1
|
Rahman SM, Hauser C, Faucher S, Fine E, Luebke AE. A Vestibular Challenge Combined with Calcitonin Gene-Related Peptide (CGRP) Promotes Anxiety-Like Behaviors. eNeuro 2024; 11:ENEURO.0270-23.2024. [PMID: 38997144 PMCID: PMC11285090 DOI: 10.1523/eneuro.0270-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 07/14/2024] Open
Abstract
Motion-induced anxiety and agoraphobia are more frequent symptoms in patients with vestibular migraine (VM) than migraine without vertigo. The neuropeptide calcitonin gene-related peptide (CGRP) is a therapeutic target for migraine and VM, but the link between motion hypersensitivity, anxiety, and CGRP is relatively unexplored, especially in preclinical mouse models. To further examine this link, we tested the effects of systemic CGRP and off-vertical axis rotation (OVAR) on elevated plus maze (EPM) and rotarod performance in male and female C57BL/6J mice. Rotarod ability was assessed using two different dowel diameters: mouse dowel (r = 1.5 cm) versus rat dowel (r = 3.5 cm). EPM results indicate that CGRP alone or OVAR alone did not increase anxiety indices. However, the combination of CGRP and OVAR did elicit anxiety-like behavior. On the rotarod, CGRP reduced performance in both sexes on a mouse dowel but had no effect on a rat dowel, whereas OVAR had a significant effect on the rat dowel. These results suggest that only the combination of CGRP with vestibular stimulation induces anxiety-like behavior and that CGRP affects the dynamic balance function in mice depending on the type of challenge presented. These findings suggest that anxiety-like behaviors can be teased out from imbalance behaviors in a mouse model of "migraine." Future studies are aimed to determine if CGRP receptor antagonists that have been effective treating migraineurs and mouse "migraine" models may also reduce the anxiety observed in migraine.
Collapse
Affiliation(s)
- Shafaqat M Rahman
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627
| | - Catherine Hauser
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627
| | - Stefanie Faucher
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627
| | - Elana Fine
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627
| | - Anne E Luebke
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627
- Department of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester Medical Center, Rochester, New York 14642
| |
Collapse
|
2
|
Rahman SM, Hauser C, Faucher S, Fine E, Luebke AE. Both systemic Calcitonin Gene Related Peptide (CGRP) and a vestibular challenge promote anxiety-related behaviors and dynamic imbalance in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547257. [PMID: 37461692 PMCID: PMC10349960 DOI: 10.1101/2023.06.30.547257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Motion-induced anxiety and agoraphobia are more frequent symptoms in patients with vestibular migraine than migraine without vertigo. The neuropeptide calcitonin gene-related peptide (CGRP) is a therapeutic target for migraine and vestibular migraine, but the link between motion hypersensitivity, anxiety, and CGRP is relatively unexplored, especially in preclinical mouse models. To further examine this link, we tested the effects of systemic CGRP and off-vertical axis rotation (OVAR) on elevated plus maze (EPM) and rotarod performance in male and female C57BL/6J mice. Rotarod ability was assessed using two different dowel diameters: mouse dowel (r = 1.5 cm) versus rat dowel (r = 3.5 cm). EPM results indicate CGRP increased anxiety indexes and time spent in the closed arms in females but not males, while OVAR increased anxiety indexes and time spent in the closed arms in both sexes. The combination of CGRP and OVAR elicited even greater anxiety-like behavior. On the rotarod, CGRP reduced performance in both sexes on a mouse dowel but had no effect on a rat dowel, whereas OVAR had a significant effect on the rat dowel. Rotarod performance is influenced by dowel diameter, with larger dowels presenting greater challenges on balance function. These results suggest that both CGRP and vestibular stimulation induce anxiety-like behavior and that CGRP affects dynamic balance function in mice depending on the type of challenge presented. Findings highlight the potential translation of anti-CGRP receptor signaling therapeutics for treating motion hypersensitivity and motion-induced anxiety that manifests in vestibular migraine. Significance statement Anxiety is very common in patients with dizziness and vestibular migraine (VM). Elevated CGRP levels have been linked to migraine symptoms of increased light and touch sensitivity in mice and humans and we wondered if a systemic injection of CGRP into mice would increase anxiety and imbalance; and if mice further exposed to a vestibular stimulus would have their anxiety measures sharpened. We observed a female preponderance in both CGRP and motion-induced anxiety-like behaviors, suggesting that the role of CGRP in migraine's anxiety symptoms can be recapitulated in the mouse. Our findings suggest that CGRP signaling has a pertinent role in motion-induced anxiety and dynamic imbalance, and warrants the potential use of anti-CGRP therapies for the treatment of these symptoms.
Collapse
|
3
|
Lages YV, Balthazar L, Krahe TE, Landeira-Fernandez J. Pharmacological and Physiological Correlates of the Bidirectional Fear Phenotype of the Carioca Rats and Other Bidirectionally Selected Lines. Curr Neuropharmacol 2023; 21:1864-1883. [PMID: 36237160 PMCID: PMC10514533 DOI: 10.2174/1570159x20666221012121534] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
The Carioca rat lines originated from the selective bidirectional breeding of mates displaying extreme defense responses to contextual conditioned fear. After three generations, two distinct populations could be distinguished: the Carioca High- and Low-conditioned Freezing rats, CHF, and CLF, respectively. Later studies identified strong anxiety-like behaviors in the CHF line, while indications of impulsivity and hyperactivity were prominent in the CLF animals. The present review details the physiological and pharmacological-related findings obtained from these lines. The results discussed here point towards a dysfunctional fear circuitry in CHF rats, including alterations in key brain structures and the serotoninergic system. Moreover, data from these animals highlight important alterations in the stress-processing machinery and its associated systems, such as energy metabolism and antioxidative defense. Finally, evidence of an alteration in the dopaminergic pathway in CLF rats is also debated. Thus, accumulating data gathered over the years, place the Carioca lines as significant animal models for the study of psychiatric disorders, especially fear-related ones like anxiety.
Collapse
Affiliation(s)
- Yury V. Lages
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laura Balthazar
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Physiological Sciences, Laboratory of Neurophysiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thomas. E. Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J. Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Carboni L, El Khoury A, Beiderbeck DI, Neumann ID, Mathé AA. Neuropeptide Y, calcitonin gene-related peptide, and neurokinin A in brain regions of HAB rats correlate with anxiety-like behaviours. Eur Neuropsychopharmacol 2022; 57:1-14. [PMID: 35008014 DOI: 10.1016/j.euroneuro.2021.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/07/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022]
Abstract
Anxiety disorders are pervasive psychiatric disorders causing great suffering. The high (HAB) and low (LAB) anxiety-related behaviour rats were selectively bred to investigate neurobiological correlates of anxiety. We compared the level of neuropeptides relevant for anxiety- and depression-related behaviours in selected brain regions of HAB and LAB rats. Increased anxiety and depression-like behaviours of male and female HAB rats in the elevated plus-maze and forced swim tests were accompanied by elevated levels of neuropeptide Y (NPY) in the prefrontal (PFC), frontal (FC) and cingulate cortex (CCx), the striatum, and periaqueductal grey (PAG). Moreover, HAB rats displayed sex-dependent, elevated levels of calcitonin gene-related peptide (CGRP) in PFC, FC, CCx, hippocampus, and PAG. Higher neurokinin A (NKA) levels were detected in CCx, striatum, and PAG in HAB males and in CCx and hypothalamus in HAB females. Increased neurotensin was detected in CCx and PAG in HAB males and in hypothalamus in HAB females. Elevated corticotropin-releasing hormone (CRH) levels appeared in female HAB hypothalamus. Significant correlations were found between anxiety-like behaviour and NPY, CGRP, NKA, and neurotensin, particularly with NPY in CCx and striatum, CGRP in FC and hippocampus, and NKA in entorhinal cortex. This is the first report of NPY, CGRP, NKA, Neurotensin, and CRH measurements in brain regions of HAB and LAB rats, which showed widespread NPY and CGRP alterations in cortical regions, with NKA and neurotensin changes localised in sub-cortical areas. The results may contribute to elucidate pathophysiological mechanisms underlying anxiety and depression and should facilitate identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| | - Aram El Khoury
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| | - Daniela I Beiderbeck
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, 93040, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, 93040, Regensburg, Germany
| | - Aleksander A Mathé
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| |
Collapse
|
5
|
Vinogradova LV, Suleymanova EM, Medvedeva TM. Transient loss of interhemispheric functional connectivity following unilateral cortical spreading depression in awake rats. Cephalalgia 2020; 41:353-365. [PMID: 33164563 DOI: 10.1177/0333102420970172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Growing evidence shows a critical role of network disturbances in the pathogenesis of migraine. Unilateral pattern of neurological symptoms of aura suggests disruption of interhemispheric interactions during the early phase of a migraine attack. Using local field potentials data from the visual and motor cortices, this study explored effects of unilateral cortical spreading depression, the likely pathophysiological mechanism of migraine aura, on interhemispheric functional connectivity in freely behaving rats. METHODS Temporal evolution of the functional connectivity was evaluated using mutual information and phase synchronization measures applied to local field potentials recordings obtained in homotopic points of the motor and visual cortices of the two hemispheres in freely behaving rats after induction of a single unilateral cortical spreading depression in the somatosensory S1 cortex and sham cortical stimulation. RESULTS Cortical spreading depression was followed by a dramatic broadband loss of interhemispheric functional connectivity in the visual and motor regions of the cortex. The hemispheric disconnection started after the end of the depolarization phase of cortical spreading depression, progressed gradually, and terminated by 5 min after initiation of cortical spreading depression. The network impairment had region- and frequency-specific characteristics and was more pronounced in the visual cortex than in the motor cortex. The period of impaired neural synchrony coincided with post-cortical spreading depression electrographic aberrant activation of the ipsilateral cortex and abnormal behavior. CONCLUSION The study provides the first evidence that unilateral cortical spreading depression induces a reversible loss of functional hemispheric connectivity in the cortex of awake animals. Given a critical role of long-distance cortical synchronization in sensory processing and sensorimotor integration, the post-cortical spreading depression breakdown of functional connectivity may contribute to neuropathological mechanisms of aura generation.
Collapse
Affiliation(s)
- Lyudmila V Vinogradova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Department of Molecular Neurobiology, Moscow, Russia
| | - Elena M Suleymanova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Department of Molecular Neurobiology, Moscow, Russia
| | - Tatiana M Medvedeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Department of Molecular Neurobiology, Moscow, Russia
| |
Collapse
|
6
|
Mahmoudi J, Mohaddes G, Erfani M, Sadigh-Eteghad S, Karimi P, Rajabi M, Reyhani-Rad S, Farajdokht F. Cerebrolysin attenuates hyperalgesia, photophobia, and neuroinflammation in a nitroglycerin-induced migraine model in rats. Brain Res Bull 2018; 140:197-204. [DOI: 10.1016/j.brainresbull.2018.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
|
7
|
Filiz A, Tepe N, Eftekhari S, Boran HE, Dilekoz E, Edvinsson L, Bolay H. CGRP receptor antagonist MK-8825 attenuates cortical spreading depression induced pain behavior. Cephalalgia 2017; 39:354-365. [PMID: 28971699 DOI: 10.1177/0333102417735845] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND OBJECTIVE The present study aimed to investigate the effects of selective calcitonin gene related peptide (CGRP) receptor antagonist (MK-8825) on cortical spreading depression (CSD) induced pain behavior and anxiety in freely-moving rats, and neuronal activation in the correlated anatomical regions. METHODS CSD was induced while keeping all meningeal layers and BBB intact and MK-8825 was administered in two different doses. Regional cerebral blood flow (rCBF), arterial pressure and DC shift were recorded. Behavioral studies were conducted in freely-moving rats. Spontaneous behavior, mechanical allodynia, ultrasonic vocalization, and anxiety were evaluated. Immunohistochemistry of c-fos, CGRP, calcitonin receptor like-receptor (CLR) and receptor activity modifying protein 1 (RAMP1) were studied. RESULTS MK-8825 did not block DC shifts in the cerebral cortex and accompanied hemodynamic response. CSD significantly induced freezing and grooming behavior in freely-moving rats. MK-8825 reversed increased episodes of freezing, grooming, wet dog shake and head shake behavior. MK-8825 increased CSD-induced reductions in von Frey thresholds, but did not change elevated plus maze results. MK-8825 blocked c-fos induction by CSD in the brainstem trigeminal nucleus caudalis (TNC) and reticular nucleus of thalamus (TRN) but not in the amygdala. Immunofluorescence analysis showed no co-localization of CGRP, CLR or RAMP1 with c-fos positive cells. CONCLUSION CGRP receptor antagonist MK-8825 dose dependently attenuated CSD-induced trigeminal nerve mediated pain response without altering CSD waves and accompanied rCBF response. While blocking TNC activation, MK-8825 did not exert any effect on amygdala and anxiety behavior. CGRP receptor antagonists may also modulate thalamo-cortical gating.
Collapse
Affiliation(s)
- Aslı Filiz
- 1 Department of Neurology and Algology, Gazi University Medical School, Besevler, Ankara, Turkey
| | - Nermin Tepe
- 1 Department of Neurology and Algology, Gazi University Medical School, Besevler, Ankara, Turkey.,2 Neuropsychiatry Centre, Gazi University, Besevler, Ankara, Turkey
| | - Sajedeh Eftekhari
- 3 Lund University, Department of Medicine, Institute of Clinical Sciences, Lund, Sweden
| | - H Evren Boran
- 1 Department of Neurology and Algology, Gazi University Medical School, Besevler, Ankara, Turkey.,2 Neuropsychiatry Centre, Gazi University, Besevler, Ankara, Turkey
| | - Ergin Dilekoz
- 4 Department of Pharmacology, Gazi University Faculty of Medicine, Besevler, Ankara, Turkey
| | - Lars Edvinsson
- 3 Lund University, Department of Medicine, Institute of Clinical Sciences, Lund, Sweden
| | - Hayrunnisa Bolay
- 1 Department of Neurology and Algology, Gazi University Medical School, Besevler, Ankara, Turkey.,2 Neuropsychiatry Centre, Gazi University, Besevler, Ankara, Turkey
| |
Collapse
|
8
|
Woods IG, Schoppik D, Shi VJ, Zimmerman S, Coleman HA, Greenwood J, Soucy ER, Schier AF. Neuropeptidergic signaling partitions arousal behaviors in zebrafish. J Neurosci 2014; 34:3142-60. [PMID: 24573274 PMCID: PMC3935080 DOI: 10.1523/jneurosci.3529-13.2014] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/01/2014] [Accepted: 01/07/2014] [Indexed: 11/21/2022] Open
Abstract
Animals modulate their arousal state to ensure that their sensory responsiveness and locomotor activity match environmental demands. Neuropeptides can regulate arousal, but studies of their roles in vertebrates have been constrained by the vast array of neuropeptides and their pleiotropic effects. To overcome these limitations, we systematically dissected the neuropeptidergic modulation of arousal in larval zebrafish. We quantified spontaneous locomotor activity and responsiveness to sensory stimuli after genetically induced expression of seven evolutionarily conserved neuropeptides, including adenylate cyclase activating polypeptide 1b (adcyap1b), cocaine-related and amphetamine-related transcript (cart), cholecystokinin (cck), calcitonin gene-related peptide (cgrp), galanin, hypocretin, and nociceptin. Our study reveals that arousal behaviors are dissociable: neuropeptide expression uncoupled spontaneous activity from sensory responsiveness, and uncovered modality-specific effects upon sensory responsiveness. Principal components analysis and phenotypic clustering revealed both shared and divergent features of neuropeptidergic functions: hypocretin and cgrp stimulated spontaneous locomotor activity, whereas galanin and nociceptin attenuated these behaviors. In contrast, cart and adcyap1b enhanced sensory responsiveness yet had minimal impacts on spontaneous activity, and cck expression induced the opposite effects. Furthermore, hypocretin and nociceptin induced modality-specific differences in responsiveness to changes in illumination. Our study provides the first systematic and high-throughput analysis of neuropeptidergic modulation of arousal, demonstrates that arousal can be partitioned into independent behavioral components, and reveals novel and conserved functions of neuropeptides in regulating arousal.
Collapse
Affiliation(s)
- Ian G. Woods
- Department of Biology, Ithaca College, Ithaca, New York 14850, and
- Department of Molecular and Cellular Biology and
| | | | | | | | - Haley A. Coleman
- Department of Biology, Ithaca College, Ithaca, New York 14850, and
| | - Joel Greenwood
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| | - Edward R. Soucy
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| | - Alexander F. Schier
- Department of Molecular and Cellular Biology and
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
9
|
Yan H, Yu LC. Influences of calcitonin gene-related peptide on mu opioid receptors in nucleus accumbens neurons of rats. Neuropeptides 2013; 47:125-31. [PMID: 23211530 DOI: 10.1016/j.npep.2012.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 09/01/2012] [Accepted: 10/29/2012] [Indexed: 01/14/2023]
Abstract
The Mu opioid receptor (MOR) has been shown to participate in the analgesic effect of the calcitonin gene-related peptide (CGRP) in the nucleus accumbens (NAc) of adult rats. However, it is not clear whether and how CGRP regulates the MOR at the molecular levels. In the present study, it is found that the level of MORs on the cell membrane of NAc neurons was increased twice more than the control level following CGRP treatment (1μM, 30min), which is a phenomenon that was blocked by the peptidergic antagonist CGRP8-37. No direct physical interaction was observed between MORs and CGRP receptors, and neither brefeldin A nor dynosore preincubation affected such effects of CGRP. However, addition of 20μM monensin 1h before CGRP treatment significantly blocked the action of CGRP on surface MORs. In living animals, microinjection of CGRP (1nmol in 1μl) into the NAc partially restored morphine antinociception in morphine-tolerant rats, and the effect of CGRP on surface MORs extended beyond normal NAc neurons to chronic morphine-treated NAc neurons. To conclude, these results demonstrate that CGRP can act on MORs and increase the number of surface MORs in NAc neurons, partially explaining the involvement of opioid receptors in CGRP-induced antinociception in the rat NAc.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Biotinylation
- Blotting, Western
- Calcitonin Gene-Related Peptide/pharmacology
- Catheterization
- Cells, Cultured
- Drug Tolerance
- Hot Temperature
- Immunoprecipitation
- Male
- Microinjections
- Microscopy, Confocal
- Microscopy, Fluorescence
- Morphine/pharmacology
- Neurons/drug effects
- Nucleus Accumbens/cytology
- Nucleus Accumbens/drug effects
- Rats
- Rats, Sprague-Dawley
- Reaction Time
- Receptors, Calcitonin Gene-Related Peptide/biosynthesis
- Receptors, Calcitonin Gene-Related Peptide/genetics
- Receptors, Opioid, mu/drug effects
- Stereotaxic Techniques
Collapse
Affiliation(s)
- Hailiang Yan
- Neurobiology Laboratory and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, PR China
| | | |
Collapse
|
10
|
Csabafi K, Jászberényi M, Bagosi Z, Tóth G, Wollemann M, Telegdy G. The action of a synthetic derivative of Met5-enkephalin-Arg6-Phe7 on behavioral and endocrine responses. Peptides 2011; 32:1656-60. [PMID: 21722680 DOI: 10.1016/j.peptides.2011.05.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/24/2011] [Accepted: 05/24/2011] [Indexed: 11/19/2022]
Abstract
The neuroendocrine and behavioral effects of Tyr-D-Ala-Gly-Phe-D-Nle-Arg-Phe (DADN), a more stable derivative of the endogenous opiate Met-enkephalin related peptide Met(5)-enkephalin-Arg(6)-Phe(7) were investigated in mice. The behavioral experiments consisted of monitoring the horizontal (square crossing) and vertical (rearing) locomotion in the open field system. To evaluate the effect of the heptapeptide on the hypothalamo-pituitary-adrenal (HPA) axis, the plasma corticosterone level was measured. DADN induced dose-dependent increases in locomotion and rearing 30 min after intracerebroventricular injection and also elicited marked activation of the hormonal stress response. To elucidate the receptors involved in the mediation of these actions, animals were pretreated with the nonselective opioid antagonist naloxone, the selective κ-receptor antagonist nor-binaltorphimine or the μ(1)-receptor blocker naloxonazine. Both the HPA activation and the behavioral responses were diminished by the preadministration of naloxone. Nor-binaltorphimine did not display a significant effect, while naloxonazine completely abolished the hyperactivity and the corticosterone elevation elicited by the analog. These findings suggest that μ-receptors predominate in the mediation of the neuroendocrine actions of DADN, while κ-receptors do not play a significant role.
Collapse
Affiliation(s)
- Krisztina Csabafi
- Department of Pathophysiology, University of Szeged, Semmelweis u. 1., P.O. Box 427, Szeged H-6701, Hungary
| | | | | | | | | | | |
Collapse
|
11
|
Li L, Wang X, Yu LC. Involvement of opioid receptors in the CGRP-induced antinociception in the nucleus accumbens of rats. Brain Res 2010; 1353:53-9. [DOI: 10.1016/j.brainres.2010.07.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/09/2010] [Accepted: 07/14/2010] [Indexed: 10/19/2022]
|
12
|
Recober A, Kaiser EA, Kuburas A, Russo AF. Induction of multiple photophobic behaviors in a transgenic mouse sensitized to CGRP. Neuropharmacology 2009; 58:156-65. [PMID: 19607849 DOI: 10.1016/j.neuropharm.2009.07.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 06/30/2009] [Accepted: 07/03/2009] [Indexed: 12/18/2022]
Abstract
Migraine is a complex neurological disorder with a significant impact on patients and society. Clinical and preclinical studies have established the neuropeptide calcitonin gene-related peptide (CGRP) as a key player in migraine and other neurovascular headaches. To study the role of CGRP in these disorders, we have characterized the photophobic phenotype of nestin/hRAMP1 mice, a transgenic model with genetically engineered increased sensitivity to CGRP. These mice have increased nervous system expression of a regulatory subunit of the CGRP receptor, human receptor activity-modifying receptor (hRAMP1). We have previously demonstrated that nestin/hRAMP1 mice display a light-aversive behavior that is greatly enhanced by CGRP and blocked by a CGRP receptor antagonist used to treat migraine. Here we have compared their behavior in two different experimental setups with testing chambers of different sizes and light intensities as well as in complete darkness. We demonstrated similar degrees of light aversion in nestin/hRAMP1 mice with 1000 and 50 lux. To control for other possible factors driving nestin/hRAMP1 mice to the dark zone, we tested them in the absence of any light, and they showed identical behavior as littermates. Furthermore, both nestin/hRAMP1 and control mice have decreased motility in response to CGRP in the dark, but not the light side of the chamber. Our findings confirm the robust CGRP-induced light-aversive phenotype of nestin/hRAMP1 mice, which can be a surrogate of photophobia, and validates its usefulness as a model of migraine and other disorders associated with photophobia.
Collapse
Affiliation(s)
- Ana Recober
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
13
|
Schorscher-Petcu A, Austin JS, Mogil JS, Quirion R. Role of central calcitonin gene-related peptide (CGRP) in locomotor and anxiety- and depression-like behaviors in two mouse strains exhibiting a CGRP-dependent difference in thermal pain sensitivity. J Mol Neurosci 2009; 39:125-36. [PMID: 19381879 DOI: 10.1007/s12031-009-9201-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 04/02/2009] [Indexed: 12/20/2022]
Abstract
We have previously shown that, in AKR and C57BL/6 mice, a genetic polymorphism results in differential expression of the peptide, calcitonin gene-related polypeptide (CGRP), explaining a strain difference in thermal pain sensitivity. Although CGRP is widely distributed in the brain, little is known about the effects of supraspinal CGRP. We used AKR and C57BL/6 mice as a model to explore the effects of centrally (intracerebroventricular) injected CGRP and the CGRP receptor antagonists, CGRP(8-37) and BIBN4096BS, in a series of behavioral assays. Locomotor activity was significantly increased in C57BL/6 mice following the injection of BIBN4096BS and in both strains after the administration of CGRP(8-37) into the third ventricle. CGRP increased paw-withdrawal latencies in C57BL/6 mice only, while decreasing depression-like behaviors in both strains in the forced-swimming test. CGRP and CGRP receptor antagonists failed to modulate activity in the elevated plus maze, a model of anxiety. Taken together, these results suggest a complex role for supraspinal CGRP systems in the regulation of locomotion, nociception, and depression-like behaviors.
Collapse
|
14
|
Angelucci F, Gruber SHM, Caltagirone C, Mathé AA. Differential effects of olanzapine, haloperidol and risperidone on calcitonin gene-related peptide in the rat brain. Neuropeptides 2008; 42:535-41. [PMID: 18662828 DOI: 10.1016/j.npep.2008.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/17/2008] [Accepted: 06/17/2008] [Indexed: 11/23/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a 37 amino acid peptide which acts on central nervous system (CNS) neurons and is involved in activities related to dopamine. These effects of CGRP suggest that the peptide may have a role in pathophysiology and treatment of schizophrenia where dopaminergic system hypoactivity in the frontal cortex and hyperactivity in the subcortical structures have been demonstrated. In this study we measured by radioimmunoassay (RIA) the brain levels of CGRP-like immunoreactivity (CGRP-LI) in rats treated with either classical (haloperidol) or atypical (risperidone and olanzapine) antipsychotic drugs. Both haloperidol and risperidone decreased CGRP-LI in the striatum. Risperidone also decreased CGRP-LI in the occipital cortex. On the other hand, olanzapine increased CGRP-LI in the striatum, the frontal cortex and hypothalamus. The differential effects on CGRP could reflect a different profile of side effects and further suggest that CGRP is involved in CNS functions related to psychiatric disorders.
Collapse
Affiliation(s)
- Francesco Angelucci
- Karolinska Institutet, Clinical Neuroscience, Psychiatry M56, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden.
| | | | | | | |
Collapse
|
15
|
|
16
|
Wörtwein G, Husum H, Andersson W, Bolwig TG, Mathé AA. Effects of maternal separation on neuropeptide Y and calcitonin gene-related peptide in "depressed" Flinders Sensitive Line rats: a study of gene-environment interactions. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30:684-93. [PMID: 16600456 DOI: 10.1016/j.pnpbp.2006.01.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2006] [Indexed: 11/23/2022]
Abstract
Interactions between genetic vulnerability to stress/depression and early life experience may play a crucial role in the pathogenesis of mood disorders. Here we explore this hypothesis by superimposing early life trauma in the form of maternal deprivation for 180 min per day from postnatal day 2 to 14 onto a genetic model of depression/susceptibility to depression, Flinders Sensitive Line (FSL) and their controls, Flinders Resistant Line (FRL) rats. We investigate effects on neuropeptide Y (NPY) and calcitonin gene-related peptide (CGRP) like immunoreactivity (LI) in 10 brain regions as these neuropeptides are affected by antidepressants and are altered in cerebrospinal fluid of depressed patients. NPY-LI was reduced while CGRP-LI was elevated in hippocampus and frontal cortex of "genetically depressed" FSL rats. The two peptides displayed a significant negative correlation in these regions that was strongest in the FSL strain. Maternal deprivation exacerbated the strain difference in hippocampal CGRP-LI, while it was without effect on NPY-LI. FSL rats had higher tissue concentration of both neuropeptides in periaqueductal grey and higher NPY-LI in caudate/putamen. Maternal deprivation selectively raised CGRP-LI in amygdala of the FRL control stain. Thus, in two brain regions implicated in the neurobiology of depression, hippocampus and frontal cortex, changes in CGRP-LI and NPY-LI were in opposite direction, and CGRP-LI appears to be more responsive to adverse experience. Our findings thus support the hypothesis that genetic disposition and developmental stress may contribute to the susceptibility to depression by exerting selective neuropeptide- and brain region-specific effects on adult neurobiology.
Collapse
Affiliation(s)
- Gitta Wörtwein
- Laboratory of Neuropsychiatry, Rigshospitalet, 2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
17
|
Yamamuro Y, Yoshimura K, Tsuchiya K, Sensui N, Asou H. Functional Development of Oligodendrocytes and Open-field Behavior in Developing Rats: An Approach Using Monoclonal Antibody to Immature Oligodendrocytes. Exp Anim 2004; 53:145-50. [PMID: 15153677 DOI: 10.1538/expanim.53.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
To examine the relation between functional development of oligodendrocytes and open-field behavior during the postnatal period, a mouse monoclonal antibody termed 14F7, which predominantly labels stage-specific immature oligodendrocytes, was employed. Antibody 14F7 was administered intraperitoneally into male pups on day 3 and 4 after birth. The open-field test was performed on days 12 and 18 of the postnatal period. Horizontal activity increased remarkably with the growth of pups. On day 18, horizontal activity in the group with 14F7 was significantly higher than the control, while there was no significant difference between treatments on day 12. In contrast to the horizontal activity, the frequency of hind leg rearing, vertical activity, in the group with 14F7 was significantly lower than that in the control. On day 12, choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activities in the cerebral cortex were similar between the groups. These activities increased with the growth of pups in both groups. In the 14F7 group on day 18, ChAT activity was the same as the control, whereas AChE activity was significantly lower compared with the control. These results suggest that neonatal exposure to 14F7 induces abnormal neurotransmission by reducing the degradation of acetylcholine and alters the spontaneous activities in developing rats.
Collapse
Affiliation(s)
- Yutaka Yamamuro
- Department of Animal Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
18
|
Xu W, Lundeberg T, Wang YT, Li Y, Yu LC. Antinociceptive effect of calcitonin gene-related peptide in the central nucleus of amygdala: activating opioid receptors through amygdala-periaqueductal gray pathway. Neuroscience 2003; 118:1015-22. [PMID: 12732246 DOI: 10.1016/s0306-4522(03)00069-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The central nucleus of amygdala (CeA) plays an important role in pain regulation. Calcitonin gene-related peptide (CGRP)-like immunoreactive fibers and CGRP receptors are distributed densely in CeA. The present study was performed to elucidate the role of CGRP in nociceptive regulation in the CeA of rats. Intra-CeA injection of CGRP induced dose-dependent increases in the hind-paw withdrawal latency tested by hotplate test and Randall Selitto Test, indicating an antinociceptive effect of CGRP in CeA. Furthermore, the antinociceptive effect of CGRP was blocked by intra-CeA administration of the CGRP receptor antagonist CGRP8-37, suggesting that CGRP receptor1 is involved in the CGRP-induced antinociception. The CGRP-induced antinociception was attenuated by s.c. injection of the opioid antagonist naloxone, suggesting an involvement of endogenous opioid systems in CGRP-induced antinociception. Moreover, it was demonstrated that opioid receptors in the periaqueductal gray, but not in CeA, contributed to the CGRP-induced antinociception, indicating the importance of the pathway between CeA and the periaqueductal gray in CGRP-induced antinociception. Combining retrograde fluorescent tracing with immunohistochemistry, we found that met-enkephalinergic neurons were innervated by CGRP-containing terminals in CeA. Furthermore, most neurons in the CeA retrogradely traced from the periaqueductal gray were contacted by CGRP-containing terminals and some of them were surrounded by characteristic basket-like structures formed by the terminals, suggesting that CGRP innervates the neurons which project from CeA to the periaqueductal gray. The results indicate that CGRP activates the met-enkephalinergic neurons, which project from CeA to the periaqueductal gray, producing antinociceptive effect in rats.
Collapse
Affiliation(s)
- W Xu
- Department of Physiology, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | |
Collapse
|
19
|
Bujdosó E, Jászberényi M, Farkas J, Tóth G, Wollemann M, Telegdy G. Behavioral and neuroendocrine actions of the Met-enkephalin-related peptide MERF. Horm Behav 2003; 43:302-11. [PMID: 12694640 DOI: 10.1016/s0018-506x(03)00004-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The effects and the mediation of the action of the proenkephalin derivative Met(5)-enkephalin-Arg(6)-Phe(7) (MERF) on the hypothalamo-pituitary-adrenal (HPA) system and open-field behavior were investigated in mice. Intracerebroventricular injection of the heptapeptide increased square crossing, rearing, and plasma corticosterone level. To characterize the receptors involved in these neuroendocrine processes, animals were pretreated either with the nonselective opioid antagonist naloxone or the kappa-antagonist nor-binaltorphimine (nor-BNI). Both antagonists dose-dependently attenuated the HPA activation elicited by MERF. Naloxone also blocked the behavioral responses, but nor-binaltorphimine did not elicit a significant inhibition. The dopamine antagonist haloperidol and a corticotropin-releasing hormone (CRH) antagonist were also preadministered to shed light on the transmission of the actions of MERF. Both the motor responses and the HPA activation were diminished by the preadministration of the CRH antagonist, while haloperidol attenuated only square crossing and rearing. To investigate the direct effect of MERF on the dopaminergic system, dopamine release of striatal slices was measured in a superfusion system. Neither the basal nor the electric impulse-evoked dopamine release was modified by MERF. The results suggest that opioid-mediation predominate in the neuroendocrine actions of MERF, and the effect of the heptapeptide on the HPA system seems to be mediated by kappa-receptors. In the behavioral responses evoked by MERF, both CRH release and the action of the dopaminergic neurons of the subcortical motor system might be involved. MERF also appears to activate the paraventricular CRH neurons, but dopaminergic transmission does not seem to play a significant role in its hypothalamic action.
Collapse
Affiliation(s)
- E Bujdosó
- Department of Pathophysiology, University of Szeged, Neurohumoral Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
20
|
Angelucci F, Gruber SH, Mathé AA. A pilot study of rat brain regional distribution of calcitonin, katacalcin and calcitonin gene-related peptide before and after antipsychotic treatment. Neuropeptides 2001; 35:285-91. [PMID: 12030813 DOI: 10.1054/npep.2001.0876] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In contrast to extensive determinations of calcitonin gene-related peptide (CGRP) in neural tissues, calcitonin and its carboxyl-terminal flanking peptide katacalcin (in human PDN-21) have not been systematically measured by radioimmunoassay (RIA) in discrete brain structures. Using microwave irradiation (MW), a procedure that increases the recovery of neuropeptides, we investigated by radioimmunoassay (RIA) the rat brain regional distribution of CGRP like- immunoreactivity (-LI), calcitonin-LI, and katacalcin-LI. Calcitonin-LI and katacalcin-LI were found in low concentrations in frontal cortex, occipital cortex, striatum and hippocampus. Moreover, a 4-week treatment with antipsychotic drugs altered the concentrations of the calcitonin-gene family peptides in the frontal cortex, occipital cortex, and hippocampus; the magnitude of these changes, however, was only moderate. Lastly, calcitonin-LI and katacalcin-LI baseline concentrations as well as after antipsychotic treatment were highly correlated in the frontal cortex, striatum, and hippocampus. The possible regulatory role of calcitonin gene family peptides in the central nervous system (CNS) needs to be further explored.
Collapse
Affiliation(s)
- F Angelucci
- Karolinska Institutet, Institution of Clinical Neuroscience, St. Göran's Hospital, Stockholm, Sweden
| | | | | |
Collapse
|
21
|
Maneuf YP, McKnight AT. Calcitonin gene-related peptide-mediated increase in K(+)-induced [(3)H]-dopamine release from rat caudal striatal slices. Neurosci Lett 2001; 310:73-6. [PMID: 11585570 DOI: 10.1016/s0304-3940(01)02056-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The calcitonin-gene receptor peptide (alphaCGRP) receptor is present in high levels in the caudal striatum of the rat. Previous behavioural experiments have highlighted a possible correlation between alphaCGRP-mediated effects and the dopaminergic system. In this study, we examined the effect of alphaCGRP on K(+)-evoked [(3)H]-dopamine release in a slice preparation of the rat caudal striatum. The unstimulated release of [(3)H]-dopamine was not affected by alphaCGRP. However, alphaCGRP increased the release of [(3)H]-dopamine evoked by K(+) (30 mM) in a concentration-dependent manner. The stimulatory effect of alphaCGRP was blocked by the CGRP1 antagonist hCGRP(8-37) (without effect on its own). The stimulatory effect of 1 microM alphaCGRP was blocked by dizocilpine (MK-801), suggesting that excitatory transmission is involved in mediating the facilitated release. This study suggests that the peptide alphaCGRP, modulates dopamine release in the rat caudal striatum probably indirectly via glutamatergic transmission.
Collapse
Affiliation(s)
- Y P Maneuf
- Pfizer Global Research & Development, Cambridge Laboratories, University of Cambridge Forvie site, Robinson Way, Cambridge CB2 2QB, UK.
| | | |
Collapse
|
22
|
Gruber SH, Nomikos GG, Mathé AA. Dopamine receptor antagonists prevent the d-amphetamine-induced increase in calcitonin gene-related peptide levels in ventral striatum. J Neurosci Res 2001; 64:606-11. [PMID: 11398184 DOI: 10.1002/jnr.1113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Microdialysis in conjunction with radioimmunoassay (RIA) were used to study the effects of acute d-amphetamine or dopamine (DA) receptor antagonists administration on extracellular concentrations of calcitonin gene-related peptide (CGRP) in the ventral striatum of the rat. One hour after the subcutaneous (s.c.) injection of saline, the DA-D(1) receptor antagonist SCH 23390 (0.3 mg/kg) or the DA-D(2/3) receptor antagonist raclopride (1.0 mg/kg), one additional s.c. injection of saline or d-amphetamine (1.5 mg/kg) was given. The dialysates were collected at 60-min intervals; CGRP-like immunoreactivities (-LI) were determined by RIA. d-Amphetamine significantly increased extracellular CGRP-LI concentrations compared to the control animals. Administration of either SCH 23390 or raclopride did not significantly affect CGRP-LI concentrations. Pretreatment with either SCH 23390 or raclopride abolished the stimulatory effect of d-amphetamine on CGRP-LI levels. The results show that d-amphetamine administration results in an increase in extracellular concentrations of CGRP in the ventral striatum through a mechanism that appears to involve stimulation of either DA-D(1) or DA-D(2/3) receptors. The results also indicate that changes in dopaminergic neurotransmission affect CGRP outflow in the ventral striatum in a phasic but not tonic manner.
Collapse
Affiliation(s)
- S H Gruber
- Institution of Clinical Neuroscience, Karolinska Institutet, St. Görans Hospital, Stockholm, Sweden
| | | | | |
Collapse
|