1
|
Kocot J, Kosa P, Ashida S, Pirjanian NA, Goldbach-Mansky R, Peterson K, Fossati V, Holland SM, Bielekova B. Clemastine fumarate accelerates accumulation of disability in progressive multiple sclerosis by enhancing pyroptosis. J Clin Invest 2025; 135:e183941. [PMID: 40371642 PMCID: PMC12077908 DOI: 10.1172/jci183941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 03/12/2025] [Indexed: 05/16/2025] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the CNS. Clemastine fumarate, the over-the-counter antihistamine and muscarinic receptor blocker, has remyelinating potential in MS. A clemastine arm was added to an ongoing platform clinical trial, targeting residual activity by precision, biomarker-guided combination therapies of multiple sclerosis (TRAP-MS) (ClinicalTrials.gov NCT03109288), to identify a cerebrospinal fluid (CSF) remyelination signature and to collect safety data on clemastine in patients progressing independently of relapse activity (PIRA). The clemastine arm was stopped per protocol-defined criteria when 3 of 9 patients triggered individual safety stopping criteria. Clemastine-treated patients had significantly higher treatment-induced disability progression slopes compared with the remaining TRAP-MS participants. Quantification of approximately 7,000 proteins in CSF samples collected before and after clemastine treatment showed significant increases in purinergic signaling and pyroptosis. Mechanistic studies showed that clemastine with sublytic doses of extracellular adenosine triphosphate (ATP) activates inflammasome and induces pyroptotic cell death in macrophages. Clemastine with ATP also caused pyroptosis of induced pluripotent stem cell-derived human oligodendrocytes. Antagonist of the purinergic channel P2RX7, which is strongly expressed in oligodendrocytes and myeloid cells, blocked these toxic effects of clemastine. Finally, reanalysis of published single-nucleus RNA-Seq (snRNA-Seq) studies revealed increased P2RX7 expression and pyroptosis transcriptional signature in microglia and oligodendrocytes in the MS brain, especially in chronic active lesions. The CSF proteomic pyroptosis score was increased in untreated MS patients, was higher in patients with progressive than relapsing-remitting disease, and correlated significantly with the rates of MS progression. Collectively, this identifies pyroptosis as a likely mechanism of CNS injury underlying PIRA even outside of clemastine toxicity.
Collapse
Affiliation(s)
- Joanna Kocot
- Neuroimmunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Peter Kosa
- Neuroimmunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Shinji Ashida
- Neuroimmunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Karin Peterson
- Neuroimmunology Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, New York, USA
| | - Steven M. Holland
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Bibiana Bielekova
- Neuroimmunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
2
|
López-Muguruza E, Peiró-Moreno C, Pérez-Cerdá F, Matute C, Ruiz A. Del Río Hortega's insights into oligodendrocytes: recent advances in subtype characterization and functional roles in axonal support and disease. Front Neuroanat 2025; 19:1557214. [PMID: 40145026 PMCID: PMC11936973 DOI: 10.3389/fnana.2025.1557214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Pío Del Río Hortega (1882-1945) was a giant of modern neuroscience and perhaps the most impactful member of Cajal's School. His contributions to clarifying the structure of the nervous system were key to understanding the brain beyond neurons. He uncovered microglia and oligodendrocytes, the latter until then named mesoglia. Most importantly, the characterization of oligodendroglia subtypes he made has stood the omics revolution that added molecular details relevant to comprehend their biological properties. Astounding as it may seem on today's eyes, he postulated a century ago that oligodendrocytes provide trophic support to axons, an idea that is now beyond doubt and under scrutiny as dysfunction at the axon-myelin unit is key to neurodegeneration. Here, we revised recent key advancements in oligodendrocyte biology that shed light on Hortega's ideas a century ago.
Collapse
Affiliation(s)
- Eneritz López-Muguruza
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIBERNED-Instituto de Salud Carlos III, Leioa, Spain
| | - Carla Peiró-Moreno
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIBERNED-Instituto de Salud Carlos III, Leioa, Spain
| | - Fernando Pérez-Cerdá
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- CIBERNED-Instituto de Salud Carlos III, Leioa, Spain
- Department of Neurosciences, Biobizkaia, Barakaldo, Spain
| | - Carlos Matute
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- CIBERNED-Instituto de Salud Carlos III, Leioa, Spain
- Department of Neurosciences, Biobizkaia, Barakaldo, Spain
| | - Asier Ruiz
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- CIBERNED-Instituto de Salud Carlos III, Leioa, Spain
- Department of Neurosciences, Biobizkaia, Barakaldo, Spain
| |
Collapse
|
3
|
Fernandes MGF, Pernin F, Antel JP, Kennedy TE. From BBB to PPP: Bioenergetic requirements and challenges for oligodendrocytes in health and disease. J Neurochem 2025; 169:e16219. [PMID: 39253904 PMCID: PMC11657931 DOI: 10.1111/jnc.16219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024]
Abstract
Mature myelinating oligodendrocytes, the cells that produce the myelin sheath that insulates axons in the central nervous system, have distinct energetic and metabolic requirements compared to neurons. Neurons require substantial energy to execute action potentials, while the energy needs of oligodendrocytes are directed toward building the lipid-rich components of myelin and supporting neuronal metabolism by transferring glycolytic products to axons as additional fuel. The utilization of energy metabolites in the brain parenchyma is tightly regulated to meet the needs of different cell types. Disruption of the supply of metabolites can lead to stress and oligodendrocyte injury, contributing to various neurological disorders, including some demyelinating diseases. Understanding the physiological properties, structures, and mechanisms involved in oligodendrocyte energy metabolism, as well as the relationship between oligodendrocytes and neighboring cells, is crucial to investigate the underlying pathophysiology caused by metabolic impairment in these disorders. In this review, we describe the particular physiological properties of oligodendrocyte energy metabolism and the response of oligodendrocytes to metabolic stress. We delineate the relationship between oligodendrocytes and other cells in the context of the neurovascular unit, and the regulation of metabolite supply according to energetic needs. We focus on the specific bioenergetic requirements of oligodendrocytes and address the disruption of metabolic energy in demyelinating diseases. We encourage further studies to increase understanding of the significance of metabolic stress on oligodendrocyte injury, to support the development of novel therapeutic approaches for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Milton Guilherme Forestieri Fernandes
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Florian Pernin
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Jack P. Antel
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Timothy E. Kennedy
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
4
|
Kasheke GDS, Hendy BAM, Dorighello GG, Uccelli NA, Gothié JDM, Novorolsky RJ, Oulton MJ, Asainayagam J, Makarov AI, Fraser KS, Vuligonda V, Sanders ME, Kennedy TE, Robertson GS. Selective retinoid X receptor agonism promotes functional recovery and myelin repair in experimental autoimmune encephalomyelitis. Acta Neuropathol Commun 2024; 12:197. [PMID: 39707547 DOI: 10.1186/s40478-024-01904-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024] Open
Abstract
Evidence that myelin repair is crucial for functional recovery in multiple sclerosis (MS) led to the identification of bexarotene (BXT). This clinically promising remyelinating agent activates multiple nuclear hormone receptor subtypes implicated in myelin repair. However, BXT produces unacceptable hyperlipidemia. In contrast, IRX4204 selectively activates the retinoid X receptor (RXR). Given compelling links between RXR activation and increased myelin repair, we employed IRX4204 to investigate the impact of RXR agonism alone on functional recovery in mice subjected to experimental autoimmune encephalomyelitis (EAE). Since gait deficits are common in MS, we used machine learning to obtain highly sensitive and reliable measurements of sagittal hindleg joint movements for mice walking on a treadmill. IRX4204 not only blocked the progressive loss of knee and ankle movements but also reversed joint movement impairments in EAE mice. Our biochemical, transcriptional and histological measurements in spinal cord suggest these gait improvements reflect increased axon survival and remyelination and reduced inflammation. Using microglia, astrocytes and oligodendrocyte progenitor cells, we present additional data suggesting that IRX4204 may act on multiple glial subtypes to orchestrate myelin repair. These results inform the discovery of restorative neural therapeutics for MS by demonstrating that selective RXR agonism is sufficient for effective myelin repair. Moreover, our findings support the therapeutic potential of IRX4204 to promote functional recovery in MS.
Collapse
Affiliation(s)
- Gracious D S Kasheke
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Brain Repair Centre, Life Sciences Research Institute, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Basmah A M Hendy
- Brain Repair Centre, Life Sciences Research Institute, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Gabriel G Dorighello
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Nonthué A Uccelli
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Jean-David M Gothié
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Robyn J Novorolsky
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Brain Repair Centre, Life Sciences Research Institute, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Madison J Oulton
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Brain Repair Centre, Life Sciences Research Institute, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Jude Asainayagam
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Brain Repair Centre, Life Sciences Research Institute, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Adam I Makarov
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Brain Repair Centre, Life Sciences Research Institute, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Kaitlyn S Fraser
- Brain Repair Centre, Life Sciences Research Institute, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | | | | | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - George S Robertson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
- Brain Repair Centre, Life Sciences Research Institute, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 2E2, Canada.
- , 1348 Summer St, Halifax, NS, B3H 0A8, Canada.
| |
Collapse
|
5
|
Emamnejad R, Pagnin M, Petratos S. The iron maiden: Oligodendroglial metabolic dysfunction in multiple sclerosis and mitochondrial signaling. Neurosci Biobehav Rev 2024; 164:105788. [PMID: 38950685 DOI: 10.1016/j.neubiorev.2024.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune disease, governed by oligodendrocyte (OL) dystrophy and central nervous system (CNS) demyelination manifesting variable neurological impairments. Mitochondrial mechanisms may drive myelin biogenesis maintaining the axo-glial unit according to dynamic requisite demands imposed by the axons they ensheath. The promotion of OL maturation and myelination by actively transporting thyroid hormone (TH) into the CNS and thereby facilitating key transcriptional and metabolic pathways that regulate myelin biogenesis is fundamental to sustain the profound energy demands at each axo-glial interface. Deficits in regulatory functions exerted through TH for these physiological roles to be orchestrated by mature OLs, can occur in genetic and acquired myelin disorders, whereby mitochondrial efficiency and eventual dysfunction can lead to profound oligodendrocytopathy, demyelination and neurodegenerative sequelae. TH-dependent transcriptional and metabolic pathways can be dysregulated during acute and chronic MS lesion activity depriving OLs from critical acetyl-CoA biochemical mechanisms governing myelin lipid biosynthesis and at the same time altering the generation of iron metabolism that may drive ferroptotic mechanisms, leading to advancing neurodegeneration.
Collapse
Affiliation(s)
- Rahimeh Emamnejad
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| |
Collapse
|
6
|
Campagnoli LIM, Ahmad L, Marchesi N, Greco G, Boschi F, Masi F, Mallucci G, Bergamaschi R, Colombo E, Pascale A. Disclosing the Novel Protective Mechanisms of Ocrelizumab in Multiple Sclerosis: The Role of PKC Beta and Its Down-Stream Targets. Int J Mol Sci 2024; 25:8923. [PMID: 39201609 PMCID: PMC11354964 DOI: 10.3390/ijms25168923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Ocrelizumab (OCR) is a humanized anti-CD20 monoclonal antibody approved for both Relapsing and Primary Progressive forms of Multiple Sclerosis (MS) treatment. OCR is postulated to act via rapid B cell depletion; however, by analogy with other anti-CD20 agents, additional effects can be envisaged, such as on Protein Kinase C (PKC). Hence, this work aims to explore novel potential mechanisms of action of OCR in peripheral blood mononuclear cells from MS patients before and after 12 months of OCR treatment. We first assessed, up-stream, PKCβII and subsequently explored two down-stream pathways: hypoxia-inducible factor 1 alpha (HIF-1α)/vascular endothelial growth factor (VEGF), and human antigen R (HuR)/manganese-dependent superoxide dismutase (MnSOD) and heat shock proteins 70 (HSP70). At baseline, higher levels of PKCβII, HIF-1α, and VEGF were found in MS patients compared to healthy controls (HC); interestingly, the overexpression of this inflammatory cascade was counteracted by OCR treatment. Conversely, at baseline, the content of HuR, MnSOD, and HSP70 was significantly lower in MS patients compared to HC, while OCR administration induced the up-regulation of these neuroprotective pathways. These results enable us to disclose the dual positive action of OCR: anti-inflammatory and neuroprotective. Therefore, in addition to B cell depletion, the effect of OCR on these molecular cascades can contribute to counteracting disease progression.
Collapse
Affiliation(s)
| | - Lara Ahmad
- Multiple Sclerosis Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (L.A.); (G.G.); (F.M.); (R.B.); (E.C.)
| | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy; (L.I.M.C.); (N.M.); (F.B.)
| | - Giacomo Greco
- Multiple Sclerosis Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (L.A.); (G.G.); (F.M.); (R.B.); (E.C.)
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
| | - Federica Boschi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy; (L.I.M.C.); (N.M.); (F.B.)
| | - Francesco Masi
- Multiple Sclerosis Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (L.A.); (G.G.); (F.M.); (R.B.); (E.C.)
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giulia Mallucci
- Multiple Sclerosis Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (L.A.); (G.G.); (F.M.); (R.B.); (E.C.)
- Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland
| | - Roberto Bergamaschi
- Multiple Sclerosis Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (L.A.); (G.G.); (F.M.); (R.B.); (E.C.)
| | - Elena Colombo
- Multiple Sclerosis Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (L.A.); (G.G.); (F.M.); (R.B.); (E.C.)
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy; (L.I.M.C.); (N.M.); (F.B.)
| |
Collapse
|
7
|
Kocot J, Kosa P, Ashida S, Pirjanian N, Goldbach-Mansky R, Peterson K, Fossati V, Holland SM, Bielekova B. Clemastine fumarate accelerates accumulation of disability in progressive multiple sclerosis by enhancing pyroptosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.09.24305506. [PMID: 39802756 PMCID: PMC11722480 DOI: 10.1101/2024.04.09.24305506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system (CNS). Clemastine fumarate, the over-the-counter antihistamine and muscarinic receptor blocker, has remyelinating potential in MS. A clemastine arm was added to an ongoing platform clinical trial TRAP-MS (NCT03109288) to identify a cerebrospinal fluid (CSF) remyelination signature and to collect safety data on clemastine in patients progressing independently of relapse activity (PIRA). The clemastine arm was stopped per protocol-defined criteria when 3/9 patients triggered individual safety stopping criteria (χ2 p=0.00015 compared to remaining TRAP-MS treatments). Clemastine treated patients had significantly higher treatment-induced disability progression slopes compared to remaining TRAP-MS participants (p=0.0075). Quantification of ~7000 proteins in CSF samples collected before and after clemastine treatment showed significant increase in purinergic/ATP signaling and pyroptosis cell death. Mechanistic studies showed that clemastine with sub-lytic doses of extracellular ATP activates inflammasome and induces pyroptotic cell death in macrophages. Clemastine with ATP also caused pyroptosis of induced pluripotent stem cell-derived human oligodendrocytes. Antagonist of the purinergic channel P2RX7 that is strongly expressed in oligodendrocytes and myeloid cells, blocked these toxic effects of clemastine. Finally, re-analyses of published snRNAseq studies revealed increased P2RX7 expression and pyroptosis transcriptional signature in microglia and oligodendrocytes in MS brain, especially in chronic active lesions. CSF proteomic pyroptosis score was increased in untreated MS patients, was higher in patients with progressive than relapsing-remitting disease and correlated significantly with rates of MS progression. Thus, pyroptosis is likely first well-characterized mechanism of CNS injury underlying PIRA even outside of clemastine toxicity.
Collapse
Affiliation(s)
- Joanna Kocot
- Neuroimmunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Peter Kosa
- Neuroimmunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Shinji Ashida
- Neuroimmunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Nicolette Pirjanian
- The New York Stem Cell Foundation Research Institute; New York, NY 10019, USA
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Karin Peterson
- Neuroimmunology Section, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Hamilton, MT, USA
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute; New York, NY 10019, USA
| | - Steven M. Holland
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Bibiana Bielekova
- Neuroimmunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Linnerbauer M, Lößlein L, Vandrey O, Peter A, Han Y, Tsaktanis T, Wogram E, Needhamsen M, Kular L, Nagel L, Zissler J, Andert M, Meszaros L, Hanspach J, Zuber F, Naumann UJ, Diebold M, Wheeler MA, Beyer T, Nirschl L, Cirac A, Laun FB, Günther C, Winkler J, Bäuerle T, Jagodic M, Hemmer B, Prinz M, Quintana FJ, Rothhammer V. The astrocyte-produced growth factor HB-EGF limits autoimmune CNS pathology. Nat Immunol 2024; 25:432-447. [PMID: 38409259 PMCID: PMC10907300 DOI: 10.1038/s41590-024-01756-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/12/2024] [Indexed: 02/28/2024]
Abstract
Central nervous system (CNS)-resident cells such as microglia, oligodendrocytes and astrocytes are gaining increasing attention in respect to their contribution to CNS pathologies including multiple sclerosis (MS). Several studies have demonstrated the involvement of pro-inflammatory glial subsets in the pathogenesis and propagation of inflammatory events in MS and its animal models. However, it has only recently become clear that the underlying heterogeneity of astrocytes and microglia can not only drive inflammation, but also lead to its resolution through direct and indirect mechanisms. Failure of these tissue-protective mechanisms may potentiate disease and increase the risk of conversion to progressive stages of MS, for which currently available therapies are limited. Using proteomic analyses of cerebrospinal fluid specimens from patients with MS in combination with experimental studies, we here identify Heparin-binding EGF-like growth factor (HB-EGF) as a central mediator of tissue-protective and anti-inflammatory effects important for the recovery from acute inflammatory lesions in CNS autoimmunity. Hypoxic conditions drive the rapid upregulation of HB-EGF by astrocytes during early CNS inflammation, while pro-inflammatory conditions suppress trophic HB-EGF signaling through epigenetic modifications. Finally, we demonstrate both anti-inflammatory and tissue-protective effects of HB-EGF in a broad variety of cell types in vitro and use intranasal administration of HB-EGF in acute and post-acute stages of autoimmune neuroinflammation to attenuate disease in a preclinical mouse model of MS. Altogether, we identify astrocyte-derived HB-EGF and its epigenetic regulation as a modulator of autoimmune CNS inflammation and potential therapeutic target in MS.
Collapse
Affiliation(s)
- Mathias Linnerbauer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Lena Lößlein
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Oliver Vandrey
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Anne Peter
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Yanan Han
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Thanos Tsaktanis
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Emile Wogram
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Lara Kular
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Lisa Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Julia Zissler
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Marie Andert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Lisa Meszaros
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Jannis Hanspach
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Finnja Zuber
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Ulrike J Naumann
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Martin Diebold
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Tobias Beyer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Lucy Nirschl
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ana Cirac
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Frederik B Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Jürgen Winkler
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Bäuerle
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Maja Jagodic
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany.
| |
Collapse
|
9
|
Adingupu DD, Evans T, Soroush A, Hansen A, Jarvis S, Brown L, Dunn JF. Temporal Pattern of Cortical Hypoxia in Multiple Sclerosis and Its Significance on Neuropsychological and Clinical Measures of Disability. Ann Neurol 2023; 94:1067-1079. [PMID: 37605937 DOI: 10.1002/ana.26769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/21/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE Multiple sclerosis (MS) is a degenerative disease of the central nervous system (CNS) characterized by inflammation, demyelination, and axonal damage. It has been hypothesized that hypoxia plays a role in the pathogenesis of MS. This study was undertaken to investigate the reproducibility of non-invasively measured cortical microvascular hemoglobin oxygenation (St O2 ) using frequency domain near-infrared spectroscopy (fdNIRS), investigate its temporal pattern of hypoxia in people with MS (pwMS), and its relationship with neurocognitive function and mood. METHODS We investigated the reproducibility of fdNIRS measurements. We measured cortical hypoxia in pwMS, and the relationships between St O2 , neurocognitive function, fatigue, and measures of physical disability. Furthermore, we cataloged the temporal pattern of St O2 measured at 1-week intervals for 4 weeks, and at 8 weeks and ~1 year. RESULTS We show that fdNIRS parameters were highly reproducible in 7 healthy control participants measured over 6 days (p > 0.05). There was low variability between and within subjects. In line with our previous findings, we show that 33% of pwMS (n = 88) have cortical microvascular hypoxia. Over 8 weeks and at ~1 year, St O2 values for normoxic and hypoxic groups did not change significantly. There was no significant association between cognitive function and St O2 . This conclusion should be revisited as only a small proportion of the relapsing-remitting MS group (21%) was cognitively impaired. INTERPRETATION The fdNIRS parameters have high reproducibility and repeatability, and we have demonstrated that hypoxia in MS is a chronic condition, lasting at least a year. The results show a weak relationship between cognitive functioning and oxygenation, indicating future study is required. ANN NEUROL 2023;94:1067-1079.
Collapse
Affiliation(s)
- Damilola D Adingupu
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Taelor Evans
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Ateyeh Soroush
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Ayden Hansen
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Scott Jarvis
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Neurologic Centre, Calgary, Canada
| | - Lenora Brown
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Jeff F Dunn
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
10
|
Doskas T, Dardiotis E, Vavougios GD, Ntoskas KT, Sionidou P, Vadikolias K. Stroke risk in multiple sclerosis: a critical appraisal of the literature. Int J Neurosci 2023; 133:1132-1152. [PMID: 35369835 DOI: 10.1080/00207454.2022.2056459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Observational studies suggest that the occurrence of stroke on multiple sclerosis (MS) patients is higher compared to the general population. MS is a heterogeneous disease that involves an interplay of genetic, environmental and immune factors. The occurrence of stroke is subject to a wide range of both modifiable and non-modifiable, short- and long-term risk factors. Both MS and stroke share common risk factors. The immune mechanisms that underlie stroke are similar to neurodegenerative diseases and are attributed to neuroinflammation. The inflammation in autoimmune diseases may, therefore, predispose to an increased risk for stroke or potentiate the effect of conventional stroke risk factors. There are, however, additional determinants that contribute to a higher risk and incidence of stroke in MS. Due to the challenges that are associated with their differential diagnosis, the objective is to present an overview of the factors that may contribute to increased susceptibility or occurrence of stroke in MSpatients by performing a review of the available to date literature. As both MS and stroke can individually detrimentally affect the quality of life of afflicted patients, the identification of factors that contribute to an increased risk for stroke in MS is crucial for the prompt implementation of preventative therapeutic measures to limit the additive burden that stroke imposes.
Collapse
Affiliation(s)
- Triantafyllos Doskas
- Department of Neurology, Athens Naval Hospital, Athens, Greece
- Department of Neurology, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Larissa, Greece
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | | | | | | | | |
Collapse
|
11
|
Patitucci E, Lipp I, Stickland RC, Wise RG, Tomassini V. Changes in brain perfusion with training-related visuomotor improvement in MS. Front Mol Neurosci 2023; 16:1270393. [PMID: 38025268 PMCID: PMC10665528 DOI: 10.3389/fnmol.2023.1270393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. A better understanding of the mechanisms supporting brain plasticity in MS would help to develop targeted interventions to promote recovery. A total of 29 MS patients and 19 healthy volunteers underwent clinical assessment and multi-modal MRI acquisition [fMRI during serial reaction time task (SRT), DWI, T1w structural scans and ASL of resting perfusion] at baseline and after 4-weeks of SRT training. Reduction of functional hyperactivation was observed in MS patients following the training, shown by the stronger reduction of the BOLD response during task execution compared to healthy volunteers. The functional reorganization was accompanied by a positive correlation between improvements in task accuracy and the change in resting perfusion after 4 weeks' training in right angular and supramarginal gyri in MS patients. No longitudinal changes in WM and GM measures and no correlation between task performance improvements and brain structure were observed in MS patients. Our results highlight a potential role for CBF as an early marker of plasticity, in terms of functional (cortical reorganization) and behavioral (performance improvement) changes in MS patients that may help to guide future interventions that exploit preserved plasticity mechanisms.
Collapse
Affiliation(s)
- Eleonora Patitucci
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff, United Kingdom
| | - Ilona Lipp
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff, United Kingdom
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Rachael Cecilia Stickland
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff, United Kingdom
| | - Richard G. Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff, United Kingdom
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara “G. d’Annunzio,”Chieti, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University of Chieti-Pescara “G. d’Annunzio,”Chieti, Italy
| | - Valentina Tomassini
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff, United Kingdom
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara “G. d’Annunzio,”Chieti, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University of Chieti-Pescara “G. d’Annunzio,”Chieti, Italy
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
12
|
Anders JJ, Elwood BW, Kardon RH, Gramlich OW. Acriflavine, a HIF-1 inhibitor, preserves vision in an experimental autoimmune encephalomyelitis model of optic neuritis. Front Immunol 2023; 14:1271118. [PMID: 37942317 PMCID: PMC10628762 DOI: 10.3389/fimmu.2023.1271118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction Optic neuritis (ON) is often an early sign of multiple sclerosis (MS), and recent studies show a link between HIF-1 pathway activation and inflammation. This study aimed to determine if inhibition of the HIF-1 pathway using the HIF-1a antagonist acriflavine (ACF) can reduce clinical progression and rescue the ocular phenotype in an experimental autoimmune encephalomyelitis (EAE) ON model. Methods EAE-related ON was induced in 60 female C57BL/6J mice by immunization with MOG33-55, and 20 EAE mice received daily systemic injections of ACF at 5 mg/kg. Changes in the visual function and structure of ACF-treated EAE mice were compared to those of placebo-injected EAE mice and naïve control mice. Results ACF treatment improved motor-sensory impairment along with preserving visual acuity and optic nerve function. Analysis of retinal ganglion cell complex alsoshowed preserved thickness correlating with increased survival of retinal ganglion cells and their axons. Optic nerve cell infiltration and magnitude of demyelination were decreased in ACF-treated EAE mice. Subsequent in vitro studies revealed improvements not only attributed to the inhibition of HIF-1 butalso to previously unappreciated interaction with the eIF2a/ATF4 axis in the unfolded protein response pathway. Discussion This study suggests that ACF treatment is effective in an animal model of MS via its pleiotropic effects on the inhibition of HIF-1 and UPR signaling, and it may be a viable approach to promote rehabilitation in MS.
Collapse
Affiliation(s)
- Jeffrey J. Anders
- Department of Ophthalmology and Visual Science, The University of Iowa, Iowa City, IA, United States
- Center for the Prevention and Treatment of Visual Loss, Iowa City Veterans Affairs (VA) Health Care System, Iowa City, IA, United States
| | - Benjamin W. Elwood
- Department of Ophthalmology and Visual Science, The University of Iowa, Iowa City, IA, United States
- Center for the Prevention and Treatment of Visual Loss, Iowa City Veterans Affairs (VA) Health Care System, Iowa City, IA, United States
| | - Randy H. Kardon
- Department of Ophthalmology and Visual Science, The University of Iowa, Iowa City, IA, United States
- Center for the Prevention and Treatment of Visual Loss, Iowa City Veterans Affairs (VA) Health Care System, Iowa City, IA, United States
| | - Oliver W. Gramlich
- Department of Ophthalmology and Visual Science, The University of Iowa, Iowa City, IA, United States
- Center for the Prevention and Treatment of Visual Loss, Iowa City Veterans Affairs (VA) Health Care System, Iowa City, IA, United States
- Department of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
13
|
Fereidan‐Esfahani M, Decker PA, Weigand SD, Lopez Chiriboga AS, Flanagan EP, Tillema J, Lucchinetti CF, Eckel‐Passow JE, Tobin WO. Defining the natural history of tumefactive demyelination: A retrospective cohort of 257 patients. Ann Clin Transl Neurol 2023; 10:1544-1555. [PMID: 37443413 PMCID: PMC10502639 DOI: 10.1002/acn3.51844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
OBJECTIVE To describe demographic, clinical, and radiographic features of tumefactive demyelination (TD) and identify factors associated with severe attacks and poor outcomes. METHODS Retrospective review of TD cases seen at Mayo Clinic, 1990-2021. RESULTS Of 257 patients with TD, 183/257 (71%) fulfilled the 2017 multiple sclerosis (MS) McDonald criteria at the last follow-up, 12/257 (5%) had myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), 0 had aquaporin-4-IgG seropositive neuromyelitis optic spectrum disorders (AQP4+ NMOSD), and 62/257 (24%) were cryptogenic. Onset before age 18 was present in 18/257 (7%). Female to male ratio was 1.3:1. Cerebrospinal fluid oligoclonal (CSF) bands were present in 95/153 (62%). TD was the first demyelinating attack in 176/257 (69%). At presentation, 59/126 (47%) fulfilled Barkhof criteria for dissemination in space, 59/100 (59%) had apparent diffusion coefficient (ADC) restriction, and 57/126 (45%) had mass effect. Despite aggressive clinical presentation at onset, 181/257 (70%) of patients remained fully ambulatory (Expanded Disability Status Scale [EDSS] ≤4) after a 3.0-year median follow-up duration. Severe initial attack-related disability (EDSS ≥4) was more common in patients with motor symptoms (81/143 vs. 35/106, p < 0.0001), encephalopathy (20/143 vs. 2/106, p < 0.0001) and ADC restriction on initial MRI (42/63 vs. 15/33, p = 0.04). Poor long-term outcome (EDSS ≥4) was more common in patients with older onset age (41.9 ± 15 vs. 36.8 ± 15.6, p = 0.02) and motor symptoms at onset (49/76 vs. 66/171, p < 0.0001). INTERPRETATION Most TD patients should be considered part of the MS spectrum after excluding MOGAD and NMOSD. Motor symptoms and older age at presentation portend a poor outcome.
Collapse
Affiliation(s)
- Mahboubeh Fereidan‐Esfahani
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
- Center for Multiple Sclerosis and Autoimmune NeurologyMayo ClinicRochesterMinnesotaUSA
- Dell Medical SchoolUniversity of TexasAustinTexasUSA
| | - Paul A Decker
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | - Stephen D. Weigand
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | | | - Eoin P Flanagan
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
- Center for Multiple Sclerosis and Autoimmune NeurologyMayo ClinicRochesterMinnesotaUSA
- Department of Laboratory Medicine and PathologyMinneapolisMinnesotaUSA
| | - Jan‐Mendelt Tillema
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
- Center for Multiple Sclerosis and Autoimmune NeurologyMayo ClinicRochesterMinnesotaUSA
| | - Claudia F Lucchinetti
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
- Center for Multiple Sclerosis and Autoimmune NeurologyMayo ClinicRochesterMinnesotaUSA
| | | | - W. Oliver Tobin
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
- Center for Multiple Sclerosis and Autoimmune NeurologyMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
14
|
Magaki S, Chen Z, Severance A, Williams CK, Diaz R, Fang C, Khanlou N, Yong WH, Paganini-Hill A, Kalaria RN, Vinters HV, Fisher M. Neuropathology of microbleeds in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). J Neuropathol Exp Neurol 2023; 82:333-344. [PMID: 36715085 PMCID: PMC10025882 DOI: 10.1093/jnen/nlad004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cerebral microbleeds (CMBs) detected on magnetic resonance imaging are common in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). The neuropathologic correlates of CMBs are unclear. In this study, we characterized findings relevant to CMBs in autopsy brain tissue of 8 patients with genetically confirmed CADASIL and 10 controls within the age range of the CADASIL patients by assessing the distribution and extent of hemosiderin/iron deposits including perivascular hemosiderin leakage (PVH), capillary hemosiderin deposits, and parenchymal iron deposits (PID) in the frontal cortex and white matter, basal ganglia and cerebellum. We also characterized infarcts, vessel wall thickening, and severity of vascular smooth muscle cell degeneration. CADASIL subjects had a significant increase in hemosiderin/iron deposits compared with controls. This increase was principally seen with PID. Hemosiderin/iron deposits were seen in the majority of CADASIL subjects in all brain areas. PVH was most pronounced in the frontal white matter and basal ganglia around small to medium sized arterioles, with no predilection for the vicinity of vessels with severe vascular changes or infarcts. CADASIL subjects have increased brain hemosiderin/iron deposits but these do not occur in a periarteriolar distribution. Pathogenesis of these lesions remains uncertain.
Collapse
Affiliation(s)
- Shino Magaki
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Zesheng Chen
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Alyscia Severance
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Christopher K Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Ramiro Diaz
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Chuo Fang
- Department of Neurology, University of California-Irvine School of Medicine, Irvine, California, USA
| | - Negar Khanlou
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - William H Yong
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Annlia Paganini-Hill
- Department of Neurology, University of California-Irvine School of Medicine, Irvine, California, USA
| | - Rajesh N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Harry V Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
- Department of Neurology, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
- Brain Research Institute, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Mark Fisher
- Department of Neurology, University of California-Irvine School of Medicine, Irvine, California, USA
- Department of Pathology and Laboratory Medicine, University of California-Irvine School of Medicine, Irvine, California, USA
| |
Collapse
|
15
|
Molina-Gonzalez I, Miron VE, Antel JP. Chronic oligodendrocyte injury in central nervous system pathologies. Commun Biol 2022; 5:1274. [PMID: 36402839 PMCID: PMC9675815 DOI: 10.1038/s42003-022-04248-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
Abstract
Myelin, the membrane surrounding neuronal axons, is critical for central nervous system (CNS) function. Injury to myelin-forming oligodendrocytes (OL) in chronic neurological diseases (e.g. multiple sclerosis) ranges from sublethal to lethal, leading to OL dysfunction and myelin pathology, and consequent deleterious impacts on axonal health that drive clinical impairments. This is regulated by intrinsic factors such as heterogeneity and age, and extrinsic cellular and molecular interactions. Here, we discuss the responses of OLs to injury, and perspectives for therapeutic targeting. We put forward that targeting mature OL health in neurological disease is a promising therapeutic strategy to support CNS function.
Collapse
Affiliation(s)
- Irene Molina-Gonzalez
- grid.4305.20000 0004 1936 7988United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Medical Research Council Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland UK
| | - Veronique E. Miron
- grid.4305.20000 0004 1936 7988United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Medical Research Council Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland UK ,grid.415502.7Barlo Multiple Sclerosis Centre and Keenan Research Centre for Biomedical Science, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Immunology, University of Toronto, Toronto, Canada
| | - Jack P. Antel
- grid.14709.3b0000 0004 1936 8649Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC Canada
| |
Collapse
|
16
|
Nishimura Y, Masaki K, Matsuse D, Yamaguchi H, Tanaka T, Matsuo E, Hayashida S, Watanabe M, Matsushita T, Sadashima S, Sasagasako N, Yamasaki R, Isobe N, Iwaki T, Kira J. Early and extensive alterations of glial connexins, distal oligodendrogliopathy type demyelination, and nodal/paranodal pathology are characteristic of multiple system atrophy. Brain Pathol 2022; 33:e13131. [PMID: 36368713 PMCID: PMC10154368 DOI: 10.1111/bpa.13131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
The pathological hallmark of multiple system atrophy (MSA) is aberrant accumulation of phosphorylated α-synuclein in oligodendrocytes, forming glial cytoplasmic inclusions (GCIs). Extensive demyelination occurs particularly in the olivopontocerebellar and striatonigral pathways, but its precise mechanism remains elusive. Glial connexins (Cxs), which form gap junction channels between astrocytes and oligodendrocytes, play critical roles in myelin maintenance, and have not been studied in MSA. Therefore, we immunohistochemically investigated glial Cx changes in the cerebellar afferent fibers in 15 autopsied patients with MSA. We classified demyelinating lesions into three stages based on Klüver-Barrera staining: early (Stage I), intermediate (Stage II), and late (Stage III) stages showing subtle, moderate, and severe myelin reduction, respectively. Myelin-associated glycoprotein, but not myelin oligodendrocyte glycoprotein, was preferentially decreased in Stage I, suggesting distal oligodendrogliopathy type demyelination. Accumulation of phosphorylated α-synuclein in oligodendrocytes was frequently seen in Stage I but less frequently observed in Stages II and III. Tubulin polymerization-promoting protein (TPPP/p25α)-positive oligodendrocytes were preserved in Stage I but successively decreased in Stages II and III. Even at Stage I, Cx32 was nearly absent from myelin, despite the relative preservation of other nodal proteins, such as neurofascin, claudin-11/oligodendrocyte-specific protein, and contactin-associated protein 1, which successively decreased in the later stages. Cx32 was re-distributed in the oligodendrocyte cytoplasm and co-localized with GCIs. Cx47 gradually decreased at the oligodendrocyte surface in a stage-dependent manner but was not co-localized with GCIs. Astrocytic Cx43 was down-regulated in Stage I but up-regulated in Stages II and III, reflecting astrogliosis. Cx43/Cx47 gap junctions significantly decreased from Stage I to III. Activated microglia/macrophages and T cells infiltrated in Stage I rather than Stages II and III. Therefore, early and extensive alterations of glial Cxs, particularly Cx32 loss, occur in MSA and may accelerate distal oligodendrogliopathy type demyelination and nodal/paranodal dysfunction through disruption of inter-glial communication.
Collapse
Affiliation(s)
- Yuji Nishimura
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Katsuhisa Masaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Dai Matsuse
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Hiroo Yamaguchi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Tatsunori Tanaka
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
- Sumitomo Pharma Osaka Japan
| | - Eriko Matsuo
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Shotaro Hayashida
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Mitsuru Watanabe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Takuya Matsushita
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Shoko Sadashima
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Naokazu Sasagasako
- Department of Neurology, Neuro‐Muscular Center National Omuta Hospital Fukuoka Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Toru Iwaki
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Jun‐ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
- Translational Neuroscience Center, Graduate School of Medicine, and School of Pharmacy at Fukuoka International University of Health and Welfare Ookawa Japan
- Department of Neurology, Brain and Nerve Center Fukuoka Central Hospital Fukuoka Japan
| |
Collapse
|
17
|
Asgari R, Yarani R, Mohammadi P, Emami Aleagha MS. HIF-1α in the Crosstalk Between Reactive Oxygen Species and Autophagy Process: A Review in Multiple Sclerosis. Cell Mol Neurobiol 2022; 42:2121-2129. [PMID: 34089426 PMCID: PMC11421632 DOI: 10.1007/s10571-021-01111-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
Cellular stress can lead to the production of reactive oxygen species (ROS) while autophagy, as a catabolic pathway, protects the cells against stress. Autophagy in its turn plays a pivotal role in the pathophysiology of multiple sclerosis (MS). In the current review, we first summarized the contribution of ROS and autophagy to MS pathogenesis. Then probable crosstalk between these two pathways through HIF-1α for the first time has been proposed with the hope of employing a better understanding of MS pathophysiology and probable therapeutic approaches.
Collapse
Affiliation(s)
- Rezvan Asgari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Biology, Department of Clinical Research, Steno Diabetes Center Copenhagen, Copenhagen, Denmark
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | |
Collapse
|
18
|
van Schaik PEM, Zuhorn IS, Baron W. Targeting Fibronectin to Overcome Remyelination Failure in Multiple Sclerosis: The Need for Brain- and Lesion-Targeted Drug Delivery. Int J Mol Sci 2022; 23:8418. [PMID: 35955549 PMCID: PMC9368816 DOI: 10.3390/ijms23158418] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease with unknown etiology that can be characterized by the presence of demyelinated lesions. Prevailing treatment protocols in MS rely on the modulation of the inflammatory process but do not impact disease progression. Remyelination is an essential factor for both axonal survival and functional neurological recovery but is often insufficient. The extracellular matrix protein fibronectin contributes to the inhibitory environment created in MS lesions and likely plays a causative role in remyelination failure. The presence of the blood-brain barrier (BBB) hinders the delivery of remyelination therapeutics to lesions. Therefore, therapeutic interventions to normalize the pathogenic MS lesion environment need to be able to cross the BBB. In this review, we outline the multifaceted roles of fibronectin in MS pathogenesis and discuss promising therapeutic targets and agents to overcome fibronectin-mediated inhibition of remyelination. In addition, to pave the way for clinical use, we reflect on opportunities to deliver MS therapeutics to lesions through the utilization of nanomedicine and discuss strategies to deliver fibronectin-directed therapeutics across the BBB. The use of well-designed nanocarriers with appropriate surface functionalization to cross the BBB and target the lesion sites is recommended.
Collapse
Affiliation(s)
- Pauline E. M. van Schaik
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Inge S. Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wia Baron
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| |
Collapse
|
19
|
Vestergaard MB, Frederiksen JL, Larsson HBW, Cramer SP. Cerebrovascular Reactivity and Neurovascular Coupling in Multiple Sclerosis-A Systematic Review. Front Neurol 2022; 13:912828. [PMID: 35720104 PMCID: PMC9198441 DOI: 10.3389/fneur.2022.912828] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
The inflammatory processes observed in the central nervous system in multiple sclerosis (MS) could damage the endothelium of the cerebral vessels and lead to a dysfunctional regulation of vessel tonus and recruitment, potentially impairing cerebrovascular reactivity (CVR) and neurovascular coupling (NVC). Impaired CVR or NVC correlates with declining brain health and potentially plays a causal role in the development of neurodegenerative disease. Therefore, we examined studies on CVR or NVC in MS patients to evaluate the evidence for impaired cerebrovascular function as a contributing disease mechanism in MS. Twenty-three studies were included (12 examined CVR and 11 examined NVC). Six studies found no difference in CVR response between MS patients and healthy controls. Five studies observed reduced CVR in patients. This discrepancy can be because CVR is mainly affected after a long disease duration and therefore is not observed in all patients. All studies used CO2 as a vasodilating stimulus. The studies on NVC demonstrated diverse results; hence a conclusion that describes all the published observations is difficult to find. Future studies using quantitative techniques and larger study samples are needed to elucidate the discrepancies in the reported results.
Collapse
Affiliation(s)
- Mark B Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Jette L Frederiksen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Henrik B W Larsson
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark.,Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Stig P Cramer
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
20
|
The mechanistic target of rapamycin as a regulator of metabolic function in oligodendroglia during remyelination. Curr Opin Pharmacol 2022; 63:102193. [PMID: 35245799 PMCID: PMC8995382 DOI: 10.1016/j.coph.2022.102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
Despite evidence for prominent metabolic dysfunction within multiple sclerosis (MS) lesions, the mechanisms controlling metabolic shifts in oligodendroglia are poorly understood. The cuprizone model of demyelination and remyelination is a valuable tool for assessing metabolic insult during oligodendrocyte death and myelin degradation, closely resembling the distal oligodendrogliopathy seen in Pattern III MS lesions. In this review we discuss how metabolic processes in oligodendrocytes are disrupted in both MS and the cuprizone model, as well as the evidence for mechanistic target of rapamycin (mTOR) signaling as a key regulator of oligodendroglial metabolic function and efficient remyelination.
Collapse
|
21
|
Adingupu DD, Evans T, Soroush A, Jarvis S, Brown L, Dunn JF. Non-invasive Detection of Persistent Cortical Hypoxia in Multiple Sclerosis Using Frequency Domain Near-Infrared Spectroscopy (fdNIRS). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1395:89-93. [PMID: 36527619 DOI: 10.1007/978-3-031-14190-4_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
There may be a relationship between hypoxia and inflammation, which is important in the outcomes of a wide array of human diseases. Multiple sclerosis (MS) is one such disease. There is evidence that hypoxia may influence inflammation in MS. We showed previously that about 40% of participants with MS had hypoxia in the cortical grey matter using frequency-domain near-infrared spectroscopy (fdNIRS). In this study, we aimed to determine if hypoxia in MS persists chronically (for a year or more) by measuring at baseline and ≥12 months later. We found that hypoxia persists for at least a year in 80% of participants with MS. As more individuals remained hypoxic than returned to normoxia, the development of hypoxia may relate to disease progression.
Collapse
|
22
|
Jeffries MA, McLane LE, Khandker L, Mather ML, Evangelou AV, Kantak D, Bourne JN, Macklin WB, Wood TL. mTOR Signaling Regulates Metabolic Function in Oligodendrocyte Precursor Cells and Promotes Efficient Brain Remyelination in the Cuprizone Model. J Neurosci 2021; 41:8321-8337. [PMID: 34417330 PMCID: PMC8496195 DOI: 10.1523/jneurosci.1377-20.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/21/2021] [Accepted: 08/10/2021] [Indexed: 02/02/2023] Open
Abstract
In demyelinating diseases, such as multiple sclerosis, primary loss of myelin and subsequent neuronal degeneration throughout the CNS impair patient functionality. While the importance of mechanistic target of rapamycin (mTOR) signaling during developmental myelination is known, no studies have yet directly examined the function of mTOR signaling specifically in the oligodendrocyte (OL) lineage during remyelination. Here, we conditionally deleted Mtor from adult oligodendrocyte precursor cells (OPCs) using Ng2-CreERT in male adult mice to test its function in new OLs responsible for remyelination. During early remyelination after cuprizone-induced demyelination, mice lacking mTOR in adult OPCs had unchanged OL numbers but thinner myelin. Myelin thickness recovered by late-stage repair, suggesting a delay in myelin production when Mtor is deleted from adult OPCs. Surprisingly, loss of mTOR in OPCs had no effect on efficiency of remyelination after lysophosphatidylcholine lesions in either the spinal cord or corpus callosum, suggesting that mTOR signaling functions specifically in a pathway dysregulated by cuprizone to promote remyelination efficiency. We further determined that cuprizone and inhibition of mTOR cooperatively compromise metabolic function in primary rat OLs undergoing differentiation. Together, our results support the conclusion that mTOR signaling in OPCs is required to overcome the metabolic dysfunction in the cuprizone-demyelinated adult brain.SIGNIFICANCE STATEMENT Impaired remyelination by oligodendrocytes contributes to the progressive pathology in multiple sclerosis, so it is critical to identify mechanisms of improving remyelination. The goal of this study was to examine mechanistic target of rapamycin (mTOR) signaling in remyelination. Here, we provide evidence that mTOR signaling promotes efficient remyelination of the brain after cuprizone-mediated demyelination but has no effect on remyelination after lysophosphatidylcholine demyelination in the spinal cord or brain. We also present novel data revealing that mTOR inhibition and cuprizone treatment additively affect the metabolic profile of differentiating oligodendrocytes, supporting a mechanism for the observed remyelination delay. These data suggest that altered metabolic function may underlie failure of remyelination in multiple sclerosis lesions and that mTOR signaling may be of therapeutic potential for promoting remyelination.
Collapse
Affiliation(s)
- Marisa A Jeffries
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Lauren E McLane
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Luipa Khandker
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Marie L Mather
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Angelina V Evangelou
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Divyangi Kantak
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Jennifer N Bourne
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Teresa L Wood
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| |
Collapse
|
23
|
Mitchell D, Shireman J, Sierra Potchanant EA, Lara-Velazquez M, Dey M. Neuroinflammation in Autoimmune Disease and Primary Brain Tumors: The Quest for Striking the Right Balance. Front Cell Neurosci 2021; 15:716947. [PMID: 34483843 PMCID: PMC8414998 DOI: 10.3389/fncel.2021.716947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
According to classical dogma, the central nervous system (CNS) is defined as an immune privileged space. The basis of this theory was rooted in an incomplete understanding of the CNS microenvironment, however, recent advances such as the identification of resident dendritic cells (DC) in the brain and the presence of CNS lymphatics have deepened our understanding of the neuro-immune axis and revolutionized the field of neuroimmunology. It is now understood that many pathological conditions induce an immune response in the CNS, and that in many ways, the CNS is an immunologically distinct organ. Hyperactivity of neuro-immune axis can lead to primary neuroinflammatory diseases such as multiple sclerosis and antibody-mediated encephalitis, whereas immunosuppressive mechanisms promote the development and survival of primary brain tumors. On the therapeutic front, attempts are being made to target CNS pathologies using various forms of immunotherapy. One of the most actively investigated areas of CNS immunotherapy is for the treatment of glioblastoma (GBM), the most common primary brain tumor in adults. In this review, we provide an up to date overview of the neuro-immune axis in steady state and discuss the mechanisms underlying neuroinflammation in autoimmune neuroinflammatory disease as well as in the development and progression of brain tumors. In addition, we detail the current understanding of the interactions that characterize the primary brain tumor microenvironment and the implications of the neuro-immune axis on the development of successful therapeutic strategies for the treatment of CNS malignancies.
Collapse
Affiliation(s)
- Dana Mitchell
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jack Shireman
- Dey Malignant Brain Tumor Laboratory, Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | | | - Montserrat Lara-Velazquez
- Dey Malignant Brain Tumor Laboratory, Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Mahua Dey
- Dey Malignant Brain Tumor Laboratory, Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
24
|
Sutiwisesak R, Burns TC, Rodriguez M, Warrington AE. Remyelination therapies for multiple sclerosis: optimizing translation from animal models into clinical trials. Expert Opin Investig Drugs 2021; 30:857-876. [PMID: 34126015 DOI: 10.1080/13543784.2021.1942840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Multiple sclerosis (MS) is the most common inflammatory disease of the central nervous system (CNS). Demyelination, the main pathology in MS, contributes to clinical symptoms and long-term neurological deficits if left untreated. Remyelination, the natural repair of damaged myelin by cells of the oligodendrocyte lineage, occurs in MS, but eventually fails in most patients as they age. Encouraging timely remyelination can restore axon conduction and minimize deficits.Areas covered: We discuss and correlate human MS pathology with animal models, propose methods to deplete resident oligodendrocyte progenitor cells (OPCs) to determine whether mature oligodendrocytes support remyelination, and review remyelinating agents, mechanisms of action, and available clinical trial data.Expert opinion: The heterogeneity of human MS may limit successful translation of many candidate remyelinating agents; some patients lack the biological targets necessary to leverage current approaches. Development of therapeutics for remyelination has concentrated almost exclusively on mobilization of innate OPCs. However, mature oligodendrocytes appear an important contributor to remyelination in humans. Limiting the contribution of OPC mediated repair in models of MS would allow the evaluation of remyelination-promoting agents on mature oligodendrocytes. Among remyelinating reagents reviewed, only rHIgM22 targets both OPCs and mature oligodendrocytes.
Collapse
Affiliation(s)
- Rujapope Sutiwisesak
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Terry C Burns
- Departments of Neurology and Neurologic Surgery Mayo Clinic, Rochester, Minnesota, USA
| | - Moses Rodriguez
- Departments of Neurology and Neurologic Surgery Mayo Clinic, Rochester, Minnesota, USA
| | - Arthur E Warrington
- Departments of Neurology and Neurologic Surgery Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
25
|
Motor Cortical Activation Assessment in Progressive Multiple Sclerosis Patients Enrolled in Gait Rehabilitation: A Secondary Analysis of the RAGTIME Trial Assisted by Functional Near-Infrared Spectroscopy. Diagnostics (Basel) 2021; 11:diagnostics11061068. [PMID: 34207923 PMCID: PMC8227480 DOI: 10.3390/diagnostics11061068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 01/16/2023] Open
Abstract
This study aimed to determine cortical activation responses to two different rehabilitative programs, as measured through functional near-infrared spectroscopy (fNIRS). As a secondary analysis of the RAGTIME trial, we studied 24 patients with progressive multiple sclerosis (MS) and severe disability who were randomized to a regimen of robot-assisted gait training (RAGT) or overground walking (OW). Cortical activation during a treadmill walking task, assessed through fNIRS recordings from the motor and premotor cortexes (M1/PM), was calculated as the area under the curve (AUC) of oxyhemoglobin for each hemisphere and the total area (Tot-OxyAUC). Gait speed, endurance, and balance were also measured, along with five healthy control subjects. At baseline, Tot-OxyAUC during walking was significantly increased in MS patients compared to healthy people and was significantly higher for those with more severe disabilities; it was also inversely correlated with physical performance. After rehabilitation, significant opposite variations in Tot-OxyAUC were observed, with activity levels being increased after OW and decreased after RAGT (+242,080 ± 361,902 and −157,031 ± 172,496 arbitrary units, respectively; p = 0.002), particularly in patients who were trained at a lower speed. Greater reductions in the cortical activation of the more affected hemisphere were significantly related to improvements in gait speed (r = −0.42) and endurance (r = −0.44). Cortical activation, assessed through fNIRS, highlighted the brain activity in response to the type and intensity of rehabilitation.
Collapse
|
26
|
Lattanzi S, Acciarri MC, Danni M, Taffi R, Cerqua R, Rocchi C, Silvestrini M. Cerebral hemodynamics in patients with multiple sclerosis. Mult Scler Relat Disord 2020; 44:102309. [DOI: 10.1016/j.msard.2020.102309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
|
27
|
Farci R, Carta A, Cocco E, Frau J, Fossarello M, Diaz G. Optical coherence tomography angiography in multiple sclerosis: A cross-sectional study. PLoS One 2020; 15:e0236090. [PMID: 32702050 PMCID: PMC7377434 DOI: 10.1371/journal.pone.0236090] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/30/2020] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVES To evaluate retinal axonal density and retinal capillary flow density (CFD) variations in patients affected by multiple sclerosis (MS) as documented by Optical Coherence Tomography Angiography (OCT-A). MATERIAL AND METHODS A cross-sectional study was performed in a tertiary university eye hospital on 94 eyes from 48 MS patients compared to 37 eyes from 23 matched controls. MS patients were divided in two groups: those with previous episodes of optic neuritis (MS ON+, 71.4%) and those without any previous visual complaint (no optic neuritis group, MS ON, 28.6%). Patients underwent macular and optic nerve head OCT-A with Optovue XR Avanti (Optovue, Freemont, California) after that preliminary evaluation of the ganglion cell complex (GCC) and of the retinal nerve fiber layer (RNFL) was achieved for each single eye by SD-OCT. CFD was evaluated in three different retinal layers of MS patients and controls: superficial capillary plexus (SCP), deep capillary plexus (DCP) and the choriocapillaris layer (CL). Each layer was analyzed in 18 preset subregions automatically detected by the system. CFD values were then correlated to the RNFL thickness and GCC thickness in the groups: p values were computed by t-tests between each group of MS patients and controls. A p-value of <0.05 was considered significant. RESULTS A significant difference in the overall CFD values was found between ON+ and ON- patients when compared to controls in 18 subregions of SCP. Furthermore, a significant difference was found between MS patients and controls in 16 subregions analyzed corresponding to the CL layer without difference between the two MS subgroups (ON+ and ON-). CONCLUSIONS OCT-A when performed at the optic nerve head level and at the macular region is characterized by a reduction of retinal perfusion in a significant portion of MS patients independently if they had a previous history of optic nerve inflammation or not.
Collapse
Affiliation(s)
| | - Arturo Carta
- Department of Medicine and Surgery, Ophthalmology Unit, University of Parma, Parma, Italy
| | - Eleonora Cocco
- Department of Medical Sciences and Public Health, Multiple Sclerosis Center Binaghi Hospital, University of Cagliari, Cagliari, Italy
| | - Jessica Frau
- Department of Medical Sciences and Public Health, Multiple Sclerosis Center Binaghi Hospital, University of Cagliari, Cagliari, Italy
| | | | - Giacom Diaz
- Biomedical Science Department, University of Cagliari, Cagliari, Italy
| |
Collapse
|
28
|
Murphy OC, Kwakyi O, Iftikhar M, Zafar S, Lambe J, Pellegrini N, Sotirchos ES, Gonzalez-Caldito N, Ogbuokiri E, Filippatou A, Risher H, Cowley N, Feldman S, Fioravante N, Frohman EM, Frohman TC, Balcer LJ, Prince JL, Channa R, Calabresi PA, Saidha S. Alterations in the retinal vasculature occur in multiple sclerosis and exhibit novel correlations with disability and visual function measures. Mult Scler 2020; 26:815-828. [PMID: 31094280 PMCID: PMC6858526 DOI: 10.1177/1352458519845116] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND The retinal vasculature may be altered in multiple sclerosis (MS), potentially acting as a biomarker of disease processes. OBJECTIVE To compare retinal vascular plexus densities in people with MS (PwMS) and healthy controls (HCs), and examine correlations with visual function and global disability. METHODS In this cross-sectional study, 111 PwMS (201 eyes) and 50 HCs (97 eyes) underwent optical coherence tomography angiography (OCTA). Macular superficial vascular plexus (SVP) and deep vascular plexus (DVP) densities were quantified, and poor quality images were excluded according to an artifact-rating protocol. RESULTS Mean SVP density was 24.1% (SD = 5.5) in MS eyes (26.0% (SD = 4.7) in non-optic neuritis (ON) eyes vs. 21.7% (SD = 5.5) in ON eyes, p < 0.001), as compared to 29.2% (SD = 3.3) in HC eyes (p < 0.001 for all MS eyes and multiple sclerosis optic neuritis (MSON) eyes vs. HC eyes, p = 0.03 for MS non-ON eyes vs. HC eyes). DVP density did not differ between groups. In PwMS, lower SVP density was associated with higher levels of disability (expanded disability status scale (EDSS): R2 = 0.26, p = 0.004; multiple sclerosis functional composite (MSFC): R2 = 0.27, p = 0.03) and lower letter acuity scores (100% contrast: R2 = 0.29; 2.5% contrast: R2 = 0.40; 1.25% contrast: R2 = 0.31; p < 0.001 for all). CONCLUSIONS Retinal SVP density measured by OCTA is reduced across MS eyes, and correlates with visual function, EDSS, and MSFC scores.
Collapse
Affiliation(s)
- Olwen C. Murphy
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Ohemaa Kwakyi
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Mustafa Iftikhar
- Wilmer Eye Institute, Johns Hopkins University School of
Medicine, Baltimore, MD, United States
| | - Sidra Zafar
- Wilmer Eye Institute, Johns Hopkins University School of
Medicine, Baltimore, MD, United States
| | - Jeffrey Lambe
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Nicole Pellegrini
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Elias S. Sotirchos
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Natalia Gonzalez-Caldito
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Esther Ogbuokiri
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Angeliki Filippatou
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Hunter Risher
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Norah Cowley
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Sydney Feldman
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Nicholas Fioravante
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Elliot M. Frohman
- Department of Neurology and Ophthalmology, University of
Texas Austin Dell Medical School, Austin, TX, United States
| | - Teresa C. Frohman
- Department of Neurology and Ophthalmology, University of
Texas Austin Dell Medical School, Austin, TX, United States
| | - Laura J. Balcer
- Department of Neurology, New York University Langone
Medical Center, New York, NY, United States
| | - Jerry L. Prince
- Department of Electrical and Computer Engineering, Johns
Hopkins University, Baltimore, MD, United States
| | - Roomasa Channa
- Wilmer Eye Institute, Johns Hopkins University School of
Medicine, Baltimore, MD, United States
- Department of Ophthalmology, Baylor College of Medicine,
Houston, TX, United States
| | - Peter A. Calabresi
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Shiv Saidha
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| |
Collapse
|
29
|
Cui QL, Lin YH, Xu YKT, Fernandes MGF, Rao VTS, Kennedy TE, Antel J. Effects of Biotin on survival, ensheathment, and ATP production by oligodendrocyte lineage cells in vitro. PLoS One 2020; 15:e0233859. [PMID: 32470040 PMCID: PMC7259710 DOI: 10.1371/journal.pone.0233859] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Mechanisms implicated in disease progression in multiple sclerosis include continued oligodendrocyte (OL)/myelin injury and failure of myelin repair. Underlying causes include metabolic stress with resultant energy deficiency. Biotin is a cofactor for carboxylases involved in ATP production that impact myelin production by promoting fatty acid synthesis. Here, we investigate the effects of high dose Biotin (MD1003) on the functional properties of post-natal rat derived oligodendrocyte progenitor cells (OPCs). A2B5 positive OPCs were assessed using an in vitro injury assay, culturing cells in either DFM (DMEM/F12+N1) or “stress media” (no glucose (NG)-DMEM), with Biotin added over a range from 2.5 to 250 μg/ml, and cell viability determined after 24 hrs. Biotin reduced the increase in OPC cell death in the NG condition. In nanofiber myelination assays, biotin increased the percentage of ensheathing cells, the number of ensheathed segments per cell, and length of ensheathed segments. In dispersed cell culture, Biotin also significantly increased ATP production, assessed using a Seahorse bio-analyzer. For most assays, the positive effects of Biotin were observed at the higher end of the dose-response analysis. We conclude that Biotin, in vitro, protects OL lineage cells from metabolic injury, enhances myelin-like ensheathment, and is associated with increased ATP production.
Collapse
Affiliation(s)
- Qiao-Ling Cui
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Yun Hsuan Lin
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Yu Kang T. Xu
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | | - Timothy E. Kennedy
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jack Antel
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
30
|
Zhang S, Kim B, Zhu X, Gui X, Wang Y, Lan Z, Prabhu P, Fond K, Wang A, Guo F. Glial type specific regulation of CNS angiogenesis by HIFα-activated different signaling pathways. Nat Commun 2020; 11:2027. [PMID: 32332719 PMCID: PMC7181614 DOI: 10.1038/s41467-020-15656-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 03/12/2020] [Indexed: 01/13/2023] Open
Abstract
The mechanisms by which oligodendroglia modulate CNS angiogenesis remain elusive. Previous in vitro data suggest that oligodendroglia regulate CNS endothelial cell proliferation and blood vessel formation through hypoxia inducible factor alpha (HIFα)-activated Wnt (but not VEGF) signaling. Using in vivo genetic models, we show that HIFα in oligodendroglia is necessary and sufficient for angiogenesis independent of CNS regions. At the molecular level, HIFα stabilization in oligodendroglia does not perturb Wnt signaling but rather activates VEGF. At the functional level, genetically blocking oligodendroglia-derived VEGF but not Wnt significantly decreases oligodendroglial HIFα-regulated CNS angiogenesis. Blocking astroglia-derived Wnt signaling reduces astroglial HIFα-regulated CNS angiogenesis. Together, our in vivo data demonstrate that oligodendroglial HIFα regulates CNS angiogenesis through Wnt-independent and VEGF-dependent signaling. These findings suggest an alternative mechanistic understanding of CNS angiogenesis by postnatal glial cells and unveil a glial cell type-dependent HIFα-Wnt axis in regulating CNS vessel formation. In the central nervous system, the maturation of glial cells is temporally and functionally coupled with that of the vascular network during postnatal development. Here the authors show that oligodendroglial HIFα regulates CNS angiogenesis through Wnt-independent and VEGF-dependent signaling, while astroglial HIFα participates through Wnt-dependent signaling.
Collapse
Affiliation(s)
- Sheng Zhang
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children/UC Davis School of Medicine, Sacramento, CA, 95817, USA.,Department of Neurology, School of Medicine, UC Davis, Sacramento, CA, 95817, USA
| | - Bokyung Kim
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children/UC Davis School of Medicine, Sacramento, CA, 95817, USA.,Department of Neurology, School of Medicine, UC Davis, Sacramento, CA, 95817, USA
| | - Xiaoqing Zhu
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children/UC Davis School of Medicine, Sacramento, CA, 95817, USA.,Qingdao University, Qingdao, China
| | - Xuehong Gui
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children/UC Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Yan Wang
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children/UC Davis School of Medicine, Sacramento, CA, 95817, USA.,Department of Neurology, School of Medicine, UC Davis, Sacramento, CA, 95817, USA
| | - Zhaohui Lan
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children/UC Davis School of Medicine, Sacramento, CA, 95817, USA.,Department of Neurology, School of Medicine, UC Davis, Sacramento, CA, 95817, USA
| | - Preeti Prabhu
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children/UC Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Kenneth Fond
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children/UC Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Aijun Wang
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children/UC Davis School of Medicine, Sacramento, CA, 95817, USA.,Department of Surgery, School of Medicine, UC Davis, Sacramento, CA, 95817, USA
| | - Fuzheng Guo
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children/UC Davis School of Medicine, Sacramento, CA, 95817, USA. .,Department of Neurology, School of Medicine, UC Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
31
|
Zambuto SG, Serrano JF, Vilbert AC, Lu Y, Harley BAC, Pedron S. Response of neuroglia to hypoxia-induced oxidative stress using enzymatically crosslinked hydrogels. MRS COMMUNICATIONS 2020; 10:83-90. [PMID: 32719734 PMCID: PMC7384750 DOI: 10.1557/mrc.2019.159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/04/2019] [Indexed: 05/09/2023]
Abstract
Three-dimensional cultures have exciting potential to mimic aspects of healthy and diseased brain tissue to examine the role of physiological conditions on neural biomarkers, as well as disease onset and progression. Hypoxia is associated with oxidative stress, mitochondrial damage, and inflammation, key processes potentially involved in Alzheimer's and multiple sclerosis. We describe the use of an enzymatically-crosslinkable gelatin hydrogel system within a microfluidic device to explore the effects of hypoxia-induced oxidative stress on rat neuroglia, human astrocyte reactivity, and myelin production. This versatile platform offers new possibilities for drug discovery and modeling disease progression.
Collapse
Affiliation(s)
- Samantha G Zambuto
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green St, Urbana, IL 61801, USA
| | - Julio F Serrano
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Avery C Vilbert
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Yi Lu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA; Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA; Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Brendan A C Harley
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Sara Pedron
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW This article summarizes recent advances in the identification of genetic and environmental factors that affect the risk of developing multiple sclerosis (MS) and the pathogenic processes involved in acute relapses and relapse-independent disability progression. RECENT FINDINGS The number of single-nucleotide polymorphisms associated with increased risk of MS has increased to more than 200 variants. The evidence for the association of Epstein-Barr virus infection, vitamin D deficiency, obesity, and smoking with increased risk of MS has further accumulated, and, in cases of obesity and vitamin D deficiency, the evidence for causal association has strengthened. Interactions between genetic and environmental factors have been studied more extensively. Dietary factors and changes in the gut microbiota are emerging as possible modulators of the disease risk. Several processes important to MS pathogenesis have been newly investigated or investigated more comprehensively, including the role of B cells, innate immune cells, meningeal inflammation, cortical and gray matter demyelination, and early axonal and neuronal loss. SUMMARY MS is a complex disease in which the interaction between genetic and environmental factors causes a cascade of events, including activation of the adaptive and innate immune system, blood-brain barrier breakdown, central nervous system demyelination, and axonal and neuronal damage with variable degrees of repair. These events manifest as potentially reversible focal neurologic symptoms or progressive nonremitting physical and cognitive disability, or both. Advances in the understanding of the risk factors and pathogenic mechanisms of MS have resulted in improved therapeutic strategies. The results of ongoing or future studies are needed to successfully and fully translate these advances into clinical practice.
Collapse
|
33
|
Sylvestre DA, Slupsky CM, Aviv RI, Swardfager W, Taha AY. Untargeted metabolomic analysis of plasma from relapsing-remitting multiple sclerosis patients reveals changes in metabolites associated with structural changes in brain. Brain Res 2019; 1732:146589. [PMID: 31816317 DOI: 10.1016/j.brainres.2019.146589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/18/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Changes in peripheral blood amino acids have been noted in Relapse Remitting Multiple Sclerosis (RRMS), suggesting their potential diagnostic value in anticipating disease progression. OBJECTIVE The present study sought to comprehensively assess the plasma metabolome, including amino acids, of RRMS patient and unaffected controls, to identify potential biomarkers of RRMS disease pathogenesis. METHODS Untargeted NMR metabolomics was performed on plasma from 28 RRMS patients and 18 unaffected controls to test the hypothesis that metabolomic markers are altered in RRMS patients in association with lesion load, brain atrophy and cognitive performance. RESULTS There were no significant differences between RRMS and controls in age, sex and total brain volume. Brain fractional volumes of gray matter, white matter, thalamus and parenchyma as well as multiple neurocognitive scores were significantly lower in RRMS patients compared to unaffected controls. Concentrations of nine plasma metabolites (arginine, isoleucine, citrate, serine, phenylalanine, methionine, asparagine, histidine, myo-inositol) were significantly lower in RRMS patients compared to controls. Plasma arginine concentrations were positively correlated with T1 holes and white matter lesions, and plasma methionine concentrations were positively correlated with T1 holes, but not white matter lesions. Serine was negatively correlated with performance on the Brief Visuospatial Memory Test in controls but not RRMS patients. CONCLUSIONS The identified disturbances in metabolite concentrations might be developed as new markers of neuroanatomical vulnerability in RRMS, should the findings be reproduced in larger cohort studies.
Collapse
Affiliation(s)
- Duncan A Sylvestre
- Department of Food Science and Technology, University of California, Davis, USA; Department of Nutrition, University of California, Davis, USA
| | - Carolyn M Slupsky
- Department of Food Science and Technology, University of California, Davis, USA; Department of Nutrition, University of California, Davis, USA
| | - Richard I Aviv
- Department of Radiology, Ottawa University, Division of Neuroradiology, The Ottawa Hospital, Ottawa, ON, K1H8L6, Canada
| | - Walter Swardfager
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada; Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada; LC Campbell Cognitive Neurology Unit, Sunnybrook Research Institute, Toronto, Canada; University Health Network Toronto Rehabilitation Institute, Toronto, Canada
| | - Ameer Y Taha
- Department of Food Science and Technology, University of California, Davis, USA.
| |
Collapse
|
34
|
Rao VTS, Fuh SC, Karamchandani JR, Woulfe JMJ, Munoz DG, Ellezam B, Blain M, Ho MK, Bedell BJ, Antel JP, Ludwin SK. Astrocytes in the Pathogenesis of Multiple Sclerosis: An In Situ MicroRNA Study. J Neuropathol Exp Neurol 2019; 78:1130-1146. [DOI: 10.1093/jnen/nlz098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Astrocytes are increasingly recognized as active contributors to the disease process in multiple sclerosis (MS), rather than being merely reactive. We investigated the expression of a selected microRNA (miRNA) panel that could contribute both to the injury and to the recovery phases of the disease. Individual astrocytes were laser microdissected from brain sections. We then compared the miRNAs’ expressions in MS and control brain samples at different lesional stages in white versus grey matter regions. In active MS lesions, we found upregulation of ischemia-related miRNAs in white but not grey matter, often with reversion to the normal state in inactive lesions. In contrast to our previous findings on MS macrophages, expression of 2 classical inflammatory-related miRNAs, miRNA-155 and miRNA-146a, was reduced in astrocytes from active and chronic active MS lesions in white and grey matter, suggesting a lesser direct pathogenetic role for these miRNAs in astrocytes. miRNAs within the categories regulating aquaporin4 (-100, -145, -320) and glutamate transport/apoptosis/neuroprotection (-124a, -181a, and -29a) showed some contrasting responses. The regional and lesion-stage differences of expression of these miRNAs indicate the remarkable ability of astrocytes to show a wide range of selective responses in the face of differing insults and phases of resolution.
Collapse
Affiliation(s)
- Vijayaraghava T S Rao
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University
| | - Shih-Chieh Fuh
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | | - John M J Woulfe
- Department of Pathology, The Ottawa Hospital, University of Ottawa
| | - David G Munoz
- Department of Pathology, St. Michaels Hospital, Toronto University, Toronto
| | | | - Manon Blain
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Ming-Kai Ho
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University
| | - Barry J Bedell
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Jack P Antel
- Department of Neuropathology, Montreal Neurological Institute
| | - Samuel K Ludwin
- Department of Pathology, The Ottawa Hospital, University of Ottawa
| |
Collapse
|
35
|
Pars K, Gingele M, Kronenberg J, Prajeeth CK, Skripuletz T, Pul R, Jacobs R, Gudi V, Stangel M. Fumaric Acids Do Not Directly Influence Gene Expression of Neuroprotective Factors in Highly Purified Rodent Astrocytes. Brain Sci 2019; 9:brainsci9090241. [PMID: 31546798 PMCID: PMC6769695 DOI: 10.3390/brainsci9090241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Dimethylfumarate (DMF) has been approved for the treatment of relapsing remitting multiple sclerosis. However, the mode of action of DMF and its assumed active primary metabolite monomethylfumarate (MMF) is still not fully understood. Former reports suggest a neuroprotective effect of DMF mediated via astrocytes by reducing pro-inflammatory activation of these glial cells. We investigated potential direct effects of DMF and MMF on neuroprotective factors like neurotrophic factors and growth factors in astrocytes to elucidate further possible mechanisms of the mode of action of fumaric acids; (2) Methods: highly purified cultures of primary rat astrocytes were pre-treated in vitro with DMF or MMF and incubated with lipopolysaccharides (LPS) or a mixture of interferon gamma (IFN-γ) plus interleukin 1 beta (IL-1β) in order to simulate an inflammatory environment. The gene expression of neuroprotective factors such as neurotrophic factors (nuclear factor E2-related factor 2 (NGF), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF)) and growth factors (fibroblast growth factor 2 (FGF2), platelet-derived growth factor subunit A (PDGFa), ciliary neurotrophic factor (CNTF)) as well as cytokines (tumor necrosis factor alpha (TNFα), interleukin 6 (IL-6), IL-1β, inducible nitric oxide synthase (iNOS)) was examined by determining the transcription level with real-time quantitative polymerase chain reaction (qPCR); (3) Results: The stimulation of highly purified astrocytes with either LPS or cytokines changed the expression profile of growth factors and pro- inflammatory factors. However, the expression was not altered by either DMF nor MMF in unstimulated or stimulated astrocytes; (4) Conclusions: There was no direct influence of fumaric acids on neuroprotective factors in highly purified primary rat astrocytes. This suggests that the proposed potential neuroprotective effect of fumaric acid is not mediated by direct stimulation of neurotrophic factors in astrocytes but is rather mediated by other pathways or indirect mechanisms via other glial cells like microglia as previously demonstrated.
Collapse
Affiliation(s)
- Kaweh Pars
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
- Department of Neurology, European Medical School, University Oldenburg, 26129 Oldenburg, Germany.
| | - Marina Gingele
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
| | - Jessica Kronenberg
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
- Center for Systems Neuroscience, University of Veterinary Medicine, 30559 Hannover, Germany.
| | - Chittappen K Prajeeth
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
| | - Thomas Skripuletz
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
| | - Refik Pul
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
- Department of Neurology, University Clinic Essen, 45147 Essen, Germany.
| | - Roland Jacobs
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, 30559 Hannover, Germany.
| | - Viktoria Gudi
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
| | - Martin Stangel
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
- Center for Systems Neuroscience, University of Veterinary Medicine, 30559 Hannover, Germany.
| |
Collapse
|
36
|
Sheng H, Zhao B, Ge Y. Blood Perfusion and Cellular Microstructural Changes Associated With Iron Deposition in Multiple Sclerosis Lesions. Front Neurol 2019; 10:747. [PMID: 31354613 PMCID: PMC6637756 DOI: 10.3389/fneur.2019.00747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/26/2019] [Indexed: 12/18/2022] Open
Abstract
Background and Purpose: Susceptibility-weighted imaging (SWI) has emerged as a useful clinical tool in many neurological diseases including multiple sclerosis (MS). This study aims to investigate the relationship between SWI signal changes due to iron deposition in MS lesions and tissue blood perfusion and microstructural abnormalities to better understand their underlying histopathologies. Methods: Forty-six patients with relapsing remitting MS were recruited for this study. Conventional FLAIR, pre- and post-contrast T1-weighted imaging, SWI, diffusion tensor imaging (DTI), and dynamic susceptibility contrast (DSC) perfusion MRI were performed in these patients at 3T. The SWI was processed using both magnitude and phase information with one slice minimal intensity projection (mIP) and phase multiplication factor of 4. MS lesions were classified into 3 types based on their lesional signal appearance on SWI mIP relative to perilesional normal appearing white matter (peri-NAWM): Type-1: hypointense, Type-2: isointense, and Type-3: hyperintense lesions. The DTI and DSC MRI data were processed offline to generate DTI-derived mean diffusivity (MD) and fractional anisotropy (FA) maps, as well as DSC-derived cerebral blood flow (CBF) and cerebral blood volume (CBV) maps. Comparisons of diffusion and perfusion measurements between lesions and peri-NAWM, as well between different types of lesions, were performed. Results: A total of 137 lesions were identified on FLAIR in these patients that include 40 Type-1, 46 Type-2, and 51 Type-3 lesions according to their SWI intensity relative to peri-NAWM. All lesion types showed significant higher MD and lower FA compared to their peri-NAWM (P < 0.0001). Compared to Type-1 lesions (likely represent iron deposition), Type-2 lesions had significantly higher MD and lower FA (P < 0.001) as well as lower perfusion measurements (P < 0.05), while Type 3 lesions had significantly higher perfusion (P < 0.001) and lower FA (P < 0.05). Compared to Type-2, Type-3 lesions had higher perfusion (P < 0.0001) and marginally higher MD and lower FA (P < 0.05). Conclusion: The significant differences in diffusion and perfusion MRI metrics associated with MS lesions, that appear with different signal appearance on SWI, may help to identify the underlying destructive pathways of myelin and axons and their evolution related to inflammatory activities.
Collapse
Affiliation(s)
- Huaqiang Sheng
- Department of Medical Imaging, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China.,Department of Radiology, New York University School of Medicine, New York, NY, United States
| | - Bin Zhao
- Department of Medical Imaging Research Institute, Shandong University, Jinan, China
| | - Yulin Ge
- Department of Radiology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
37
|
Hong Y, Tang HR, Ma M, Chen N, Xie X, He L. Multiple sclerosis and stroke: a systematic review and meta-analysis. BMC Neurol 2019; 19:139. [PMID: 31234793 PMCID: PMC6591845 DOI: 10.1186/s12883-019-1366-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/13/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) and stroke are two common causes of death and disability worldwide. The relationship between these two diseases remains unclear. Effective early preventative measures and treatments are available to reduce the morbidity and mortality of acute stroke. The objectives of our systematic review are to estimate the risk of stroke in patients with MS and to collate related studies to draw preliminary conclusions that may improve clinical practice. METHOD Relevant studies were systematically searched in MEDLINE, Embase, the Chinese Biomedical Literature Database (CBM), the China National Knowledge Infrastructure and the VIP database of Chinese periodicals from January 1983 to May 2017, with no restrictions on language. Patients included in this review were adults who suffered from MS. Review Manager 5.3 software program was used to pool data and calculate the risk ratio (RR) and its 95% confidence interval (CI). We also performed heterogeneity and sensitivity analyses and evaluated bias in the meta-analysis. RESULTS Nine studies including more than 380,000 participants that met our inclusion criteria were incorporated into the meta-analysis. During different follow-up periods, patients with MS had an increased risk of any type of stroke [RR = 3.48, 95% CI (1.59, 7.64), P = 0.002 for 1 year; RR = 2.45, 95% CI (1.90, 3.16), P < 0.00001 for 10-13 years]. The total prevalence of stroke (any type) in patients with MS exceeded expectations compared to different groups [Comparing with general veteran: RR = 2, 95% CI (1.19, 3.38), P = 0.009. Comparing with general population: RR = 2.93, 95% CI (1.13, 7.62), P = 0.03]. Furthermore, ischemic stroke was particularly more common in the MS population than in people without MS [RR = 6.09, 95% CI (3.44, 10.77), P < 0.00001]. CONCLUSION Compared with the general population, people with MS have an increased risk of developing any type of stroke and ischemic stroke in particular. Consistent results were obtained from patients of different sexes and age groups. Preventative measures and treatments should be administered at earlier time points to improve patient outcomes.
Collapse
Affiliation(s)
- Ye Hong
- Department of Neurology, West China Hospital of Sichuan University, Wainan Guoxue Xiang #37, 610041, Chengdu, People's Republic of China
| | - Huai Rong Tang
- Department of Health Management Center, West China Hospital of Sichuan University, Chengdu, China
| | - Mengmeng Ma
- Department of Neurology, West China Hospital of Sichuan University, Wainan Guoxue Xiang #37, 610041, Chengdu, People's Republic of China
| | - Ning Chen
- Department of Neurology, West China Hospital of Sichuan University, Wainan Guoxue Xiang #37, 610041, Chengdu, People's Republic of China
| | - Xin Xie
- Department of Neurology, West China Hospital of Sichuan University, Wainan Guoxue Xiang #37, 610041, Chengdu, People's Republic of China.,Department of Neurology, The General Hospital of Western Theater Command, Chengdu, China
| | - Li He
- Department of Neurology, West China Hospital of Sichuan University, Wainan Guoxue Xiang #37, 610041, Chengdu, People's Republic of China.
| |
Collapse
|
38
|
Regulation of sirtuin expression in autoimmune neuroinflammation: Induction of SIRT1 in oligodendrocyte progenitor cells. Neurosci Lett 2019; 704:116-125. [DOI: 10.1016/j.neulet.2019.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 12/15/2022]
|
39
|
Turner MP, Hubbard NA, Sivakolundu DK, Himes LM, Hutchison JL, Hart J, Spence JS, Frohman EM, Frohman TC, Okuda DT, Rypma B. Preserved canonicality of the BOLD hemodynamic response reflects healthy cognition: Insights into the healthy brain through the window of Multiple Sclerosis. Neuroimage 2019; 190:46-55. [PMID: 29454932 DOI: 10.1016/j.neuroimage.2017.12.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022] Open
Abstract
The hemodynamic response function (HRF), a model of brain blood-flow changes in response to neural activity, reflects communication between neurons and the vasculature that supplies these neurons in part by means of glial cell intermediaries (e.g., astrocytes). Intact neural-vascular communication might play a central role in optimal cognitive performance. This hypothesis can be tested by comparing healthy individuals to those with known white-matter damage and impaired performance, as seen in Multiple Sclerosis (MS). Glial cell intermediaries facilitate the ability of neurons to adequately convey metabolic needs to cerebral vasculature for sufficient oxygen and nutrient perfusion. In this study, we isolated measurements of the HRF that could quantify the extent to which white-matter affects neural-vascular coupling and cognitive performance. HRFs were modeled from multiple brain regions during multiple cognitive tasks using piecewise cubic spline functions, an approach that minimized assumptions regarding HRF shape that may not be valid for diseased populations, and were characterized using two shape metrics (peak amplitude and time-to-peak). Peak amplitude was reduced, and time-to-peak was longer, in MS patients relative to healthy controls. Faster time-to-peak was predicted by faster reaction time, suggesting an important role for vasodilatory speed in the physiology underlying processing speed. These results support the hypothesis that intact neural-glial-vascular communication underlies optimal neural and cognitive functioning.
Collapse
Affiliation(s)
- Monroe P Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Nicholas A Hubbard
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dinesh K Sivakolundu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Lyndahl M Himes
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Joanna L Hutchison
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - John Hart
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey S Spence
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Elliot M Frohman
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Teresa C Frohman
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Darin T Okuda
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
40
|
Abstract
The human brain weighs approximately 2% of the body; however, it consumes about 20% of a
person’s total energy intake. Cellular bioenergetics in the central nervous system
involves a delicate balance between biochemical processes engaged in energy conversion and
those responsible for respiration. Neurons have high energy demands, which rely on
metabolic coupling with glia, such as with oligodendrocytes and astrocytes. It has been
well established that astrocytes recycle and transport glutamine to neurons to make the
essential neurotransmitters, glutamate and GABA, as well as shuttle lactate to support
energy synthesis in neurons. However, the metabolic role of oligodendrocytes in the
central nervous system is less clear. In this review, we discuss the energetic demands of
oligodendrocytes in their survival and maturation, the impact of altered oligodendrocyte
energetics on disease pathology, and the role of energetic metabolites, taurine, creatine,
N-acetylaspartate, and biotin, in regulating oligodendrocyte
function.
Collapse
Affiliation(s)
- Lauren Rosko
- Department of Biology, Georgetown University, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
| | - Victoria N Smith
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Reiji Yamazaki
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Jeffrey K Huang
- Department of Biology, Georgetown University, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA.,Center for Cell Reprogramming, Georgetown University, Washington, DC, USA
| |
Collapse
|
41
|
Brütting C, Narasimhan H, Hoffmann F, Kornhuber ME, Staege MS, Emmer A. Investigation of Endogenous Retrovirus Sequences in the Neighborhood of Genes Up-regulated in a Neuroblastoma Model after Treatment with Hypoxia-Mimetic Cobalt Chloride. Front Microbiol 2018. [PMID: 29515560 PMCID: PMC5826361 DOI: 10.3389/fmicb.2018.00287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human endogenous retroviruses (ERVs) have been found to be associated with different diseases, e.g., multiple sclerosis (MS). Most human ERVs integrated in our genome are not competent to replicate and these sequences are presumably silent. However, transcription of human ERVs can be reactivated, e.g., by hypoxia. Interestingly, MS has been linked to hypoxia since decades. As some patterns of demyelination are similar to white matter ischemia, hypoxic damage is discussed. Therefore, we are interested in the association between hypoxia and ERVs. As a model, we used human SH-SY5Y neuroblastoma cells after treatment with the hypoxia-mimetic cobalt chloride and analyzed differences in the gene expression profiles in comparison to untreated cells. The vicinity of up-regulated genes was scanned for endogenous retrovirus-derived sequences. Five genes were found to be strongly up-regulated in SH-SY5Y cells after treatment with cobalt chloride: clusterin, glutathione peroxidase 3, insulin-like growth factor 2, solute carrier family 7 member 11, and neural precursor cell expressed developmentally down-regulated protein 9. In the vicinity of these genes we identified large (>1,000 bp) open reading frames (ORFs). Most of these ORFs showed only low similarities to proteins from retro-transcribing viruses. However, we found very high similarity between retrovirus envelope sequences and a sequence in the vicinity of neural precursor cell expressed developmentally down-regulated protein 9. This sequence encodes the human endogenous retrovirus group FRD member 1, the encoded protein product is called syncytin 2. Transfection of syncytin 2 into the well-characterized Ewing sarcoma cell line A673 was not able to modulate the low immunostimulatory activity of this cell line. Future research is needed to determine whether the identified genes and the human endogenous retrovirus group FRD member 1 might play a role in the etiology of MS.
Collapse
Affiliation(s)
- Christine Brütting
- Department of Surgical and Conservative Paediatrics and Adolescent Medicine, Martin Luther University of Halle-Wittenberg, Halle, Germany.,Department of Neurology, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Harini Narasimhan
- Department of Surgical and Conservative Paediatrics and Adolescent Medicine, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Frank Hoffmann
- Department of Neurology, Hospital "Martha-Maria" Halle-Dölau, Halle, Germany
| | - Malte E Kornhuber
- Department of Neurology, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Martin S Staege
- Department of Surgical and Conservative Paediatrics and Adolescent Medicine, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Alexander Emmer
- Department of Neurology, Martin Luther University of Halle-Wittenberg, Halle, Germany
| |
Collapse
|
42
|
Rao VTS, Khan D, Cui QL, Fuh SC, Hossain S, Almazan G, Multhaup G, Healy LM, Kennedy TE, Antel JP. Distinct age and differentiation-state dependent metabolic profiles of oligodendrocytes under optimal and stress conditions. PLoS One 2017; 12:e0182372. [PMID: 28792512 PMCID: PMC5549710 DOI: 10.1371/journal.pone.0182372] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/17/2017] [Indexed: 12/18/2022] Open
Abstract
Within the microenvironment of multiple sclerosis lesions, oligodendrocytes are subject to metabolic stress reflecting effects of focal ischemia and inflammation. Previous studies have shown that under optimal conditions in vitro, the respiratory activity of human adult brain-derived oligodendrocytes is lower and more predominantly glycolytic compared to oligodendrocytes differentiated in vitro from post natal rat brain oligodendrocyte progenitor cells. In response to sub-lethal metabolic stress, adult human oligodendrocytes reduce overall energy production rate impacting the capacity to maintain myelination. Here, we directly compare the metabolic profiles of oligodendrocytes derived from adult rat brain with oligodendrocytes newly differentiated in vitro from oligodendrocyte progenitor cells obtained from the post natal rat brain, under both optimal culture and metabolic stress (low/no glucose) conditions. Oxygen consumption and extracellular acidification rates were measured using a Seahorse extracellular flux analyzer. Our findings indicate that under optimal conditions, adult rat oligodendrocytes preferentially use glycolysis whereas newly differentiated post natal rat oligodendrocytes, and the oligodendrocyte progenitor cells from which they are derived, mainly utilize oxidative phosphorylation to produce ATP. Metabolic stress increases the rate of ATP production via oxidative phosphorylation and significantly reduces glycolysis in adult oligodendrocytes. The rate of ATP production was relatively unchanged in newly differentiated post natal oligodendrocytes under these stress conditions, while it was significantly reduced in oligodendrocyte progenitor cells. Our study indicates that both age and maturation influence the metabolic profile under optimal and stressed conditions, emphasizing the need to consider these variables for in vitro studies that aim to model adult human disease.
Collapse
Affiliation(s)
- Vijayaraghava T. S. Rao
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail:
| | - Damla Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Qiao-Ling Cui
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Shih-Chieh Fuh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Shireen Hossain
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Guillermina Almazan
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Gerhard Multhaup
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Luke M. Healy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Timothy E. Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jack P. Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
43
|
Oligodendrogliopathy in Multiple Sclerosis: Low Glycolytic Metabolic Rate Promotes Oligodendrocyte Survival. J Neurosci 2017; 36:4698-707. [PMID: 27122029 DOI: 10.1523/jneurosci.4077-15.2016] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/21/2016] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Multiple sclerosis (MS) lesions feature demyelination with limited remyelination. A distinct injury phenotype of MS lesions features dying back of oligodendrocyte (OL) terminal processes, a response that destabilizes myelin/axon interactions. This oligodendrogliopathy has been linked with local metabolic stress, similar to the penumbra of ischemic/hypoxic states. Here, we developed an in vitro oligodendrogliopathy model using human CNS-derived OLs and related this injury response to their distinct bioenergetic properties. We determined the energy utilization properties of adult human surgically derived OLs cultured under either optimal or metabolic stress conditions, deprivation of growth factors, and glucose and/or hypoxia using a Seahorse extracellular flux analyzer. Baseline studies were also performed on OL progenitor cells derived from the same tissue and postnatal rat-derived cells. Under basal conditions, adult human OLs were less metabolically active than their progenitors and both were less active than the rat cells. Human OLs and progenitors both used aerobic glycolysis for the majority of ATP production, a process that contributes to protein and lipid production necessary for myelin biosynthesis. Under stress conditions that induce significant process retraction with only marginal cell death, human OLs exhibited a significant reduction in overall energy utilization, particularly in glycolytic ATP production. The stress-induced reduction of glycolytic ATP production by the human OLs would exacerbate myelin process withdrawal while favoring cell survival, providing a potential basis for the oligodendrogliopathy observed in MS. The glycolytic pathway is a potential therapeutic target to promote myelin maintenance and enhance repair in MS. SIGNIFICANCE STATEMENT The neurologic deficits that characterize multiple sclerosis (MS) reflect disruption of myelin (demyelination) within the CNS and failure of repair (remyelination). We define distinct energy utilization properties of human adult brain-derived oligodendrocytes and oligodendrocyte progenitor cells under conditions of metabolic stress that model the initial relapsing and subsequent progressive phases of MS. The observed changes in energy utilization affect both cell survival and myelination capacity. These processes may be amenable to therapeutic interventions to limit the extent of cumulative tissue injury and to promote repair in MS.
Collapse
|
44
|
Guan SY, Leng RX, Tao JH, Li XP, Ye DQ, Olsen N, Zheng SG, Pan HF. Hypoxia-inducible factor-1α: a promising therapeutic target for autoimmune diseases. Expert Opin Ther Targets 2017; 21:715-723. [PMID: 28553732 DOI: 10.1080/14728222.2017.1336539] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Hypoxia-inducible factor-1α (HIF-1α) plays a crucial role in both innate and adaptive immunity. Emerging evidence indicates that HIF-1α is associated with the inflammation and pathologic activities of autoimmune diseases. Areas covered: Considering that the types of autoimmune diseases are complicated and various, this review aims to cover the typical kinds of autoimmune diseases, discuss the molecular mechanisms, biological functions and expression of HIF-1α in these diseases, and further explore its therapeutic potential. Expert opinion: Inflammation and hypoxia are interdependent. HIF-1α as a key regulator of hypoxia, exerts a crucial role in the balance between Th17 and Treg, and involves in the inflammation and pathologic activities of autoimmune diseases. Although there are many challenges remaining to be overcome, targeting HIF-1α could be a promising strategy for autoimmune diseases therapies.
Collapse
Affiliation(s)
- Shi-Yang Guan
- a Department of Epidemiology and Biostatistics, School of Public Health , Anhui Medical University , Hefei , China.,b Anhui provincial laboratory of population health & major disease screening and diagnosis , Hefei , China
| | - Rui-Xue Leng
- a Department of Epidemiology and Biostatistics, School of Public Health , Anhui Medical University , Hefei , China.,b Anhui provincial laboratory of population health & major disease screening and diagnosis , Hefei , China
| | - Jin-Hui Tao
- c Department of Rheumatology , Anhui Provincial Hospital , Hefei , China
| | - Xiang-Pei Li
- c Department of Rheumatology , Anhui Provincial Hospital , Hefei , China
| | - Dong-Qing Ye
- a Department of Epidemiology and Biostatistics, School of Public Health , Anhui Medical University , Hefei , China.,b Anhui provincial laboratory of population health & major disease screening and diagnosis , Hefei , China
| | - Nancy Olsen
- d Division of Rheumatology , Penn State University Hershey College of Medicine , Hershey , PA , USA
| | - Song Guo Zheng
- d Division of Rheumatology , Penn State University Hershey College of Medicine , Hershey , PA , USA
| | - Hai-Feng Pan
- a Department of Epidemiology and Biostatistics, School of Public Health , Anhui Medical University , Hefei , China.,b Anhui provincial laboratory of population health & major disease screening and diagnosis , Hefei , China
| |
Collapse
|
45
|
Magnetic resonance imaging perfusion is associated with disease severity and activity in multiple sclerosis. Neuroradiology 2017; 59:655-664. [PMID: 28585082 DOI: 10.1007/s00234-017-1849-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/10/2017] [Indexed: 01/24/2023]
Abstract
PURPOSE The utility of perfusion-weighted imaging in multiple sclerosis (MS) is not well investigated. The purpose of this study was to compare baseline normalized perfusion measures in subgroups of newly diagnosed MS patients. We wanted to test the hypothesis that this method can differentiate between groups defined according to disease severity and disease activity at 1 year follow-up. METHODS Baseline magnetic resonance imaging (MRI) including a dynamic susceptibility contrast perfusion sequence was performed on a 1.5-T scanner in 66 patients newly diagnosed with relapsing-remitting MS. From the baseline MRI, cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) maps were generated. Normalized (n) perfusion values were calculated by dividing each perfusion parameter obtained in white matter lesions by the same parameter obtained in normal-appearing white matter. Neurological examination was performed at baseline and at follow-up approximately 1 year later to establish the multiple sclerosis severity score (MSSS) and evidence of disease activity (EDA). RESULTS Baseline normalized mean transit time (nMTT) was lower in patients with MSSS >3.79 (p = 0.016), in patients with EDA (p = 0.041), and in patients with both MSSS >3.79 and EDA (p = 0.032) at 1-year follow-up. Baseline normalized cerebral blood flow and normalized cerebral blood volume did not differ between these groups. CONCLUSION Lower baseline nMTT was associated with higher disease severity and with presence of disease activity 1 year later in newly diagnosed MS patients. Further longitudinal studies are needed to confirm whether baseline-normalized perfusion measures can differentiate between disease severity and disease activity subgroups over time.
Collapse
|
46
|
Cui QL, Khan D, Rone M, T.S. Rao V, Johnson RM, Lin YH, Bilodeau PA, Hall JA, Rodriguez M, Kennedy TE, Ludwin SK, Antel JP. Sublethal oligodendrocyte injury: A reversible condition in multiple sclerosis? Ann Neurol 2017; 81:811-824. [DOI: 10.1002/ana.24944] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Qiao-Ling Cui
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| | - Damla Khan
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| | - Malena Rone
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| | - Vijayaraghava T.S. Rao
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| | | | - Yun Hsuan Lin
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| | - Philippe-Antoine Bilodeau
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| | - Jeffery A. Hall
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| | | | - Timothy E. Kennedy
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| | - Samuel K. Ludwin
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
- Department of Pathology and Molecular Medicine; Queens University; Kingston Ontario Canada
| | - Jack P. Antel
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| |
Collapse
|
47
|
Ottoboni L, Merlini A, Martino G. Neural Stem Cell Plasticity: Advantages in Therapy for the Injured Central Nervous System. Front Cell Dev Biol 2017; 5:52. [PMID: 28553634 PMCID: PMC5427132 DOI: 10.3389/fcell.2017.00052] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/25/2017] [Indexed: 12/14/2022] Open
Abstract
The physiological and pathological properties of the neural germinal stem cell niche have been well-studied in the past 30 years, mainly in animals and within given limits in humans, and knowledge is available for the cyto-architectonic structure, the cellular components, the timing of development and the energetic maintenance of the niche, as well as for the therapeutic potential and the cross talk between neural and immune cells. In recent years we have gained detailed understanding of the potentiality of neural stem cells (NSCs), although we are only beginning to understand their molecular, metabolic, and epigenetic profile in physiopathology and, further, more can be invested to measure quantitatively the activity of those cells, to model in vitro their therapeutic responses or to predict interactions in silico. Information in this direction has been put forward for other organs but is still limited in the complex and very less accessible context of the brain. A comprehensive understanding of the behavior of endogenous NSCs will help to tune or model them toward a desired response in order to treat complex neurodegenerative diseases. NSCs have the ability to modulate multiple cellular functions and exploiting their plasticity might make them into potent and versatile cellular drugs.
Collapse
Affiliation(s)
- Linda Ottoboni
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific InstituteMilan, Italy
| | - Arianna Merlini
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific InstituteMilan, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific InstituteMilan, Italy
| |
Collapse
|
48
|
Laukoter S, Rauschka H, Tröscher AR, Köck U, Saji E, Jellinger K, Lassmann H, Bauer J. Differences in T cell cytotoxicity and cell death mechanisms between progressive multifocal leukoencephalopathy, herpes simplex virus encephalitis and cytomegalovirus encephalitis. Acta Neuropathol 2017; 133:613-627. [PMID: 27817117 PMCID: PMC5348553 DOI: 10.1007/s00401-016-1642-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/25/2016] [Accepted: 10/30/2016] [Indexed: 12/29/2022]
Abstract
During the appearance of human immunodeficiency virus infection in the 1980 and the 1990s, progressive multifocal leukoencephalopathy (PML), a viral encephalitis induced by the JC virus, was the leading opportunistic brain infection. As a result of the use of modern immunomodulatory compounds such as Natalizumab and Rituximab, the number of patients with PML is once again increasing. Despite the presence of PML over decades, little is known regarding the mechanisms leading to death of infected cells and the role the immune system plays in this process. Here we compared the presence of inflammatory T cells and the targeting of infected cells by cytotoxic T cells in PML, herpes simplex virus encephalitis (HSVE) and cytomegalovirus encephalitis (CMVE). In addition, we analyzed cell death mechanisms in infected cells in these encephalitides. Our results show that large numbers of inflammatory cytotoxic T cells are present in PML lesions. Whereas in HSVE and CMVE, single or multiple appositions of CD8+ or granzyme-B+ T cells to infected cells are found, in PML such appositions are significantly less apparent. Analysis of apoptotic pathways by markers such as activated caspase-3, caspase-6, poly(ADP-ribose) polymerase-1 (PARP-1) and apoptosis-inducing factor (AIF) showed upregulation of caspase-3 and loss of caspase-6 from mitochondria in CMVE and HSVE infected cells. Infected oligodendrocytes in PML did not upregulate activated caspase-3 but instead showed translocation of PARP-1 from nucleus to cytoplasm and AIF from mitochondria to nucleus. These findings suggest that in HSVE and CMVE, cells die by caspase-mediated apoptosis induced by cytotoxic T cells. In PML, on the other hand, infected cells are not eliminated by the immune system but seem to die by virus-induced PARP and AIF translocation in a type of cell death defined as parthanatos.
Collapse
|
49
|
Geraldes R, Esiri MM, DeLuca GC, Palace J. Age-related small vessel disease: a potential contributor to neurodegeneration in multiple sclerosis. Brain Pathol 2017; 27:707-722. [PMID: 27864848 DOI: 10.1111/bpa.12460] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/17/2016] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disorder of the central nervous system wherein, after an initial phase of transient neurological defects, slow neurological deterioration due to progressive neuronal loss ensues. Age is a major determinant of MS progression onset and disability. Over the past years, several mechanisms have been proposed to explain the key drivers of neurodegeneration and disability accumulation in MS. However, the effect of commonly encountered age-related cerebral vessel disease, namely small vessel disease (SVD), has been largely neglected and constitutes the aim of this review. SVD shares some features with MS, that is, white matter demyelination and brain atrophy, and has been shown to contribute to the neuronal damage seen in vascular cognitive impairment. Several lines of evidence suggest that an interaction between MS and SVD may influence MS-related neurodegeneration. SVD may contribute to hypoperfusion, reduced vascular reactivity and tissue hypoxia, features seen in MS. Venule and endothelium abnormalities have been documented in MS but the role of arterioles and of other neurovascular unit structures, such as the pericyte, has not been explored. Vascular risk factors (VRF) have recently been associated with faster progression in MS, though the mechanisms are unclear since very few studies have addressed the impact of VRF and SVD on MS imaging and pathology outcomes. Therapeutic agents targeting the microvasculature and the neurovascular unit may impact both SVD and MS and may benefit patients with dual pathology.
Collapse
Affiliation(s)
- Ruth Geraldes
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Margaret M Esiri
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
50
|
Saadoun S, Papadopoulos MC. Spinal cord injury: is monitoring from the injury site the future? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:308. [PMID: 27716379 PMCID: PMC5050726 DOI: 10.1186/s13054-016-1490-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper challenges the current management of acute traumatic spinal cord injury based on our experience with monitoring from the injury site in the neurointensive care unit. We argue that the concept of bony decompression is inadequate. The concept of optimum spinal cord perfusion pressure, which differs between patients, is introduced. Such variability suggests individualized patient treatment. Failing to optimize spinal cord perfusion limits the entry of systemically administered drugs into the injured cord. We conclude that monitoring from the injury site helps optimize management and should be subjected to a trial to determine whether it improves outcome.
Collapse
Affiliation(s)
- Samira Saadoun
- Academic Neurosurgery Unit, St. George's, University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK
| | - Marios C Papadopoulos
- Academic Neurosurgery Unit, St. George's, University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK.
| |
Collapse
|