1
|
Singhal SM, Zell V, Faget L, Slosky LM, Barak LS, Caron MG, Pinkerton AB, Hnasko TS. Neurotensin receptor 1-biased ligand attenuates neurotensin-mediated excitation of ventral tegmental area dopamine neurons and dopamine release in the nucleus accumbens. Neuropharmacology 2023; 234:109544. [PMID: 37055008 PMCID: PMC10192038 DOI: 10.1016/j.neuropharm.2023.109544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
Strong expression of the G protein-coupled receptor (GPCR) neurotensin receptor 1 (NTR1) in ventral tegmental area (VTA) dopamine (DA) neurons and terminals makes it an attractive target to modulate DA neuron activity and normalize DA-related pathologies. Recent studies have identified a novel class of NTR1 ligand that shows promising effects in preclinical models of addiction. A lead molecule, SBI-0654553 (SBI-553), can act as a positive allosteric modulator of NTR1 β-arrestin recruitment while simultaneously antagonizing NTR1 Gq protein signaling. Using cell-attached recordings from mouse VTA DA neurons we discovered that, unlike neurotensin (NT), SBI-553 did not independently increase spontaneous firing. Instead, SBI-553 blocked the NT-mediated increase in firing. SBI-553 also antagonized the effects of NT on dopamine D2 auto-receptor signaling, potentially through its inhibitory effects on G-protein signaling. We also measured DA release directly, using fast-scan cyclic voltammetry in the nucleus accumbens and observed antagonist effects of SBI-553 on an NT-induced increase in DA release. Further, in vivo administration of SBI-553 did not notably change basal or cocaine-evoked DA release measured in NAc using fiber photometry. Overall, these results indicate that SBI-553 blunts NT's effects on spontaneous DA neuron firing, D2 auto-receptor function, and DA release, without independently affecting these measures. In the presence of NT, SBI-553 has an inhibitory effect on mesolimbic DA activity, which could contribute to its efficacy in animal models of psychostimulant use.
Collapse
Affiliation(s)
- Sarthak M Singhal
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Vivien Zell
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Lauren Faget
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Lauren M Slosky
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | | | - Marc G Caron
- Departments of Cell Biology, Neurobiology and Medicine, Duke University, Durham, NC, USA
| | - Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
2
|
Pinkerton AB, Peddibhotla S, Yamamoto F, Slosky LM, Bai Y, Maloney P, Hershberger P, Hedrick MP, Falter B, Ardecky RJ, Smith LH, Chung TDY, Jackson MR, Caron MG, Barak LS. Discovery of β-Arrestin Biased, Orally Bioavailable, and CNS Penetrant Neurotensin Receptor 1 (NTR1) Allosteric Modulators. J Med Chem 2019; 62:8357-8363. [PMID: 31390201 PMCID: PMC7003992 DOI: 10.1021/acs.jmedchem.9b00340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurotensin receptor 1 (NTR1) is a G protein coupled receptor that is widely expressed throughout the central nervous system where it acts as a neuromodulator. Neurotensin receptors have been implicated in a wide variety of CNS disorders, but despite extensive efforts to develop small molecule ligands there are few reports of such compounds. Herein we describe the optimization of a quinazoline based lead to give 18 (SBI-553), a potent and brain penetrant NTR1 allosteric modulator.
Collapse
Affiliation(s)
- Anthony B. Pinkerton
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Satyamaheshwar Peddibhotla
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Fusayo Yamamoto
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Lauren M. Slosky
- Duke University Medical Center, Durham, North Carolina 27709, United States
| | - Yushi Bai
- Duke University Medical Center, Durham, North Carolina 27709, United States
| | - Patrick Maloney
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Paul Hershberger
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Michael P. Hedrick
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Bekhi Falter
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Robert J. Ardecky
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Layton H. Smith
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Thomas D. Y. Chung
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Michael R. Jackson
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Marc G. Caron
- Duke University Medical Center, Durham, North Carolina 27709, United States
| | - Lawrence S. Barak
- Duke University Medical Center, Durham, North Carolina 27709, United States
| |
Collapse
|
3
|
Systemic PD149163, a neurotensin receptor 1 agonist, decreases methamphetamine self-administration in DBA/2J mice without causing excessive sedation. PLoS One 2017; 12:e0180710. [PMID: 28686721 PMCID: PMC5501585 DOI: 10.1371/journal.pone.0180710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/20/2017] [Indexed: 01/23/2023] Open
Abstract
Methamphetamine (METH) is a psychostimulant that exhibits significant abuse potential. Although METH addiction is a major health and societal concern, no drug is currently approved for its therapeutic management. METH activates the central dopaminergic “reward” circuitry, and with repeated use increases levels of the neuromodulatory peptide neurotensin in the nucleus accumbens and ventral tegmental area. Previous studies in rats suggest that neurotensin agonism decreases METH self-administration, but these studies did not examine the effect of neurotensin agonism on the pattern of self-administration or open field locomotion. In our studies, we established intravenous METH self-administration in male, DBA/2J mice (fixed ratio 3, 2 hr sessions) and examined the effect of pretreatment with the NTS1 receptor agonist PD149163 on METH self-administration behavior. Locomotion following PD149163 was also measured up to 2 hours after injection on a rotarod and in an open field. Pretreatment with PD149163 (0.05 and 0.10 mg/kg, s.c.) significantly decreased METH self-administration. The pattern of responding suggested that PD149163 decreased motivation to self-administer METH initially in the session with more normal intake in the second hour of access. Voluntary movement in the open-field was significantly decreased by both 0.05 and 0.10 mg/kg (s.c.) PD149163 from 10–120 minutes after injection, but rotarod performance suggested that PD149163 did not cause frank sedation. These results suggest that a systemically delivered NTS1 receptor agonist decreases METH self-administration in mice. The pattern of self-administration suggests that PD149163 may acutely decrease motivation to self-administer METH before the drug is experienced, but cannot rule out that depression of voluntary movement plays a role in the decreased self-administration.
Collapse
|
4
|
Ellenbroek BA, Angelucci F, Husum H, Mathé AA. Gene-environment interactions in a rat model of depression. Maternal separation affects neurotensin in selected brain regions. Neuropeptides 2016; 59:83-88. [PMID: 27372546 DOI: 10.1016/j.npep.2016.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/13/2016] [Accepted: 05/23/2016] [Indexed: 12/11/2022]
Abstract
Although the etiology of major psychiatric disorders has not been elucidated, accumulating evidence indicates that both genetic and early environmental factors play a role. We have previously demonstrated behavioral and neurochemical changes both in non-manipulated genetic rat models of depression, such as Flinders Sensitive Line (FSL) and Fawn Hooded (FH), and in normal rats following maternal separation (MS). The aim of the present study was to extend this work by exploring whether neurotensin (NT), a peptide implicated in several psychiatric disorders, is altered in a new animal model based on gene - environment interactions. More specifically, we used the FSL rats as a genetic model of depression and the Flinders Resistant Line (FRL) as controls and subjected them to MS. Pups randomly assigned to the MS procedure were separated from the dam as a litter for 180min daily between postnatal day 2 to 14. On postnatal day 90, rats were weighed and sacrificed by a two second high energy focused microwave irradiation and several brain regions were obtained by micropuncture. Neurotensin-like immunoreactivity (NT-LI) was measured by radioimmunoassay (RIA). The results showed that the FSL rats compared to the FRL rats have higher baseline NT-LI concentrations in the temporal cortex and periaqueductal gray and a markedly different response to maternal separation. The only observed change following maternal separation in the FRL rats was an NT-LI increase in the periaqueductal gray. In contrast, in the FSL significant increases were found in the nucleus accumbens, hippocampus, and entorhinal cortex and a decrease was seen in the temporal cortex after MS. The present study revealed baseline regional differences in NT-LI concentrations between the FSL and FRL strains and demonstrated that early MD differentially affects the two strains. The relevance of these alterations for depression as well as possible mechanisms underlying this gene-environment interaction are discussed.
Collapse
Affiliation(s)
- Bart A Ellenbroek
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand.
| | | | - Henriette Husum
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Aleksander A Mathé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Barak LS, Bai Y, Peterson S, Evron T, Urs NM, Peddibhotla S, Hedrick MP, Hershberger P, Maloney PR, Chung TD, Rodriguiz RM, Wetsel WC, Thomas JB, Hanson GR, Pinkerton AB, Caron MG. ML314: A Biased Neurotensin Receptor Ligand for Methamphetamine Abuse. ACS Chem Biol 2016; 11:1880-90. [PMID: 27119457 DOI: 10.1021/acschembio.6b00291] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pharmacological treatment for methamphetamine addiction will provide important societal benefits. Neurotensin receptor NTR1 and dopamine receptor distributions coincide in brain areas regulating methamphetamine-associated reward, and neurotensin peptides produce behaviors opposing psychostimulants. Therefore, undesirable methamphetamine-associated activities should be treatable with druggable NTR1 agonists, but no such FDA-approved therapeutics exist. We address this limitation with proof-of-concept data for ML314, a small-molecule, brain penetrant, β-arrestin biased, NTR1 agonist. ML314 attenuates amphetamine-like hyperlocomotion in dopamine transporter knockout mice, and in C57BL/6J mice it attenuates methamphetamine-induced hyperlocomotion, potentiates the psychostimulant inhibitory effects of a ghrelin antagonist, and reduces methamphetamine-associated conditioned place preference. In rats, ML314 blocks methamphetamine self-administration. ML314 acts as an allosteric enhancer of endogenous neurotensin, unmasking stoichiometric numbers of hidden NTR1 binding sites in transfected-cell membranes or mouse striatal membranes, while additionally supporting NTR1 endocytosis in cells in the absence of NT peptide. These results indicate ML314 is a viable, preclinical lead for methamphetamine abuse treatment and support an allosteric model of G protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Larry S. Barak
- Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Yushi Bai
- Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Sean Peterson
- Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Tama Evron
- Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Nikhil M. Urs
- Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Satyamaheshwar Peddibhotla
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, United States
| | - Michael P. Hedrick
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Paul Hershberger
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, United States
| | - Patrick R. Maloney
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, United States
| | - Thomas D.Y. Chung
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | | | - William C. Wetsel
- Duke University Medical Center, Durham, North Carolina 27710, United States
| | - James B. Thomas
- RTI International, 3040 E
Cornwallis Road, Durham, North Carolina 27709, United States
| | - Glen R. Hanson
- Department
of Pharmacology and Toxicology, University of Utah, 260 S. Campus
Drive, Salt Lake City, Utah 84112, United States
| | - Anthony B. Pinkerton
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Marc G. Caron
- Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
6
|
German CL, Baladi MG, McFadden LM, Hanson GR, Fleckenstein AE. Regulation of the Dopamine and Vesicular Monoamine Transporters: Pharmacological Targets and Implications for Disease. Pharmacol Rev 2016; 67:1005-24. [PMID: 26408528 DOI: 10.1124/pr.114.010397] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dopamine (DA) plays a well recognized role in a variety of physiologic functions such as movement, cognition, mood, and reward. Consequently, many human disorders are due, in part, to dysfunctional dopaminergic systems, including Parkinson's disease, attention deficit hyperactivity disorder, and substance abuse. Drugs that modify the DA system are clinically effective in treating symptoms of these diseases or are involved in their manifestation, implicating DA in their etiology. DA signaling and distribution are primarily modulated by the DA transporter (DAT) and by vesicular monoamine transporter (VMAT)-2, which transport DA into presynaptic terminals and synaptic vesicles, respectively. These transporters are regulated by complex processes such as phosphorylation, protein-protein interactions, and changes in intracellular localization. This review provides an overview of 1) the current understanding of DAT and VMAT2 neurobiology, including discussion of studies ranging from those conducted in vitro to those involving human subjects; 2) the role of these transporters in disease and how these transporters are affected by disease; and 3) and how selected drugs alter the function and expression of these transporters. Understanding the regulatory processes and the pathologic consequences of DAT and VMAT2 dysfunction underlies the evolution of therapeutic development for the treatment of DA-related disorders.
Collapse
Affiliation(s)
- Christopher L German
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Michelle G Baladi
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Lisa M McFadden
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Glen R Hanson
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Annette E Fleckenstein
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| |
Collapse
|
7
|
Ferraro L, Tiozzo Fasiolo L, Beggiato S, Borelli AC, Pomierny-Chamiolo L, Frankowska M, Antonelli T, Tomasini MC, Fuxe K, Filip M. Neurotensin: A role in substance use disorder? J Psychopharmacol 2016; 30:112-27. [PMID: 26755548 DOI: 10.1177/0269881115622240] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurotensin is a tridecapeptide originally identified in extracts of bovine hypothalamus. This peptide has a close anatomical and functional relationship with the mesocorticolimbic and nigrostriatal dopamine system. Neural circuits containing neurotensin were originally proposed to play a role in the mechanism of action of antipsychotic agents. Additionally, neurotensin-containing pathways were demonstrated to mediate some of the rewarding and/or sensitizing properties of drugs of abuse.This review attempts to contribute to the understanding of the role of neurotensin and its receptors in drug abuse. In particular, we will summarize the potential relevance of neurotensin, its related compounds and neurotensin receptors in substance use disorders, with a focus on the preclinical research.
Collapse
Affiliation(s)
- Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Laura Tiozzo Fasiolo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sarah Beggiato
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Andrea C Borelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Malgorzata Frankowska
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Tiziana Antonelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria C Tomasini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Kjell Fuxe
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Malgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
8
|
Alburges ME, Hoonakker AJ, Cordova NM, Robson CM, McFadden LM, Martin AL, Hanson GR. Effect of low doses of methamphetamine on rat limbic-related neurotensin systems. Synapse 2015; 69:396-404. [PMID: 25963809 DOI: 10.1002/syn.21829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/16/2015] [Accepted: 04/25/2015] [Indexed: 12/30/2022]
Abstract
Administration of methamphetamine (METH) alters limbic-related (LR) neurotensin (NT) systems. Thus, through a D1-receptor mechanism, noncontingent high doses (5-15 mg kg(-1)), and likely self-administration, of METH appears to reduce NT release causing its accumulation and an elevation of NT-like immunoreactivity (NTLI) in limbic-related NT pathways. For comparison, we tested the effect of low doses of METH, that are more like those used in therapy, on NTLI in the core and shell of the nucleus accumbens (NAc and NAs), prefrontal cortex (PFC), ventral tegmental area (VTA), the lateral habenula (Hb) and basolateral amygdala (Amyg). METH at the dose of 0.25 mg kg(-1) in particular, but not 1.00 mg kg(-1), decreased NTLI concentration in all of the LR structures studied, except for the prefrontal cortex; however, these effects were rapid and brief being observed at 5 h but not at 24 h after treatment. In all of the LR areas where NTLI levels were reduced after the low dose of METH, the effect was blocked by pretreatment with either a D1 or a D2 antagonist. Thus, opposite to high doses like those associated with abuse, the therapeutic-like low-dose METH treatment induced reduction in NT tissue levels likely reflected an increase in NT release and a short-term depletion of the levels of this neuropeptide in LR structures, manifesting features comparable to the response of basal ganglia NT systems to similar low doses of METH.
Collapse
Affiliation(s)
- Mario E Alburges
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Amanda J Hoonakker
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Nathaniel M Cordova
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Christina M Robson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Lisa M McFadden
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Amber L Martin
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Glen R Hanson
- School of Dentistry and Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
9
|
Responses of the rat basal ganglia neurotensin systems to low doses of methamphetamine. Psychopharmacology (Berl) 2014; 231:2933-40. [PMID: 24522333 PMCID: PMC4102623 DOI: 10.1007/s00213-014-3468-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/20/2014] [Indexed: 12/31/2022]
Abstract
RATIONALE Administration of high doses of methamphetamine (METH) in a manner mimicking the binging patterns associated with abuse reduces NT release and causes its accumulation and elevated NT levels in extrapyramidal structures by a D1 mechanism. The relevance of these findings to the therapeutic use of METH needs to be studied. OBJECTIVES The effect of low doses (comparable to that used for therapy) of METH on basal ganglia NT systems was examined and compared to high-dose and self-administration effects previously reported. METHODS Rats were injected four times (2-h intervals) with either saline or low doses of METH (0.25, 0.50, or 1.00 mg/kg/subcutaneously (s.c.)). For the DA antagonist studies, animals were pretreated with a D1 (SCH23390) or D2 (eticlopride) antagonist 15 min prior to METH or saline treatments. Rats were sacrificed 5-48 h after the last injection. RESULTS METH at doses of 0.25 and 0.50, but not 1.00 mg/kg, rapidly and briefly decreased NTLI concentration in all basal ganglia structures studied. In the posterior dorsal striatum, the reduction in NT level after low-dose METH appeared to be caused principally by D2 stimulation, but both D2 and D1 stimulation were required for the NT responses in the other basal ganglia regions. CONCLUSIONS A novel finding from the present study was that opposite to abuse-mimicking high doses of METH, the therapeutically relevant low-dose METH treatment reduced NT tissue levels likely reflecting an increase in NT release and a short-term depletion of the levels of this neuropeptide in basal ganglia structures. The possible significance is discussed.
Collapse
|
10
|
Elucidating the role of neurotensin in the pathophysiology and management of major mental disorders. Behav Sci (Basel) 2014; 4:125-153. [PMID: 25379273 PMCID: PMC4219245 DOI: 10.3390/bs4020125] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/15/2014] [Accepted: 05/21/2014] [Indexed: 12/30/2022] Open
Abstract
Neurotensin (NT) is a neuropeptide that is closely associated with, and is thought to modulate, dopaminergic and other neurotransmitter systems involved in the pathophysiology of various mental disorders. This review outlines data implicating NT in the pathophysiology and management of major mental disorders such as schizophrenia, drug addiction, and autism. The data suggest that NT receptor analogs have the potential to be used as novel therapeutic agents acting through modulation of neurotransmitter systems dys-regulated in these disorders.
Collapse
|
11
|
Boules M, Li Z, Smith K, Fredrickson P, Richelson E. Diverse roles of neurotensin agonists in the central nervous system. Front Endocrinol (Lausanne) 2013; 4:36. [PMID: 23526754 PMCID: PMC3605594 DOI: 10.3389/fendo.2013.00036] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 03/06/2013] [Indexed: 01/10/2023] Open
Abstract
Neurotensin (NT) is a tridecapeptide that is found in the central nervous system (CNS) and the gastrointestinal tract. NT behaves as a neurotransmitter in the brain and as a hormone in the gut. Additionally, NT acts as a neuromodulator to several neurotransmitter systems including dopaminergic, sertonergic, GABAergic, glutamatergic, and cholinergic systems. Due to its association with such a wide variety of neurotransmitters, NT has been implicated in the pathophysiology of several CNS disorders such as schizophrenia, drug abuse, Parkinson's disease (PD), pain, central control of blood pressure, eating disorders, as well as, cancer and inflammation. The present review will focus on the role that NT and its analogs play in schizophrenia, endocrine function, pain, psychostimulant abuse, and PD.
Collapse
Affiliation(s)
- Mona Boules
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
- *Correspondence: Mona Boules, Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA. e-mail:
| | - Zhimin Li
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Kristin Smith
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Paul Fredrickson
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Elliott Richelson
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| |
Collapse
|
12
|
The drive to eat: comparisons and distinctions between mechanisms of food reward and drug addiction. Nat Neurosci 2012; 15:1330-5. [PMID: 23007187 DOI: 10.1038/nn.3202] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The growing rates of obesity have prompted comparisons between the uncontrolled intake of food and drugs; however, an evaluation of the equivalence of food- and drug-related behaviors requires a thorough understanding of the underlying neural circuits driving each behavior. Although it has been attractive to borrow neurobiological concepts from addiction to explore compulsive food seeking, a more integrated model is needed to understand how food and drugs differ in their ability to drive behavior. In this Review, we will examine the commonalities and differences in the systems-level and behavioral responses to food and to drugs of abuse, with the goal of identifying areas of research that would address gaps in our understanding and ultimately identify new treatments for obesity or drug addiction.
Collapse
|
13
|
Alburges ME, Hoonakker AJ, Horner KA, Fleckenstein AE, Hanson GR. Methylphenidate alters basal ganglia neurotensin systems through dopaminergic mechanisms: a comparison with cocaine treatment. J Neurochem 2011; 117:470-8. [DOI: 10.1111/j.1471-4159.2011.07215.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
The novel neurotensin analog NT69L blocks phencyclidine (PCP)-induced increases in locomotor activity and PCP-induced increases in monoamine and amino acids levels in the medial prefrontal cortex. Brain Res 2009; 1311:28-36. [PMID: 19948149 DOI: 10.1016/j.brainres.2009.11.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/18/2009] [Accepted: 11/19/2009] [Indexed: 11/21/2022]
Abstract
Schizophrenia is a life-long, severe, and disabling brain disorder that requires chronic pharmacotherapy. Because current antipsychotic drugs do not provide optimal therapy, we have been developing novel treatments that focus on receptors for the neuropeptide neurotensin (NT). NT69L, an analog of neurotensin(8-13), acts like an atypical antipsychotic drug in several dopamine-based animal models used to study schizophrenia. Another current animal model utilizes non-competitive antagonists of the NMDA/glutamate receptor, such as the psychotomimetic phencyclidine (PCP). In the present study, we investigated the effects of NT69L on PCP-induced behavioral and biochemical changes in the rat. The top of an activity chamber was modified to allow us to perform microdialysis in rat brain, while simultaneously recording the locomotor activity of a rat. PCP injection significantly increased activity as well as the extracellular concentration of norepinephrine (NE), 5-HT, dopamine (DA), and glutamate in the medial prefrontal cortex (mPFC). Pretreating with NT69L blocked the PCP-induced hyperactivity as well as the increase of DA, 5-HT, NE, and glutamate in mPFC. Interestingly and unexpectedly, NT69L markedly increased glycine levels, while PCP was without effect on glycine levels. Thus, NT69L showed antipsychotic-like effects in this glutamate-based animal model for studying schizophrenia. Previous work from our group suggests that NT69L also has antipsychotic-like effects in dopaminergic and serotonergic rodent models. Taken together, these data suggest that NT69L in particular and NT receptor agonists in general, will be useful as broad-spectrum antipsychotic drugs.
Collapse
|
15
|
Petkova-Kirova P, Rakovska A, Zaekova G, Ballini C, Corte LD, Radomirov R, Vágvölgyi A. Stimulation by neurotensin of dopamine and 5-hydroxytryptamine (5-HT) release from rat prefrontal cortex: possible role of NTR1 receptors in neuropsychiatric disorders. Neurochem Int 2008; 53:355-61. [PMID: 18835308 DOI: 10.1016/j.neuint.2008.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 08/08/2008] [Accepted: 08/08/2008] [Indexed: 10/21/2022]
Abstract
The modulation of cortical dopaminergic and serotonergic neurotransmissions by neurotensin (NT) was studied by measuring the release of dopamine (DA) and 5-hydroxytryptamine (5-HT) from the prefrontal cortex (PFC) of freely moving rats. The samples were collected via transversal microdialysis. Dopamine and 5-HT levels in the dialysate were measured using high-performance liquid chromatography (HPLC) with an electrochemical detector. Local administration of neurotensin (1microM or 0.1microM) in the PFC via the dialysis probe produced significant, long-lasting, and concentration-dependent increase in the extracellular release of DA and 5-HT. The increase produced by 1microM neurotensin reached a maximum of about 210% for DA and 340% for 5-HT. A high-affinity selective neurotensin receptor (NTR1) antagonist {2-[(1-(7-chloro-4-quinolinyl)-5-(2,6-dimethoxyphenyl)pyrazol-3yl)carbonylamino tricyclo (3.3.1.1.(3.7)) decan-2-carboxylic acid} (SR 48692), perfused locally at a concentration of 0.1microM and 0.5microM in the PFC antagonized the effects of 1microM neurotensin. Our in vivo neurochemical results indicate, for the first time, that neurotensin is able to regulate cortical dopaminergic and serotonergic neuronal activity in freely moving rats. These effects are possibly mediated by interactions of neurotensin with neurons releasing DA or 5-HT, projecting to the PFC from the ventrotegmental area (VTA) and from the dorsal raphe nuclei (DRN), respectively. The potentiating effects of neurotensin on DA and 5-HT release in the PFC are regulated by NTR1 receptors, probably located on dopaminergic and serotonergic nerve terminals or axons.
Collapse
Affiliation(s)
- Polina Petkova-Kirova
- Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev Street bl. 21, 1113 Sofia, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
16
|
Felszeghy K, Espinosa JM, Scarna H, Bérod A, Rostène W, Pélaprat D. Neurotensin receptor antagonist administered during cocaine withdrawal decreases locomotor sensitization and conditioned place preference. Neuropsychopharmacology 2007; 32:2601-10. [PMID: 17356568 PMCID: PMC2992550 DOI: 10.1038/sj.npp.1301382] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic use of psychostimulants induces enduringly increased responsiveness to a subsequent psychostimulant injection and sensitivity to drug-associated cues, contributing to drug craving and relapse. Neurotensin (NT), a neuropeptide functionally linked to dopaminergic neurons, was suggested to participate in these phenomena. We and others have reported that SR 48692, an NT receptor antagonist, given in pre- or co-treatments with cocaine or amphetamine, alters some behavioral effects of these drugs in rats. However, its efficacy when applied following repeated cocaine administration remains unknown. We, therefore, evaluated the ability of SR 48692, administered after a cocaine regimen, to interfere with the expression of locomotor sensitization and conditioned place preference (CPP) in rats. We demonstrated that the expression of locomotor sensitization, induced by four cocaine injections (15 mg/kg, i.p.) every other day and a cocaine challenge 1 week later, was attenuated by a subsequent 2-week daily administration of SR 48692 (1 mg/kg, i.p.). Furthermore, the expression of cocaine-induced CPP was suppressed by a 10-day SR 48692 treatment started after the conditioning period (four 15 mg/kg cocaine injections every other day). Taken together, our data show that a chronic SR 48692 treatment given after a cocaine regimen partly reverses the expression of locomotor sensitization and CPP in the rat, suggesting that NT participates in the maintenance of these behaviors. Our results support the hypothesis that targeting neuromodulatory systems, such as the NT systems may offer new strategies in the treatment of drug addiction.
Collapse
Affiliation(s)
- Klara Felszeghy
- Imagerie cellulaire des neurorécepteurs et physiopathologie neuroendocrinienne
INSERM : U339Université Pierre et Marie Curie - Paris VIHôpital Saint-Antoine 184 rue du Faubourg Saint-Antoine 75571 Paris Cedex 12,FR
- Brain Physiology Reseach Group
Hungarian Academy of SciencesSemmelweiss University1389, PoBox 112 Budapest,HU
| | - José M. Espinosa
- Imagerie cellulaire des neurorécepteurs et physiopathologie neuroendocrinienne
INSERM : U339Université Pierre et Marie Curie - Paris VIHôpital Saint-Antoine 184 rue du Faubourg Saint-Antoine 75571 Paris Cedex 12,FR
| | - Hélène Scarna
- Laboratoire de Neuropharmacologie
Université Claude Bernard - Lyon IFaculté de Pharmacie,FR
| | - Anne Bérod
- Laboratoire de Neuropharmacologie
Université Claude Bernard - Lyon IFaculté de Pharmacie,FR
| | - William Rostène
- Imagerie cellulaire des neurorécepteurs et physiopathologie neuroendocrinienne
INSERM : U339Université Pierre et Marie Curie - Paris VIHôpital Saint-Antoine 184 rue du Faubourg Saint-Antoine 75571 Paris Cedex 12,FR
| | - Didier Pélaprat
- Imagerie cellulaire des neurorécepteurs et physiopathologie neuroendocrinienne
INSERM : U339Université Pierre et Marie Curie - Paris VIHôpital Saint-Antoine 184 rue du Faubourg Saint-Antoine 75571 Paris Cedex 12,FR
| |
Collapse
|
17
|
Ferraro L, Tomasini MC, Fuxe K, Agnati LF, Mazza R, Tanganelli S, Antonelli T. Mesolimbic dopamine and cortico-accumbens glutamate afferents as major targets for the regulation of the ventral striato-pallidal GABA pathways by neurotensin peptides. ACTA ACUST UNITED AC 2007; 55:144-54. [PMID: 17448541 DOI: 10.1016/j.brainresrev.2007.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 03/19/2007] [Accepted: 03/20/2007] [Indexed: 12/11/2022]
Abstract
The tridecapeptide neurotensin (NT) acts in the mammalian brain as a primary neurotransmitter or neuromodulator of classical neurotransmitters. Morphological and functional in vitro and in vivo studies have demonstrated the existence of close interactions between NT and dopamine both in limbic and in striatal brain regions. Additionally, biochemical and neurochemical evidence indicates that in these brain regions NT plays also a crucial role in the regulation of the aminoacidergic signalling. It is suggested that in the nucleus accumbens the regulation of prejunctional dopaminergic transmission induced by NT may be primarily due to indirect mechanism(s) involving mediation via the aminoacidergic neuronal systems with increased glutamate release followed by increased GABA release in the nucleus accumbens rather than a direct action of the peptide on accumbens dopaminergic terminals. The neurochemical profile of action of NT in the control of the pattern of dopamine, glutamate and GABA release in the nucleus accumbens differs to a substantial degree from that shown by the peptide in the dorsal striatum. The neuromodulatory NT mechanisms in the regulation of the ventral striato-pallidal GABA pathways are discussed and their relevance for schizophrenia is underlined.
Collapse
Affiliation(s)
- Luca Ferraro
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17-19, 44100 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Reynolds SM, Geisler S, Bérod A, Zahm DS. Neurotensin antagonist acutely and robustly attenuates locomotion that accompanies stimulation of a neurotensin-containing pathway from rostrobasal forebrain to the ventral tegmental area. Eur J Neurosci 2006; 24:188-96. [PMID: 16882016 DOI: 10.1111/j.1460-9568.2006.04791.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurotensin exerts complex effects on the mesolimbic dopamine system that alter motivation and contribute to neuroadaptations associated with psychostimulant drug administration. Activation of abundant neurotensin receptors in the ventral tegmental area (VTA) enhances dopamine neuron activity and associated release of dopamine in the nucleus accumbens (Acb) and cortex. In view of recent anatomical studies demonstrating that 70% of all neurotensin-containing neurons projecting to the VTA occupy the lateral preoptic area-rostral lateral hypothalamus (LPH) and lateral part of the medial preoptic area (MPOA), the present study examined functionality in the LPH-MPOA neurotensinergic pathway in the rat. Disinhibition (resulting ultimately in stimulation-like effects) of LPH-MPOA neurons with microinjected bicuculline (50 or 100 ng in 0.25 microL) produced locomotor activation that was considerably attenuated by systemic administration of the neurotensin antagonist SR 142948 A (0.03 and 0.1 mg/kg). In contrast, locomotion elicited in this manner was completely blocked by SR 142948 A infused directly into the VTA (5.0 and 15.0 ng in 0.25 microL). Baseline locomotion was unaffected by systemic or intra-VTA administration of SR 142948 A and LPH-MPOA-elicited locomotion was unaffected by infusion of SR 142948 A into the substantia nigra pars compacta and sites rostral and dorsal to the VTA. Locomotion was not elicited by infusions of bicuculline into the lateral hypothalamus at sites caudal to the LPH-MPOA, where neurotensin neurons projecting to the VTA are fewer. The results demonstrate the capacity of a neurotensin-containing pathway from LPH-MPOA to VTA to modulate locomotion. This pathway may be important in linking hippocampal and mesolimbic mechanisms in normal behaviour and drug addiction.
Collapse
Affiliation(s)
- Sheila M Reynolds
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Blvd., St Louis, MO 63104, USA
| | | | | | | |
Collapse
|
19
|
Neurotensin. Br J Pharmacol 2006. [DOI: 10.1038/sj.bjp.0706617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
20
|
Fredrickson P, Boules M, Lin SC, Richelson E. Neurobiologic basis of nicotine addiction and psychostimulant abuse: a role for neurotensin? Psychiatr Clin North Am 2005; 28:737-51, 746. [PMID: 16122577 DOI: 10.1016/j.psc.2005.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Addiction to psychostimulant drugs such as nicotine, amphetamine, and cocaine is a serious public health problem for which there is a paucity of accepted forms of pharmacotherapy. Nicotine dependence has become more frequently associated with psychiatric illness in recent decades, and patients who have schizophrenia are at highest risk and have the poorest prognosis for stopping their addiction. Possible mechanisms for this association include self-medication, with nicotine attenuating attentional deficits and negative symptoms. Neurotensin has been postulated to be an endogenous neuroleptic, and the performance of neurotensin analogues in animal models of addiction makes such compounds intriguing candidates for treatment of addiction in high-risk psychiatric populations.
Collapse
Affiliation(s)
- Paul Fredrickson
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA.
| | | | | | | |
Collapse
|
21
|
Chartoff EH, Szczypka MS, Palmiter RD, Dorsa DM. Endogenous neurotensin attenuates dopamine-dependent locomotion and stereotypy. Brain Res 2004; 1022:71-80. [PMID: 15353215 DOI: 10.1016/j.brainres.2004.06.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2004] [Indexed: 11/15/2022]
Abstract
The neuropeptide neurotensin (NT) is highly sensitive to changes in dopaminergic signaling in the striatum, and is thought to modulate dopamine-mediated behaviors. To explore the interaction of NT with the dopamine system, we utilized mice with a targeted deletion of dopamine synthesis specifically in dopaminergic neurons. Dopamine levels in dopamine-deficient (DD) mice are less than 1% of control mice, and they require daily administration of the dopamine precursor L-dihydroxyphenylalanine (L-DOPA) for survival. DD mice are supersensitive to the effects of dopamine, becoming hyperactive relative to control mice in the presence of L-DOPA. We show that 24 h after L-DOPA treatment, when DD mice are in a "dopamine-depleted" state, Nt mRNA levels in the striatum of DD mice are similar to those in control mice. Administration of L-DOPA or L-DOPA plus the L-amino acid decarboxylase inhibitor, carbidopa, (C/L-DOPA) induced Nt expression in the striatum of DD mice. The dopamine D1 receptor antagonist, SCH23390, blocked C/L-DOPA-induced Nt. To test the hypothesis that this striatal Nt expression modulated dopamine-mediated behavior in DD mice, we administered SR 48692, an antagonist of the high affinity NT receptor, together with L-DOPA or C/L-DOPA. L-DOPA-induced hyperlocomotion and C/L-DOPA-induced stereotypy were potentiated by peripheral administration of SR 48692. Furthermore, intrastriatal microinjections of SR 48692 augmented L-DOPA-induced hyperlocomotion. These results demonstrate a dynamic regulation of striatal Nt expression by dopamine via D1 receptors in DD mice, and point to a physiological role for endogenous striatal NT in counteracting motor behaviors induced by an overactive dopamine system.
Collapse
Affiliation(s)
- Elena H Chartoff
- Department of Psychiatry, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | | | |
Collapse
|
22
|
Delle Donne KT, Chan J, Boudin H, Pélaprat D, Rostène W, Pickel VM. Electron microscopic dual labeling of high-affinity neurotensin and dopamine D2 receptors in the rat nucleus accumbens shell. Synapse 2004; 52:176-87. [PMID: 15065218 DOI: 10.1002/syn.20018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dopamine D2 receptor (D2R) in the nucleus accumbens (NAc) shell is implicated in schizophrenia and in psychostimulant-induced drug-seeking behavior, both of which are affected by activation of the functionally opposed high-affinity neurotensin receptor (NTS1). To determine the functionally relevant sites, we examined the dual electron microscopic immunocytochemical localization of D2R and NTS1 in the NAc shell of rat brain. Immunolabeling for each receptor was seen in association with cytoplasmic organelles, or more rarely, on the plasma membrane of both axonal and somatodendritic profiles. Some of the axonal and many of the dendritic processes colocalized the two receptors. The dually labeled axon terminals often formed symmetric synapses or appositional contacts with unlabeled dendritic profiles. The morphology of these terminals suggests that they contain either inhibitory amino acids or dopamine. Other axonal profiles expressing exclusively NTS1 or D2R were without synaptic specializations or formed asymmetric, excitatory-type synapses mainly on unlabeled dendritic spines. In addition, however, several D2R-immunoreactive terminals were observed presynaptic to dendrites containing NTS1. The somatodendritic profiles immunolabeled for NTS1 and/or D2R had morphological features typical of inhibitory spiny projection neurons in the NAc. These results suggest that activation of NTS1 and D2R can dually modulate transmitter release from the same or separate phenotypically distinct axon terminals in the NAc shell. These presynaptic receptors as well as the postsynaptic NTS1 distribution in neurons that also contain or receive input from terminals containing D2R may mediate the opposing actions of neurotensin and dopamine in the NAc.
Collapse
Affiliation(s)
- Karen T Delle Donne
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|