ratio (INF-γ:IL-4 and IL-2:IL-4) was deflected towards Th1 under both the models (1.11 [0.45-1.78]; P < 0.002, FEM and 6.68 [0.72-12.64]; P < 0.03, REM). CONCLUSIONS Whereas the Th1:Th2 ratio in the serum samples deflected towards T2, in vitro Th1:Th2 ratio favored Th1 when the individual study data were meta-analyzed.
Collapse
Affiliation(s)
- Jing Guo
- Jing Guo, M.D., Clinical Laboratory, The 261st Hospital of The People's Liberation Army , Beijing , China
| | | | | | | | | |
Collapse
|
13
|
Hussain QA, McKay IJ, Gonzales-Marin C, Allaker RP. Detection of adrenomedullin and nitric oxide in different forms of periodontal disease. J Periodontal Res 2015; 51:16-25. [DOI: 10.1111/jre.12273] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Q. A. Hussain
- Institute of Dentistry; Barts and The London School of Medicine & Dentistry; Queen Mary University of London; London UK
| | - I. J. McKay
- Institute of Dentistry; Barts and The London School of Medicine & Dentistry; Queen Mary University of London; London UK
| | - C. Gonzales-Marin
- Institute of Dentistry; Barts and The London School of Medicine & Dentistry; Queen Mary University of London; London UK
| | - R. P. Allaker
- Institute of Dentistry; Barts and The London School of Medicine & Dentistry; Queen Mary University of London; London UK
| |
Collapse
|
14
|
Dietrich-Muszalska A, Bartosz G, Sadowska-Bartosz I. The Role of Nitric Oxide and Nitrosative Stress in Schizophrenia. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-1-4939-0440-2_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Abstract
The clinical symptoms and cognitive and functional deficits of schizophrenia typically begin to gradually emerge during late adolescence and early adulthood. Recent findings suggest that disturbances of a specific subset of inhibitory neurons that contain the calcium-binding protein parvalbumin (PV), which may regulate the course of postnatal developmental experience-dependent synaptic plasticity in the cerebral cortex, including the prefrontal cortex (PFC), may be involved in the pathogenesis of the onset of this illness. Specifically, converging lines of evidence suggest that oxidative stress, extracellular matrix (ECM) deficit and impaired glutamatergic innervation may contribute to the functional impairment of PV neurons, which may then lead to aberrant developmental synaptic pruning of pyramidal cell circuits during adolescence in the PFC. In addition to promoting the functional integrity of PV neurons, maturation of ECM may also play an instrumental role in the termination of developmental PFC synaptic pruning; thus, ECM deficit can directly lead to excessive loss of synapses by prolonging the course of pruning. Together, these mechanisms may contribute to the onset of schizophrenia by compromising the integrity, stability, and fidelity of PFC connectional architecture that is necessary for reliable and predictable information processing. As such, further characterization of these mechanisms will have implications for the conceptualization of rational strategies for the diagnosis, early intervention, and prevention of this debilitating disorder.
Collapse
Affiliation(s)
- Tsung-Ung W Woo
- Laboratory of Cellular Neuropathology, MRC303E, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA,
| |
Collapse
|
16
|
Are oxidative stress markers useful to distinguish schizoaffective disorder from schizophrenia and bipolar disorder? Acta Neuropsychiatr 2014; 26:120-4. [PMID: 24855890 DOI: 10.1017/neu.2013.44] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Schizoaffective disorder is a disease with both affective and psychotic symptoms. In this study, we aimed to compare oxidative metabolism markers of schizoaffective disorder, bipolar disorder and schizophrenic patients. Furthermore, we also aimed to investigate whether schizoaffective disorder could be differentiated from schizophrenia and bipolar disorder in terms of oxidative metabolism. METHODS Total oxidant status (TOS) and total antioxidant status (TAS) were measured in the blood samples that were collected from schizoaffective patients (n = 30), bipolar disorder patients (n = 30) and schizophrenic patients (n = 30). Oxidative stress index (OSI) was calculated by dividing TOS by TAS. RESULTS TOS and OSI were found to be higher in patients with schizoaffective disorder compared with those in schizophrenia and bipolar disorder patients. TAS was not significantly different between the groups. CONCLUSION Schizoaffective disorder was found to be different from bipolar disorder and schizophrenia in terms of oxidative parameters. This result may indicate that schizoaffective disorder could differ from bipolar disorder and schizophrenia in terms of biochemical parameters. Increased TOS levels observed in schizoaffective disorder may suggest poor clinical course and may be an indicator of poor prognosis.
Collapse
|
17
|
Bulbul F, Alpak G, Unal A, Copoglu US, Orkmez M, Virit O, Tarkcıoglu M, Savas HA. New molecule in the etiology of schizophrenia: urotensin II. Psychiatry Clin Neurosci 2014; 68:133-6. [PMID: 24552634 DOI: 10.1111/pcn.12099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/10/2013] [Accepted: 07/25/2013] [Indexed: 01/08/2023]
Abstract
AIMS Urotensin II (U-II) is a cyclic peptide that was first isolated from the caudal neurosecretory system of goby fish. U-II receptors were detected in the vascular endothelium, brain and kidney cortex. Urotensin is by far the most powerful vasoconstrictor identified. U-II molecules were previously isolated from the brain of rats and were shown to have an impact on rat behavior. The aim of the present study was to measure the level of U-II molecule in schizophrenia patients and to investigate whether the U-II level is associated with the etiology of schizophrenia. METHODS Forty schizophrenia patients who were followed at Gaziantep University Faculty of Medicine Department of Psychiatry Psychotic Disorders Unit and 40 healthy volunteers were enrolled in this study. Blood samples were taken from the antecubital vein after 12-h fasting. U-II level was measured on ELISA. RESULTS The U-II level in schizophrenia patients was significantly higher than in the control group. U-II level was not different with regard to gender in either group. U-II level was not different between subgroups of schizophrenia. No significant correlation was found between U-II level, Positive and Negative Syndrome Scale and Clinical Global Impression-Severity scale scores. CONCLUSION U-II level was higher in schizophrenia patients, indicating that U-II level may be related to the etiology of the disease.
Collapse
Affiliation(s)
- Feridun Bulbul
- Department of Psychiatry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Akpinar A, Yaman GB, Demirdas A, Onal S. Possible role of adrenomedullin and nitric oxide in major depression. Prog Neuropsychopharmacol Biol Psychiatry 2013; 46:120-5. [PMID: 23867466 DOI: 10.1016/j.pnpbp.2013.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 01/01/2023]
Abstract
Adrenomedullin (ADM) and nitric oxide (NO) have been implicated in the pathogenesis of certain psychiatric disorders such as schizophrenia and bipolar disorder. ADM induces vasorelaxation by activating adenylate cyclase and stimulating the release of NO. These two molecules are known to influence cerebral activity. In this study, we aimed to examine the serum levels of ADM and NO in patients with major depression (MD). We enrolled 50 patients with MD and 50 healthy control subjects. The diagnosis of MD was established on the basis of a structured clinical interview using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV). The severity of depressive symptoms was evaluated using Hamilton's 17-item Depression Rating Scale. The mean serum levels of ADM and NO in patients with MD were significantly higher than those in healthy subjects (p=0.001, for both). The severity of psychomotor retardation in patients with MD was significantly correlated with the ADM (r=0.37, p=0.007) and NO levels (r=0.29, p=0.038). The patients with obvious psychomotor retardation had significantly higher levels of ADM and NO than did the patients with no psychomotor retardation (p=0.025, p=0.030). A significantly positive correlation was found between ADM and NO levels in patients with MD (r=0.79, p=0.001). Serum levels of ADM and NO levels were not correlated with the severity or duration of depression or depressive symptoms (except psychomotor retardation). In conclusion, our study indicates that serum levels of ADM and NO are elevated in patients with MD and that increased serum levels of ADM and NO may be associated with psychomotor retardation. The ADM-NO system may serve as a new target in the treatment of patients with MD and psychomotor retardation.
Collapse
Affiliation(s)
- Abdullah Akpinar
- Department of Psychiatry, Suleyman Demirel University School of Medicine, Isparta, Turkey.
| | | | | | | |
Collapse
|
20
|
Flatow J, Buckley P, Miller BJ. Meta-analysis of oxidative stress in schizophrenia. Biol Psychiatry 2013; 74:400-9. [PMID: 23683390 PMCID: PMC4018767 DOI: 10.1016/j.biopsych.2013.03.018] [Citation(s) in RCA: 345] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Schizophrenia is associated with impaired antioxidant defense, including abnormal serum, plasma, and red blood cell (RBC) oxidative stress parameters. We performed a meta-analysis of these associations, considering the effect of clinical status and antipsychotic treatment after an acute exacerbation of psychosis. METHODS We identified articles by searching PubMed, PsychInfo, and Institute for Scientific Information, and the reference lists of identified studies. RESULTS Forty-four studies met the inclusion criteria. Total antioxidant status seemed to be a state marker, because levels were significantly decreased in cross-sectional studies of serum and plasma in first-episode psychosis (FEP) and significantly increased in longitudinal studies of antipsychotic treatment for acute exacerbations of psychosis (p < .01 for each). The RBC catalase and plasma nitrite seemed to be state-related markers, because levels in cross-sectional studies were significantly decreased in FEP (p < .01) and significantly increased in stable outpatients (p = .01). In contrast, RBC superoxide dismutase seemed to be a trait marker for schizophrenia, because levels in cross-sectional studies were significantly decreased in acutely relapsed inpatients, FEP, and stable outpatients (p < .01 for each). CONCLUSIONS Oxidative stress abnormalities in FEP suggest an effect that might be independent of antipsychotic medications. Although some parameters (total antioxidant status, RBC catalase, and plasma nitrite) might be state markers for acute exacerbations of psychosis, others (RBC superoxide dismutase) might be trait markers; however, more longitudinal studies are needed. Our findings suggest that oxidative stress might serve as a potential biomarker in the etiopathophysiology and clinical course of schizophrenia.
Collapse
Affiliation(s)
- Joshua Flatow
- Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | | | | |
Collapse
|
21
|
Tanyeri P, Mutlu O, Ulak G, Akar FY, Celikyurt IK, Erden BF. 5-HT 1and 5-HT 2Receptors Are Involved in the Anxiolytic-Like Effects of the Neuronal NOS Inhibitor TRIM in the Rat. Drug Dev Res 2013. [DOI: 10.1002/ddr.21074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pelin Tanyeri
- Department of Pharmacology; Faculty of Medicine; Sakarya University; 54100; Sakarya; Turkey
| | - Oguz Mutlu
- Department of Pharmacology; Faculty of Medicine; Kocaeli University; 41380; Kocaeli; Turkey
| | - Güner Ulak
- Department of Pharmacology; Faculty of Medicine; Kocaeli University; 41380; Kocaeli; Turkey
| | - Füruzan Yildiz Akar
- Department of Pharmacology; Faculty of Medicine; Kocaeli University; 41380; Kocaeli; Turkey
| | | | - Bekir Faruk Erden
- Department of Pharmacology; Faculty of Medicine; Kocaeli University; 41380; Kocaeli; Turkey
| |
Collapse
|
22
|
Monocrotaline: histological damage and oxidant activity in brain areas of mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:697541. [PMID: 23251721 PMCID: PMC3517861 DOI: 10.1155/2012/697541] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 12/25/2022]
Abstract
This work was designed to study MCT effect in histopathological analysis of hippocampus (HC) and parahippocampal cortex (PHC) and in oxidative stress (OS) parameters in brain areas such as hippocampus (HC), prefrontal cortex (PFC), and striatum (ST). Swiss mice (25–30 g) were administered a single i.p. dose of MCT (5, 50, or 100 mg/kg) or 4% Tween 80 in saline (control group). After 30 minutes, the animals were sacrificed by decapitation and the brain areas (HC, PHC, PFC, or ST) were removed for histopathological analysis or dissected and homogenized for measurement of OS parameters (lipid peroxidation, nitrite, and catalase) by spectrophotometry. Histological evaluation of brain structures of rats treated with MCT (50 and 100 mg/kg) revealed lesions in the hippocampus and parahippocampal cortex compared to control. Lipid peroxidation was evident in all brain areas after administration of MCT. Nitrite/nitrate content decreased in all doses administered in HC, PFC, and ST. Catalase activity was increased in the MCT group only in HC. In conclusion, monocrotaline caused cell lesions in the hippocampus and parahippocampal cortex regions and produced oxidative stress in the HC, PFC, and ST in mice. These findings may contribute to the neurological effects associated with this compound.
Collapse
|
23
|
Nitric Oxide Plasma/Serum Levels In Patients With Schizophrenia: A Systematic Review And Meta-Analysis. BRAZILIAN JOURNAL OF PSYCHIATRY 2012; 34 Suppl 2:S149-55. [DOI: 10.1016/j.rbp.2012.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 02/29/2012] [Indexed: 12/14/2022]
|
24
|
Minutolo G, Petralia A, Dipasquale S, Aguglia E. Nitric oxide in patients with schizophrenia: the relationship with the severity of illness and the antipsychotic treatment. Expert Opin Pharmacother 2012; 13:1989-97. [DOI: 10.1517/14656566.2012.713346] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Zhang XY, Zhou DF, Shen YC, Zhang PY, Zhang WF, Liang J, Chen DC, Xiu MH, Kosten TA, Kosten TR. Effects of risperidone and haloperidol on superoxide dismutase and nitric oxide in schizophrenia. Neuropharmacology 2012; 62:1928-34. [DOI: 10.1016/j.neuropharm.2011.12.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 12/05/2011] [Accepted: 12/10/2011] [Indexed: 01/01/2023]
|
26
|
Akiibinu MO, Ogundahunsi OA, Ogunyemi EO. Inter-relationship of plasma markers of oxidative stress and thyroid hormones in schizophrenics. BMC Res Notes 2012; 5:169. [PMID: 22463715 PMCID: PMC3337813 DOI: 10.1186/1756-0500-5-169] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 03/31/2012] [Indexed: 11/30/2022] Open
Abstract
Background The relationship of oxidative stress to thyroid hormones has not been studied in the schizophrenics. The present study determined the status and interrelationship of plasma markers of oxidative stress, nitric oxide and thyroid hormones in thirty (17 males and 13 females) newly diagnosed patients with acute schizophrenia before initiation of chemotherapy. Twenty five (13 males and 12 females) mentally healthy individuals served as controls. Patients and controls with history of hard drugs (including alcohol and cigarette), pre-diagnosis medications (e.g. antiparkinsonian/antipsychotic drugs), chronic infections, liver disease and diabetes mellitus were excluded from the study. Plasma levels of total antioxidant potential (TAP), total plasma peroxides (TPP), nitric oxide (NO), malondialdehyde (MDA), thyroxine (T4), tri-iodothyronine (T3) and thyroid stimulating hormone (TSH) were determined in all participants using spectrophotometric and enzyme linked immunosorbent assay (ELISA) methods respectively. Oxidative stress index (OSI) was calculated as the percent ratio of total plasma peroxides and total antioxidant potential. Findings Significantly higher plasma levels of MDA (p < 0.01), TPP (p < 0.01), OSI (p < 0.01), T3 (p < 0.01) and T4 (p < 0.05) were observed in schizophrenics when compared with the controls. The mean levels of TAP, NO and TSH were significantly lower in schizophrenics (p < 0.01) when compared with the controls. The result shows that T3 values correlate significantly with MDA (p < 0.05) and TPP (p < 0.01) in schizophrenics. Conclusions Higher level of TPP may enhance thyroid hormogenesis in schizophrenics. Adjuvant antioxidant therapy may be a novel approach in the treatment of schizophrenic patients.
Collapse
Affiliation(s)
- Moses O Akiibinu
- Department of Chemical Pathology and Immunology, College of Health Sciences, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria.
| | | | | |
Collapse
|
27
|
Yao JK, Keshavan MS. Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxid Redox Signal 2011; 15:2011-35. [PMID: 21126177 PMCID: PMC3159108 DOI: 10.1089/ars.2010.3603] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/26/2010] [Accepted: 12/02/2010] [Indexed: 12/19/2022]
Abstract
Schizophrenia (SZ) is a brain disorder that has been intensively studied for over a century; yet, its etiology and multifactorial pathophysiology remain a puzzle. However, significant advances have been made in identifying numerous abnormalities in key biochemical systems. One among these is the antioxidant defense system (AODS) and redox signaling. This review summarizes the findings to date in human studies. The evidence can be broadly clustered into three major themes: perturbations in AODS, relationships between AODS alterations and other systems (i.e., membrane structure, immune function, and neurotransmission), and clinical implications. These domains of AODS have been examined in samples from both the central nervous system and peripheral tissues. Findings in patients with SZ include decreased nonenzymatic antioxidants, increased lipid peroxides and nitric oxides, and homeostatic imbalance of purine catabolism. Reductions of plasma antioxidant capacity are seen in patients with chronic illness as well as early in the course of SZ. Notably, these data indicate that many AODS alterations are independent of treatment effects. Moreover, there is burgeoning evidence indicating a link among oxidative stress, membrane defects, immune dysfunction, and multineurotransmitter pathologies in SZ. Finally, the body of evidence reviewed herein provides a theoretical rationale for the development of novel treatment approaches.
Collapse
Affiliation(s)
- Jeffrey K Yao
- Medical Research Service, VA Pittsburgh Healthcare System,7180 Highland Drive, Pittsburgh, PA 15206, USA.
| | | |
Collapse
|
28
|
Kartalci S, Karabulut AB, Ozcan AC, Porgali E, Unal S. Acute and chronic effects of electroconvulsive treatment on oxidative parameters in schizophrenia patients. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1689-94. [PMID: 21620920 DOI: 10.1016/j.pnpbp.2011.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/03/2011] [Accepted: 05/10/2011] [Indexed: 02/04/2023]
Abstract
Electroconvulsive therapy (ECT) is an effective treatment alternative for schizophrenia. Previous studies have already indicated the possible effects of oxidative stress in this disorder. However, there have been no previous studies evaluating the effects of ECT on the oxidative stress in these patients. We therefore aimed to investigate the acute and chronic effects of ECT on serum levels of oxidant and antioxidant molecules in schizophrenia patients (n=28). The serum MDA and CAT levels of the patients with schizophrenia were higher than that of the controls before ECT (n=20) but there was no significant difference in the serum NO and GSH levels of the patient groups compared to the controls. We found that the NO levels of the patients were higher than the controls in the group experiencing their first episode but not in the chronic group. There was a significant clinical improvement in the patients in terms of BPRS, SANS and SAPS reduction after the 9th ECT, but not the 1st ECT. Serum MDA levels were significantly reduced compared to the baseline after the 9th ECT session although there was no significant difference after the 1st session. Separate evaluation of the patient groups revealed that the significant MDA decrease following ECT was in the patients experiencing their first episode and not in the chronic group. No significant difference was noted in the serum levels of other oxidant and antioxidant molecules after either the 1st or 9th ECT session. These results suggest that ECT does not produce any negative effect on oxidative stress in patients with schizophrenia.
Collapse
Affiliation(s)
- Sukru Kartalci
- Department of Psychiatry, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey.
| | | | | | | | | |
Collapse
|
29
|
Bitanihirwe BKY, Woo TUW. Oxidative stress in schizophrenia: an integrated approach. Neurosci Biobehav Rev 2010; 35:878-93. [PMID: 20974172 DOI: 10.1016/j.neubiorev.2010.10.008] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 09/18/2010] [Accepted: 10/17/2010] [Indexed: 01/17/2023]
Abstract
Oxidative stress has been suggested to contribute to the pathophysiology of schizophrenia. In particular, oxidative damage to lipids, proteins, and DNA as observed in schizophrenia is known to impair cell viability and function, which may subsequently account for the deteriorating course of the illness. Currently available evidence points towards an alteration in the activities of enzymatic and nonenzymatic antioxidant systems in schizophrenia. In fact, experimental models have demonstrated that oxidative stress induces behavioral and molecular anomalies strikingly similar to those observed in schizophrenia. These findings suggest that oxidative stress is intimately linked to a variety of pathophysiological processes, such as inflammation, oligodendrocyte abnormalities, mitochondrial dysfunction, hypoactive N-methyl-d-aspartate receptors and the impairment of fast-spiking gamma-aminobutyric acid interneurons. Such self-sustaining mechanisms may progressively worsen producing the functional and structural consequences associated with schizophrenia. Recent clinical studies have shown antioxidant treatment to be effective in ameliorating schizophrenic symptoms. Hence, identifying viable therapeutic strategies to tackle oxidative stress and the resulting physiological disturbances provide an exciting opportunity for the treatment and ultimately prevention of schizophrenia.
Collapse
Affiliation(s)
- Byron K Y Bitanihirwe
- Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology, Zurich, Schorenstrasse 16, Schwerzenbach CH 8603, Switzerland.
| | | |
Collapse
|
30
|
da Silva FCC, do Carmo de Oliveira Cito M, da Silva MIG, Moura BA, de Aquino Neto MR, Feitosa ML, de Castro Chaves R, Macedo DS, de Vasconcelos SMM, de França Fonteles MM, de Sousa FCF. Behavioral alterations and pro-oxidant effect of a single ketamine administration to mice. Brain Res Bull 2010; 83:9-15. [PMID: 20600677 DOI: 10.1016/j.brainresbull.2010.05.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 05/13/2010] [Accepted: 05/19/2010] [Indexed: 12/22/2022]
Abstract
A growing body of evidence has pointed to the ionotropic glutamate N-methyl-d-aspartate receptor (NMDA) as an important player in the etiology of psychopathologies, including anxiety and major depression. Clinical findings suggest that ketamine may be used for the treatment of major depression. There is evidence that reactive oxygen species also play an important role in the pathogenesis of many diseases, particularly those which are neurological and psychiatric in nature. This study examined the behavioral and oxidative stress alterations after a single administration of ketamine (5, 10 and 20mg/kg i.p.) in mice. Ketamine presented a significant anxiogenic effect in the elevated plus-maze model of anxiety, also increasing locomotor activity. In the forced swimming and tail suspension tests, a significant decrease in immobility time after ketamine administration was observed. In addition to the behavioral changes induced by ketamine, this drug also increased lipid peroxidation, nitrite content and catalase activity, while decreased GSH levels in mice prefrontal cortex. In conclusion, our results confirm the antidepressant effects of ketamine, also showing a pro-oxidant effect of this drug.
Collapse
Affiliation(s)
- Francisca Charliane Carlos da Silva
- Laboratory of Neuropharmacology, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bulut M, Savas HA, Altindag A, Virit O, Dalkilic A. Beneficial effects of N-acetylcysteine in treatment resistant schizophrenia. World J Biol Psychiatry 2010; 10:626-8. [PMID: 19735056 DOI: 10.1080/15622970903144004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Poor response to antipsychotics is still an important problem in the treatment of many schizophrenia patients. N-acetylcysteine (NAC) is a compound that exerts anti-oxidant and scavenging actions against reactive oxygen species. This paper reports a case of poorly responsive schizophrenia patient who improved considerably with add-on NAC 600 mg/day. The NAC might work through activating cysteine-glutamate antiporters or reducing in nitric oxide (NO) metabolites, free radicals and cytokines or through both of these mechanisms.
Collapse
Affiliation(s)
- Mahmut Bulut
- Department of Psychiatry, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
| | | | | | | | | |
Collapse
|
32
|
Yumru M, Savas HA, Kalenderoglu A, Bulut M, Celik H, Erel O. Oxidative imbalance in bipolar disorder subtypes: a comparative study. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1070-4. [PMID: 19527764 DOI: 10.1016/j.pnpbp.2009.06.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 06/06/2009] [Accepted: 06/06/2009] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The oxidants are related with the membrane-associated pathologies in the central nervous system and may have an important role in neuropsychiatric disorders. Several studies were performed on the effects of free radicals in bipolar disorder. However, there are no studies investigating the effects of free radicals both in the subtypes of BD (Bipolar disorders I and II) and in antidepressant induced mania (AIM). In this study, we aimed to investigate the status of oxidative metabolism in BD and its subtypes. METHODS 94 bipolar patients (BD I-II and AIM) diagnosed according to DSM IV and as control group 41 healthy subjects were included to the study. The total antioxidant status (TAS), total oxidant status (TOS) and oxidative stress index (OSI) were examined in the properly obtained plasma samples of subjects and healthy controls included in the study. RESULTS The patients' TAS, TOS and OSI were significantly higher than the controls. TAS is negatively correlated with the number of previous total episodes in BD I. The BD I group appeared to have higher TOS compared to BD II group. CONCLUSIONS Oxidative balance is impaired in bipolar disorder. Antioxidant levels may be increased compensatorily in response to increased oxidant levels. Another important result of our study was that in the comparison of the three disease subtypes BD I group was found to have higher TOS compared to the BD II group. This finding is compatible with the literature on BD I and may be associated with the more severe course of BD I.
Collapse
Affiliation(s)
- Mehmet Yumru
- Psychiatry Department, Gaziantep University, Medical Faculty, Gaziantep, Turkey
| | | | | | | | | | | |
Collapse
|
33
|
Association of a functional polymorphism in the adrenomedullin gene (ADM) with response to paroxetine. THE PHARMACOGENOMICS JOURNAL 2009; 10:126-33. [PMID: 19636336 DOI: 10.1038/tpj.2009.33] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To identify genes that may be relevant to the molecular action of antidepressants, we investigated transcriptional changes induced by the selective serotonin reuptake inhibitor paroxetine in a serotonergic cell line. We examined gene expression changes after acute treatment with paroxetine and sought to validate microarray results by quantitative PCR (qPCR). Concordant transcriptional changes were confirmed for 14 genes by qPCR and five of these, including the adrenomedullin gene (Adm), either approached or reached statistical significance. Reporter gene assays showed that a SNP (rs11042725) in the upstream flanking region of ADM significantly altered expression. Association analysis demonstrated rs11042725 to be significantly associated with response to paroxetine (odds ratio=0.075, P<0.001) but not with response to either fluoxetine or citalopram. Our results suggest that ADM is involved with the therapeutic efficacy of paroxetine, which may have pharmacogenetic utility.
Collapse
|
34
|
Dietrich-Muszalska A, Olas B. Modifications of blood platelet proteins of patients with schizophrenia. Platelets 2009; 20:90-6. [PMID: 19235050 DOI: 10.1080/09537100802641499] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oxidative damage to lipids in plasma, blood platelets and neurons in patients with schizophrenia was described. The aim of our present study was to evaluate oxidative/nitrative modifications of blood platelets proteins by measurement the level of biomarkers of oxidative stress such as carbonyl groups, thiol groups and 3-nitrotyrosine in proteins in patients with schizophrenia and compare with a control group. Levels of carbonyl groups and 3-nitrotyrosine residues in platelet proteins were measured by ELISA and competition ELISA, respectively. The method with 5,5'-dithio-bis(2-nitro-benzoic acid) has been used to analyse thiol groups in platelet proteins. We demonstrated for the first time in platelet proteins from patients with schizophrenia a statistically significant increase of the level of biomarkers of oxidative/nitrative stress such as carbonyl groups or 3-nitrotyrosine; in schizophrenic patients the amount of thiol groups in platelet proteins was lower than in platelets from healthy subjects. Our results strongly indicate that in patients with schizophrenia reactive oxygen species and reactive nitrogen species induce not only peroxidation of lipids, but also may stimulate oxidative/nitrative modifications of platelet proteins. The consequence of these modifications may be the alteration of platelet protein structure and function.
Collapse
|
35
|
Beninger RJ, Forsyth JK, Van Adel M, Reynolds JN, Boegman RJ, Jhamandas K. Subchronic MK-801 behavioural deficits in rats: Partial reversal by the novel nitrate GT 1061. Pharmacol Biochem Behav 2009; 91:495-502. [DOI: 10.1016/j.pbb.2008.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 08/29/2008] [Accepted: 09/03/2008] [Indexed: 01/03/2023]
|
36
|
Abstract
Oxidative stress has been implicated in the pathogenesis of diverse disease states, and may be a common pathogenic mechanism underlying many major psychiatric disorders, as the brain has comparatively greater vulnerability to oxidative damage. This review aims to examine the current evidence for the role of oxidative stress in psychiatric disorders, and its academic and clinical implications. A literature search was conducted using the Medline, Pubmed, PsycINFO, CINAHL PLUS, BIOSIS Preview, and Cochrane databases, with a time-frame extending to September 2007. The broadest data for oxidative stress mechanisms have been derived from studies conducted in schizophrenia, where evidence is available from different areas of oxidative research, including oxidative marker assays, psychopharmacology studies, and clinical trials of antioxidants. For bipolar disorder and depression, a solid foundation for oxidative stress hypotheses has been provided by biochemical, genetic, pharmacological, preclinical therapeutic studies and one clinical trial. Oxidative pathophysiology in anxiety disorders is strongly supported by animal models, and also by human biochemical data. Pilot studies have suggested efficacy of N-acetylcysteine in cocaine dependence, while early evidence is accumulating for oxidative mechanisms in autism and attention deficit hyperactivity disorder. In conclusion, multi-dimensional data support the role of oxidative stress in diverse psychiatric disorders. These data not only suggest that oxidative mechanisms may form unifying common pathogenic pathways in psychiatric disorders, but also introduce new targets for the development of therapeutic interventions.
Collapse
|
37
|
Kakiuchi C, Ishiwata M, Nanko S, Ozaki N, Iwata N, Umekage T, Tochigi M, Kohda K, Sasaki T, Imamura A, Okazaki Y, Kato T. Up-regulation of ADM and SEPX1 in the lymphoblastoid cells of patients in monozygotic twins discordant for schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:557-64. [PMID: 18081029 DOI: 10.1002/ajmg.b.30643] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The contribution of genetic factors to schizophrenia is well established and recent studies have indicated several strong candidate genes. However, the pathophysiology of schizophrenia has not been totally elucidated yet. To date, studies of monozygotic twins discordant for schizophrenia have provided insight into the pathophysiology of this illness; this type of study can exclude inter-individual variability and confounding factors such as effects of drugs. In this study we used DNA microarray analysis to examine the mRNA expression patterns in the lymphoblastoid (LB) cells derived from two pairs of monozygotic twins discordant for schizophrenia. From five independent replicates for each pair of twins, we selected five genes, which included adrenomedullin (ADM) and selenoprotein X1 (SEPX1), as significantly changed in both twins with schizophrenia. Interestingly, ADM was previously reported to be up-regulated in both the LB cells and plasma of schizophrenic patients, and SEPX1 was included in the list of genes up-regulated in the peripheral blood cells of schizophrenia patients by microarray analysis. Then, we performed a genetic association study of schizophrenia in the Japanese population and examined the copy number variations, but observed no association. These findings suggest the possible role of ADM and SEPX1 as biomarkers of schizophrenia. The results also support the usefulness of gene expression analysis in LB cells of monozygotic twins discordant for an illness.
Collapse
Affiliation(s)
- Chihiro Kakiuchi
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Karaca S, Kulac M, Uz E, Barutcu I, Yilmaz HR. Is nitric oxide involved in the pathophysiology of essential hyperhidrosis? Int J Dermatol 2007; 46:1027-30. [PMID: 17910708 DOI: 10.1111/j.1365-4632.2007.03243.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Essential hyperhidrosis (EH) is a disorder of excessive, bilateral, and relatively symmetric sweating occurring in the axillae, palms, soles, or craniofacial region without obvious etiology. The expression of endothelial nitric oxide synthase (eNOS) in eccrine clear cells, reported by an immunohistochemical technique, has suggested that nitric oxide (NO) may play a role in the physiology of production and/or excretion of sweat in the human skin eccrine gland. AIM To determine plasma NO levels in patients with EH and healthy controls. METHODS We assessed the levels of plasma NO in patients with EH (n = 31) in comparison with those in age- and sex-matched healthy controls (n = 28). Total nitrite (nitrite + nitrate) was measured by a spectrophotometer at 545 nm after the conversion of nitrate to nitrite by copperized cadmium granules. RESULTS Plasma NO levels were found to be significantly increased in EH patients in comparison with the control group (P = 0.0001). CONCLUSIONS These findings indicate a possible role of increased plasma NO levels in the pathophysiology of EH.
Collapse
Affiliation(s)
- Semsettin Karaca
- Department of Dermatology, School of Medicine, Afyon Kocatepe University, Afyon, Turkey.
| | | | | | | | | |
Collapse
|
39
|
Gergerlioglu HS, Savas HA, Bulbul F, Selek S, Uz E, Yumru M. Changes in nitric oxide level and superoxide dismutase activity during antimanic treatment. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:697-702. [PMID: 17303295 DOI: 10.1016/j.pnpbp.2006.12.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Revised: 12/21/2006] [Accepted: 12/30/2006] [Indexed: 11/28/2022]
Abstract
Oxidant nitric oxide (NO) and antioxidant superoxide dismutase (SOD) have been implicated to play a role in the pathogenesis of bipolar disorders. This is the first prospective study aimed to evaluate NO levels and SOD activity in bipolar disorder (type I manic episode) (BD-ME). 29 inpatient subjects with BD-ME and 30 healthy controls were included. Serum NO levels and SOD activity have been studied at 1st (NO [1st] and SOD [1st] respectively) and 30th days (NO [30th] and SOD [30th] respectively) after treatment. The clinical outcome was measured by Bech-Rafaelson Mania Scale (BRMS). The mean NO [1st] (p<.001) and NO [30th] levels (p<.001) were higher than controls, but SOD [1st] (p<.001) and SOD [30th] (p<.001) activities in BD-ME were lower than controls. SOD(1) activity was higher than SOD [30th] (p<.001), while there was no significance in comparison between NO [1st] and NO [30th] (p>.05). SOD [30th] activity is negatively correlated with the number of previous manic attacks and NO [1st] was negatively correlated with sleep item score of BRMS at first day. Also there was a significant correlation between NO [1st] levels and with the existence of a delusion. NO and SOD appear to play a role in the pathophysiological events occurring in BD, especially in BD-ME. This study for the first time showed the possible role of NO on sleep and the generation of delusions in the pathophysiology of BD. In the light of literature, induced glutamate pathway might be responsible for delusions in BD. The results of this research need further investigation to understand the oxidative vs antioxidative process in BD.
Collapse
Affiliation(s)
- H Serdar Gergerlioglu
- Department of Physiology, Meram Faculty of Medicine, Selcuk University 42080, Konya, Turkey.
| | | | | | | | | | | |
Collapse
|
40
|
Herken H, Gurel A, Selek S, Armutcu F, Ozen ME, Bulut M, Kap O, Yumru M, Savas HA, Akyol O. Adenosine Deaminase, Nitric Oxide, Superoxide Dismutase, and Xanthine Oxidase in Patients with Major Depression: Impact of Antidepressant Treatment. Arch Med Res 2007; 38:247-52. [PMID: 17227736 DOI: 10.1016/j.arcmed.2006.10.005] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 10/04/2006] [Indexed: 11/26/2022]
Abstract
BACKGROUND There has been much evidence in recent years that free oxygen radicals and nitric oxide (NO) may play an important role in the pathophysiology of neuropsychiatric disorders. In this study, we aimed to investigate whether NO, xanthine oxidase (XO), superoxide dismutase (SOD), and adenosine deaminase (ADA) levels are associated with major depression (MD) and to evaluate the impact of antidepressant treatments on NO, SOD, ADA and XO levels in MD. METHODS Thirty-six patients who were diagnosed as MD according to DSM-IV criteria and 20 healthy controls were included. The serum levels of NO, XO, SOD, and ADA were measured by spectrophotometric methods both in patients and controls. Patients were treated with antidepressant drugs for 8 weeks. All patients were assessed by Hamilton Depression Rating Scale (HDRS) both before and after antidepressant treatment. RESULTS ADA and XO levels of the patients were significantly higher than the controls. SOD level of the patients was significantly lower than the controls. Although NO levels of the patients were higher than the controls, the difference was not statistically significant. There was no correlation between HDRS and the parameters studied (SOD, ADA, XO, and NO) of the patients. After 8 weeks of antidepressant treatment, ADA and SOD activities were increased, whereas NO and, XO levels decreased significantly. CONCLUSIONS ADA, XO, and SOD activity may have a pathophysiological role in MD and may predict prognosis of MD. Activity of these enzymes may be used to monitor effects of the antidepressant treatment.
Collapse
Affiliation(s)
- Hasan Herken
- Department of Psychiatry, School of Medicine, Gaziantep University, Gaziantep, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Li HC, Chen QZ, Ma Y, Zhou JF. Imbalanced free radicals and antioxidant defense systems in schizophrenia: a comparative study. J Zhejiang Univ Sci B 2007; 7:981-6. [PMID: 17111467 PMCID: PMC1661668 DOI: 10.1631/jzus.2006.b0981] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To examine changes of blood oxidative-antiovidative level in schizophrenic patients and its relationship with clinical symptoms. METHODS Forty-six Chinese patients met DSM-IV (Diagnostic and Statistical Manual of Mental Disorders-IV) criteria for schizophrenia and fifty age- and sex-matched healthy controls were enrolled in the present study. Baseline psychiatric symptom severity was assessed with brief psychiatric rating scale, positive and negative syndrome scale on the blood draw day. Fresh blood samples were collected to measure levels of nitric oxide and lipid peroxide in plasma as well as activities of superoxide dismutase, catalase and glutathione peroxidase in red blood cells by spectrophotometric assays simultaneously. RESULTS Comparison of the biochemical parameters indicated that the level of nitric oxide and lipid peroxide increased in patient group, which represented a positive correlation with positive scale scores; while the activities of three critical enzymes decreased and showed a negative linear correlation. CONCLUSION This study showed that there are dysregulation of free radical metabolism and poor activities of the antioxidant defense systems in schizophrenic patients. Excess free radicals formation may play a critical role in the etiology of schizophrenia. Using antioxidants might be an effective therapeutic approach to partially alleviate or prevent the symptoms of schizophrenia.
Collapse
|
42
|
Yilmaz N, Herken H, Cicek HK, Celik A, Yürekli M, Akyol O. Increased levels of nitric oxide, cortisol and adrenomedullin in patients with chronic schizophrenia. Med Princ Pract 2007; 16:137-41. [PMID: 17303950 DOI: 10.1159/000098367] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 06/17/2006] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To investigate the levels of serum cortisol, dehydroepiandrosterone sulfate (DHEA-S), nitric oxide (NO) and adrenomedullin (AM) in schizophrenic patients. SUBJECTS AND METHODS Sixty-six male patients with chronic schizophrenia and 28 normal male subjects participated in this study. The duration of disease was 145 +/- 120 (mean +/- SD) months. Serum levels of cortisol and DHEA-S were measured by electrochemiluminescence; plasma nitrite levels as an index of NO were measured with the Griess reaction, while plasma AM concentration was measured by using high-performance liquid chromatography. RESULTS Patients (12.48 +/- 3.2 microg/dl), as compared to controls (10.31 +/- 3.1 microg/dl), had higher levels of baseline cortisol (p < 0.05). DHEA-S levels were lower in patients though this did not reach statistical significance (302 +/- 156 microg/dl compared to control, 322 +/- 96 microg/dl, p > 0.05). The mean levels of plasma AM and NO in the schizophrenic group (44.33 +/- 5.07 pmol/l and 36.27 +/- 17.6 micromol/l) were significantly higher than the levels in the control group (14.56 +/- 4.03 pmol/l and 32.54 +/- 7.14 micromol/l; p < 0.001, p < 0.03, respectively). There was a positive association between duration of disease and cortisol/DHEA-S ratio and cortisol level. CONCLUSION The data show that schizophrenia is associated with abnormal levels of cortisol, DHEA-S, NO and AM.
Collapse
Affiliation(s)
- Necat Yilmaz
- Department of Biochemistry and Clinical Biochemistry, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey.
| | | | | | | | | | | |
Collapse
|
43
|
Pérez-Neri I, Ramírez-Bermúdez J, Montes S, Ríos C. Possible Mechanisms of Neurodegeneration in Schizophrenia. Neurochem Res 2006; 31:1279-94. [PMID: 17006758 DOI: 10.1007/s11064-006-9162-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Accepted: 08/31/2006] [Indexed: 12/21/2022]
Abstract
Brain morphological alterations in schizophrenic patients have led to the neurodevelopmental hypothesis of schizophrenia. On the other hand, a progressive neurodegenerative process has also been suggested and some follow-up studies have shown progressive morphological changes in schizophrenic patients. Several neurotransmitter systems have been suggested to be involved in this disorder and some of them could lead to neuronal death under certain conditions. This review discusses some of the biochemical pathways that could lead to neurodegeneration in schizophrenia showing that neuronal death may have a role in the etiology or natural course of this disorder.
Collapse
Affiliation(s)
- Iván Pérez-Neri
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877 Col. La Fama. Tlalpan, 14269, Mexico City, Mexico
| | | | | | | |
Collapse
|
44
|
Ustundag B, Atmaca M, Kirtas O, Selek S, Metin K, Tezcan E. Total antioxidant response in patients with schizophrenia. Psychiatry Clin Neurosci 2006; 60:458-64. [PMID: 16884448 DOI: 10.1111/j.1440-1819.2006.01532.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is a large amount of convincing data demonstrating that reactive oxygen species (ROS) are involved in initiation and development of many different forms of neuropsychiatric disorders. The levels of oxidants and antioxidants in schizophrenia have been evaluated. However, measurements of total antioxidant response (TAR) were not evaluated up to now. Therefore, the objectives of this study are to investigate plasma TAR levels in schizophrenia subtypes. A total of 76 patients with schizophrenia and 25 healthy volunteers were included in the study. Positive and Negative Syndrome Scale (SANS and SAPS, respectively) were applied to patients. TAR values were determined in the plasma of normal healthy controls and patients with schizophrenia. Plasma TAR levels of each schizophrenia subtype were significantly lower than healthy controls (P < 0.01 for disorganized, residual and undifferentiated subtypes and P < 0.01 for paranoid subtype). When intragroup comparisons were performed, paranoid subtype had higher plasma TAR levels compared to other subtypes (P < 0.01). Accordingly, as a whole group, patients with schizophrenia had lower plasma TAR levels compared to controls. Plasma TAR levels were significantly and negatively correlated with SANS scores, and duration of illness was evaluated but not related to other parameters. Consequently, the present study further emphasizes the growing consideration that free radical damage may have an important etiopathogenetic role on the development of schizophrenia and suggests that decreased plasma total antioxidant levels may be related to the progression of illness.
Collapse
Affiliation(s)
- Bilal Ustundag
- Department of Clinical Biochemistry, School of Medicine, Firat University, Elazig, Turkey.
| | | | | | | | | | | |
Collapse
|
45
|
Savas HA, Gergerlioglu HS, Armutcu F, Herken H, Yilmaz HR, Kocoglu E, Selek S, Tutkun H, Zoroglu SS, Akyol O. Elevated serum nitric oxide and superoxide dismutase in euthymic bipolar patients: impact of past episodes. World J Biol Psychiatry 2006; 7:51-5. [PMID: 16428220 DOI: 10.1080/15622970510029993] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Nitric oxide (NO) has been implicated to play a role in the pathogenesis of many neuropsychiatric disorders. NO level was found high in acute manic inpatients. In this study, we aimed to assess NO level and activity of the antioxidant enzyme, superoxide dismutase (SOD), in euthymic bipolar patients. Twenty-seven patients with bipolar disorder (BD) in euthymic phase, and 20 healthy volunteers were included in this study. A semi-structured form was used to note social, demographic and clinical parameters of the patients. NO level and SOD activity were studied in the serum samples obtained from the patients and controls. The mean serum NO level in BD was significantly higher than in controls. Mean serum SOD activity was found to be elevated in patients with BD compared to controls. Total number of the manic episodes correlated with NO levels, but not with SOD activity. In conclusion, the number of manic episodes is positively associated with NO levels. NO and SOD appear to have a pathophysiological role in BD, especially in Type I euthymic phase, and may be considered an available trait marker for BD.
Collapse
Affiliation(s)
- Haluk Asuman Savas
- Department of Psychiatry, Medical Faculty of Gaziantep University, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Herken H, Akyol O, Yilmaz HR, Tutkun H, Savas HA, Ozen ME, Kalenderoglu A, Gulec M. Nitric oxide, adenosine deaminase, xanthine oxidase and superoxide dismutase in patients with panic disorder: alterations by antidepressant treatment. Hum Psychopharmacol 2006; 21:53-9. [PMID: 16329160 DOI: 10.1002/hup.742] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE In the present study, we aimed to investigate whether nitric oxide (NO) levels and activities of xanthine oxidase (XO), superoxide dismutase (SOD), and adenosine deaminase (ADA) are associated with Panic disorder (PD) as well as impact of psychopharmacological treatments on NO, SOD, ADA, and XO levels in PD. METHOD In this study, 32 patients and 20 healthy controls were included. The serum levels of NO, XO, SOD, and ADA were measured in the patients and controls. The patients were treated with antidepressant. RESULTS ADA and XO levels of the patients were significantly higher than the controls. SOD levels of the patients were significantly lower than the controls but the difference was not statistically significant. Although NO levels of the patients were higher than the controls, the difference was not statistically significant. There was no correlation between PAS and the parameters studied (SOD, ADA, XO, and NO) of the patients. After 8 weeks of antidepressant treatment, ADA and SOD activities were increased whereas NO and XO levels decreased significantly. CONCLUSION ADA, XO activity may have a pathophysiological role in PD, and prognosis of PD. Activity of these enzymes may be used to monitor effects of the antidepressant treatment.
Collapse
Affiliation(s)
- Hasan Herken
- Department of Psychiatry, Medical Faculty of Gaziantep University, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Bernstein HG, Bogerts B, Keilhoff G. The many faces of nitric oxide in schizophrenia. A review. Schizophr Res 2005; 78:69-86. [PMID: 16005189 DOI: 10.1016/j.schres.2005.05.019] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 05/24/2005] [Accepted: 05/24/2005] [Indexed: 01/16/2023]
Abstract
Intense research has been conducted in an effort to identify specific biological markers of schizophrenia. The gas nitric oxide (NO) is one of the most important signaling molecules involved in a plethora of cellular events that take place in the cardiovascular, immune and nervous systems of animals. This survey aims to demonstrate that NO and its metabolites play important roles in schizophrenia and have a significant influence on our understanding of the development, progression and treatment of the disease. Special emphasis is given to the impact of NO metabolism on processes known to be disturbed in schizophrenia (i.e., cell migration, formation of synapses, NMDA receptor mediated neurotransmission, membrane pathology and cognitive abilities). However, when comparing data on the NO metabolism in the brain tissue and body fluids of schizophrenics with those obtained from patients with other neurological and psychiatric diseases, it becomes clear that alterations of NO metabolism are not unique to, or indicative of, schizophrenia. Thus, NO and its metabolites are not suitable diagnostic tools to distinguish schizophrenia from psychically healthy control cases or from other brain disorders.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, University of Magdeburg, Leipziger Str.44, D-39120 Magdeburg, Germany.
| | | | | |
Collapse
|
48
|
Taneli F, Pirildar S, Akdeniz F, Uyanik BS, Ari Z. Serum nitric oxide metabolite levels and the effect of antipsychotic therapy in schizophrenia. Arch Med Res 2004; 35:401-5. [PMID: 15610909 DOI: 10.1016/j.arcmed.2004.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Accepted: 06/11/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND Recently it was proposed that nitric oxide metabolites (NO) may have a role in the pathophysiology of schizophrenia and major depressive disorders. The present study was performed to assess changes in serum nitric oxide metabolite levels in schizophrenic patients compared with healthy controls. Our secondary aim was to further evaluate the impact of psychopharmacologic treatment on circulating NO levels not assessed previously. METHODS Serum NO levels of patients with schizophrenia (n=20) before and after 6 weeks of treatment were compared with those of healthy controls (n=20). Severity of schizophrenia and response to treatment were assessed with positive and negative symptoms of schizophrenia. NO levels were estimated by Griess method in serum samples. RESULTS In patients with schizophrenia, pre-treatment serum NO levels were higher than those of control subjects (39.15 +/- 18.24 vs. 25.40 +/- 5.83 micromol/L, p=0.036) and also of post-treatment values (34.41 +/- 16.35 vs. 25.40 +/- 5.83 micromol/L, p=0.049), respectively. However, no significant difference was found between serum NO levels in pre- and post-treatment values. CONCLUSIONS Our findings of increased serum NO levels in schizophrenic patients confirmed the role of NO in the pathophysiology of schizophrenia. However, we found that antipsychotic drugs do not reveal significant effects on serum levels of NO in schizophrenia in a 6-week treatment regimen. Further studies with longer therapy periods may suggest some new clues for novel treatment strategies employing antioxidants and NOS inhibitors in schizophrenia.
Collapse
Affiliation(s)
- Fatma Taneli
- Department of Biochemistry and Clinical Biochemistry, Celal Bayar University School of Medicine, Manisa, Turkey.
| | | | | | | | | |
Collapse
|
49
|
Huang CH, Chen ML, Tsai YL, Tsai MT, Chen CH. Elevated adrenomedullin mRNA in lymphoblastoid cells from schizophrenic patients. Neuroreport 2004; 15:1443-6. [PMID: 15194870 DOI: 10.1097/01.wnr.0000132202.69212.79] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Adrenomedullin (ADM) is a 52 amino acid peptide with multiple physiological functions and wide tissue distributions including brain. Recently, elevated plasma levels of ADM were found in patients with schizophrenia, bipolar affective disorder and autism, suggesting the involvement of ADM in the pathophysiology of mental diseases. Using real-time quantitative PCR, we compared the ADM mRNA levels in lymphoblastoid cell lines between schizophrenic patients and controls. Male but not female schizophrenia patients had 2- to 3-fold higher ADM mRNA levels than controls (p<0.01). Our data support that ADM may be associated with the pathophysiology of schizophrenia, although the cause of the association needs further study.
Collapse
Affiliation(s)
- Chia-Hsing Huang
- Department of Psychiatry, Tzu-Chi General Hospital and Institute of Human Genetics, Tzu-Chi University, Hualien City, 970 Taiwan
| | | | | | | | | |
Collapse
|