1
|
Borkar NA, Thompson MA, Bartman CM, Khalfaoui L, Sine S, Sathish V, Prakash YS, Pabelick CM. Nicotinic receptors in airway disease. Am J Physiol Lung Cell Mol Physiol 2024; 326:L149-L163. [PMID: 38084408 PMCID: PMC11280694 DOI: 10.1152/ajplung.00268.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024] Open
Abstract
With continued smoking of tobacco products and expanded use of nicotine delivery devices worldwide, understanding the impact of smoking and vaping on respiratory health remains a major global unmet need. Although multiple studies have shown a strong association between smoking and asthma, there is a relative paucity of mechanistic understanding of how elements in cigarette smoke impact the airway. Recognizing that nicotine is a major component in both smoking and vaping products, it is critical to understand the mechanisms by which nicotine impacts airways and promotes lung diseases such as asthma. There is now increasing evidence that α7 nicotinic acetylcholine receptors (α7nAChRs) are critical players in nicotine effects on airways, but the mechanisms by which α7nAChR influences different airway cell types have not been widely explored. In this review, we highlight and integrate the current state of knowledge regarding nicotine and α7nAChR in the context of asthma and identify potential approaches to alleviate the impact of smoking and vaping on the lungs.
Collapse
Affiliation(s)
- Niyati A Borkar
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Steven Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
2
|
Di Lascio S, Fornasari D, Benfante R. The Human-Restricted Isoform of the α7 nAChR, CHRFAM7A: A Double-Edged Sword in Neurological and Inflammatory Disorders. Int J Mol Sci 2022; 23:ijms23073463. [PMID: 35408823 PMCID: PMC8998457 DOI: 10.3390/ijms23073463] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
CHRFAM7A is a relatively recent and exclusively human gene arising from the partial duplication of exons 5 to 10 of the α7 neuronal nicotinic acetylcholine receptor subunit (α7 nAChR) encoding gene, CHRNA7. CHRNA7 is related to several disorders that involve cognitive deficits, including neuropsychiatric, neurodegenerative, and inflammatory disorders. In extra-neuronal tissues, α7nAChR plays an important role in proliferation, differentiation, migration, adhesion, cell contact, apoptosis, angiogenesis, and tumor progression, as well as in the modulation of the inflammatory response through the “cholinergic anti-inflammatory pathway”. CHRFAM7A translates the dupα7 protein in a multitude of cell lines and heterologous systems, while maintaining processing and trafficking that are very similar to the full-length form. It does not form functional ion channel receptors alone. In the presence of CHRNA7 gene products, dupα7 can assemble and form heteromeric receptors that, in order to be functional, should include at least two α7 subunits to form the agonist binding site. When incorporated into the receptor, in vitro and in vivo data showed that dupα7 negatively modulated α7 activity, probably due to a reduction in the number of ACh binding sites. Very recent data in the literature report that the presence of the duplicated gene may be responsible for the translational gap in several human diseases. Here, we will review the studies that have been conducted on CHRFAM7A in different pathologies, with the intent of providing evidence regarding when and how the expression of this duplicated gene may be beneficial or detrimental in the pathogenesis, and eventually in the therapeutic response, to CHRNA7-related neurological and non-neurological diseases.
Collapse
Affiliation(s)
- Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, 20129 Milan, Italy; (S.D.L.); (D.F.)
| | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, 20129 Milan, Italy; (S.D.L.); (D.F.)
- CNR Institute of Neuroscience, 20845 Vedano al Lambro, Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, 20129 Milan, Italy; (S.D.L.); (D.F.)
- CNR Institute of Neuroscience, 20845 Vedano al Lambro, Italy
- NeuroMi, Milan Center for Neuroscience, University of Milano Bicocca, 20126 Milan, Italy
- Correspondence:
| |
Collapse
|
3
|
Baysal M, Atlı-Eklioğlu Ö. Comparison of the toxicity of pure compounds and commercial formulations of imidacloprid and acetamiprid on HT-29 cells: Single and mixture exposure. Food Chem Toxicol 2021; 155:112430. [PMID: 34289392 DOI: 10.1016/j.fct.2021.112430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/28/2021] [Accepted: 07/17/2021] [Indexed: 01/06/2023]
Abstract
Neonicotinoids, which are widely used worldwide, including in Turkey, are an insecticide group that are synthetic derivatives of nicotine. Recently, they have attracted attention due to their toxic effects on non-target organisms, especially bees. Numerous studies have shown that neonicotinoids have been found in detectable levels in the environment and cause various undesirable effects on living organisms, including humans and other mammals. In this study, the possible toxic effects of imidacloprid and acetamiprid, commonly used neonicotinoids, are investigated by their pure forms and commercial formulations on HT-29 cells with individual and combined exposures. According to our results, imidacloprid and acetamiprid induced cytotoxicity by caspase-mediated apoptosis, mitochondrial membrane depolarization, DNA damage, and oxidative stress under these experimental conditions. It is worth mentioning low doses of DNA damage, mixture exposure causes toxic effects at lower concentrations than individual exposure, and formulation groups are at the forefront of toxicity formation, though this varies depending on the parameters.
Collapse
Affiliation(s)
- Merve Baysal
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| | - Özlem Atlı-Eklioğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey.
| |
Collapse
|
4
|
ten Hove AS, Brinkman DJ, Li Yim AYF, Verseijden C, Hakvoort TBM, Admiraal I, Welting O, van Hamersveld PHP, Sinniger V, Bonaz B, Luyer MD, de Jonge WJ. The role of nicotinic receptors in SARS-CoV-2 receptor ACE2 expression in intestinal epithelia. Bioelectron Med 2020; 6:20. [PMID: 33123616 PMCID: PMC7592135 DOI: 10.1186/s42234-020-00057-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Recent evidence demonstrated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) propagates in intestinal epithelial cells expressing Angiotensin-Converting Enzyme 2 (ACE2), implying that these cells represent an important entry site for the viral infection. Nicotinic receptors (nAChRs) have been put forward as potential regulators of inflammation and of ACE2 expression. As vagus nerve stimulation (VNS) activates nAChRs, we aimed to investigate whether VNS can be instrumental in affecting intestinal epithelial ACE2 expression. METHODS By using publicly available datasets we qualified epithelial ACE2 expression in human intestine, and assessed gene co-expression of ACE2 and SARS-CoV-2 priming Transmembrane Serine Protease 2 (TMPRSS2) with nAChRs in intestinal epithelial cells. Next, we investigated mouse and human ACE2 expression in intestinal tissues after chronic VNS via implanted devices. RESULTS We show co-expression of ACE2 and TMPRSS2 with nAChRs and α7 nAChR in particular in intestinal stem cells, goblet cells, and enterocytes. However, VNS did not affect ACE2 expression in murine or human intestinal tissue, albeit in colitis setting. CONCLUSIONS ACE2 and TMPRSS2 are specifically expressed in epithelial cells of human intestine, and both are co-expressed with nAChRs. However, no evidence for regulation of ACE2 expression through VNS could be found. Hence, a therapeutic value of VNS with respect to SARS-CoV-2 infection risk through ACE2 receptor modulation in intestinal epithelia could not be established.
Collapse
Affiliation(s)
- Anne S. ten Hove
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, 1105 BK the Netherlands
| | - David J. Brinkman
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, 1105 BK the Netherlands
- Department of Surgery, Catharina Hospital, 5623 EJ Eindhoven, the Netherlands
| | - Andrew Y. F. Li Yim
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, 1105 BK the Netherlands
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, 1105 AZ the Netherlands
| | - Caroline Verseijden
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, 1105 BK the Netherlands
| | - Theo B. M. Hakvoort
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, 1105 BK the Netherlands
| | - Iris Admiraal
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, 1105 BK the Netherlands
| | - Olaf Welting
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, 1105 BK the Netherlands
| | - Patricia H. P. van Hamersveld
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, 1105 BK the Netherlands
| | - Valérie Sinniger
- Grenoble Institute of Neurosciences, Division of Hepato-Gastroenterology, University Grenoble Alpes, Inserm U1216, 38000 Grenoble, France
| | - Bruno Bonaz
- Grenoble Institute of Neurosciences, Division of Hepato-Gastroenterology, University Grenoble Alpes, Inserm U1216, 38000 Grenoble, France
| | - Misha D. Luyer
- Department of Surgery, Catharina Hospital, 5623 EJ Eindhoven, the Netherlands
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, 1105 BK the Netherlands
- Department of General, Visceral-, Thoracic and Vascular Surgery, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
5
|
|
6
|
Johnson K, Yin J, In JG, Kulkarni S, Pasricha P, Tse CM, Donowitz M. Cholinergic-induced anion secretion in murine jejunal enteroids involves synergy between muscarinic and nicotinic pathways. Am J Physiol Cell Physiol 2020; 319:C321-C330. [PMID: 32551856 PMCID: PMC7500216 DOI: 10.1152/ajpcell.00179.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/22/2023]
Abstract
Acetylcholine induces robust electrogenic anion secretion in mammalian intestine and it has long been hypothesized that it mediates the epithelial response through the M3 and, to a lesser extent, the M1 muscarinic receptors in the mouse. However, nicotinic receptors have recently been identified in intestinal enterocytes by quantitative real-time (qRT)-PCR/RNAseq, although any direct influence on intestinal transport has not been identified. We tested the hypothesis that cholinergic-induced anion secretion in the intestine is a result of both muscarinic and nicotinic pathways that are intrinsic to the intestinal epithelia. We developed a method to generate mouse jejunal enteroid monolayers which were used to measure active electrogenic anion secretion by the Ussing chamber/voltage-clamp technique. Here, we show that the cholinergic agonist carbachol (CCh) and the muscarinic agonist bethanechol (BCh) stimulate short-lived, concentration-dependent anion secretion in the epithelial cell-only enteroid monolayers. The muscarinic antagonist atropine completely inhibited CCh- and BCh-induced secretion, while the nicotinic antagonist hexamethonium reduced the CCh response by ~45%. While nicotine alone did not alter anion secretion, it increased the BCh-induced increase in short-circuit current in a concentration-dependent manner; this synergy was prevented by pretreatment with hexamethonium. In addition to being sensitive to hexamethonium, monolayers express both classes of cholinergic receptor by qRT-PCR, including 13 of 16 nicotinic receptor subunits. Our findings indicate that an interaction between muscarinic and nicotinic agonists synergistically stimulates anion secretion in mouse jejunal epithelial cells and identify a role for epithelial nicotinic receptors in anion secretion.
Collapse
Affiliation(s)
- Kelli Johnson
- Department of Cellular and Molecular Physiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
- Division of Gastroenterology and Hepatology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Jianyi Yin
- Division of Gastroenterology and Hepatology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Julie G In
- Division of Gastroenterology and Hepatology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Subhash Kulkarni
- Division of Gastroenterology and Hepatology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Pankaj Pasricha
- Division of Gastroenterology and Hepatology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Chung Ming Tse
- Division of Gastroenterology and Hepatology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Mark Donowitz
- Department of Cellular and Molecular Physiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
- Division of Gastroenterology and Hepatology, Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|
7
|
Gao Q, Bi P, Luo D, Guan Y, Zeng W, Xiang H, Mi Q, Yang G, Li X, Yang B. Nicotine-induced autophagy via AMPK/mTOR pathway exerts protective effect in colitis mouse model. Chem Biol Interact 2020; 317:108943. [PMID: 31926917 DOI: 10.1016/j.cbi.2020.108943] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/06/2019] [Accepted: 01/08/2020] [Indexed: 02/09/2023]
Abstract
Epidemiological studies have shown that cigarette smoking is beneficial in ulcerative colitis and that nicotine may be responsible for this effect. However, the mechanism remains unclear. In a previous study, nicotine was found to induce autophagy in intestinal cells. Here, we evaluated the effect of nicotine-induced autophagy in a dextran sodium sulfate (DSS)-induced colitis mouse model. C57BL/6 adult male mice drank DSS water solution freely for seven consecutive days, and then tap water was administered. The effect of nicotine treatment was examined in the DSS model, including colon length, disease severity, histology of the colon tissue, and inflammation levels. Moreover, autophagy levels were detected by Western blot analysis (LC3II/LC3I, p62, and beclin-1). The levels of DSS-induced colitis were significantly decreased following nicotine treatment. The disease activity score, body weight, histologic damage scores, and the level of colonic inflammatory factors of nicotine-treated mice all decreased compared to those of the control mice. Additionally, nicotine enhanced the expression of LC3II/LC3I and beclin-1 but decreased the p62 protein level. Inhibiting autophagy by 3-MA attenuated the protective effects of nicotine on colitis. Additionally, both in vitro and in vivo experiments showed changes in AMPK-mTOR-P70S6K during this process. These results suggest that nicotine improved colitis by regulating autophagy and provided a protective effect against DSS-induced colitis.
Collapse
Affiliation(s)
- Qian Gao
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Pinduan Bi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ding Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ying Guan
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Wanli Zeng
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Haiying Xiang
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Qili Mi
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Guangyu Yang
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Xuemei Li
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China.
| | - Bin Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
8
|
Water-soluble variant of human Lynx1 induces cell cycle arrest and apoptosis in lung cancer cells via modulation of α7 nicotinic acetylcholine receptors. PLoS One 2019; 14:e0217339. [PMID: 31150435 PMCID: PMC6544245 DOI: 10.1371/journal.pone.0217339] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
Lynx1 is the first three-finger prototoxin found in the mammalian central nervous system. It is a GPI-anchored protein modulating nicotinic acetylcholine receptors (nAChRs) in the brain. Besides the brain, the Lynx1 protein was found in the lung and kidney. Endogenous Lynx1 controls the nicotine-induced up-regulation of the expression of α7 type nAChRs in lung adenocarcinoma A549 cells as well as the cell growth. Here, we analyzed the Lynx1 expression in the set of human epithelial cells. The Lynx1 expression both at the mRNA and protein level was detected in normal oral keratinocytes, and lung, colon, epidermal, and breast cancer cells, but not in embryonic kidney cells. Co-localization of Lynx1 with α7-nAChRs was revealed in a cell membrane for lung adenocarcinoma A549 and colon carcinoma HT-29 cells, but not for breast adenocarcinoma MCF-7 and epidermoid carcinoma A431 cells. The recombinant water-soluble variant of Lynx1 without a GPI-anchor (ws-Lynx1) inhibited the growth of A549 cells causing cell cycle arrest via modulation of α7-nAChRs and activation of different intracellular signaling cascades, including PKC/IP3, MAP/ERK, p38, and JNK pathways. A549 cells treatment with ws-Lynx1 resulted in phosphorylation of the proapoptotic tumor suppressor protein p53 and different kinases participated in the regulation of gene transcription, cell growth, adhesion, and differentiation. Externalization of phosphatidylserine, an early apoptosis marker, observed by flow cytometry, confirmed the induction of apoptosis in A549 cells upon the ws-Lynx1 treatment. Our data revealed the ability of ws-Lynx1 to regulate homeostasis of epithelial cancer cells.
Collapse
|
9
|
Lyukmanova EN, Shulepko MA, Shenkarev ZO, Bychkov ML, Paramonov AS, Chugunov AO, Kulbatskii DS, Arvaniti M, Dolejsi E, Schaer T, Arseniev AS, Efremov RG, Thomsen MS, Dolezal V, Bertrand D, Dolgikh DA, Kirpichnikov MP. Secreted Isoform of Human Lynx1 (SLURP-2): Spatial Structure and Pharmacology of Interactions with Different Types of Acetylcholine Receptors. Sci Rep 2016; 6:30698. [PMID: 27485575 PMCID: PMC4971505 DOI: 10.1038/srep30698] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/06/2016] [Indexed: 11/12/2022] Open
Abstract
Human-secreted Ly-6/uPAR-related protein-2 (SLURP-2) regulates the growth and differentiation of epithelial cells. Previously, the auto/paracrine activity of SLURP-2 was considered to be mediated via its interaction with the α3β2 subtype of the nicotinic acetylcholine receptors (nAChRs). Here, we describe the structure and pharmacology of a recombinant analogue of SLURP-2. Nuclear magnetic resonance spectroscopy revealed a 'three-finger' fold of SLURP-2 with a conserved β-structural core and three protruding loops. Affinity purification using cortical extracts revealed that SLURP-2 could interact with the α3, α4, α5, α7, β2, and β4 nAChR subunits, revealing its broader pharmacological profile. SLURP-2 inhibits acetylcholine-evoked currents at α4β2 and α3β2-nAChRs (IC50 ~0.17 and >3 μM, respectively) expressed in Xenopus oocytes. In contrast, at α7-nAChRs, SLURP-2 significantly enhances acetylcholine-evoked currents at concentrations <1 μM but induces inhibition at higher concentrations. SLURP-2 allosterically interacts with human M1 and M3 muscarinic acetylcholine receptors (mAChRs) that are overexpressed in CHO cells. SLURP-2 was found to promote the proliferation of human oral keratinocytes via interactions with α3β2-nAChRs, while it inhibited cell growth via α7-nAChRs. SLURP-2/mAChRs interactions are also probably involved in the control of keratinocyte growth. Computer modeling revealed possible SLURP-2 binding to the 'classical' orthosteric agonist/antagonist binding sites at α7 and α3β2-nAChRs.
Collapse
Affiliation(s)
- E. N. Lyukmanova
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - M. A. Shulepko
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Z. O. Shenkarev
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
- Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - M. L. Bychkov
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - A. S. Paramonov
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - A. O. Chugunov
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - D. S. Kulbatskii
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - M. Arvaniti
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Eva Dolejsi
- Institute of Physiology, Academy of Sciences of the Czech Republic (public research institution), Prague, 14220, Czech Republic
| | - T. Schaer
- HiQScreen Sàrl, 6 rte de Compois, 1222, Vésenaz, Geneva, Switzerland
| | - A. S. Arseniev
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
- Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - R. G. Efremov
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
- National Research University Higher School of Economics, Myasnitskaya ul. 20, 101000 Moscow, Russia
| | - M. S. Thomsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - V. Dolezal
- Institute of Physiology, Academy of Sciences of the Czech Republic (public research institution), Prague, 14220, Czech Republic
| | - D. Bertrand
- HiQScreen Sàrl, 6 rte de Compois, 1222, Vésenaz, Geneva, Switzerland
| | - D. A. Dolgikh
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - M. P. Kirpichnikov
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| |
Collapse
|
10
|
Shi X, Zhou Z, Wang L, Wang M, Shi S, Wang Z, Song L. The immunomodulation of nicotinic acetylcholine receptor subunits in Zhikong scallop Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2015; 47:611-622. [PMID: 26455648 DOI: 10.1016/j.fsi.2015.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
Nicotinic acetylcholine receptor (nAChR), the best-studied ionotropic neuron receptor protein, is a key player in neuronal communication, and it has been reported to play an important role in immunomodulation of vertebrates. Although nAChRs have also been identified in most invertebrates, the knowledge about their immunomodulation is still limited. In the present study, two scallop nAChR genes were identified from Chlamys farreri (designed as CfnAChR1 and CfnAChR2), which encoded 384 and 443 amino acids, respectively. The conserved disulfide-linked cystines, ion selectivity residues and the hydrophobic gating residues (L251, V255 and V259) were identified in CfnAChR1 and CfnAChR2. The immunoreactivities of CfnAChR1 and CfnAChR2 were observed in all the tested scallop tissues, including adductor muscle, mantle, gill, hepatopancreas, kidney and gonad. After LPS (0.5 mg mL(-1)) stimulation, the expression of CfnAChR1 mRNA in haemocytes increased significantly by 9.83-fold (P < 0.05) and 12.93-fold (P < 0.05) at 3 h and 24 h, respectively. While the expression level of CfnAChR2 mRNA increased 43.94% at 12 h after LPS stimulation (P < 0.05). After TNF-α (50 ng mL(-1)) stimulation, the expression levels of CfnAChR1 and CfnAChR2 both increased significantly at 1 h, which were 21.33-fold (P < 0.05) and 2.44-fold (P < 0.05) of that in the PBS group, respectively. The results collectively indicated that the cholinergic nervous system in scallops could be activated by immune stimulations through CfnAChR1 and CfnAChR2, which function as the links between the cholinergic nervous system and immune system.
Collapse
Affiliation(s)
- Xiaowei Shi
- Linyi University, Linyi 276000, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, University of Chinese Academy of Sciences, Qingdao 266071, China; Shandong Provincial Engineering Technology Research Center for Lunan Chinese Herbal Medicine, Linyi 276000, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, University of Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, University of Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, University of Chinese Academy of Sciences, Qingdao 266071, China
| | | | - Zhen Wang
- Linyi University, Linyi 276000, China; Shandong Provincial Engineering Technology Research Center for Lunan Chinese Herbal Medicine, Linyi 276000, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
11
|
Bader S, Diener M. Novel aspects of cholinergic regulation of colonic ion transport. Pharmacol Res Perspect 2015; 3:e00139. [PMID: 26236483 PMCID: PMC4492755 DOI: 10.1002/prp2.139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/24/2015] [Accepted: 03/01/2015] [Indexed: 12/17/2022] Open
Abstract
Nicotinic receptors are not only expressed by excitable tissues, but have been identified in various epithelia. One aim of this study was to investigate the expression of nicotinic receptors and their involvement in the regulation of ion transport across colonic epithelium. Ussing chamber experiments with putative nicotinic agonists and antagonists were performed at rat colon combined with reverse transcription polymerase chain reaction (RT-PCR) detection of nicotinic receptor subunits within the epithelium. Dimethylphenylpiperazinium (DMPP) and nicotine induced a tetrodotoxin-resistant anion secretion leading to an increase in short-circuit current (I sc) across colonic mucosa. The response was suppressed by the nicotinic receptor antagonist hexamethonium. RT-PCR experiments revealed the expression of α2, α4, α5, α6, α7, α10, and β4 nicotinic receptor subunits in colonic epithelium. Choline, the product of acetylcholine hydrolysis, is known for its affinity to several nicotinic receptor subtypes. As a strong acetylcholinesterase activity was found in colonic epithelium, the effect of choline on I sc was examined. Choline induced a concentration-dependent, tetrodotoxin-resistant chloride secretion which was, however, resistant against hexamethonium, but was inhibited by atropine. Experiments with inhibitors of muscarinic M1 and M3 receptors revealed that choline-evoked secretion was mainly due to a stimulation of epithelial M3 receptors. Although choline proved to be only a partial agonist, it concentration-dependently desensitized the response to acetylcholine, suggesting that it might act as a modulator of cholinergically induced anion secretion. Thus the cholinergic regulation of colonic ion transport - up to now solely explained by cholinergic submucosal neurons stimulating epithelial muscarinic receptors - is more complex than previously assumed.
Collapse
Affiliation(s)
- Sandra Bader
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen Giessen, Germany
| | - Martin Diener
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen Giessen, Germany
| |
Collapse
|
12
|
Neuromuscular nicotinic receptors mediate bladder contractions following bladder reinnervation with somatic to autonomic nerve transfer after decentralization by spinal root transection. J Urol 2014; 193:2138-45. [PMID: 25444958 DOI: 10.1016/j.juro.2014.10.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2014] [Indexed: 11/24/2022]
Abstract
PURPOSE We investigated whether the reinnervated neuronal pathway mediates contraction via the same neurotransmitter and receptor mechanisms as the original pathway. MATERIALS AND METHODS After decentralizing the bladder by transecting the sacral roots in dogs we performed peripheral nerve transfer, including bilateral genitofemoral to pelvic nerve transfer and unilateral left femoral nerve to bilateral pelvic nerve transfer. Reinnervation was assessed 7.5 months postoperatively by monitoring bladder pressure during electrical stimulation of the transferred nerves, spinal ventral roots and spinal cord. RESULTS Of the 17 dogs with genitofemoral to pelvic nerve transfer 14 (82%) demonstrated functional bladder reinnervation as evidenced by increased bladder pressure during stimulation of the transferred genitofemoral nerve, or L3 or L4 spinal ventral roots. Lumbar spinal cord stimulation caused increased bladder pressure in 9 of 10 dogs (90%) with unilateral left femoral nerve to bilateral pelvic nerve transfer. Succinylcholine virtually eliminated the bladder pressure increases induced by electrical stimulation of the transferred somatic nerves or of the lumbar spinal segments that contribute axons to these donor nerves. In unoperated or sham operated controls succinylcholine had no effect on nerve evoked bladder pressure increases but it substantially decreased the urethral and anal sphincter pressure induced by stimulating the lumbosacral spinal cord or the S2-S3 spinal ventral roots. The reinnervated detrusor muscles of dogs with genitofemoral to pelvic nerve transfer and unilateral left femoral nerve to bilateral pelvic nerve transfer also showed increased α1 nicotinic receptor subunit immunoreactivity in punctate dots on detrusor muscle fascicles and in neuronal cell bodies. This staining was not observed in controls. CONCLUSIONS Succinylcholine sensitive nicotinic receptors, which normally mediate only skeletal muscle neuromuscular junction neurotransmission, appeared in the new neuronal pathway after genitofemoral to pelvic and unilateral femoral nerve to bilateral pelvic nerve transfer. This suggests end organ neuroplasticity after reinnervation by somatic motor axons.
Collapse
|
13
|
Anti-inflammatory effects of the nicotinergic peptides SLURP-1 and SLURP-2 on human intestinal epithelial cells and immunocytes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:609086. [PMID: 24877120 PMCID: PMC4024406 DOI: 10.1155/2014/609086] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/17/2014] [Indexed: 12/18/2022]
Abstract
A search for novel and more efficient therapeutic modalities of inflammatory bowel disease (IBD) is one of the most important tasks of contemporary medicine. The anti-inflammatory action of nicotine in IBD might be therapeutic, but its toxicity due to off-target and nonreceptor effects limited its use and prompted a search for nontoxic nicotinergic drugs. We tested the hypothesis that SLURP-1 and -2—the physiological nicotinergic substances produced by the human intestinal epithelial cells (IEC) and immunocytes—can mimic the anti-inflammatory effects of nicotine. We used human CCL-241 enterocytes, CCL-248 colonocytes, CCRF-CEM T-cells, and U937 macrophages. SLURP-1 diminished the TLR9-dependent secretion of IL-8 by CCL-241, and IFNγ-induced upregulation of ICAM-1 in both IEC types. rSLURP-2 inhibited IL-1β-induced secretion of IL-6 and TLR4- and TLR9-dependent induction of CXCL10 and IL-8, respectively, in CCL-241. rSLURP-1 decreased production of TNFα by T-cells, downregulated IL-1β and IL-6 secretion by macrophages, and moderately upregulated IL-10 production by both types of immunocytes. SLURP-2 downregulated TNFα and IFNγR in T-cells and reduced IL-6 production by macrophages. Combining both SLURPs amplified their anti-inflammatory effects. Learning the pharmacology of SLURP-1 and -2 actions on enterocytes, colonocytes, T cells, and macrophages may help develop novel effective treatments of IBD.
Collapse
|
14
|
The alpha 7 nicotinic receptor agonist PHA-543613 hydrochloride inhibits Porphyromonas gingivalis-induced expression of interleukin-8 by oral keratinocytes. Inflamm Res 2014; 63:557-68. [PMID: 24609617 PMCID: PMC4050294 DOI: 10.1007/s00011-014-0725-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 02/11/2014] [Accepted: 02/19/2014] [Indexed: 11/17/2022] Open
Abstract
Objective The alpha 7 nicotinic receptor (α7nAChR) is expressed by oral keratinocytes. α7nAChR activation mediates anti-inflammatory responses. The objective of this study was to determine if α7nAChR activation inhibited pathogen-induced interleukin-8 (IL-8) expression by oral keratinocytes. Materials and methods Periodontal tissue expression of α7nAChR was determined by real-time PCR. OKF6/TERT-2 oral keratinocytes were exposed to Porphyromonas gingivalis in the presence and absence of a α7nAChR agonist (PHA-543613 hydrochloride) alone or after pre-exposure to a specific α7nAChR antagonist (α-bungarotoxin). Interleukin-8 (IL-8) expression was measured by ELISA and real-time PCR. Phosphorylation of the NF-κB p65 subunit was determined using an NF-κB p65 profiler assay and STAT-3 activation by STAT-3 in-cell ELISA. The release of ACh from oral keratinocytes in response to P. gingivalis lipopolysaccharide was determined using a GeneBLAzer M3 CHO-K1-bla cell reporter assay. Results Expression of α7nAChR mRNA was elevated in diseased periodontal tissue. PHA-543613 hydrochloride inhibited P. gingivalis-induced expression of IL-8 at the transcriptional level. This effect was abolished when cells were pre-exposed to a specific α7nAChR antagonist, α-bungarotoxin. PHA-543613 hydrochloride downregulated NF-κB signalling through reduced phosphorylation of the NF-κB p65-subunit. In addition, PHA-543613 hydrochloride promoted STAT-3 signalling by maintenance of phosphorylation. Furthermore, oral keratinocytes upregulated ACh release in response to P. gingivalis lipopolysaccharide. Conclusion These data suggest that α7nAChR plays a role in regulating the innate immune responses of oral keratinocytes.
Collapse
|
15
|
Tarras SL, Diebel LN, Liberati DM, Ginnebaugh K. Pharmacologic stimulation of the nicotinic anti-inflammatory pathway modulates gut and lung injury after hypoxia-reoxygenation injury. Surgery 2013; 154:841-7; discussion 847-8. [PMID: 24074423 DOI: 10.1016/j.surg.2013.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/19/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE Pre-injury vagal nerve stimulation protects against gut and lung injury after experimental hemorrhagic shock (HS). This likely occurs via the cholinergic anti-inflammatory pathway and the α7 nicotinic acetylcholine receptor (α7nAChR). We hypothesized that, in an in vitro model, either nicotine or a selective α7nAChR agonist (AR-R17779) would modulate intestinal and pulmonary effects of gut ischemia-reperfusion after hypoxic insult. METHODS Confluent HT29 intestinal epithelial cells were co-cultured with Escherichia coli. Cell cultures were subjected to 21% (control) or 5% O2 (hypoxia) for 90 minutes followed by reoxygenation (H/R). HT29 cells were treated with nicotine or AR-R17779 before or immediately after hypoxic insult. From the HT29 cell culture supernatants, tumor necrosis factor-α and interleukin-6 levels were quantitated. Confluent pulmonary microvascular epithelial cells (HMVEC) were co-cultured with HT29 supernatants and permeability and intercellular adhesion molecule-1 expression were determined. RESULTS In post H/R insult treatments with the receptor agonist, cytokine levels in HT29 cells were reduced to control levels. In HMVEC experiments, a protective effect was seen with treatment post H/R injury. Disruption of HT29 actin microfilaments was demonstrated after H/R insult and was abrogated by both agonists. CONCLUSION Post-insult pharmacologic stimulation seems to mimic the protective effects of pre-HS vagal nerve stimulation seen in animal studies.
Collapse
|
16
|
Vadlamudi HC, Yalavarthi PR, Balambhaigari RY, Vulava J. Receptors and ligands role in colon physiology and pathology. J Recept Signal Transduct Res 2013; 33:1-9. [DOI: 10.3109/10799893.2012.752001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Pelissier-Rota M, Lainé M, Ducarouge B, Bonaz B, Jacquier-Sarlin M. Role of Cholinergic Receptors in Colorectal Cancer: Potential Therapeutic Implications of Vagus Nerve Stimulation? ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jct.2013.46128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Zoheir N, Lappin DF, Nile CJ. Acetylcholine and the alpha 7 nicotinic receptor: a potential therapeutic target for the treatment of periodontal disease? Inflamm Res 2012; 61:915-26. [PMID: 22777144 DOI: 10.1007/s00011-012-0513-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/27/2012] [Accepted: 06/07/2012] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES The aim of this review is to examine the evidence for a functional cholinergic system operating within the periodontium and determine the evidence for its role in periodontal immunity. INTRODUCTION Acetylcholine can influence the immune system via the 'cholinergic anti-inflammatory pathway'. This pathway is mediated by the vagus nerve which releases acetylcholine to interact with the α7 subunit of the nicotinic acetylcholine receptor (α7nAChR) on proximate immuno-regulatory cells. Activation of the α7nAChR on these cells leads to down-regulated expression of pro-inflammatory mediators and thus regulates localised inflammatory responses. The role of the vagus nerve in periodontal pathophysiology is currently unknown. However, non-neuronal cells can also release acetylcholine and express the α7nAChR; these include keratinocytes, fibroblasts, T cells, B cells and macrophages. Therefore, by both autocrine and paracrine methods non-neuronal acetylcholine can also be hypothesised to modulate the localised immune response. METHODS A Pubmed database search was performed for studies providing evidence for a functional cholinergic system operating in the periodontium. In addition, literature on the role of the 'cholinergic anti-inflammatory pathway' in modulating the immune response was extrapolated to hypothesise that similar mechanisms of immune regulation occur within the periodontium. CONCLUSION The evidence suggests a functional non-neuronal 'cholinergic anti-inflammatory pathway' may operate in the periodontium and that this may be targeted therapeutically to treat periodontal disease.
Collapse
Affiliation(s)
- Noha Zoheir
- Infection and Immunity Research Group, University of Glasgow Dental School, Level 9, 378 Sauchiehall Street, Glasgow, G2 3JZ, UK
| | | | | |
Collapse
|
19
|
Beckel JM, Birder LA. Differential expression and function of nicotinic acetylcholine receptors in the urinary bladder epithelium of the rat. J Physiol 2012; 590:1465-80. [PMID: 22250215 DOI: 10.1113/jphysiol.2011.226860] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has been previously determined that the epithelial lining of the urinary bladder, or urothelium, expresses two subtypes of nicotinic acetylcholine receptors (nAChRs) that mediate distinct physiological effects in vivo. These effects include inhibition of bladder reflexes through α7 receptors and an excitation of bladder reflexes through α3-containing (α3*) receptors. It is believed that urothelial receptors mediate their effects through modulating the release of neurotransmitters such as ATP that subsequently influence bladder afferent nerve excitability. Therefore, we examined the distribution of nAChRs in the urothelium, as well as their ability to influence the release of the neurotransmitter ATP. Immunofluorescent staining of both whole bladder tissue and primary urothelial cultures from the rat demonstrated that the urothelium contains both α3* and α7 receptors. In primary urothelial cultures, α7 stimulation with choline (10 μM to 1 mM) caused a decrease in basal ATP release while α3* stimulation with cytisine (1–100 μM) caused a concentration-dependent, biphasic response, with low concentrations (1–10 μM) inhibiting release and higher concentrations (50–100 μM) increasing release. These responses were mirrored in an in vitro, whole bladder preparation. In vivo, excitation of bladder reflexes in response to intravesical cytisine (100 μM) is blocked by systemic administration of the purinergic antagonist PPADS (1 or 3 μg kg(−1)). We also examined how each receptor subtype influenced intracellular Ca2+ levels in cultured urothelial cells. nAChR stimulation increased [Ca2+]i through distinct mechanisms: α7 through a ryanodine-sensitive intracellular mechanism and α3* through extracellular influx. In addition, our findings suggest interactions between nAChR subtypes whereby activation of α7 receptors inhibited the response to a subsequent activation of α3* receptors, preventing the increase in [Ca2+]i previously observed. This inhibitory effect appears to be mediated through protein kinase A- or protein kinase C-mediated pathways.
Collapse
Affiliation(s)
- Jonathan M Beckel
- Department of Pharmacology and Biological Chemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
20
|
The Expression and Pharmacological Characterization of Nicotinic Acetylcholine Receptor Subunits in HBE16 Airway Epithelial Cells. Cell Biochem Biophys 2011; 62:421-31. [DOI: 10.1007/s12013-011-9324-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Li Q, Zhou XD, Kolosov VP, Perelman JM. Nicotine reduces TNF-α expression through a α7 nAChR/MyD88/NF-ĸB pathway in HBE16 airway epithelial cells. Cell Physiol Biochem 2011; 27:605-12. [PMID: 21691078 DOI: 10.1159/000329982] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2011] [Indexed: 12/26/2022] Open
Abstract
AIMS To explore the signaling mechanism associated with the inhibitory effect of nicotine on tumor necrosis factor (TNF)- α expression in human airway epithelial cells. METHODS HBE16 airway epithelial cells were cultured and incubated with either nicotine or cigarette smoke extract (CE). Cells were then transfected with α1, α5, or α7 nicotinic acetylcholine receptor (nAChR)-specific small interfering RNAs (siRNAs). The effects of nicotine on the production of proinflammatory factors TNF-α, in transfected cells were analyzed. Furthermore, we assayed the expression levels of myeloid differentiation primary response gene 88 (MyD88) protein, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 protein, NF-κB activity and NF-κB inhibitor alpha (I-κBα) expression in cells after treatment with nicotine or α7 nAChR inhibitor, α -bungarotoxin (α-BTX). RESULTS The production of TNF-α was lower in cells pretreated with nicotine before lipopolysaccharide (LPS) stimulation, compared with LPS-only-treated cells. In contrast, in α7 siRNA-transfected cells incubated with nicotine and LPS, TNF-α expression was higher than that in non-transfected cells or in α1 or α5 siRNA-transfected cells. Addition of MyD88 siRNA or the NF-κB inhibitor pyridine-2,6-dithiocarboxylic acid (PDTC) also reduced TNF-α expression. Furthermore, we found that nicotine decreased MyD88 protein, NF-κB p65 protein, NF-κB activity and phospho-I-κBα expression induced by CE or LPS. The inhibitor α-BTX could reverse these effects. CONCLUSION Nicotine reduces TNF-α expression in HBE16 airway epithelial cells, mainly through an α7 nAChR/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Qi Li
- Department of Respiratory Medicine, Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | | | | | | |
Collapse
|
22
|
A pharmacological analysis of the cholinergic regulation of urokinase-type plasminogen activator secretion in the human colon cancer cell line, HT-29. Eur J Pharmacol 2010; 646:22-30. [DOI: 10.1016/j.ejphar.2010.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 06/30/2010] [Accepted: 08/04/2010] [Indexed: 11/22/2022]
|
23
|
Is acetylcholine an autocrine/paracrine growth factor via the nicotinic α7-receptor subtype in the human colon cancer cell line HT-29? Eur J Pharmacol 2009; 609:27-33. [DOI: 10.1016/j.ejphar.2009.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 02/16/2009] [Accepted: 03/03/2009] [Indexed: 12/31/2022]
|
24
|
Nicotine induced modulation of SLURP-1 expression in human colon cancer cells. Auton Neurosci 2009; 148:97-100. [PMID: 19346165 DOI: 10.1016/j.autneu.2009.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 03/04/2009] [Indexed: 11/22/2022]
Abstract
The secreted mammalian Ly-6/urokinase plasminogen activator receptor-related protein-1 (SLURP-1) is an endogenous ligand at the alpha 7 subunit of the nicotinic acetylcholine receptor (nAChR). SLURP-1 has anti-tumourigenic properties. In the current study, we demonstrate that the challenge of HT-29 human colon cancer cells with nicotine for 24 h to increase cell growth via the alpha 7nAChRs, caused a marked reduction of the protein expression of SLURP-1. We suggest that there is an interplay between acetylcholine and SLURP-1 in the HT-29 cells, both molecules serving as autocrine growth controlling ligands at the alpha 7nAChR, where acetylcholine regulates the release of SLURP-1.
Collapse
|
25
|
Molecular imaging of α7 nicotinic acetylcholine receptors: design and evaluation of the potent radioligand [18F]NS10743. Eur J Nucl Med Mol Imaging 2009; 36:791-800. [DOI: 10.1007/s00259-008-1031-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 11/21/2008] [Indexed: 01/05/2023]
|
26
|
Pettersson A, Nordlander S, Nylund G, Khorram-Manesh A, Nordgren S, Delbro DS. Expression of the endogenous, nicotinic acetylcholine receptor ligand, SLURP-1, in human colon cancer. ACTA ACUST UNITED AC 2008; 28:109-16. [DOI: 10.1111/j.1474-8673.2008.00424.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Millar NS, Gotti C. Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology 2008; 56:237-46. [PMID: 18723036 DOI: 10.1016/j.neuropharm.2008.07.041] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/14/2008] [Accepted: 07/15/2008] [Indexed: 10/21/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric neurotransmitter receptors. They are members of the Cys-loop family of ligand-gated ion channels which also include ionotropic receptors for 5-hydroxytryptamine (5-HT), gamma-aminobutyric acid (GABA) and glycine. Nicotinic receptors are expressed in both the nervous system and at the neuromuscular junction and have been implicated in several neurological and neuromuscular disorders. In vertebrates, seventeen nAChR subunits have been identified (alpha1-alpha10, beta1-beta4, gamma, delta and epsilon) which can co-assemble to generate a diverse family of nAChR subtypes. This review will focus on vertebrate nAChRs and will provide an overview of the extent of nAChR diversity based on studies of both native and recombinant nAChRs.
Collapse
Affiliation(s)
- Neil S Millar
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| | | |
Collapse
|
28
|
Spoettl T, Paetzel C, Herfarth H, Bencherif M, Schoelmerich J, Greinwald R, Gatto GJ, Rogler G. (E)-metanicotine hemigalactarate (TC-2403-12) inhibits IL-8 production in cells of the inflamed mucosa. Int J Colorectal Dis 2007; 22:303-12. [PMID: 16715250 DOI: 10.1007/s00384-006-0135-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2006] [Indexed: 02/04/2023]
Abstract
BACKGROUND Nicotine is of therapeutic value in ulcerative colitis, but its administration is connected with adverse events. Nicotine derivatives are currently being tested to maintain the therapeutic effects and minimize adverse events. TC-2403-12 is a (E)-metanicotine hemigalactarate. The aim of this study was to determine the effectiveness of TC-2403-12 in the inhibition of TNF- and lipopolysaccharide (LPS)-induced cell activation. METHODS Colonic epithelial cells (CEC), monocytes (MM6), granulocytes, and the intestinal epithelial cell line HT-29 were stimulated with TNF and LPS and treated with TC-2403-12. IL-8 secretion in the cell supernatants and NF-kappaB activation were determined by ELISA. Apoptosis was quantified by flow cytometry. RESULTS In MM6 cells, IL-8 secretion was significantly decreased to 30% of control after TC-2403-12 treatment, with best results after pretreatment for 24 h. This decrease in cell activation was not due to apoptosis and was not mediated by inhibition of NF-kappaB activation. IL-8 production in neutrophils and primary CEC also tended to be decreased after TC-2403-12 treatment. TC-2403-12 had no influence on IL-8 secretion of HT-29 cells. CONCLUSION TC-2403-12 effectively inhibited TNF- and LPS-induced IL-8 production in different cell types. No toxic effects occurred at the concentrations used. Preincubation of cells with TC-2403-12 showed the best effects.
Collapse
Affiliation(s)
- Tanja Spoettl
- Department of Internal Medicine I, University of Regensburg, 93042, Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
McGilligan VE, Wallace JMW, Heavey PM, Ridley DL, Rowland IR. Hypothesis about mechanisms through which nicotine might exert its effect on the interdependence of inflammation and gut barrier function in ulcerative colitis. Inflamm Bowel Dis 2007; 13:108-15. [PMID: 17206646 DOI: 10.1002/ibd.20020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Ulcerative colitis (UC) is characterized by impairment of the epithelial barrier and the formation of ulcer-type lesions, which result in local leaks and generalized alterations of mucosal tight junctions. Ultimately, this results in increased basal permeability. Although disruption of the epithelial barrier in the gut is a hallmark of inflammatory bowel disease and intestinal infections, it remains unclear whether barrier breakdown is an initiating event of UC or rather a consequence of an underlying inflammation, evidenced by increased production of proinflammatory cytokines. UC is less common in smokers, suggesting that the nicotine in cigarettes may ameliorate disease severity. The mechanism behind this therapeutic effect is still not fully understood, and indeed it remains unclear if nicotine is the true protective agent in cigarettes. Nicotine is metabolized in the body into a variety of metabolites and can also be degraded to form various breakdown products. It is possible these metabolites or degradation products may be the true protective or curative agents. A greater understanding of the pharmacodynamics and kinetics of nicotine in relation to the immune system and enhanced knowledge of gut permeability defects in UC are required to establish the exact protective nature of nicotine and its metabolites in UC. This review suggests possible hypotheses for the protective mechanism of nicotine in UC, highlighting the relationship between gut permeability and inflammation, and indicates where in the pathogenesis of the disease nicotine may mediate its effect.
Collapse
Affiliation(s)
- Victoria E McGilligan
- Northern Ireland Centre for Food and Health (NICHE), Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, United Kingdom.
| | | | | | | | | |
Collapse
|
30
|
Hirota CL, McKay DM. Cholinergic regulation of epithelial ion transport in the mammalian intestine. Br J Pharmacol 2006; 149:463-79. [PMID: 16981004 PMCID: PMC2014671 DOI: 10.1038/sj.bjp.0706889] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Acetylcholine (ACh) is critical in controlling epithelial ion transport and hence water movements for gut hydration. Here we review the mechanism of cholinergic control of epithelial ion transport across the mammalian intestine. The cholinergic nervous system affects basal ion flux and can evoke increased active ion transport events. Most studies rely on measuring increases in short-circuit current (ISC = active ion transport) evoked by adding ACh or cholinomimetics to intestinal tissue mounted in Ussing chambers. Despite subtle species and gut regional differences, most data indicate that, under normal circumstances, the effect of ACh on intestinal ion transport is mainly an increase in Cl- secretion due to interaction with epithelial M3 muscarinic ACh receptors (mAChRs) and, to a lesser extent, neuronal M1 mAChRs; however, AChR pharmacology has been plagued by a lack of good receptor subtype-selective compounds. Mice lacking M3 mAChRs display intact cholinergically-mediated intestinal ion transport, suggesting a possible compensatory mechanism. Inflamed tissues often display perturbations in the enteric cholinergic system and reduced intestinal ion transport responses to cholinomimetics. The mechanism(s) underlying this hyporesponsiveness are not fully defined. Inflammation-evoked loss of mAChR-mediated control of epithelial ion transport in the mouse reveals a role for neuronal nicotinic AChRs, representing a hitherto unappreciated braking system to limit ACh-evoked Cl- secretion. We suggest that: i) pharmacological analyses should be supported by the use of more selective compounds and supplemented with molecular biology techniques targeting specific ACh receptors and signalling molecules, and ii) assessment of ion transport in normal tissue must be complemented with investigations of tissues from patients or animals with intestinal disease to reveal control mechanisms that may go undetected by focusing on healthy tissue only.
Collapse
Affiliation(s)
- C L Hirota
- Department Physiology & Biophysics, University of Calgary, Calgary, AB, Canada.
| | | |
Collapse
|
31
|
Orr-Urtreger A, Kedmi M, Rosner S, Karmeli F, Rachmilewitz D. Increased severity of experimental colitis in alpha5 nicotinic acetylcholine receptor subunit-deficient mice. Neuroreport 2005; 16:1123-7. [PMID: 15973160 DOI: 10.1097/00001756-200507130-00018] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Substantial evidence suggests a negative association between cigarette smoking and the incidence and severity of ulcerative colitis, a common human inflammatory bowel disease. Nicotine has been implicated in this association. The detection of nicotinic acetylcholine receptors in colonic epithelium, the primary tissue affected in ulcerative colitis, suggests a role for these receptors in the beneficial effect of nicotine on colonic inflammation. Using an animal model, we demonstrate for the first time that alpha5 nicotinic acetylcholine receptor knockout mice have significantly more severe experimental colitis than wild-type controls and that nicotine significantly ameliorates its course when compared with wild-type controls. These findings suggest that alpha5-containing nicotinic acetylcholine receptors participate in the modulation of colitis in mice, but other nicotinic acetylcholine receptor subunits also mediate the antiinflammatory effects of nicotine.
Collapse
Affiliation(s)
- Avi Orr-Urtreger
- The Genetics Institute, Tel-Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
32
|
Saeed RW, Varma S, Peng-Nemeroff T, Sherry B, Balakhaneh D, Huston J, Tracey KJ, Al-Abed Y, Metz CN. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. ACTA ACUST UNITED AC 2005; 201:1113-23. [PMID: 15809354 PMCID: PMC2213139 DOI: 10.1084/jem.20040463] [Citation(s) in RCA: 376] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Endothelial cell activation plays a critical role in regulating leukocyte recruitment during inflammation and infection. Based on recent studies showing that acetylcholine and other cholinergic mediators suppress the production of proinflammatory cytokines via the α7 nicotinic acetylcholine receptor (α7 nAChR) expressed by macrophages and our observations that human microvascular endothelial cells express the α7 nAChR, we examined the effect of cholinergic stimulation on endothelial cell activation in vitro and in vivo. Using the Shwartzman reaction, we observed that nicotine (2 mg/kg) and the novel cholinergic agent CAP55 (12 mg/kg) inhibit endothelial cell adhesion molecule expression. Using endothelial cell cultures, we observed the direct inhibitory effects of acetylcholine and cholinergic agents on tumor necrosis factor (TNF)-induced endothelial cell activation. Mecamylamine, an nAChR antagonist, reversed the inhibition of endothelial cell activation by both cholinergic agonists, confirming the antiinflammatory role of the nAChR cholinergic pathway. In vitro mechanistic studies revealed that nicotine blocked TNF-induced nuclear factor–κB nuclear entry in an inhibitor κB (IκB)α- and IκBɛ-dependent manner. Finally, with the carrageenan air pouch model, both vagus nerve stimulation and cholinergic agonists significantly blocked leukocyte migration in vivo. These findings identify the endothelium, a key regulator of leukocyte trafficking during inflammation, as a target of anti-inflammatory cholinergic mediators.
Collapse
Affiliation(s)
- Rubina W Saeed
- Laboratory of Medicinal Biochemistry, Institute for Medical Research at North Shore-LIJ, Manhasset, NY 11030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The 'cytokine theory of disease' states that an overproduction of cytokines can cause the clinical manifestations of disease. Much effort has been expended to determine how cytokines are regulated in normal health. Transcriptional, translational and other molecular control mechanisms protect the host from excessive cytokine production. A recent discovery revealed an unexpected pathway that inhibits macrophage cytokine production. The inflammatory reflex is a physiological pathway in which the autonomic nervous system detects the presence of inflammatory stimuli and modulates cytokine production. Afferent signals to the brain are transmitted via the vagus nerve, which activates a reflex response that culminates in efferent vagus nerve signalling. Termed the 'cholinergic anti-inflammatory pathway', efferent activity in the vagus nerve releases acetylcholine (ACh) in the vicinity of macrophages within the reticuloendothelial system. ACh can interact specifically with macrophage alpha7 subunits of nicotinic ACh receptors, leading to cellular deactivation and inhibition of cytokine release. This 'hard-wired' connection between the nervous and immune systems can be harnessed therapeutically in animal models of inflammatory disease, via direct electrical stimulation of the vagus nerve, or through the use of cholinergic agonists that specifically activate the macrophage alpha7 subunit of the ACh receptor. Autonomic dysfunction has been associated with human inflammatory diseases including rheumatoid arthritis, diabetes and sepsis; whether this dysfunction results from the inflammatory component of these diseases, or is actually an underlying cause, is now less clear. The description of the cholinergic anti-inflammatory now brings to the fore several new therapeutic strategies for inflammatory disease, and suggests that many of these diseases may actually be diseases of autonomic dysfunction.
Collapse
Affiliation(s)
- C J Czura
- North Shore-LIJ Research Institute, Center for Patient Oriented Research, Manhasset, NY, USA.
| | | |
Collapse
|
34
|
Kim JA, Kim DK, Kang OH, Choi YA, Park HJ, Choi SC, Kim TH, Yun KJ, Nah YH, Lee YM. Inhibitory effect of luteolin on TNF-α-induced IL-8 production in human colon epithelial cells. Int Immunopharmacol 2005; 5:209-17. [PMID: 15589482 DOI: 10.1016/j.intimp.2004.09.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 09/11/2004] [Accepted: 09/14/2004] [Indexed: 10/26/2022]
Abstract
Interleukin (IL)-8 plays a central role in the initiation and maintenance of inflammatory responses in the inflammatory bowel disease. The proinflammatory cytokine-mediated production of IL-8 requires activation of various kinases, which leads to the IkappaB degradation and NF-kappaB activation. In this study, we investigated the role of luteolin, a major flavonoid of Lonicera japonica, on TNF-alpha-induced IL-8 production in human colonic epithelial cells. HT29 cells were stimulated with TNF-alpha in the presence or absence of luteolin. IL-8 production was measured by enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis, and the mitogen-activated protein kinases (MAPKs) activation and IkappaB degradation were determined by Western blot analysis. NF-kappaB activation was assessed by the electrophoretic motility shift assay (EMSA). Luteolin suppressed TNF-alpha-induced IL-8 production in dose-dependent manner. In addition, luteolin inhibited TNF-alpha-induced phosphorylation of p38 MAPK and extracellular-regulated kinases (ERK), IkappaB degradation, and NF-kappaB activation. These results suggest that luteolin has the inhibitory effects on TNF-alpha-induced IL-8 production in the intestinal epithelial cells through blockade in the phosphorylation of MAPKs, following IkappaB degradation and NF-kappaB activation.
Collapse
Affiliation(s)
- Jin-A Kim
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, 570-749, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kurzen H, Berger H, Jäger C, Hartschuh W, Näher H, Gratchev A, Goerdt S, Deichmann M. Phenotypical and Molecular Profiling of the Extraneuronal Cholinergic System of the Skin. J Invest Dermatol 2004; 123:937-49. [PMID: 15482483 DOI: 10.1111/j.0022-202x.2004.23425.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We present molecular and protein profiling of all acetylcholine receptors (ACh-R) in human scalp skin using PCR, in situ hybridization and double-labeling immunofluorescence. Within the epidermis, the nicotinic (n)ACh-R subunits, alpha3, alpha5, beta2, and beta4 were expressed in the basal cell layer (BCL) and in a single cell layer in the stratum granulosum; alpha9 was expressed in the basal and lower spinous layers. alpha7, alpha10, and beta1 were preferentially detected in the upper spinous and granular layers. Of the muscarinic (m)ACh-R, m1 and m4 were found in the suprabasal layers, whereas m2, m3, and m5 remained restricted to the lower layers. In the outer root sheath of the hair follicle, all ACh-R except alpha9, beta1, and m4 were found in the BCL whereas the alpha9, m4, and m5 ACh-R were restricted to the central cell layer. The alpha5, beta1, beta2, m1-m4 chains were strongly expressed in the inner root sheath. Undifferentiated sebocytes expressed the alpha3, alpha9, beta4, m3-m5 ACh-R whereas alpha7, beta2, beta4, m2, and m4 were found in mature sebocytes. In sweat glands, the alpha3*, alpha7, and m2-m5 ACh-R were most prominent in the myoepithelial cells whereas alpha9, beta2, m1, m3, and m4 ACh-R were present in the acinar cells. Taken together, our data result in a complete molecular map of the extraneuronal cholinergic system of the skin that may be translated into distinct functional reaction patterns.
Collapse
Affiliation(s)
- Hjalmar Kurzen
- Department of Dermatology, University Medical Center Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kim JA, Kim DK, Kang OH, Choi YA, Choi SC, Kim TH, Nah YH, Choi SJ, Kim YH, Bae KH, Lee YM. Acanthoic acid inhibits IL-8 production via MAPKs and NF-κB in a TNF-α-stimulated human intestinal epithelial cell line. Clin Chim Acta 2004; 342:193-202. [PMID: 15026281 DOI: 10.1016/j.cccn.2004.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2003] [Revised: 01/06/2004] [Accepted: 01/06/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND Intestinal epithelial cells (IECs) can produce cytokines and chemokines that play an important role in the mucosal immune response. Regulation of this production is important to prevent inflammatory tissue damage. The root and stem barks of Acanthopanax species have been used as a tonic and sedative as well as in the treatment of rheumatism and diabetes. The aim of this study was to examine the inhibitory effect of acanthoic acid isolated from Acanthopanax koreanum (Araliaceae), on IL-8 production via mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-kappaB) in TNF-alpha-stimulated human colon epithelial cells. METHODS HT29 cells were stimulated with TNF-alpha in the presence or absence of acanthoic acid. IL-8 production was measured by enzyme-linked immunosorbent assay (ELISA) and reverse transcription-PCR (RT-PCR). MAPK activation and IkappaB/NF-kappaB expression were assessed by Western blot analysis. NF-kappaB activation was determined using immunofluorescence localization and electrophoretic mobility shift assay (EMSA). RESULTS Acanthoic acid suppressed TNF-alpha-induced IL-8 production in a dose-dependent manner. Furthermore, acanthoic acid inhibited TNF-alpha-induced MAPKs (p38, JNK1/2, and ERK1/2) activation, IkappaB degradation, NF-kappaB nuclear translocation, and NF-kappaB/DNA binding activity. CONCLUSION Acanthoic acid might inhibit TNF-alpha-mediated IL-8 production by blocking in both the MAPKs and NF-kappaB pathways in HT29 cells.
Collapse
Affiliation(s)
- Jin-A Kim
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, 570-749, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|