1
|
Rodríguez-Massó SR, Erickson MA, Banks WA, Ulrich H, Martins AH. The Bradykinin B2 Receptor Agonist (NG291) Causes Rapid Onset of Transient Blood-Brain Barrier Disruption Without Evidence of Early Brain Injury. Front Neurosci 2021; 15:791709. [PMID: 34975388 PMCID: PMC8715084 DOI: 10.3389/fnins.2021.791709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background: The blood-brain barrier (BBB) describes the brain's highly specialized capillaries, which form a dynamic interface that maintains central nervous system (CNS) homeostasis. The BBB supports the CNS, in part, by preventing the entry of potentially harmful circulating molecules into the brain. However, this specialized function is challenging for the development of CNS therapeutics. Several strategies to facilitate drug delivery into the brain parenchyma via disruption of the BBB have been proposed. Bradykinin has proven effective in disrupting mechanisms across the blood-tumor barrier. Unfortunately, bradykinin has limited therapeutic value because of its short half-life and the undesirable biological activity elicited by its active metabolites. Objective: To evaluate NG291, a stable bradykinin analog, with selective agonist activity on the bradykinin-B2 receptor and its ability to disrupt the BBB transiently. Methods: Sprague Dawley rats and CD-1 mice were subjected to NG291 treatment (either 50 or 100 μg/kg, intravenously). Time and dose-dependent BBB disruption were evaluated by histological analysis of Evans blue (EB) extravasation. Transcellular and paracellular BBB leakage were assessed by infiltration of 99mTc-albumin (66.5 KDa) and 14C-sucrose (340 Da) radiolabeled probes into the brains of CD-1 mice treated with NG291. NG291 influence on P-glycoprotein (P-gp) efflux pump activity was evaluated by quantifying the brain accumulation of 3H-verapamil, a known P-gp substrate, in CD-1 mice. Results: NG291-mediated BBB disruption was localized, dose-dependent, and reversible as measured by EB extravasation. 99mTc-albumin leakage was significantly increased by 50 μg/kg of NG291, whereas 100 μg/kg of NG291 significantly augmented both 14C-sucrose and 99mTc-albumin leakage. NG291 enhanced P-gp efflux transporter activity and was unable to increase brain uptake of the P-gp substrate pralidoxime. NG291 did not evoke significant short-term neurotoxicity, as it did not increase brain water content, the number of Fluoro-Jade C positive cells, or astrocyte activation. Conclusion: Our findings strongly suggest that NG291 increases BBB permeability by two different mechanisms in a dose-dependent manner and increases P-gp efflux transport. This increased permeability may facilitate the penetration into the brain of therapeutic candidates that are not P-gp substrates.
Collapse
Affiliation(s)
- Sergio R. Rodríguez-Massó
- Department of Pharmacology and Toxicology, University of Puerto Rico Medical Sciences Campus, San Juan, PR, United States
| | - Michelle A. Erickson
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Division of Gerontology and Geriatric Medicine, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - William A. Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Division of Gerontology and Geriatric Medicine, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Antonio Henrique Martins
- Department of Pharmacology and Toxicology, University of Puerto Rico Medical Sciences Campus, San Juan, PR, United States
| |
Collapse
|
2
|
Singh AK, Roy NK, Bordoloi D, Padmavathi G, Banik K, Khwairakpam AD, Kunnumakkara AB, Sukumar P. Orai-1 and Orai-2 regulate oral cancer cell migration and colonisation by suppressing Akt/mTOR/NF-κB signalling. Life Sci 2020; 261:118372. [PMID: 32882268 DOI: 10.1016/j.lfs.2020.118372] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/17/2020] [Accepted: 08/28/2020] [Indexed: 12/24/2022]
Abstract
Despite remarkable progress in understanding and treating oral cancer (OC), it still remains one of the life-threatening diseases and predominant cancers in the world. Therefore, deciphering the molecular mechanisms of this disease would help us to develop highly efficacious therapies. Multiple lines of evidence suggest that calcium and its dysregulation play significant role in the development of various cancers. As an adaptation of survival mechanism, upon depletion of ER calcium stores, store-operated calcium entry (SOCE) has been induced via SOCE channels (SOCC) in various mammalian cells. SOCC are regulated by Orai-1, Orai-2 and Orai-3 located on plasma membrane and two calcium-sensing ER membrane proteins known as stromal interaction molecules (STIM-1 and STIM-2). Hence, the present study was aimed at analysing the role of Orai-1 and Orai-2 in oral cancer and the underlying mechanism. Our results suggest that both Orai-1 and Orai-2 proteins were overexpressed in oral cancer tissues and cell lines (SAS) compared to normal epithelial tissues and cell lines respectively. In addition, silencing of Orai-1 and Orai-2 via chemical SOCE inhibitors and siRNAs inhibited calcium uptake and suppressed oral cancer cell proliferation, colony formation and migration. Furthermore, silencing of Orai-1 and Orai-2 inhibited Akt/mTOR/NF-κB pathway in oral cancer cells. Interestingly, tobacco carcinogen NNN and synthetic carcinogen 4-NQO, enhanced the expression of Orai-1 and Orai-2 in SAS cells. Therefore, we conclude that Orai-1 and Orai-2 have significant role in oral cancer and can be further explored to develop novel therapies for the treatment of this disease.
Collapse
Affiliation(s)
- Anuj Kumar Singh
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Nand Kishor Roy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Amrita Devi Khwairakpam
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Piruthivi Sukumar
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
3
|
KAVAKCIOĞLU YARDIMCI B. Imidazole Antifungals: A Review of Their Action Mechanisms on Cancerous Cells. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2020. [DOI: 10.21448/ijsm.714310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
4
|
An aromatic amino acid in the coiled-coil 1 domain plays a crucial role in the auto-inhibitory mechanism of STIM1. Biochem J 2013; 454:401-9. [PMID: 23795811 DOI: 10.1042/bj20130292] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 06/21/2013] [Accepted: 06/25/2013] [Indexed: 11/17/2022]
Abstract
STIM1 (stromal interaction molecule 1) is one of the key elements that mediate store-operated Ca²⁺ entry via CRAC (Ca²⁺- release-activated Ca²⁺) channels in immune and non-excitable cells. Under physiological conditions, the intramolecular auto-inhibitions in STIM1 C- and STIM1 N-termini play essential roles in keeping STIM1 in an inactive state. However, the auto-inhibitory mechanism of the STIM1 C-terminus is still unclear. In the present study, we first predicted a short inhibitory domain (residues 310-317) in human STIM1 that might determine the different localizations of human STIM1 from Caenorhabditis elegans STIM1 in resting cells. Next, we confirmed the prediction and further identified an aromatic amino acid residue, Tyr³¹⁶, that played a crucial role in maintaining STIM1 in a closed conformation in quiescent cells. Full-length STIM1-Y316A formed constitutive clusters near the plasma membrane and activated the CRAC channel in the resting state when co-expressed with Orai1. The introduction of a Y316A mutation caused the higher-order oligomerization of the in vitro purified STIM1 fragment containing both the auto-inhibitory domain and CAD(CRAC-activating domain).We propose that the Tyr³¹⁶ residue may be involved in the auto-inhibitory mechanism of the STIM1 C-terminus in the quiescent state. This inhibition could be achieved either by interacting with the CAD using hydrogen and/or hydrophobic bonds, or by an intermolecular interaction using repulsive forces, which maintained a dimeric STIM1.
Collapse
|
5
|
Liu CP, Chou CT, Liang WZ, Cheng JS, Chang HT, Kuo DH, Ko KC, Chiang NN, Wu RF, Shieh P, Jan CR. Pathways of [Ca2+]irise evoked by angiotensin II in MDCK renal tubular cells. J Recept Signal Transduct Res 2013; 33:380-6. [DOI: 10.3109/10799893.2013.838788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Jan CR, Lo HR, Chen CY, Kuo SY. Effect of allyl sulfides from garlic essential oil on intracellular ca2+ levels in renal tubular cells. JOURNAL OF NATURAL PRODUCTS 2012; 75:2101-2107. [PMID: 23163425 DOI: 10.1021/np3005248] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Diallyl sulfide (1), diallyl disulfide (2), and diallyl trisulfide (3), which are major organosulfur compounds of garlic (Allium sativum), are recognized as a group of potential chemopreventive compounds. In this study, the early signaling effects of 3 were examined on Madin-Darby canine kidney (MDCK) cells loaded with the Ca(2+)-sensitive dye fura-2. It was found that 3 caused an immediate and sustained increase of [Ca(2+)](i) in a concentration-dependent manner (EC(50) = 40 μM). Compound 3 also induced a [Ca(2+)](i) elevation when extracellular Ca(2+) was removed, but the magnitude was reduced by 45%. In Ca(2+)-free medium, the 3-induced [Ca(2+)](i) level was abolished by depleting stored Ca(2+) with 1 μM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor). Elevation of [Ca(2+)](i) caused by 3 in the Ca(2+)-containing medium was not affected by modulation of protein kinase C activity. The 3-induced Ca(2+) influx was inhibited by nifedipine and nicardipine (1 μM). U73122, an inhibitor of phospholipase C, abolished ATP (but not the 3-induced [Ca(2+)](i) level). These findings suggest that 3 induced a significant [Ca(2+)](i) elevation in MDCK renal tubular cells by stimulating both extracellular Ca(2+) influx and thapsigargin-sensitive intracellular Ca(2+) release via as yet unidentified mechanisms. Furthermore, the order of the allyl sulfide-induced [Ca(2+)](i) elevation and cell viability was 1 < 2 < 3. The differential effect of allyl sulfides on Ca(2+) signaling and cell death appears to correlate with the number of sulfur atoms in the structure of these allyl sulfides.
Collapse
Affiliation(s)
- Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | | | | | | |
Collapse
|
7
|
Chen CY, Huang CF, Tseng YT, Kuo SY. Diallyl disulfide induces Ca2+ mobilization in human colon cancer cell line SW480. Arch Toxicol 2011; 86:231-8. [PMID: 21879349 DOI: 10.1007/s00204-011-0748-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 08/18/2011] [Indexed: 01/17/2023]
Abstract
Diallyl disulfide (DADS), one of the major organosulfur compounds of garlic, is recognized as a group of potential chemopreventive compounds. In this study, we examines the early signaling effects of DADS on human colorectal cancer cells SW480 loaded with Ca(2+)-sensitive dye fura-2. It was found that DADS caused an immediate and sustained rise of [Ca(2+)](i) in a concentration-dependent manner (EC(50) = 232 μM). DADS also induced a [Ca(2+)](i) elevation when extracellular Ca(2+) was removed, but the magnitude was reduced by 45%. Depletion of intracellular Ca(2+) stores with 2 μM carbonylcyanide m-chlorophenylhydrazone, a mitochondrial uncoupler, didn't affect DADS's effect. In Ca(2+)-free medium, the DADS-induced [Ca(2+)](i) rise was abolished by depleting stored Ca(2+) with 1 μM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor). DADS-caused [Ca(2+)](i) rise in Ca(2+)-containing medium was not affected by modulation of protein kinase C activity. The DADS-induced Ca(2+) influx was blocked by nicardipine (10 μM). U73122, an inhibitor of phospholipase C, abolished ATP (but not DADS)-induced [Ca(2+)](i) rise. These findings suggest that DADS induced a significant rise in [Ca(2+)](i) in SW480 colon cancer cells by stimulating both extracellular Ca(2+) influx and thapsigargin-sensitive intracellular Ca(2+) release via as yet unidentified mechanisms.
Collapse
Affiliation(s)
- Chung-Yi Chen
- Department of Medical Laboratory Science and Biotechnology, School of Medical and Health Sciences, Fooyin University, 151 Chinhsueh Rd, Ta-Liao District, Kaohsiung City, 83102, Taiwan
| | | | | | | |
Collapse
|
8
|
Wu SN, Huang HC, Yeh CC, Yang WH, Lo YC. Inhibitory effect of memantine, an NMDA-receptor antagonist, on electroporation-induced inward currents in pituitary GH3 cells. Biochem Biophys Res Commun 2011; 405:508-513. [PMID: 21262200 DOI: 10.1016/j.bbrc.2011.01.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
Abstract
The membrane electroporation-induced inward current (IMEP) in pituitary tumor (GH3) cells was characterized. This current emerges irregularly when membrane hyperpolarizations to -200 mV with a holding potential of -80 mV were elicited. Neither E-4031 (10 μM), glibenclamide (30 μM), nor ZD7288 (30 μM) caused any effects on IMEP. The single-channel conductance and pore radius were estimated to be around 1.12 nS and 1.7 nm, respectively. LaCl3- and memantidine (MEM)-induced block of this current was also examined. The IC50 value for LaCl3- and MEM-induced inhibition of IMEP was 35 and 75 μM, respectively. However, unlike LaCl3, MEM (300 μM) did not exert any effect on voltage-gated Ca2+ current. In inside-out configuration, MEM applied to either external or internal surface of the excised patch did not suppress the activity of ATP-sensitive K+ channels expressed in GH3 cells, although glibenclamide significantly suppressed channel activity. This study provides the first evidence to show that MEM, a non-competitive antagonist of N-methyl D-aspartate receptors, directly inhibits the amplitude of IMEP in pituitary GH3 cells. MEM-mediated block of IMEP in these cells is unlinked to its inhibition of glutamate-induced currents or ATP-sensitive K+ currents. The channel-suppressing properties of MEM might contribute to the underlying mechanisms by which it and its structurally related compounds affect neuronal or neuroendocrine function.
Collapse
Affiliation(s)
- Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan City, Taiwan.
| | | | | | | | | |
Collapse
|
9
|
Chen CH, Su SJ, Chang KL, Huang MW, Kuo SY. The garlic ingredient diallyl sulfide induces Ca2+ mobilization in Madin-Darby canine kidney cells. Food Chem Toxicol 2009; 47:2344-50. [DOI: 10.1016/j.fct.2009.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/03/2009] [Accepted: 06/15/2009] [Indexed: 11/24/2022]
|
10
|
Tsai JY, Huang CC, Cheng HH, Lin KL, Liao WC, Jan CR. Nonylphenol-induced cytosolic Ca2+elevation and death in renal tubular cells. Drug Dev Res 2009. [DOI: 10.1002/ddr.20313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Wang JL, Lin KL, Chen WC, Chou CT, Huang CJ, Liu CS, Hsieh CH, Chang CH, Huang JK, Chang HT, Liu SI, Hsu SS, Jan CR. Effect of Celecoxib on Ca2+Fluxes and Proliferation in MDCK Renal Tubular Cells. J Recept Signal Transduct Res 2008; 25:237-49. [PMID: 16393914 DOI: 10.1080/10799890500464704] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The effect of celecoxib on renal tubular cells is largely unexplored. In Madin Darby canine kidney (MDCK) cells, the effect of celecoxib on intracellular CaCa2+ concentration ([Ca2+]i) and proliferation was examined by using the Ca(2 +)-sensitive fluorescent dye fura-2 and the viability detecting fluorescent dye tetrazolium, respectively. Celecoxib (> or =1 micro M) caused an increase of [CaCa2+]i in a concentration-dependent manner. Celecoxib-induced [CaCa2+]i increase was partly reduced by removal of extracellular CaCa2+. Celecoxib-induced CaCa2+ influx was independently suggested by MnCa2+ influx-induced fura-2 fluorescence quench. In Ca(2 +)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2 +)-ATPase, caused a monophasic [CaCa2+]i increase, after which celecoxib only induced a tiny [CaCa2+]i increase; conversely, pretreatment with celecoxib completely inhibited thapsigargin-induced [CaCa2+]i increases. U73122, an inhibitor of phospholipase C, abolished ATP (but not celecoxib)-induced [CaCa2+]i increases. Overnight incubation with 1 or 10 micro M celecoxib decreased cell viability by 80% and 100%, respectively. These data indicate that celecoxib evokes a [CaCa2+]i increase in renal tubular cells by stimulating both extracellular CaCa2+ influx and intracellular CaCa2+ release and is highly toxic to renal tubular cells in vitro.
Collapse
Affiliation(s)
- J L Wang
- Department of Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chen WC, Huang CC, Huang CJ, Chien JM, Lin KL, Lu YC, Chen IS, Liu SI, Hsu SS, Chang HT, Chou CT, Jan CR. Mechanism of paroxetine-induced cell death in renal tubular cells. Basic Clin Pharmacol Toxicol 2008; 103:407-13. [PMID: 18801027 DOI: 10.1111/j.1742-7843.2008.00319.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Paroxetine belongs to the family of selective serotonin reuptake inhibitors. Much research has been performed on the in vitro effect of paroxetine; however, the effect of paroxetine on Madin-Darby canine kidney renal tubular cells is unknown. The present study was aimed at exploring how paroxetine affects viability and to examine the underlying mechanisms. Paroxetine (15-200 microM) was shown to reduce cell viability via inducing apoptosis in a concentration-dependent manner. Paroxetine-induced cytotoxicity and apoptosis were not changed by the p38 mitogen-activated protein kinase inhibitor SB203580 and the c-Jun NH2-terminal kinase inhibitor SP600125, but was potentiated by the extracellular signal-regulated kinase inhibitor PD98059; inhibited by GF 109203X, a protein kinase C inhibitor; and potentiated by phorbol 12-myristate 13-acetate, a protein kinase C activator. Paroxetine induced [Ca2+](i) rises; however, pre-treatment with 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl)ester, a Ca2+ chelator, to prevent 20 microM paroxetine-induced [Ca2+](i) rises did not protect cells from death. H-89 (a protein kinase A inhibitor) and U73122 (a phospholipase C inhibitor) failed to alter paroxetine-induced cell death. The results suggest that in Madin-Darby canine kidney cells, paroxetine caused protein kinase C-dependent, Ca2+-independent apoptosis which was potentiated by inhibition of the extracellular signal-regulated kinase pathway.
Collapse
Affiliation(s)
- Wei-Chuan Chen
- Department of Surgery, Ping Tung Christian Hospital, Ping Tung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen CY, Chen CH, Kung CH, Kuo SH, Kuo SY. [6]-gingerol induces Ca2+ mobilization in Madin-Darby canine kidney cells. JOURNAL OF NATURAL PRODUCTS 2008; 71:137-40. [PMID: 18181576 DOI: 10.1021/np070279y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
[6]-gingerol, a major phenolic compound derived from ginger (Zingiber officinale), is a potential chemopreventive compound that can induce stress in cancer cells and cause apoptotic cell death. This study examines the early signaling effects of [6]-gingerol on renal cells. It was found that [6]-gingerol caused a slow and sustained rise of [Ca2+]i in a concentration-dependent manner. [6]-gingerol also induced a [Ca2+]i rise when extracellular Ca2+ was removed, but the magnitude was reduced by 80%. Depletion of intracellular Ca2+ stores with CCCP, a mitochondrial uncoupler, did not affect the action of [6]-gingerol. In a Ca2+-free medium, the [6]-gingerol-induced [Ca2+]i rise was partially abolished by depleting stored Ca2+ with thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor). The elevation of [6]-gingerol-caused [Ca2+]i in a Ca2+-containing medium was not affected by modulation of protein kinase C activity. The [6]-gingerol-induced Ca2+ influx was blocked by nicardipine. U73122, an inhibitor of phospholipase C, abolished ATP (but not [6]-gingerol)-induced [Ca2+]i rise. These findings suggest that [6]-gingerol induces a significant rise in [Ca2+]i in MDCK renal tubular cells by stimulating both extracellular Ca2+ influx and thapsigargin-sensitive intracellular Ca2+ release via as yet unidentified mechanisms.
Collapse
Affiliation(s)
- Chung-Yi Chen
- School of Medicine and Health Sciences, Department of Medical Technology, Fooyin University, Kaohsiung County, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
14
|
Chen WC, Cheng HH, Huang CJ, Chou CT, Liu SI, Chen IS, Hsu SS, Chang HT, Huang JK, Jan CR. Effect of riluzole on Ca2+ movement and cytotoxicity in Madin-Darby canine kidney cells. Hum Exp Toxicol 2006; 25:461-9. [PMID: 16937918 DOI: 10.1191/0960327106het641oa] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Riluzole is a drug used in the treatment of amyotrophic lateral sclerosis; however, its in vitro action is unclear. In this study, the effect of riluzole on intracellular Ca2+ concentration ([Ca2+]i) in Madin-Darby canine kidney (MDCK) cells was investigated using the Ca2+ -sensitive fluorescent dye, fura-2. Riluzole (100-500 microM) caused a rapid and sustained increase of [Ca2+]i in a concentration-dependent manner (EC50 = 150 microM). Some 40 and 50% of this [Ca2+]i increase was prevented by the removal of extracellular Ca2+ and the addition of La3+, respectively, but was unchanged by dihydropyridines, verapamil and diltiazem. In Ca2+ -free medium, thapsigargin - an inhibitor of the endoplasmic reticulum (ER) Caz+ -ATPase--caused a monophasic [Ca2+]i increase, after which the increasing effect of riluzole on [Ca2+]i was attenuated by 70%; in addition, pre-treatment with riluzole abolished thapsigargin-induced [Ca2+]i increases. U73122, an inhibitor of phospholipase C (PLC), abolished ATP (but not riluzole)-induced [Ca2+]i increases. At concentrations of 250 and 500 microM, riluzole killed 40 and 95% cells, respectively. The cytotoxic effect of riluzole (250 microM) was unaltered by pre-chelating cytosolic Ca2+ with BAPTA. Collectively, in MDCK cells, riluzole rapidly increased [Ca2+]i by stimulating extracellular Ca2+ influx via an La3+ -sensitive pathway and intracellular Ca2+ release from the ER via, as yet, unidentified mechanisms. Furthermore, riluzole caused Ca2+ -unrelated cytotoxicity in a concentration-dependent manner.
Collapse
Affiliation(s)
- W C Chen
- Department of Surgery, Ping Tung Christian Hospital, Ping Tung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Winters SL, Davis CW, Boucher RC. Mechanosensitivity of mouse tracheal ciliary beat frequency: roles for Ca2+, purinergic signaling, tonicity, and viscosity. Am J Physiol Lung Cell Mol Physiol 2006; 292:L614-24. [PMID: 16963528 DOI: 10.1152/ajplung.00288.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanosensitivity is hypothesized to participate in the regulation of ciliary beat frequency (CBF) in airway epithelia. To investigate this hypothesis, CBF in excised mouse trachea was monitored (microscopy image analysis) while varying mucosal shear (perfusate velocity and/or viscosity; planar flow). CBF increased within minutes of step increase to steady shear stress as small as 10(-3) Pa and decreased within minutes of shear reduction (<or=10(-4) Pa). CBF response was directional, being less with cephalad vs. caudal flow, and was reduced in trachea from mutant mice lacking P2Y2 receptors, as well as by administration of the Ca2+ chelator EGTA, the Ca2+ channel inhibitor La3+, the nucleotide phosphohydrolase apyrase, the metabolically stabilized adenosine receptor agonist 5'-(N-ethylcarboxamido)adenosine, the osmotic agent mannitol, and the viscosity modifier dextran. Brief exposure to exogenous ATP, a candidate mediator, augmented CBF response, although augmentation declined with higher ATP concentration (5.0 vs. 0.1 mM) or longer ATP exposure before shear (55 vs. 20 min). Prolonged extended exposure (45 min) to the metabolically stabilized ATP analog ATPgammaS [adenosine 5'-(3-thiotriphosphate), 0.1 mM] inhibited CBF response to shear. Furthermore, neither ATP nor ATPgammaS substantially increased CBF in the relative absence of shear. With viscosity increase or shear withdrawal apyrase evoked CBF stimulation, inhibitable by the adenosine receptor antagonist 8-(p-sulfophenyl)theophylline. Thus CBF response to shear is finely tuned, directional, La3+ sensitive, likely dependent on extracellular Ca2+ and ATP, involving P2Y2 and adenosine receptor activations, influenced by shear history, tonicity, viscosity, and metabolism/exposure of ATP, and thus reflective of a complex interplay of physical and biochemical actions.
Collapse
Affiliation(s)
- Scot L Winters
- Department of Medicine, Cystic Fibrosis/Pulmonary Research and Tteatment Center, University of North Carolina, Chapel Hill, NC 27599-7248, USA.
| | | | | |
Collapse
|
16
|
Potter EA, Stewart G, Smith CP. Urea flux across MDCK-mUT-A2 monolayers is acutely sensitive to AVP, cAMP, and [Ca2+]i. Am J Physiol Renal Physiol 2006; 291:F122-8. [PMID: 16449356 DOI: 10.1152/ajprenal.00423.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we engineered a Madin-Darby canine kidney (MDCK) type I cell line to stably express the mouse urea transporter UT-A2. Monolayers of MDCK-mUT-A2 cells had a basal phloretin-inhibitable urea permeability of 8.4x10(-6)+/-0.3 cm/s. Treatment of MDCK-mUT-A2 monolayers with AVP led to a rapid dose-dependent increase in trans-monolayer phloretin-inhibitable urea flux. The temporal pattern of response was markedly different from that observed for MDCK cells expressing rat UT-A1. Exposure of MDCK-mUT-A2 cells to either 10 microM forskolin or 250 microM 8-bromo cAMP also increased urea flux rate. Inclusion of the PKA inhibitor H89 (10 microM) had no effect on the forskolin-stimulated increase in urea flux across MDCK-mUT-A2 monolayers. Treatment with either 10 microM CPA or 1 mM ATP also caused an increase in UT-A2-mediated urea flux, although these responses where transient compared with those induced by AVP or elevated cAMP. Taken together, these results show for the first time that UT-A2 is acutely sensitive to AVP, cAMP, or increased intracellular calcium.
Collapse
Affiliation(s)
- Elizabeth A Potter
- Faculty of Life Sciences, University of Manchester, G.38, Stopford Bldg., Oxford Road, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
17
|
Yeh JH, Cheng HH, Huang CJ, Chung HM, Chiu HF, Yang YL, Yeh MY, Chen WC, Kao CH, Chou CT, Jan CR. Effect of Anandamide on Cytosolic Ca2+ Levels and Proliferation in Canine Renal Tubular Cells. Basic Clin Pharmacol Toxicol 2006; 98:416-22. [PMID: 16623868 DOI: 10.1111/j.1742-7843.2006.pto_350.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of the endogenous cannabinoid anandamide on cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and proliferation is largely unknown. This study examined whether anandamide altered Ca(2+) levels and caused Ca(2+)-dependent cell death in Madin-Darby canine kidney (MDCK) cells. [Ca(2+)](i) and cell death were measured using the fluorescent dyes fura-2 and WST-1 respectively. Anandamide at concentrations above 5 muM increased [Ca(2+)](i) in a concentration-dependent manner. The Ca(2+) signal was reduced by 78% by removing extracellular Ca(2+). The anandamide-induced Ca(2+) influx was insensitive to L-type Ca(2+) channel blockers and the cannabinoid receptor antagonist AM 251, but was inhibited differently by aristolochic acid, WIN 55,212-2 (a cannabinoid receptor agonist), phorbol ester, GF 109203X and forskolin. After pretreatment with thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor), anandamide-induced Ca(2+) release was inhibited. Inhibition of phospholipase C with U73122 did not change anandamide-induced Ca(2+) release. At concentrations of 100 muM and 200 muM, anandamide killed 50% and 95% cells, respectively. The cytotoxic effect of 100 muM anandamide was completely reversed by pre-chelating cytosolic Ca(2+) with BAPTA. Collectively, in MDCK cells, anandamide induced [Ca(2+)](i) rises by causing Ca(2+) release from endoplasmic reticulum and Ca(2+) influx from extracellular space. Furthermore, anandamide can cause Ca(2+)-dependent cytotoxicity in a concentration-dependent manner.
Collapse
Affiliation(s)
- Jeng-Hsien Yeh
- Pathology and Laboratory Medicine Department, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan 813
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ho CM, Kuo SY, Chen CH, Huang JK, Jan CR. Effect of desipramine on Ca2+ levels and growth in renal tubular cells. Cell Signal 2005; 17:837-45. [PMID: 15763426 DOI: 10.1016/j.cellsig.2004.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 11/03/2004] [Accepted: 11/03/2004] [Indexed: 11/28/2022]
Abstract
The in vitro effect of desipramine on renal tubular cell is unknown. In Madin-Darby canine kidney (MDCK) cells, the effect of desipramine on intracellular Ca2+ concentration ([Ca2+]i) was measured by using fura-2. Desipramine (>25 microM) caused a rapid and sustained rise of [Ca2+]i in a concentration-dependent manner (EC50=50 microM). Desipramine-induced [Ca2+]i rise was prevented by 40% by removal of extracellular Ca2+ but was not altered by L-type Ca2+ channel blockers. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which desipramine failed to release more Ca2+; in addition, pretreatment with desipramine partly decreased thapsigargin-induced [Ca2+]i increase. U73122, an inhibitor of phospholipase C, did not change desipramine-induced [Ca2+]i rise. Incubation with 10-100 microM desipramine enhances or inhibits cell proliferation in a concentration- and time-dependent manner. The inhibitory effect of desipramine on proliferation was not extracellular Ca2+-dependent. Apoptosis appears to contribute to desipramine-induced cell death. Together, these findings suggest that desipramine increases baseline [Ca2+]i in renal tubular cells by evoking both extracellular Ca2+ influx and intracellular Ca2+ release, and can cause apoptosis.
Collapse
Affiliation(s)
- Chin-Man Ho
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | | | | | | | | |
Collapse
|
19
|
Jan CR. Effect of p-chloroamphetamine on calcium movement and viability in renal tubular cells. Life Sci 2005; 77:589-99. [PMID: 15904675 DOI: 10.1016/j.lfs.2004.11.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Accepted: 11/22/2004] [Indexed: 10/25/2022]
Abstract
In Madin-Darby canine kidney (MDCK) cells, the effect of p-chloroamphetamine, a neurotoxin that depletes intracellular serotonin, on intracellular Ca2+ concentration ([Ca2+]i) and viability was measured by using the Ca2+-sensitive fluorescent dye fura-2 and the viability detecting fluorescent dye tetrazolium. p-Chloroamphetamine (> or = 10 microM) caused a rapid rise of [Ca2+]i in a concentration-dependent manner. p-Chloroamphetamine-induced [Ca2+]i rise was partly reduced by removal of extracellular Ca2+. p-Chloroamphetamine-induced extracellular Ca2+ influx was also suggested by Mn2+ influx-induced fura-2 fluorescence quench. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which p-chloroamphetamine failed to increase [Ca2+]i; also, pretreatment with p-chloroamphetamine reduced 50% of thapsigargin-sensitive Ca2+ stores. U73122, an inhibitor of phospholipase C, abolished ATP (but not p-chloroamphetamine)-induced [Ca2+]i rise. Overnight incubation with 1-500 microM p-chloroamphetamine decreased cell viability. These findings suggest that p-chloroamphetamine evokes a rapid increase in [Ca2+]i in renal tubular cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release, and is cytotoxic.
Collapse
Affiliation(s)
- Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan 813.
| |
Collapse
|
20
|
Yeh JH, Huang CJ, Lee JH, Hsu SS, Chen JS, Cheng HH, Chang HT, Huang JK, Chung HM, Mei-Yin Y, Jan CR. 2-O-methyl PAF as a Ca2+ mobilizer in Madin Darby canine kidney cells. Life Sci 2005; 77:336-44. [PMID: 15878360 DOI: 10.1016/j.lfs.2004.10.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 10/22/2004] [Indexed: 11/16/2022]
Abstract
In Madin-Darby canine kidney (MDCK) cells, the effect of 2-O-methyl PAF, an inactive analogue of platelet activating factor (PAF), on intracellular Ca2+ concentration ([Ca2+]i) was measured by using the Ca2+-sensitive fluorescent dye fura-2. 2-O-methyl PAF (> or = 15 microM) caused a rapid rise of [Ca2+]i in a concentration-dependent manner. 2-O-methyl PAF-induced [Ca2+]i rise was partly reduced by removal of extracellular Ca2+. 2-O-methyl PAF-induced extracellular Ca2+ influx was also suggested by Mn2+ influx-induced fura-2 fluorescence quench. The 2-O-methyl PAF-induced Ca2+ influx was blocked by nifedipine, verapamil and diltiazem. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which 2-O-methyl PAF failed to increase [Ca2+]i; also, pretreatment with 2-O-methyl PAF depleted thapsigargin-sensitive Ca2+ stores. U73122, an inhibitor of phospholipase C, abolished ATP (but not 2-O-methyl PAF)-induced [Ca2+]i rise. These findings suggest that 2-O-methyl PAF evokes a rapid increase in [Ca2+]i in renal tubular cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release.
Collapse
Affiliation(s)
- Jeng-Hsien Yeh
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan 813
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jan CR, Chao YY. Novel effect of Y-24180, a presumed specific platelet activation factor receptor antagonist, on Ca2+ levels and growth of human prostate cancer cells. Cell Signal 2005; 16:959-65. [PMID: 15157675 DOI: 10.1016/j.cellsig.2004.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2003] [Accepted: 01/30/2004] [Indexed: 10/26/2022]
Abstract
In human prostate cancer PC3 cells, the effect of Y-24180, a presumed specific platelet activation factor (PAF) receptor antagonist, on intracellular Ca2+ concentration ([Ca2+]i) was measured by using fura-2 as a Ca2+-sensitive fluorescent probe. Y-24180 (1-10 microM) caused a rapid and sustained [Ca2+]i rise in a concentration-dependent manner. The [Ca2+]i rise was prevented by 40% by removal of extracellular Ca2+, but was not changed by dihydropyridines, verapamil and diltiazem. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of 10 microM Y-24180 on [Ca2+]i was reduced by 67%; conversely, depletion of Ca2+ stores with 10 microM Y-24180 abolished thapsigargin-induced [Ca2+]i rise. U73122, an inhibitor of phospholipase C, inhibited ATP-, but not Y-24180-induced [Ca2+]i rise. Activation of protein kinase C with phorbol-12-myristate-13-acetate (PMA) enhanced Y-24180-induced [Ca2+]i rise by 70%. Overnight treatment with 0.1-10 microM Y-24180 inhibited cell proliferation in a concentration-dependent manner. Collectively, these results suggest that Y-24180 acts as a potent and cytotoxic Ca2+ mobilizer in prostate cancer cells, by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release. Since alterations in Ca2+ movement may interfere with many cellular signalling processes unrelated to modulation of PAF receptors, caution must be applied in using this reagent as a selective PAF receptor antagonist.
Collapse
Affiliation(s)
- Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | | |
Collapse
|
22
|
Yukawa H, Shen J, Harada N, Cho-Tamaoka H, Yamashita T. Acute effects of glucocorticoids on ATP-induced Ca2+ mobilization and nitric oxide production in cochlear spiral ganglion neurons. Neuroscience 2005; 130:485-96. [PMID: 15664705 DOI: 10.1016/j.neuroscience.2004.09.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2004] [Indexed: 11/15/2022]
Abstract
Rapid, non-genomic effects of glucocorticoids on extracellular adenosine 5'-triphosphate (ATP)-induced intracellular Ca(2+) concentration ([Ca(2+)](i)) changes and nitric oxide (NO) production were investigated in type I spiral ganglion neurons (SGNs) of the guinea-pig cochlea using the Ca(2+)-sensitive dye fura-2 and the NO-sensitive dye 4,5-diaminofluorescein (DAF-2). Pretreatment of SGNs with 1 microM dexamethasone for 10 min, a synthetic glucocorticoid hormone, enhanced the ATP-induced [Ca(2+)](i) increase in SGNs. RU 38486, a competitive glucocorticoid receptor antagonist eliminated the effects of dexamethasone on the ATP-induced [Ca(2+)](i) increase in SGNs. These acute effects of dexamethasone were dependent on the presence of extracellular Ca(2+), thereby suggesting that dexamethasone may rapidly enhance the Ca(2+) influx through the activation of ionotropic P2X receptors which may interact with glucocorticoid-mediated membrane receptors. Extracellular ATP increased the intensity of DAF-2 fluorescence, indicating NO production in SGNs. The ATP-induced NO production was mainly due to the Ca(2+) influx through the activation of P2 receptors. S-nitroso-N-acetylpenicillamine, a NO donor, enhanced the ATP-induced [Ca(2+)](i) increase in SGNs while L-N(G)-nitroarginine methyl ester (L-NAME), a NO synthesis inhibitor, inhibited it. Dexamethasone enhanced the ATP-induced NO production in SGNs. The augmentation of dexamethasone on ATP-induced NO production was abolished in the presence of l-NAME. It is concluded that the ATP-induced [Ca(2+)](i) increase induces NO production which enhances a [Ca(2+)](i) increase in SGNs by a positive-feedback mechanism. Dexamethasone enhances the ATP-induced [Ca(2+)](i) increase in SGNs which results in the augmentation of NO production. The present study suggests that NO may play an important role in auditory signal transduction. Our results also indicate that glucocorticoids may rapidly affect auditory neurotransmission due to a novel non-genomic mechanism.
Collapse
Affiliation(s)
- H Yukawa
- Hearing Research Laboratory, Department of Otolaryngology, Kansai Medical University, Fumizono-cho 10-15, Moriguchi, Osaka 570-8507, Japan
| | | | | | | | | |
Collapse
|
23
|
Jan CR, Chen CH, Wang SC, Kuo SY. Effect of methylglyoxal on intracellular calcium levels and viability in renal tubular cells. Cell Signal 2004; 17:847-55. [PMID: 15763427 DOI: 10.1016/j.cellsig.2004.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 11/03/2004] [Accepted: 11/03/2004] [Indexed: 11/24/2022]
Abstract
Methylglyoxal (2-oxopropanal), a physiological glucose metabolite, is a highly reactive dicarbonyl compound that can induce stress in cells and cause apoptotic cell death. This study examines the early signaling effects of methylglyxal on renal cells. It was found that methylglyoxal caused a slow and sustained rise of intracellular Ca2+ concentration ([Ca2+]i) in a concentration-dependent manner (EC50=1.8 mM). Methylglyoxal also induced a [Ca2+]i rise when extracellular Ca2+ was removed, but the magnitude was reduced by 80%. Depletion of intracellular Ca2+ stores with thapsigargin (TG), an endoplasmic reticulum (ER) Ca2+ pump inhibitor, did not affect methylglyoxal's effect. In Ca2+-free medium, the methylglyoxal-induced [Ca2+]i rise was abolished by depleting stored Ca2+ with carbonylcyanide m-chlorophenylhydrazone (CCCP; a mitochondrial uncoupler). Methylglyoxal-caused [Ca2+]i rise in the Ca2+-containing medium was not affected by modulation of protein kinase C activity, presence of voltage-gated Ca2+ channel blockers, or preincubation with thiol-containing antioxidants. U73122, an inhibitor of phospholipase C, abolished ATP (but not methylglyoxal)-induced [Ca2+]i rise. Furthermore, the [Ca2+]i-elevating effect of methylglyoxal was cell type-dependent, because methylglyoxal failed to cause [Ca2+]i rises in CHO-K1, neutrophils, or platelets. Pretreatment with methylglyoxal for 0-24 h decreased cell viability in a concentration- and time-dependent manner. Meanwhile, methylglyoxal-induced cell death involved apoptotic and necrotic events, the former being the dominant. These findings suggest that methylglyoxal induced a significant rise in [Ca2+]i in Madin-Darby canine kidney (MDCK) renal tubular cells by stimulating both extracellular Ca2+ influx and CCCP-sensitive intracellular Ca2+ release via as yet unidentified mechanisms. The cell type-specific Ca2+ signaling may play an important role in the early process of cytotoxic action of methylglyoxal.
Collapse
Affiliation(s)
- Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | | | | | | |
Collapse
|
24
|
Huang JK, Chen WC, Huang CJ, Hsu SS, Chen JS, Cheng HH, Chang HT, Jiann BP, Jan CR. Nordihydroguaiaretic acid-induced Ca2+ handling and cytotoxicity in human prostate cancer cells. Life Sci 2004; 75:2341-51. [PMID: 15350831 DOI: 10.1016/j.lfs.2004.04.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Accepted: 04/21/2004] [Indexed: 10/26/2022]
Abstract
The effect of nordihydroguaiaretic acid (NDGA), a compound commonly used as a lipoxygenases inhibitor, on intracellular free Ca2+ levels ([Ca2+]i) in PC3 human prostate cancer cells was investigated. [Ca2+]i was measured by using the Ca2+ -sensitive dye fura-2. NDGA increased [Ca2+]i in a concentration-dependent manner with an EC50 of 30 microM. The Ca2+ signal comprised a gradual and sustained increase. Removal of extracellular Ca2+ partly decreased the NDGA-induced [Ca2+]i increase, suggesting that the Ca2+ signal was due to both extracellular Ca2+ influx and intracellular Ca2+ release. NDGA-induced Ca2+ influx was independently confirmed by measuring NDGA-induced Mn2+ -coupled quench of fura-2 fluorescence. The NDGA-induced Ca2+ influx was not affected by L-type Ca2+ channel blockers. In Ca2+ -free medium, the NDGA-induced [Ca2+]i increase was abolished by pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), and conversely, pretreatment with NDGA abolished thapsigargin-induced [Ca2+]i increase. NDGA-induced intracellular Ca2+ release was not altered by inhibition of phospholipase C. Overnight treatment with 20-50 microM NDGA inhibited cell proliferation rate in a concentration-dependent manner. Several other lipoxygenases inhibitors did not alter [Ca2+]i. Collectively, this study shows that in prostate cells, NDGA induced a [Ca2+]i increase via releasing stored Ca2+ from the endoplasmic reticulum in a manner independent of phospholipase C activity, and by causing Ca2+ influx. NDGA also caused cytotoxicity at higher concentrations.
Collapse
Affiliation(s)
- Jong-Khing Huang
- Department of Surgery, Kaohsiung Veterans General Hospital, Taiwan 813
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hsu SS, Chen WC, Lo YK, Cheng JS, Yeh JH, Cheng HH, Chen JS, Chang HT, Jiann BP, Huang JK, Jan CR. EFFECT OF THE ANTIDEPRESSANT MAPROTILINE ON CA2+ MOVEMENT AND PROLIFERATION IN HUMAN PROSTATE CANCER CELLS. Clin Exp Pharmacol Physiol 2004; 31:444-9. [PMID: 15236632 DOI: 10.1111/j.1440-1681.2004.04024.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. The effect of maprotiline, an antidepressant, on human prostate cells is unclear. In the present study, the effect of maprotiline on [Ca2+]i and growth in PC3 human prostate cancer cells was measured using the fluorescent dyes fura-2 and tetrazolium, respectively. 2. Maprotiline caused a rapid, concentration-dependent increase in [Ca2+]i (EC50 = 200 micromol/L). The maprotiline-induced [Ca2+]i increase was reduced by removal of extracellular Ca2+ or pretreatment with nicardipine. 3. The maprotiline-induced Mn2+ influx-associated fura-2 fluorescence quench directly suggests that maprotiline caused Ca2+ influx. 4. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca2+]i increase, after which the effects of maprotiline of increasing [Ca2+]i were abolished. In addition, pretreatment with maprotiline reduced a major portion of the thapsigargin-induced increase in [Ca2+]i. 5. U73122, an inhibitor of phospholipase C, abolished the ATP (but not maprotiline)-induced increase in [Ca2+]i. 6. Overnight incubation with 1-10 micromol/L maprotiline did not alter cell proliferation, although incubation with 30-50 micromol/L maprotiline decreased cell proliferation. 7, These findings suggest that maprotiline rapidly increases [Ca2+]i in human prostate cancer cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release and that it may modulate cell proliferation in a concentration-dependent manner.
Collapse
Affiliation(s)
- Shu-Shong Hsu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yeh JH, Chung HM, Ho CM, Jan CR. Mercury-induced Ca2+ increase and cytotoxicity in renal tubular cells. Life Sci 2004; 74:2075-83. [PMID: 14967201 DOI: 10.1016/j.lfs.2003.09.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2003] [Accepted: 09/30/2003] [Indexed: 11/21/2022]
Abstract
The effect of mercury (Hg2+), a known nephrotoxicant, on intracellular free Ca2+ levels ([Ca2+]i) in Madin Darby canine kidney (MDCK) cells was explored. [Ca2+]i was measured by using the Ca2+ -sensitive dye fura-2. Hg2+ increased [Ca2+]i in a concentration-dependent manner with an EC50 of 6 microM. The Ca2+ signal comprised a gradual increase. Removal of extracellular Ca2+ decreased the Hg2+ -induced [Ca2+]i increase by 27%, suggesting that the Ca2+ signal was due to both extracellular Ca2+ influx and store Ca2+ release. In Ca2+ -free medium, the Hg2+ -induced [Ca2+]i increase was nearly abolished by pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), and conversely, pretreatment with Hg2+ abolished thapsigargin-induced Ca2+ increase. Hg2+ -induced Ca2+ release was not altered by inhibition of phospholipase C but was potentiated by activation of protein kinase C. Overnight treatment with 1 microM Hg2+ did not alter cell proliferation rate and mitochondrial activity, but 10 microM Hg2+ killed all cells. Collectively, this study shows that Hg2+ induced protein kinase C-regulated [Ca2+]i increases in renal tubular cells via releasing store Ca2+ from the endoplasmic reticulum in a manner independent of phospholipase C activity. Hg2+ also caused cytotoxicity at higher concentrations.
Collapse
Affiliation(s)
- Jeng-Hsien Yeh
- Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, 813 Taiwan, ROC
| | | | | | | |
Collapse
|
27
|
Abstract
In canine renal tubular cells, the effect of Y-24180, a presumed specific platelet activating factor (PAF) receptor antagonist, on intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured by using fura-2 as a Ca(2+)-sensitive fluorescent probe. Y-24180 (0.1-10 microM) caused a rapid and sustained [Ca(2+)](i) rise in a concentration-dependent manner. The [Ca(2+)](i) rise was prevented by 30% by removal of extracellular Ca(2+), but was not changed by dihydropyridines, verapamil and diltiazem. Y-24180-induced Ca(2+) influx was confirmed by Mn(2+)-influx induced quench of fura-2 fluorescence. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca(2+)](i) rise, after which the increasing effect of 5 microM Y-24180 on [Ca(2+)](i) was abolished; conversely, depletion of Ca(2+) stores with 5 microM Y-24180 abolished thapsigargin-induced [Ca(2+)](i) rise. U73122, an inhibitor of phoispholipase C, inhibited ATP-, but not Y-24180-induced [Ca(2+)](i) rise. Overnight treatment with Y-24180 did not alter cell proliferation rate. Collectively, these results suggest that Y-24180 acts as a potent, but not cytotoxic, Ca(2+) mobilizer in renal tubular cells, by stimulating both extracellular Ca(2+) influx and intracellular Ca(2+) release. Since alterations in Ca(2+) movement may interfere many cellular signaling processes unrelated to modulation of PAF receptors, caution must be applied in using this chemical as a selective PAF receptor antagonist.
Collapse
Affiliation(s)
- Yu-Ying Chao
- School of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | |
Collapse
|
28
|
Ren Y, Liu R, Carretero OA, Garvin JL. Increased intracellular Ca++ in the macula densa regulates tubuloglomerular feedback. Kidney Int 2003; 64:1348-55. [PMID: 12969153 DOI: 10.1046/j.1523-1755.2003.00214.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Tubuloglomerular feedback is initiated by an increase in NaCl at the macula densa lumen, which in turn increases intracellular Ca++. In the present study, we examined the role of increased intracellular Ca++ in tubuloglomerular feedback and the source of the increased Ca++. We hypothesized that an increase in intracellular Ca++ at the macula densa via the basolateral Na+/Ca++ exchanger, caused by an increase in luminal NaCl, initiates Ca++-mediated Ca++ release from intracellular stores, which is essential for tubuloglomerular feedback. METHODS Rabbit afferent arterioles and attached macula densas were simultaneously microperfused in vitro. Tubuloglomerular feedback was induced by increasing macula densa Na+/Cl- from 11/10 mmol/L (low) to 81/80 mmol/L (high) and was measured before and after treatment. RESULTS To investigate whether elevations in intracellular Ca++ are required for tubuloglomerular feedback, the calcium ionophore A23187 or the Ca++ chelator BAPTA-AM was added to the macula densa lumen. During the control period, tubuloglomerular feedback decreased afferent arteriole diameter from 18.1 +/- 1.1 microm to 15.3 +/- 0.8 microm. Adding 2 x 10-6 mol/L A23187 to the low NaCl macula densa perfusate induced tubuloglomerular feedback; diameter decreased from 18.0 +/- 1.0 microm to 15.4 +/- 0.9 microm (N = 6; P < 0.01). After adding BAPTA-AM (25 micromol/L) to the macula densa lumen, tubuloglomerular feedback response was completely eliminated. We next studied the source of increased macula densa Ca++ in response to increased NaCl concentration. During the control period, tubuloglomerular feedback decreased afferent arteriole diameter from 18.5 +/- 1.6 microm to 15.3 +/- 1.2 microm (N = 6; P < 0.01). After adding the Na+/Ca++ exchanger inhibitor 2'4'-dichlorobenzamil (10 micromol/L) or KB-R7943 (30 micromol/L) to the bath, the tubuloglomerular feedback response was blocked; however, the afferent arteriole response to angiotensin II or adenosine was not altered. Next, we tested the Ca++-adenosine triphosphatase (ATPase) inhibitor thapsigargin (0.1 micromol/L), which has been reported to inhibit sarcoplasmic reticulum Ca++-ATPase activity and prevent restoration of intracellular Ca++ stores. When thapsigargin was added to the macula densa lumen, it reduced the first tubuloglomerular feedback response by 33% and completely eliminated the second and third tubuloglomerular feedback responses. In the absence of thapsigargin, there was no significant decrease in the tubuloglomerular feedback responses (N = 6). Neither the L-type Ca++ channel blocker nifedipine (25 micromol/L), nor the T-type Ca++ channel blocker pimozide (10 micromol/L), inhibited tubuloglomerular feedback when added to the macula densa lumen. CONCLUSION We concluded that (1). increased intracellular Ca++ at the macula densa is required for the tubuloglomerular feedback response; (2). Na+/Ca++ exchange appears to initiate Ca++-mediated Ca++ release from intracellular stores; and (3). luminal L-type or T-type Ca++ channels are not involved in tubuloglomerular feedback.
Collapse
Affiliation(s)
- Yilin Ren
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, Michigan 48202, USA.
| | | | | | | |
Collapse
|
29
|
Jan CR, Jiann BP, Lu YC, Chang HT, Yu CC, Chen WC, Huang JK. Oxidation by thimerosal increases calcium levelsin renal tubular cells. PHARMACOLOGY & TOXICOLOGY 2003; 93:123-7. [PMID: 12969436 DOI: 10.1034/j.1600-0773.2003.930303.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effect of thimerosal, a reactive oxidant, on cytoplasmic free Ca2+ concentrations ([Ca2+]i) in Madin Darby canine kidney (MDCK) cells was explored by using the Ca2+-sensitive dye fura-2. Thimerosal acted in a concentration-dependent manner with an EC50 of 0.5 microM. The Ca2+ signal comprised a gradual rise and a sustained elevation. Removal of extracellular Ca2+ reduced 80% of the signal. In Ca2+-free medium, the [Ca2+]i rise induced by 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) was completely inhibited by pretreatment with 5 microM thimerosal. The thimerosal (5 microM)-induced Ca2+ release was not changed by inhibition of phospholipase C with 2 microM U73122. Collectively, this study shows that thimerosal induced [Ca2+]i rises in renal tubular cells via releasing store Ca2+ from the endoplasmic reticulum Ca2+ stores in a manner independent of phospholipase C activity.
Collapse
Affiliation(s)
- Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan 813
| | | | | | | | | | | | | |
Collapse
|
30
|
Lu YC, Kuo SY, Jiann BP, Chang HT, Chen WC, Huang JK, Jan CR. Triethyltin increases cytosolic Ca(2+) levels in human osteoblasts. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2003; 14:1-7. [PMID: 21782656 DOI: 10.1016/s1382-6689(03)00004-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2002] [Accepted: 12/18/2002] [Indexed: 05/31/2023]
Abstract
In human osteosarcoma MG63 cells, effect of triethyltin, an environmental toxicant, on intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured by using fura-2. Triethyltin (1-50 μM) caused a rapid and sustained plateau rise of [Ca(2+)](i) in a concentration-dependent manner (EC(50)=10 μM). Triethyltin-induced [Ca(2+)](i) rise was prevented by 50% by removal of extracellular Ca(2+) but was not altered by voltage-gated Ca(2+) channel blockers. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum (ER) Ca(2+)-ATPase, caused a monophasic [Ca(2+)](i) rise, after which the increasing effect of triethyltin on [Ca(2+)](i) was attenuated by 60%; also, pretreatment with triethyltin abolished thapsigargin-induced [Ca(2+)](i) increase. Depletion of mitochondrial Ca(2+) with carbonylcyanide m-chlorophenylhydrazone (CCCP; 2 μM) did not affect triethyltin-induced Ca(2+) release. U73122, an inhibitor of phoispholipase C, abolished ATP (but not triethyltin)-induced [Ca(2+)](i) rise. A low concentration (1 μM) of triethyltin failed to alter ATP and bradykinin-induced [Ca(2+)](i) rises. These findings suggest that triethyltin rapidly increases [Ca(2+)](i) in osteoblasts by stimulating both extracellular Ca(2+) influx and intracellular Ca(2+) release via as yet unidentified mechanism(s).
Collapse
Affiliation(s)
- Yih-Chau Lu
- Department of Orthopaedic Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
31
|
Sun Y, Liu DL, Yu ZQ, Zhang Q, Bai J, Sun DY. An apoplastic mechanism for short-term effects of rare earth elements at lower concentrations. PLANT, CELL & ENVIRONMENT 2003; 26:887-896. [PMID: 12803616 DOI: 10.1046/j.1365-3040.2003.01021.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The short-term effects of rare earth elements on pollen germination and tube growth were tested. Concentrations of 2.5 approximately 20 micro m lanthanum(La3+) or cerium (Ce3+)increased pollen germination and pollen tube growth, whereas concentrations higher than 40 micro m La3+ and Ce3+ inhibited this process. The most effective concentration of La3+ needed for promotion shifted from 10 to 40 micro m, depending on the Ca2+ concentration in the medium. Calmodulin (CaM) antagonist W7-agarose and anti-CaM antibody depressed La3+-promoted pollen germination and tube growth in a dose-dependent manner. La3+-CaM complexes (La3+-CaM) increased pollen germination and tube growth more than CaM or La3+ alone. Pertussis toxin (PTX) inhibited La3+-promoted pollen germination and tube growth. Cholera toxin (CTX) partially recovered the inhibition of the above La3+-promoted process by the anti-CaM antibody. Concentrations of 10-7 approximately 10-9 m La3+-CaM increased GTPase activity inside plasma membrane vesicles of the pollen tube, but apo-CaM or La3+ alone had no positive effects. The results suggest that apoplastic CaM may be involved in the promotion effects of lower concentrations of La3+ on pollen germination and tube growth, and the heterotrimeric G-protein on the plasma membrane may transduce La3+-activated CaM signalling. The present studies provide an apoplastic mechanism for short-term effects of rare earth elements at lower concentrations in the pollen system.
Collapse
Affiliation(s)
- Y. Sun
- Institute of Molecular Cell Biology, Institute of Molecular Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050016, P. R. China
| | | | | | | | | | | |
Collapse
|
32
|
Jan CR, Jiann BP, Lu YC, Chang HT, Huang JK. Effect of olvanil (N-vanillyl-cis-9-octadecenoamide) on cytosolic Ca2+ increase in renal tubular cells. Life Sci 2002; 71:3081-90. [PMID: 12408875 DOI: 10.1016/s0024-3205(02)02174-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In canine renal tubular cells, effect of olvanil, a presumed cannabinoid and vanilloid receptor modulator, on intracellular Ca2+ concentration ([Ca2+]i) was measured by using fura-2. Olvanil (5-100 microM) caused a rapid and sustained [Ca2+]i rise in a concentration-dependent manner. Olvanil-induced [Ca2+]i rise was prevented by 70 and 90% by removal of extracellular Ca2+ and La3+, respectively, but was not changed by dihydropyridines, verapamil and diltiazem. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of olvanil on [Ca2+]i was abolished; also, pretreatment with olvanil partly reduced thapsigargin-induced [Ca2+]i rise. U73122, an inhibitor of phoispholipase C, abrogated ATP-, but partly inhibited olvanil-, induced [Ca2+]i rise. Two cannabinoid receptor antagonists (AM251 and AM281; 5 microM) and a vanilloid receptor antagonist (capsazepine; 100 microM) did not alter olvanil (50 microM)-induced [Ca2+]i rise. These results suggest that olvanil rapidly increases [Ca2+]i in renal tubular cells, by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release via mechanism(s) independent of stimulation of cannabinoid and vanilloid receptors.
Collapse
Affiliation(s)
- Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, 813, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
33
|
Jiann BP, Chou KJ, Chang HT, Chen WC, Huang JK, Jan CR. Effect of triethyltin on Ca2+ movement in Madin-Darby canine kidney cells. Hum Exp Toxicol 2002; 21:457-62. [PMID: 12412640 DOI: 10.1191/0960327102ht276oa] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The effects of the environmental toxicant, triethyltin, on Ca2+ mobilization in Madin-Darby canine kidney (MDCK) cells have been examined. Triethyltin induced an increase in cytosolic free Ca2+ levels ([Ca2+]i) at concentrations larger than 2 microM in a concentration-dependent manner. Within 5 min, the [Ca2+]i signal was composed of a gradual rise and a sustained phase. The [Ca2+]i signal was partly reduced by removing extracellular Ca2+. In Ca(2+)-free medium, pretreatment with thapsigargin (1 microM), an endoplasmic reticulum Ca2+ pump inhibitor, reduced 50 microM triethyltin-induced [Ca2+]i increase by 80%. Conversely, pretreatment with triethyltin abolished thapsigargin-induced Ca2+ release. Pretreatment with U73122 (2 microM) to inhibit phospholipase C-coupled inositol 1,4,5-trisphosphate formations failed to alter 50 microM triethyltin-induced Ca2+ release. Incubation with triethyltin at a concentration (1 microM) that did not increase basal [Ca2+]i for 3 min did not alter ATP (10 microM)- and bradykinin (1 microM)-induced [Ca2+]i increases. Collectively, this study shows that triethyltin altered Ca2+ movement in renal tubular cells by releasing Ca2+ from multiple stores in an inositol 1,4,5-trisphosphate-independent manner, and by inducing Ca2+ influx.
Collapse
Affiliation(s)
- B P Jiann
- Department of Surgery, Kaohsiung Veterans General Hospital, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
34
|
Chao YY, Chen IS, Yeh JL, Chen JJ, Ko YC, Cheng JS, Liu CP, Lo YK, Su W, Chou KJ, Chen WC, Jan CR. Novel action of lignans isolated from Hernandia nymphaeifolia on Ca(2+) signaling in renal tubular cells. Eur J Pharmacol 2002; 443:31-8. [PMID: 12044788 DOI: 10.1016/s0014-2999(02)01599-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effect of five lignans, epi-aschantin, epi-magnolin, epi-yangambin, deoxypodophyllotoxin and yatein, isolated from Hernandia nymphaeifolia on Ca(2+) signaling in Madin-Darby canine kidney cells was examined using fura-2 as a Ca(2+) indicator. These lignans at concentrations between 10 and 100 microM increased [Ca(2+)](i) in a concentration-dependent manner. Removal of extracellular Ca(2+) abolished the Ca(2+) signals evoked by 50 microM of the lignans. La(3+)(50 microM) abolished the Ca(2+) signals induced by 100 microM of epi-aschantin, epi-magnolin and epi-yangambin, and 20 microM deoxypodophyllotoxin, but inhibited by 60% 50 microM yatein-induced responses. All five lignans (50-100 microM) inhibited by 42-65% thapsigargin-induced capacitative Ca(2+) entry, and inhibited by 23-61% thapsigargin-induced intracellular Ca(2+) release. Epi-yangambin (100 microM), epi-magnolin (100 microM), and epi-aschantin (100 microM) inhibited by 8-38% 10 microM ATP-induced Ca(2+) release. Trypan blue exclusion revealed that incubation with deoxypodophyllotoxin or yatein (but not the other lignans) decreased cell viability in a concentration-dependent manner. Together, the results suggest that, in renal tubular cells, these lignans exert multiple actions on Ca(2+) signaling. They caused Ca(2+) influx but reduced thapsigargin-induced capacitative Ca(2+) entry and also thapsigargin- and ATP-induced Ca(2+) release. Additionally, deoxypodophyllotoxin and yatein may be cytotoxic.
Collapse
Affiliation(s)
- Yu-Ying Chao
- Graduate Institute of Pharmaceutical Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jan CR, Cheng JS, Roan CJ, Lee KC, Chen WC, Chou KJ, Tang KY, Wang JL. Effect of diethylstilbestrol (DES) on intracellular Ca(2+) levels in renal tubular cells. Steroids 2001; 66:505-10. [PMID: 11182139 DOI: 10.1016/s0039-128x(00)00216-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of the estrogen diethylstilbestrol (DES) on intracellular Ca(2+) concentrations ([Ca(2+)](i)) in Madin Darby canine kidney (MDCK) cells was investigated, using the fluorescent dye fura-2 as a Ca(2+) indicator. DES (10-50 microM) evoked [Ca(2+)](i) increases in a concentration-dependent manner. Extracellular Ca(2+) removal inhibited 45 +/- 5% of the Ca(2+) response. In Ca(2+)-free medium, pretreatment with 50 microM DES abolished the [Ca(2+)](i) increases induced by 2 microM carbonylcyanide m-chlorophenylhydrazone (CCCP; a mitochondrial uncoupler) and 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor); and pretreatment with CCCP and thapsigargin partly inhibited DES-induced [Ca(2+)](i) signals. Adding 3 mM Ca(2+) increased [Ca(2+)](i) in cells pretreated with 50 microM DES in Ca(2+)-free medium, suggesting that DES may induce capacitative Ca(2+) entry. 17beta-Estradiol (2-20 microM) increased [Ca(2+)](i), but 100 microM diethylstilbestrol dipropionate had no effect. Pretreatment with the phospholipase C inhibitor U73122 (1 microM) to abolish inositol 1,4,5-trisphosphate formation inhibited 30% of DES-induced Ca(2+) release. DES (20 microM) also increased [Ca(2+)](i) in human normal hepatocytes and osteosarcoma cells. Cumulatively, this study shows that DES induced rapid and sustained [Ca(2+)](i) increases by releasing intracellular Ca(2+) and triggering extracellular Ca(2+) entry in renal tubular cells.
Collapse
Affiliation(s)
- C R Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen WC, Huang JK, Cheng JS, Tsai JC, Chiang AJ, Chou KJ, Liu CP, Jan CR. AM-404 elevates renal intracellular Ca(2+), questioning its selectivity as a pharmacological tool for investigating the anandamide transporter. J Pharmacol Toxicol Methods 2001; 45:195-8. [PMID: 11755382 DOI: 10.1016/s1056-8719(01)00148-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of N-(4-hydroxyphenyl)-arachidonamide (AM-404), a drug commonly used to inhibit the anandamide transporter, on intracellular free Ca(2+) levels ([Ca(2+)](i)) was studied in Madin Darby canine kidney (MDCK) cells. [Ca(2+)](i) was measured using fura-2 as a Ca(2+) indicator. Between 2 and 40 microM, AM-404 increased [Ca(2+)](i) in a concentration-dependent fashion with an EC(50) value of 20 microM. Removal of extracellular Ca(2+) abolished the [Ca(2+)](i) signals. The [Ca(2+)](i) increase was nearly abrogated by 10 microM La(3+), but was insensitive to 50 microM Ni(2+) and 10 microM of nifedipine, nimodipine, nicardipine, and verapamil. At a concentration that did not increase [Ca(2+)](i), AM-404 (1 microM) did not alter the [Ca(2+)](i) increases induced by 10 microM ATP and 1 microM bradykinin. AM-404 (5 microM) also increased [Ca(2+)](i) in Chang liver cells, PC3 human prostate cancer cells, BFTC human bladder cancer cells, and MG63 human osteoblast-like cells. Together, this study shows for the first time that AM-404 at concentrations commonly used to inhibit the anandamide transporter in various systems induced an increase in [Ca(2+)](i) in different cell types. The [Ca(2+)](i) increase was solely due to extracellular Ca(2+) influx. Thus caution must be exercised in using AM-404 as a selective inhibitor of the anandamide transporter.
Collapse
Affiliation(s)
- W C Chen
- Department of Surgery, Ping Tung Christian Hospital, Taipei 900, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Moerenhout M, Himpens B, Vereecke J. Intercellular communication upon mechanical stimulation of CPAE- endothelial cells is mediated by nucleotides. Cell Calcium 2001; 29:125-36. [PMID: 11162850 DOI: 10.1054/ceca.2000.0165] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Intercellular Ca(2+)-signaling, after mechanical stimulation of calf pulmonary artery endothelial cells (CPAE), was investigated with fluorescence video imaging. Mechanical stimulation evoked an intracellular Ca(2+)-response in the mechanically stimulated (MS) cell, proceeding to the neighboring (NB) cells as a Ca(2+)-wave. The intercellular propagation of the Ca(2+)-wave was unaffected by the gap junction blockers halothane or heptanol. Therefore the intercellular communication (IC) pathway of the Ca(2+)-wave in CPAE cells does not depend on gap junctional communication but is most likely mediated by release of an extracellular mediator. Continuous unilateral flow experiments confirmed the presence of a diffusible mediator: the Ca(2+)-rise in upstream NB cells is significantly lower than in control experiments. After desensitization of purinergic receptors by pretreatment of CPAE cells with ATP (100mM), UTP (100 microM), 2MeSATP (100microM) or ADPbS (100 microM), the propagation of the intercellular Ca(2+)-wave upon mechanical stimulation was significantly inhibited. Also suramin (200 and 400 microM), a non-specific purinergic receptor blocker, reduced the IC. Application of the nucleotidase apyrase VI (10U/ml), which has a high ATPase/ADPase ratio, enhanced Ca(2+)-signaling and IC. In contrast, apyrase VII (10U/ml), which has a high ADPase/ATPase ratio, significantly depressed the propagation of the intercellular Ca(2+)-wave upon mechanical stimulation. Our experiments therefore demonstrate that the IC, evoked by a mechanical stimulus of CPAE cells, is mediated via release of nucleotides in the extracellular space. The data indicate that the diffusible messenger, responsible for the propagation of a Ca(2+)-wave, is mainly ADP or a combination of ADP/ATP.
Collapse
Affiliation(s)
- M Moerenhout
- Laboratory of Physiology, O/N Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
38
|
Chen WC, Lin MC, Chou KJ, Fang HC, Liu CP, Cheng JS, Lo YK, Lee KC, Wang JL, Su W, Law YP, Jan CR. Novel effects of a sleep-inducing lipid, oleamide, on Ca2+ signaling in renal tubular cells. Drug Dev Res 2001. [DOI: 10.1002/ddr.1203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Chou KJ, Fang HC, Chung HM, Cheng JS, Lee KC, Tseng LL, Tang KY, Jan CR. Effect of betulinic acid on intracellular-free Ca(2+) levels in Madin Darby canine kidney cells. Eur J Pharmacol 2000; 408:99-106. [PMID: 11080515 DOI: 10.1016/s0014-2999(00)00750-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of betulinic acid, an anti-tumor and apoptosis-inducing natural product, on intracellular-free levels of Ca(2+) ([Ca(2+)](i)) in Madin Darby canine kidney (MDCK) cells was examined by using fura-2 as a Ca(2+) dye. Betulinic acid caused significant increases in [Ca(2+)](i) concentration dependently between 25 and 500 nM with an EC(50) of 100 nM. The [Ca(2+)](i) signal was composed of an initial gradual rise and a plateau. The response was decreased by removal of extracellular Ca(2+) by 45+/-10%. In Ca(2+)-free medium, pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) abolished 250 microM betulinic acid-induced [Ca(2+)](i) increases. Conversely, pretreatment with betulinic acid only partly inhibited thapsigargin-induced [Ca(2+)](i) increases. Addition of 3 mM Ca(2+) induced a [Ca(2+)](i) increase after pretreatment with 250 nM betulinic acid in Ca(2+)-free medium for 5 min. This [Ca(2+)](i) increase was not altered by the addition of 20 microM SKF96365 and 10 microM econazole. Inhibiting inositol 1,4,5-trisphosphate formation with the phospholipase C inhibitor U73122 (2 microM) abolished 250 nM betulinic acid-induced Ca(2+) release. Pretreatment with 10 microM La(3+) inhibited 250 nM betulinic acid-induced [Ca(2+)](i) increases by 85+/-3%; whereas 10 microM of verapamil, nifedipine and diltiazem had no effect. In Ca(2+) medium, pretreatment with 2.5 nM betulinic aid for 260 s potentiated 10 microM ATP and 1 microM thapsigargin-induced [Ca(2+)](i) increases by 33+/-3% and 45+/-3%, respectively. Trypan blue exclusion revealed that acute exposure of 250 nM betulinic acid for 2-30 min decreased cell viability by 6+/-2%, which could be prevented by pretreatment with 2 microM U731222. Together, the results suggest that betulinic acid induced significant [Ca(2+)](i) increases in MDCK cells in a concentration-dependent manner, and also induced mild cell death. The [Ca(2+)](i) signal was contributed by an inositol 1,4, 5-trisphosphate-dependent release of intracellular Ca(2+) from thapsigargin-sensitive stores, and by inducing Ca(2+) entry from extracellular medium in a La(3+)-sensitive manner.
Collapse
Affiliation(s)
- K J Chou
- Department of Nephrology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Jan CR, Wang JL, Chou KJ, Cheng JS, Lee KC, Tseng LL, Wang SP, Tang KY, Huang JK. NPC-14686, a novel anti-inflammatory agent, increased intracellular Ca(2+) concentrations in MDCK renal tubular cells. INTERNATIONAL JOURNAL OF IMMUNOPHARMACOLOGY 2000; 22:915-21. [PMID: 11090700 DOI: 10.1016/s0192-0561(00)00054-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The effect of NPC-14686 (Fmoc-L-homophenylalanine), a novel anti-inflammatory agent on intracellular free Ca(2+) concentrations ([Ca(2+)](i)) in Madin Darby canine kidney (MDCK) renal tubular cells, was investigated, using fura-2 as a Ca(2+) dye. At concentrations between 10 and 200 microM NPC-14686 increased [Ca(2+)](i) concentration dependently. The [Ca(2+)](i) signal comprised an initial rise and a sustained phase. Ca(2+) removal inhibited the Ca(2+) signals by 90%. In Ca(2+)-free medium, pretreatment with 100 microM NPC-14686 nearly abolished the [Ca(2+)](i) increase induced by 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) and abolished the [Ca(2+)](i) increase induced by 2 microM carbonylcyanide m-chlorophenylhydrazone (CCCP) (a mitochondrial uncoupler). NPC-14686 (100 microM) induced a slight [Ca(2+)](i) increase after pretreatment with 2 microM CCCP and 1 microM thapsigargin. Addition of 3 mM Ca(2+) elicited a [Ca(2+)](i) increase in cells pretreated with 100 microM NPC-14686 in Ca(2+)-free medium. Inhibition of inositol-1,4,5-trisphosphate (IP(3)) production by suppressing phospholipase C with 2 microM U73122 did not alter NPC-14686-induced Ca(2+) release. Trypan blue exclusion revealed that incubation with 10 or 200 microM NPC-14686 for 1-30 min decreased cell viability by 10-20% concentration dependently. Collectively, the results demonstrate that, in MDCK tubular cells, NPC-14686 induced Ca(2+) release followed by Ca(2+) entry, with the latter playing a major role. NPC-14686 appears to release intracellular Ca(2+) in an IP(3)-uncoupled manner. NPC-14686 may be of mild cytotoxicity.
Collapse
Affiliation(s)
- C R Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, 386 Ta Chung 1st Road, 813, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jan CR, Cheng JS, Chou KJ, Wang SP, Lee KC, Tang KY, Tseng LL, Chiang HT. Dual effect of tamoxifen, an anti-breast-cancer drug, on intracellular Ca(2+) and cytotoxicity in intact cells. Toxicol Appl Pharmacol 2000; 168:58-63. [PMID: 11000100 DOI: 10.1006/taap.2000.9011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of tamoxifen on Ca(2+) signaling and viability in Madin Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca(2+) probe. Tamoxifen evoked a rise in cytosolic free Ca(2+) levels ([Ca(2+)](i)) concentration-dependently between 1 and 50 microM with an EC50 of 10 microM. The response was decreased by extracellular Ca(2+) removal. In Ca(2+)-free medium, pretreatment with 5 microM tamoxifen abolished the [Ca(2+)](i) increase induced by the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (1 microM), but pretreatment with brefeldin A (50 microM; a Ca(2+) mobilizer of the Golgi complex), thapsigargin (an inhibitor of the endoplasmic reticulum Ca(2+) pump), and carbonylcyanide m-chlorophenylhydrazone (CCCP; a mitochondrial uncoupler), only partly inhibited tamoxifen-induced [Ca(2+)](i) increases. This suggests that tamoxifen released Ca(2+) from multiple pools. Addition of 3 mM Ca(2+) induced a [Ca(2+)](i) rise after pretreatment with 5 microM tamoxifen in Ca(2+)-free medium. Inhibiting inositol 1,4,5-trisphosphate formation with the phospholipase C inhibitor U73122 (2 microM) did not alter 5 microM tamoxifen-induced Ca(2+) release. The [Ca(2+)](i) increase induced by 5 microM tamoxifen was not altered by La(3+), nifedipine, verapamil, or diltiazem. Tamoxifen (1-10 microM) decreased cell viability in a concentration- and time-dependent manner. Tamoxifen (5 microM) also increased [Ca(2+)](i) in neutrophils, bladder cancer cells, and prostate cancer cells from humans and glioma cells from rats. Collectively, it was found that tamoxifen increased [Ca(2+)](i) in MDCK cells by releasing Ca(2+) from multiple Ca(2+) stores in a manner independent of the production of inositol 1,4, 5-trisphosphate and also by triggering Ca(2+) influx from extracellular space. The [Ca(2+)](i) increase was accompanied by cytotoxicity.
Collapse
Affiliation(s)
- C R Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Jan CR, Tseng CJ, Chou KJ, Chiang HT. Novel effects of clotrimazole on Ca2+ signaling in Madin Darby canine kidney cells. Life Sci 2000; 66:2289-96. [PMID: 10855950 DOI: 10.1016/s0024-3205(00)00558-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effect of clotrimazole on Ca2+ signaling in Madin Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca2+ indicator. Clotrimazole (1-30 microM) induced a concentration-dependent [Ca2+]i increase. The [Ca2+]i increase comprised an initial rise and a slow decay. External Ca2+ removal partly inhibited the Ca2+ signals by reducing both the initial rise and the decay phase, indicating that clotrimazole triggered both Ca2+ influx and Ca2+ release. Pretreatment with 30 microM clotrimazole in Ca2+-free medium abolished the Ca2+ release induced by thapsigargin (1 microM), an endoplasmic reticulum Ca2+ pump inhibitor, and conversely, pretreatment with thapsigargin prevented clotrimazole from releasing more Ca2+. This suggests that the thapsigargin-sensitive Ca2+ store is the source of clotrimazole-induced Ca2+ release. Clotrimazole (10 microM) triggered Mn2+ quench of fura-2 fluorescence which was partly inhibited by 1 mM La3+. Addition of 3 mM Ca2+ induced a [Ca2+]i increase after preincubation with 10 microM clotrimazole in Ca2+-free medium, indicating that clotrimazole activated capacitative Ca2+ entry. However, 10 and 30 microM clotrimazole inhibited 1 microM thapsigargin-induced capacitative Ca2+ entry by 21% and 74%, respectively. Pretreatment with 40 microM aristolochic acid to inhibit phospholipase A2 reduced 30 microM clotrimazole-induced Ca2+ release by 51%, but inhibiting phospholipase C with 2 microM U73122 had little effect. This implies that clotrimazole induces Ca2+ release in an IP3-independent manner, which could be modulated by phospholipase A2-coupled events.
Collapse
Affiliation(s)
- C R Jan
- Department of Medical Education and Research, Veterans General Hospital-Kaohsiung, Taiwan.
| | | | | | | |
Collapse
|
43
|
Jan CR, Wang JL, Lin MC, Lee KC, Chou KJ, Chiang HT. Ca2+ mobilization induced by ?-hexachlorocyclohexane in Madin Darby canine kidney cells. Drug Dev Res 2000. [DOI: 10.1002/1098-2299(200006)50:2<186::aid-ddr8>3.0.co;2-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Jan CR, Lin MC, Chou KJ, Huang JK. Novel effects of gossypol, a chemical contraceptive in man: mobilization of internal Ca(2+) and activation of external Ca(2+) entry in intact cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1496:270-6. [PMID: 10771095 DOI: 10.1016/s0167-4889(00)00033-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The effect of gossypol on Ca(2+) signaling in Madin Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca(2+) probe. Gossypol evoked a rise in cytosolic free Ca(2+) levels ([Ca(2+)](i)) concentration-dependently between 2 and 20 microM. The response was decreased by external Ca(2+) removal. In Ca(2+)-free medium pretreatment with gossypol nearly abolished the [Ca(2+)](i) increase induced by carbonylcyanide m-chlorophenylhydrazone (CCCP), a mitochondrial uncoupler, and thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+) pump; but pretreatment with CCCP and thapsigargin only partly inhibited gossypol-induced Ca(2+) release. Addition of 3 mM Ca(2+) induced a [Ca(2+)](i) increase after pretreatment with 5 microM gossypol in Ca(2+)-free medium. This Ca(2+) entry was decreased by 25 microM econazole, 50 microM SKF96365 and 40 microM aristolochic acid (a phospholipase A(2) inhibitor). Pretreatment with aristolochic acid inhibited 5 microM gossypol-induced internal Ca(2+) release by 55%, but suppression of phospholipase C with 2 microM 1-(6-((17beta-3-methoxyestra-1,3, 5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione) had no effect. Gossypol (5 microM) also increased [Ca(2+)](i) in human bladder cancer cells and neutrophils. Collectively, we have found that gossypol increased [Ca(2+)](i) in MDCK cells by releasing Ca(2+) from multiple Ca(2+) stores in a manner independent of the production of inositol-1,4,5-trisphosphate, followed by Ca(2+) influx from external space.
Collapse
Affiliation(s)
- C R Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, 386 Ta Chung 1st Rd., Kaohsiung, Taiwan.
| | | | | | | |
Collapse
|
45
|
Jan C, Tseng C. Mechanisms underlying ketoconazole-induced Ca(2+) mobilization in Madin-Darby canine kidney cells. Biochem Pharmacol 2000; 59:947-51. [PMID: 10692559 DOI: 10.1016/s0006-2952(99)00402-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effect of ketoconazole on Ca(2+) signaling in Madin-Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca(2+) probe. Ketoconazole evoked increases in cytosolic free Ca(2+) concentration ([Ca(2+)](i)) concentration dependently. The response was decreased by external Ca(2+) removal. In Ca(2+)-free medium, pretreatment with ketoconazole abolished the [Ca(2+)](i) rise induced by thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+) pump. Addition of 3 mM Ca(2+) induced a significant [Ca(2+)](i) rise after preincubation with 150 microM ketoconazole in Ca(2+)-free medium. Pretreatment with aristolochic acid (40 microM) to inhibit phospholipase A(2) inhibited the 150-microM-ketoconazole-induced internal Ca(2+) release by 37%, but inhibition of phospholipase C with 1-(6-((17beta-3-methoxyestra-1,3, 5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122) (2 microM) had no effect. Collectively, we found that ketoconazole increases [Ca(2+)](i) in MDCK cells by releasing Ca(2+) from thapsigargin-sensitive pools in a manner independent of the production of inositol-1,4,5-trisphosphate, followed by Ca(2+) influx from the external space.
Collapse
Affiliation(s)
- C Jan
- Department of Medical Education and Research, Veterans General Hospital-Kaohsiung, Kaohsiung, Taiwan.
| | | |
Collapse
|
46
|
Jan CR, Tseng CJ, Chou KJ, Chiang HT. Novel effects of propranolol. Release of internal Ca(2+) followed by activation of capacitative Ca(2+) entry in Madin Darby canine kidney cells. Cell Signal 2000; 12:265-9. [PMID: 10781934 DOI: 10.1016/s0898-6568(00)00064-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effect of propranolol on Ca(2+) signalling in Madin Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca(2+) probe. Propranolol increased cytosolic free Ca(2+) levels ([Ca(2+)](i)) in a concentration-dependent manner between 0.1 and 1 mM. The response was partly inhibited by external Ca(2+) removal. In Ca(2+)-free medium pretreatment with 0.2 mM propranolol partly inhibited the [Ca(2+)](i) rise induced by 1 microM thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+) pump; but pretreatment with thapsigargin abolished propranolol-induced Ca(2+) release. Addition of 3 mM Ca(2+) induced a [Ca(2+)](i) rise after pretreatment with 0.2 mM propranolol in Ca(2+)-free medium. Propranolol (0.2 mM) inhibited 25% of thapsigargin-induced capacitative Ca(2+) entry. Suppression of 1,4,5-trisphosphate (IP(3)) formation by 2 microM U73122, a phospholipase C inhibitor, did not alter 0.2 mM propranolol-induced internal Ca(2+) release. Propranolol (1 mM) also increased [Ca(2+)](i) in human neutrophils. Collectively, we have found that 0.2 mM propranolol increased [Ca(2+)](i) in MDCK cells by releasing Ca(2+) from thapsigargin-sensitive Ca(2+) stores in an IP(3)-independent manner, followed by Ca(2+) influx from external space. Independently, propranolol was able to inhibit thapsigargin-induced capacitative Ca(2+) entry.
Collapse
Affiliation(s)
- C R Jan
- Department of Medical Education and Research, Veterans General Hospital-Kaohsiung, Taiwan.
| | | | | | | |
Collapse
|
47
|
Abstract
The effect of nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, on Ca2+ signaling in Madin Darby canine kidney (MDCK) cells has been investigated. NDGA (10-100 microM) increased [Ca2+]i concentration-dependently. The [Ca2+]i increase comprised an initial slow rise and a plateau over a time period of 5 min. Ca2+ removal partly inhibited the Ca2+ signals induced by 25-100 microM NDGA and abolished that induced by 10 microM NDGA. In Ca(2+)-free medium, pretreatment with 0.1 mM NDGA for 12 min abolished the [Ca2+]i increase induced by the mitochondrial uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP; 2 microM) and the endoplasmic reticulum (ER) Ca2+ pump inhibitor thapsigargin (1 microM). However, 0.1 mM NDGA still increased [Ca2+]i after Ca2+ stores had been depleted by pretreating with 2 microM CCCP, 1 microM thapsigargin and 0.1 mM cyclopiazonic acid. NDGA (50 microM) activated Mn2+ quench of fura-2 fluorescence at 360 nm excitation wavelength, which was almost abolished by 50 microM La3+. This implies NDGA induced Ca2+ influx mainly via a La(3+)-sensitive pathway. Consistently, 50 microM La3+ pretreatment inhibited 0.1 mM NDGA-induced [Ca2+]i increase. Adding 3 mM Ca2+ increased [Ca2+]i in cells pretreated with 0.1 mM NDGA in Ca(2+)-free medium, suggesting NDGA activated capacitative Ca2+ entry. Pretreatment with 0.1 mM NDGA for 200 s prior to Ca2+ did not alter 1 microM thapsigargin-induced capacitative Ca2+ entry. Pretreatment with 40 microM aristolochic acid to inhibit phospholipase A2 reduced 0.1 mM NDGA-induced Ca2+ release by 65%, but inhibiting phospholipase C with 2 microM U73122 had little effect. This suggests NDGA-induced Ca2+ release was independent of inositol 1,4,5-trisphosphate (IP3), but was modulated by phospholipase A2.
Collapse
Affiliation(s)
- C R Jan
- Department of Medical Education and Research, Veterans General Hospital-Kaohsiung, Taiwan.
| | | |
Collapse
|
48
|
Jan CR, Tseng CJ, Chen WC. Fendiline increases [Ca2+]i in Madin Darby canine kidney (MDCK) cells by releasing internal Ca2+ followed by capacitative Ca2+ entry. Life Sci 2000; 66:1053-62. [PMID: 10724452 DOI: 10.1016/s0024-3205(99)00670-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effect of fendiline, a documented inhibitor of L-type Ca2+ channels and calmodulin, on Ca2+ signaling in Madin Darby canine kidney (MDCK) cells was investigated using fura-2 as a Ca2+ probe. Fendiline at 5-100 microM significantly increased [Ca2+]i concentration-dependently. The [Ca2+]i rise consisted of an initial rise and a slow decay. External Ca2+ removal partly inhibited the Ca2+ signals induced by 25-100 microM fendiline by reducing both the initial rise and the decay phase. This suggests that fendiline triggered external Ca2+ influx and internal Ca2+ release. In Ca(2+)-free medium, pretreatment with 50 microM fendiline nearly abolished the [Ca2+]i rise induced by 1 microM thapsigargin, an endoplasmic reticulum Ca2+ pump inhibitor, and vice versa, pretreatment with thapsigargin prevented fendiline from releasing internal Ca2+. This indicates that the internal Ca2+ source for fendiline overlaps with that for thapsigargin. At a concentration of 50 microM, fendiline caused Mn2+ quench of fura-2 fluorescence at the 360 nm excitation wavelenghth, which was inhibited by 0.1 mM La3+ by 50%, implying that fendiline-induced Ca2+ influx has two components separable by La3+. Consistently, 0.1 mM La3+ pretreatment suppressed fendiline-induced [Ca2+]i rise, and adding La3+ during the rising phase immediately inhibited the signal. Addition of 3 mM Ca2+ increased [Ca2+]i after preincubation with 50-100 microM fendiline in Ca(2+)-free medium. However, 50-100 microM fendiline inhibited 1 microM thapsigargin-induced capacitative Ca2+ entry. Pretreatment with 40 microM aristolochic acid to inhibit phospholipase A2 inhibited 50 microM fendiline-induced internal Ca2+ release by 48%, but inhibition of phospholipase C with 2 microM U73122 or inhibition of phospholipase D with 0.1 mM propranolol had no effect. Collectively, we have found that fendiline increased [Ca2+]i in MDCK cells by releasing internal Ca2+ in a manner independent of inositol-1,4,5-trisphosphate (IP3), followed by external Ca2+ influx.
Collapse
Affiliation(s)
- C R Jan
- Department of Medical Education and Research, Veterans General Hospital-Kaohsiung, Taiwan.
| | | | | |
Collapse
|
49
|
Jan CR, Tseng CJ. A novel action of the antianginal drug bepredil: induction of internal Ca(2+) release and external Ca(2+) influx in Madin-Darby canine kidney (MDCK) epithelial cells. Biochem Pharmacol 2000; 59:639-46. [PMID: 10677580 DOI: 10.1016/s0006-2952(99)00361-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effect of the antianginal drug bepridil on Ca(2+) signaling in Madin-Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca(2+) probe. Bepridil at 10-50 microM evoked a significant rise in cytosolic free Ca(2+) concentration ([Ca(2+)](i)) in a dose-dependent manner. The [Ca(2+)](i) rise consisted of an immediate initial rise and a slow decay. Removal of external Ca(2+) partly inhibited the Ca(2+) signals by reducing both the initial rise and the decay phase, suggesting that bepridil activated both external Ca(2+) influx and internal Ca(2+) release. In Ca(2+)-free medium, pretreatment with 50 microM bepridil nearly abolished the Ca(2+) release induced by thapsigargin (1 microM), an endoplasmic reticulum Ca(2+) pump inhibitor, and vice versa, pretreatment with thapsigargin inhibited most of the bepridil-induced Ca(2+) release, suggesting that the thapsigargin-sensitive Ca(2+) store was the main source of bepridil-induced Ca(2+) release. Bepridil (50 microM) induced considerable Mn(2+) quench of fura-2 fluorescence at an excitation wavelength of 360 nm, which was partly inhibited by La(3+) (0.1 mM). Consistently, La(3+) (0.1 mM) pretreatment significantly inhibited the bepridil-induced [Ca(2+)](i) rise. Addition of 3 mM Ca(2+) induced a significant [Ca(2+)](i) rise after prior incubation with 10-50 microM bepridil in Ca(2+)-free medium, suggesting that bepridil induced dose-dependent capacitative Ca(2+) entry. However, 50 microM bepridil inhibited 1 microM thapsigargin-induced capacitative Ca(2+) entry by 38%. Pretreatment with aristolochic acid (40 microM) so as to inhibit phospholipase A(2) inhibited 50 microM bepridil-induced internal Ca(2+) release by 42%, but inhibition of phospholipase C with U73122 (2 microM) or inhibition of phospholipase D with propranolol (0.1 mM) had little effect, suggesting that bepridil induced internal Ca(2+) release in an inositol 1,4,5-trisphosphate-independent manner that could be modulated by phospholipase A(2)-coupled events. This is the first report providing evidence that bepridil, currently used as an antianginal drug, induced a rise in [Ca(2+)](i) in a non-excitable cell line.
Collapse
Affiliation(s)
- C R Jan
- Department of Medical Education and Research, Veterans General Hospital-Kaohsiung, Kaohsiung, Taiwan.
| | | |
Collapse
|
50
|
Jan CR, Wang KY, Tseng CJ. Effect of sevoflurane on Ca2+ mobilization in Madin-Darby canine kidney cells. Biochem Pharmacol 2000; 59:393-400. [PMID: 10644047 DOI: 10.1016/s0006-2952(99)00343-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effect of the volatile anesthetic sevoflurane on Ca2+ signaling in Madin-Darby canine kidney (MDCK) cells by using the fluorescent dye fura-2/AM (1-[2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy]-2-(2'-amino-5'-methylphenoxy)-ethane-N,N,N,N-tetraacetic acid pentaace-toxymethyl ester) as the Ca2+ indicator. At a concentration of 0.15 mM, sevoflurane did not alter basal cytosolic free calcium concentration ([Ca2+]i); however, at concentrations of 0.45-0.6 mM, sevoflurane did elevate [Ca2+]i, mainly by releasing Ca2+ from the endoplasmic reticulum (ER) store. Sevoflurane (0.15 mM) did not change either the [Ca2+]i peak evoked by high doses of ATP or UTP or inhibition of the ER Ca2+ pump, although it did significantly slow down the decay of the [Ca2+]i rise. Lastly, sevoflurane inhibited the capacitative Ca2+ entry and Mn2+ quench of fura-2 fluorescence induced by Ca(2+)-mobilizing ligands.
Collapse
Affiliation(s)
- C R Jan
- Department of Medical Education and Research, Veterans General Hospital-Kaohsiung, Kaohsiung, Taiwan
| | | | | |
Collapse
|