1
|
Almutairi JA, Kidd EJ. Biological Sex Disparities in Alzheimer's Disease. Curr Top Behav Neurosci 2024. [PMID: 39485650 DOI: 10.1007/7854_2024_545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Alzheimer's disease is a highly complex and multifactorial neurodegenerative disorder, with age being the most significant risk factor. The incidence of Alzheimer's disease doubles every 5 years after the age of 65. Consequently, one of the major challenges in Alzheimer's disease research is understanding how the brain changes with age. Gaining insights into these changes could help identify individuals who are more prone to developing Alzheimer's disease as they age. Over the past 25 years, studies on brain aging have examined thousands of human brains to explore the neuronal basis of age-related cognitive decline. However, most of these studies have focused on adults over 60, often neglecting the critical menopause transition period. During menopause, women experience a substantial decline in ovarian sex hormone production, with a decrease of about 90% in estrogen levels. Estrogen is known for its neuroprotective effects, and its significant loss during menopause affects various biological systems, including the brain. Importantly, despite known differences in dementia risk between sexes, the impact of biological sex and sex hormones on brain aging and the development of Alzheimer's disease remains underexplored.
Collapse
Affiliation(s)
- Jawza A Almutairi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Emma J Kidd
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
2
|
Bribiescas RG. Reproductive endocrinology and aging in human males: An evolutionary perspective. Neurosci Biobehav Rev 2024; 167:105898. [PMID: 39293503 DOI: 10.1016/j.neubiorev.2024.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/19/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Due to its important role in fertility, reproductive endocrine function has been subject to natural selection in all organisms including human males. Moreover, reproductive endocrine function is subject to change as males age. Indeed, the biology of aging is also subject to natural selection. As males age, hormone function such as variation in testosterone can change as the result of general somatic degradation. However these changes are not universal and can differ between human male populations depending on lifestyle and ecological context. The degree to which this variation is adaptive remains an open question but recent evolutionary anthropology research has provided some clarity. While knowledge of evolutionary approaches has limitations, the benefits of understanding the origins and comparative context of reproductive endocrine function in older human males are significant. This paper discusses our present comprehension of reproductive endocrinology and aging in human males, with a focus on human diversity across varied lifestyles, ecologies, and environments. In addition, comparative great ape research is examined. Current research challenges and future directions related to the importance of evolutionary biology and human diversity for understanding human male aging are discussed.
Collapse
Affiliation(s)
- R G Bribiescas
- Yale University, Department of Anthropology, 10 Sachem Street, New Haven, CT 06520, USA.
| |
Collapse
|
3
|
Frungieri MB, Calandra RS, Matzkin ME, Rossi SP. Melatonin as a natural anti-inflammatory and anti-oxidant therapy in the testis: a focus on infertility and aging†. Biol Reprod 2024; 111:543-556. [PMID: 38869910 DOI: 10.1093/biolre/ioae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Melatonin is a pineal hormone that regulates testicular activity (i.e., steroidogenesis and spermatogenesis) through two complementary mechanisms, indirect effects exerted via the hypothalamic-adenohypophyseal axis and direct actions that take place on the different cell populations of the male gonad. The effects of increased age on the testis and the general mechanisms involved in testicular pathology leading to infertility are still only poorly understood. However, there is growing evidence that link testicular aging and idiopathic male infertility to local inflammatory and oxidative stress events. Because literature data strongly indicate that melatonin exhibits anti-inflammatory and anti-oxidant properties, this review focuses on the potential benefits exerted by this indoleamine at testicular level in male reproductive fertility and aging. Taking into account that the effects of melatonin supplementation on testicular function are currently being investigated, the overview covers not only promising prospects but also many questions concerning the future therapeutic value of this indoleamine as an anti-aging drug as well as in the management of cases of male infertility for which there are no medical treatments currently available.
Collapse
Affiliation(s)
- Mónica Beatriz Frungieri
- Laboratorio de Neuro-Inmuno-Endocrinología Testicular, Instituto de Biología y Medicina Experimental, Fundación Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
| | - Ricardo Saúl Calandra
- Laboratorio de Neuro-Inmuno-Endocrinología Testicular, Instituto de Biología y Medicina Experimental, Fundación Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
| | - María Eugenia Matzkin
- Laboratorio de Neuro-Inmuno-Endocrinología Testicular, Instituto de Biología y Medicina Experimental, Fundación Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
- Cátedra 1, Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Soledad Paola Rossi
- Laboratorio de Neuro-Inmuno-Endocrinología Testicular, Instituto de Biología y Medicina Experimental, Fundación Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
- Cátedra 1, Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
4
|
Sakai N, Komi K, Nishino N, Kuroki Y, Nishino S. Eurycoma longifolia (Tongkat Ali) supplementation enhances sleep and wake consolidation in wild-type, but not in narcoleptic mice. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 5:zpae047. [PMID: 39055967 PMCID: PMC11272086 DOI: 10.1093/sleepadvances/zpae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/23/2024] [Indexed: 07/28/2024]
Abstract
Tongkat Ali (TA), also known as Eurycoma longifolia, has been used as a traditional herbal medicine for anti-aging, evidenced by clinical trials presenting the beneficial effects on energy, fatigue, and mood disturbance. We have recently shown that TA supplementation dose-dependently enhances the rest-activity pattern in C57BL/6 mice. Since destabilization of wakefulness and sleep is one of the typical symptoms of not only the elderly but also narcolepsy, we performed sleep analysis with and without dietary TA extract supplementation in middle-aged (10-12 months old) wild-type (WT) and narcoleptic DTA mice. We found that TA supplementation enhanced diurnal rhythms of locomotion and temperature in a time-of-day-dependent manner in WT mice but attenuated in DTA mice. In WT mice, TA supplementation consolidated wakefulness with a long bout duration and led to less entries into the sleep state during the active period, while it consolidated NREM sleep with long bout duration during the resting period. Neither disturbed sleep and wake cycles nor cataplexy was sufficiently improved in DTA mice. EEG spectral analysis revealed that TA supplementation enhanced slow wave activity (SWA) at both delta and low delta frequencies (0.5-4.0 and 0.5-2.0 Hz) during the light period, suggesting TA extract may induce vigilance during the active period, which then elicits a rebound effect during the resting period. Interestingly, DTA mice also slightly, but significantly, increased SWA at low frequencies during the light period. Taken together, our results suggest that TA supplementation enhances the Yin-Yang balance of sleep, temperature, and locomotion in WT mice, while its efficacy is limited in narcoleptic mice.
Collapse
Affiliation(s)
- Noriaki Sakai
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kazuhiro Komi
- Center for Doctors’ Career Development, Kawasaki Medical School Hospital, Kurashiki, Japan
| | - Naoya Nishino
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Yutaka Kuroki
- D-LAB, Japan Tobacco Inc, Tokyo, Japan
- Delightex Pte. Ltd., Bugis Junction Towers, Singapore
| | - Seiji Nishino
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
5
|
Seipone ID, Mendham AE, Storbeck KH, Oestlund I, Kufe CN, Chikowore T, Masemola M, Crowther NJ, Kengne AP, Norris S, Olsson T, Brown T, Micklesfield LK, Goedecke JH. SHBG, Free Testosterone, and Type 2 Diabetes Risk in Middle-aged African Men: A Longitudinal Study. J Endocr Soc 2024; 8:bvae129. [PMID: 39055720 PMCID: PMC11272087 DOI: 10.1210/jendso/bvae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Indexed: 07/27/2024] Open
Abstract
Objectives To investigate longitudinal changes in SHBG and free testosterone (free T) levels among Black middle-aged African men, with and without coexistent HIV, and explore associations with incident dysglycaemia and measures of glucose metabolism. Design This longitudinal study enrolled 407 Black South African middle-aged men, comprising primarily 322 men living without HIV (MLWOH) and 85 men living with HIV (MLWH), with normal fasting glucose at enrollment. Follow-up assessments were conducted after 3.1 ± 1.5 years. Methods At baseline and follow-up, SHBG, albumin, and total testosterone were measured and free T was calculated. An oral glucose tolerance test at follow-up determined dysglycaemia (impaired fasting glucose, impaired glucose tolerance, type 2 diabetes) and glucose metabolism parameters including insulin sensitivity (Matsuda index), insulin resistance (homeostasis model assessment of insulin resistance), and beta(β)-cell function (disposition index). The primary analysis focussed on MLWOH, with a subanalysis on MLWH to explore whether associations in MLWOH differed from MLWH. Results The prevalence of dysglycaemia at follow-up was 17% (n = 55) in MLWOH. Higher baseline SHBG was associated with a lower risk of incident dysglycaemia (odds ratio 0.966; 95% confidence interval 0.945-0.987) and positively associated with insulin sensitivity (β = 0.124, P < .001) and β-cell function (β = 0.194, P = .001) at follow-up. Free T did not predict dysglycaemia. In MLWH, dysglycaemia prevalence at follow-up was 12% (n = 10). Neither baseline SHBG nor free T were associated with incident dysglycaemia and glucose metabolism parameters in MLWH. Conclusion SHBG levels predict the development of dysglycaemia in middle-aged African men but do not exhibit the same predictive value in MLWH.
Collapse
Affiliation(s)
- Ikanyeng D Seipone
- Biomedical Research Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa
| | - Amy E Mendham
- Riverland Academy of Clinical Excellence, Riverland Mallee Coorong Local Health Network, South Australia Health, Berri, SA 5343, Australiacountry
- South African Medical Research Council/WITS Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
- Health through Physical Activity, Lifestyle and Sport Research Centre, FIMS International Collaborating Centre of Sports Medicine, Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Imken Oestlund
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Clement N Kufe
- South African Medical Research Council/WITS Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Tinashe Chikowore
- South African Medical Research Council/WITS Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Maphoko Masemola
- South African Medical Research Council/WITS Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Nigel J Crowther
- Department of Chemical Pathology, National Health Laboratory Service and University of the Witwatersrand Faculty of Health Sciences, Johannesburg 2000, South Africa
| | - Andre Pascal Kengne
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town 7505, South Africa
| | - Shane Norris
- South African Medical Research Council/WITS Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Tommy Olsson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå 90187, Sweden
| | - Todd Brown
- Division of Endocrinology and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Lisa K Micklesfield
- South African Medical Research Council/WITS Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Julia H Goedecke
- Biomedical Research Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa
- South African Medical Research Council/WITS Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| |
Collapse
|
6
|
Zhang M, Zhang J, Cui Y, Xing Z. Predictive power of lipid-related indicators for testosterone deficiency: a comparative analysis, NHANES 2011-2016. Int Urol Nephrol 2024; 56:1825-1833. [PMID: 38280934 DOI: 10.1007/s11255-023-03935-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/27/2023] [Indexed: 01/29/2024]
Abstract
BACKGROUND Studies have shown that lipid-related indicators are associated with testosterone deficiency. However, it is difficult to determine which indicator is the most accurate predictor of testosterone deficiency. We aimed to identify the lipid-related indicators most predictive of testosterone deficiency in adults in the United States. METHODS This observational research was conducted on a population aged ≥ 20 years. By plotting the receiver operating characteristic curve (ROC) and obtaining the corresponding area under the curve (AUC) value, we assessed the predictive capacity of TyG, WTI, LAP, and VAI for testosterone deficiency. We compared the area under the curve (AUC) values of these measures to determine if there were any statistically significant differences. The relationship between lipid-related indices and testosterone hormones was investigated using regression modeling, eXtreme Gradient Boosting (XGBoost) modeling, and sensitivity analysis. RESULTS A total of 3,272 eligible participants were included in the study. Testosterone deficiency was found to exist in 20.63% of the participants. Subjects with higher lipid-related markers were more likely to have lower testosterone levels. LAP was the best predictor of testosterone deficiency in ROC analysis over other indicators (AUC = 0.7176, (95% CI: 0.6964-0.7389)). CONCLUSION LAP is the most straightforward and convenient indicator for identifying testosterone deficiency in clinical practice.
Collapse
Affiliation(s)
- Mengyu Zhang
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou, 570208, China
| | - Jiankang Zhang
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou, 570208, China
| | - Yunzhi Cui
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou, 570208, China
| | - Zengshu Xing
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou, 570208, China.
| |
Collapse
|
7
|
Zuloaga DG, Lafrican JJ, Zuloaga KL. Androgen regulation of behavioral stress responses and the hypothalamic-pituitary-adrenal axis. Horm Behav 2024; 162:105528. [PMID: 38503191 PMCID: PMC11144109 DOI: 10.1016/j.yhbeh.2024.105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Testosterone is a powerful steroid hormone that can impact the brain and behavior in various ways, including regulating behavioral and neuroendocrine (hypothalamic-pituitary-adrenal (HPA) axis) stress responses. Early in life androgens can act to alter development of brain regions associated with stress regulation, which ultimately impacts the display of stress responses later in life. Adult circulating androgens can also influence the expression of distinct genes and proteins that regulate stress responses. These changes in the brain are hypothesized to underlie the potent effects of androgens in regulating behaviors related to stress and stress-induced activation of the HPA axis. Androgens can induce alterations in these functions through direct binding to the androgen receptor (AR) or following conversion to estrogens and subsequent binding to estrogen receptors including estrogen receptor alpha (ERα), beta (ERβ), and G protein-coupled estrogen receptor 1 (GPER1). In this review, we focus on the role of androgens in regulating behavioral and neuroendocrine stress responses at different stages of the lifespan and the sex hormone receptors involved in regulating these effects. We also review the specific brain regions and cell phenotypes upon which androgens are proposed to act to regulate stress responses with an emphasis on hypothalamic and extended amygdala subregions. This knowledge of androgen effects on these neural systems is critical for understanding how sex hormones regulate stress responses.
Collapse
Affiliation(s)
- Damian G Zuloaga
- Department of Psychology, University at Albany, Albany, NY, USA.
| | | | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| |
Collapse
|
8
|
Nabid A, Carrier N, Vigneault E, Martin AG, Bahary JP, Van Nguyen T, Vavassis P, Vass S, Brassard MA, Bahoric B, Archambault R, Vincent F, Bettahar R, Duclos M, Wilke D, Souhami L. Testosterone recovery after androgen deprivation therapy in localised prostate cancer: Long-term data from two randomised trials. Radiother Oncol 2024; 195:110256. [PMID: 38552845 DOI: 10.1016/j.radonc.2024.110256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND AND PURPOSE To determine the rate and time of testosterone (T) recovery in patients (pts) with localised prostate cancer treated with radiotherapy plus 0-, 6-, 18- or 36-month of androgen deprivation therapy (ADT). MATERIALS AND METHODS In 1230 pts with prostate cancer randomised into two phase III trials, serum T was measured at baseline, then regularly. T recovery rate was compared between normal vs. abnormal baseline T and with ADT duration with Chi-square test or Fisher's exact test. A multivariable logistic regression model to predict the probability of recovering normal T was performed. RESULTS Overall, 87.4 % (167/191), 75.9 % (293/386), 54.8 % (181/330) and 43.2 % (80/185) of pts, recovered normal T on the 0-, 6-, 18- or 36-month schedule, respectively (p < 0.001). In patients recovering normal T, the median time to T recovery increased with ADT duration ranging from 0.31, 1.64, 3.06 to 5.0 years for the 0-, 6-, 18- or 36-month schedules, respectively (p < 0.001) and was significantly faster for those with a normal T at baseline (p < 0.001). On multivariable analysis, older age and longer ADT duration are associated with a lower T recovery. CONCLUSIONS Testosterone recovery rate after ADT depends on several factors including hormonal duration, normal baseline T, age and medical comorbidities. A longer ADT duration is the most important variable affecting T recovery. The data from this report might be a valuable tool to help physicians and patients in evaluating risks and benefits of ADT.
Collapse
Affiliation(s)
- Abdenour Nabid
- Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada.
| | - Nathalie Carrier
- Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada
| | - Eric Vigneault
- Centre Hospitalier Universitaire de Québec, Québec, Canada
| | | | | | - Thu Van Nguyen
- Centre Hospitalier Universitaire de Montréal, Montréal, Canada
| | - Peter Vavassis
- Hôpital Maisonneuve-Rosemont de Montréal, Montréal, Canada
| | - Sylvie Vass
- Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Chicoutimi, Canada
| | - Marc-André Brassard
- Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Chicoutimi, Canada
| | | | | | - François Vincent
- Centre Hospitalier Régional de Trois-Rivières, Trois-Rivières, Canada
| | | | - Marie Duclos
- McGill University Health Centre, Montréal, Canada
| | | | - Luis Souhami
- McGill University Health Centre, Montréal, Canada
| |
Collapse
|
9
|
Bischoff-Ferrari HA, Kistler-Fischbacher M, Gaengler S, Münzer T, Dawson-Hughes B, Lang W, Theiler R, Egli A, Orav EJ, Freystaetter G. Effects of testosterone and vitamin D on fall risk in pre-frail hypogonadal men: a factorial design RCT. J Nutr Health Aging 2024; 28:100217. [PMID: 38552276 DOI: 10.1016/j.jnha.2024.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 06/03/2024]
Abstract
OBJECTIVE To test whether transdermal testosterone at a dose of 75 mg per day and/or monthly 24'000 IU Vitamin D reduces the fall risk in pre-frail hypogonadal men aged 65 and older. DESIGN 2 × 2 factorial design randomized controlled trial, follow up of 12 months. METHODS Hypogonadism was defined as total testosterone <11.3 nmol/L and pre-frailty as ≥1 Fried- frailty criteria and/or being at risk for falling at the time of screening. The primary outcomes were number of fallers and the rate of falls, assessed prospectively. Secondary outcomes were appendicular lean mass (ALM), sit-to-stand, gait speed, and the short physical performance test battery. Analyses were adjusted for age, BMI, fall history and the respective baseline measurement. RESULTS We aimed to recruit 168 men and stopped at 91 due to unexpected low recruitment rate (1266 men were pre-screened). Mean age was 72.2 years, serum total testosterone was 10.8 ± 3.0 nmol/l, and 20.9% had 25(OH)D levels below 20 ng/mL. Over 12 months, 37 participants had 72 falls. Neither the odds of falling nor the rate of falls were reduced by testosterone or by vitamin D. Testosterone improved ALM compared to no testosterone (0.21 kg/m2 [0.06, 0.37]), and improved gait speed (0.11 m/s, [0.03, 0.20]) compared to placebo. CONCLUSION Transdermal testosterone did not reduce fall risk but improved ALM and gait speed in pre-frail older men. Monthly vitamin D supplementation had no benefit.
Collapse
Affiliation(s)
- Heike A Bischoff-Ferrari
- Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland; Department of Aging Medicine and Aging Research, University of Zurich, Zurich, Switzerland; IHU HealthAge, University Hospital Toulouse and University III Paul Sabatier, Toulouse, France.
| | - Melanie Kistler-Fischbacher
- Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland; Department of Aging Medicine and Aging Research, University of Zurich, Zurich, Switzerland.
| | - Stephanie Gaengler
- Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland; Department of Aging Medicine and Aging Research, University of Zurich, Zurich, Switzerland.
| | - Thomas Münzer
- Geriatrische Klinik St. Gallen, St. Gallen, Switzerland.
| | - Bess Dawson-Hughes
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts.
| | - Wei Lang
- Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland; Department of Aging Medicine and Aging Research, University of Zurich, Zurich, Switzerland.
| | - Robert Theiler
- Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland; Department of Aging Medicine and Aging Research, University of Zurich, Zurich, Switzerland.
| | - Andreas Egli
- Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland; Department of Aging Medicine and Aging Research, University of Zurich, Zurich, Switzerland.
| | - E John Orav
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.
| | - Gregor Freystaetter
- Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland; Department of Aging Medicine and Aging Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Dinicola S, Unfer V, Soulage CO, Margarita Yap-Garcia MI, Bevilacqua A, Benvenga S, Barbaro D, Wdowiak A, Nordio M, Dewailly D, Appetecchia M, Aragona C, Bezerra Espinola MS, Bizzarri M, Cavalli P, Colao A, D’Anna R, Vazquez-Levin MH, Marin IH, Kamenov Z, Laganà AS, Monastra G, Oliva MM, Özay AC, Pintaudi B, Porcaro G, Pustotina O, Pkhaladze L, Prapas N, Roseff S, Salehpour S, Stringaro A, Tugushev M, Unfer V, Vucenik I, Facchinetti F. <sc>d</sc>-Chiro-Inositol in Clinical Practice: A Perspective from the Experts Group on Inositol in Basic and Clinical Research (EGOI). Gynecol Obstet Invest 2024; 89:284-294. [PMID: 38373412 PMCID: PMC11309080 DOI: 10.1159/000536081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/02/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND d-Chiro-inositol is a natural molecule that, in association with its well-studied isomer myo-inositol, may play a role in treating various metabolic and gynecological disorders. OBJECTIVES This perspective seeks to explore the mechanisms and functions of d-chiro-inositol, laying the foundations to discuss its use in clinical practice, across dysmetabolism, obesity, and hormonal dysregulation. METHODS A narrative review of all the relevant papers known to the authors was conducted. OUTCOME d-Chiro-inositol acts through a variety of mechanisms, acting as an insulin sensitizer, inhibiting the transcription of aromatase, in addition to modulating white adipose tissue/brown adipose tissue transdifferentiation. These different modes of action have potential applications in a variety of therapeutic fields, including PCOS, dysmetabolism, obesity, hypoestrogenic/hyperandrogenic disorders, and bone health. CONCLUSIONS d-Chiro-inositol mode of action has been studied in detail in recent years, resulting in a clear differentiation between d-chiro-inositol and its isomer myo-inositol. The insulin-sensitizing activities of d-chiro-inositol are well understood; however, its potential applications in other fields, in particular obesity and hyperestrogenic/hypoandrogenic disorders in men and women, represent promising avenues of research that require further clinical study.
Collapse
Affiliation(s)
- Simona Dinicola
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Systems Biology Group Lab, Rome, Italy
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- UniCamillus – Saint Camillus International University of Health Sciences, Rome, Italy
| | - Christophe O. Soulage
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- INSERM U1060, INSA de Lyon, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Maria Isidora Margarita Yap-Garcia
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- St. Luke’s Medical Center College of Medicine, William H. Quasha Memorial, Quezon, Philippines
| | - Arturo Bevilacqua
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Dynamic, Clinical Psychology and Health, Sapienza University of Rome, Rome, Italy
| | - Salvatore Benvenga
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Daniele Barbaro
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Director of U.O. Endocrinology in Livorno Hospital, Livorno, Italy
| | - Artur Wdowiak
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Faculty of Medicine and Dentistry, Medical University of Lublin, Lublin, Poland
| | - Maurizio Nordio
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- A.S.L. RMF, Civitavecchia, Italy
| | - Didier Dewailly
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Faculty of Medicine Henri Warembourg, University of Lille, Lille Cedex, France
| | - Marialuisa Appetecchia
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Oncological Endocrinology Unit, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Cesare Aragona
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Systems Biology Group Lab, Rome, Italy
| | - Maria Salomè Bezerra Espinola
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Systems Biology Group Lab, Rome, Italy
| | - Mariano Bizzarri
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Systems Biology Group Lab, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Pietro Cavalli
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Annamaria Colao
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Clinical Medicine and Surgery, Endocrinology, Diabetology and Andrology Unit, Italian Society of Endocrinology, Federico II University of Naples, Naples, Italy
| | - Rosario D’Anna
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Mónica Hebe Vazquez-Levin
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- National Council of Scientific and Technical Research, Instituto de Biología y Medicina Experimental (IBYME), Buenos Aires, Argentina
| | - Imelda Hernàndez Marin
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Human Reproduction Department, Hospital Juárez de México, and Universidad Nacional Autónoma de México (UNAM), México, Mexico
| | - Zdravko Kamenov
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Internal Medicine, University Hospital “Alexandrovska”, Clinic of Endocrinology and Metabolism, Medical University, Sofia, Bulgaria
| | - Antonio Simone Laganà
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Unit of Obstetrics and Gynecology, “Paolo Giaccone” Hospital, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giovanni Monastra
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
| | - Mario Montanino Oliva
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Obstetrics and Gynecology, Santo Spirito Hospital, Rome, Italy
| | - Ali Cenk Özay
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cyprus International University, Nicosia, Cyprus
| | - Basilio Pintaudi
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giuseppina Porcaro
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Women's Health Centre, USL UMBRIA 2, Terni, Italy
| | - Olga Pustotina
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Obstetrics and Gynecology with Reproductive Medicine, F.I. Inozemtsev Academy of Medical Education, Saint Petersburg, Russia
| | - Lali Pkhaladze
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Zhordania and Khomasuridze Institute of Reproductology, Tbilisi, Georgia
| | - Nikos Prapas
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Third Department of OB-GYNAE, Aristotle University of Thessaloniki, and IVF Laboratory, IAKENTRO Fertility Centre, Thessaloniki, Greece
| | - Scott Roseff
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Reproductive Endocrinology and Infertility, South Florida Institute for Reproductive Medicine (IVFMD), Jupiter, FL, USA
| | - Saghar Salehpour
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Annarita Stringaro
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- National Center for Drug Research and Evaluation, Italian National Institute of Health, Rome, Italy
| | - Marat Tugushev
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Reproductive Medicine, Clinical Embryology and Genetics of Samara State Medical University, Samara, Russia
| | - Virginia Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- A.G.Un.Co. Obstetrics and Gynecology Center, Rome, Italy
| | - Ivana Vucenik
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Medical and Research Technology and Pathology, University of Maryland School of Medicine in Baltimore, Baltimore, MD, USA
| | - Fabio Facchinetti
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- University of Modena and Reggio Emilia, Modena, Italy
- President Italian Society of Perinatal Medicine (SIMP), Modena, Italy
| |
Collapse
|
11
|
Bahat G, Ozkok S. The Current Landscape of Pharmacotherapies for Sarcopenia. Drugs Aging 2024; 41:83-112. [PMID: 38315328 DOI: 10.1007/s40266-023-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
Sarcopenia is a skeletal muscle disorder characterized by progressive and generalized decline in muscle mass and function. Although it is mostly known as an age-related disorder, it can also occur secondary to systemic diseases such as malignancy or organ failure. It has demonstrated a significant relationship with adverse outcomes, e.g., falls, disabilities, and even mortality. Several breakthroughs have been made to find a pharmaceutical therapy for sarcopenia over the years, and some have come up with promising findings. Yet still no drug has been approved for its treatment. The key factor that makes finding an effective pharmacotherapy so challenging is the general paradigm of standalone/single diseases, traditionally adopted in medicine. Today, it is well known that sarcopenia is a complex disorder caused by multiple factors, e.g., imbalance in protein turnover, satellite cell and mitochondrial dysfunction, hormonal changes, low-grade inflammation, senescence, anorexia of aging, and behavioral factors such as low physical activity. Therefore, pharmaceuticals, either alone or combined, that exhibit multiple actions on these factors simultaneously will likely be the drug of choice to manage sarcopenia. Among various drug options explored throughout the years, testosterone still has the most cumulated evidence regarding its effects on muscle health and its safety. A mas receptor agonist, BIO101, stands out as a recent promising pharmaceutical. In addition to the conventional strategies (i.e., nutritional support and physical exercise), therapeutics with multiple targets of action or combination of multiple therapeutics with different targets/modes of action appear to promise greater benefit for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Gulistan Bahat
- Division of Geriatrics, Department of Internal Medicine, Istanbul Medical School, Istanbul University, Capa, 34390, Istanbul, Turkey.
| | - Serdar Ozkok
- Division of Geriatrics, Department of Internal Medicine, Hatay Training and Research Hospital, Hatay, 31040, Turkey
| |
Collapse
|
12
|
Qiang T, Wang J, Ding X, Zeng Q, Bai S, Lv L, Xuan Y, Peng H, Zhang K. The improving effect of soybean isoflavones on ovarian function in older laying hens. Poult Sci 2023; 102:102944. [PMID: 37531725 PMCID: PMC10407823 DOI: 10.1016/j.psj.2023.102944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 08/04/2023] Open
Abstract
Emerging evidence suggests an association between estrogen levels and reduced egg-laying performance as the layer became old. Since soy isoflavones (SF) have estrogen-mimic effects, whether it can enhance production performance and ovarian function of older layers is still not known. A total of 160 Lohmann pink layers (66-wk-old) were used in a 2 × 2 factorial design, which included 2 egg-laying levels [low (76.89 ± 1.65%; LOW) and normal (84.96 ± 1.01%; NOR)] and 2 different dietary groups [0 mg/kg SF, 20 mg/kg SF] were used. The results showed the NOR group had higher egg-laying rate, egg mass, and feed efficiency during the all phases (P(laying) < 0.05). The unqualified egg rate was lower in NOR group (9-12 wk, 1-12 wk) (P(laying) < 0.05). Dietary supplementation with SF increased the egg-laying rate and feed efficiency (5-8 wk, 9-12 wk, 1-12 wk), increased egg mass (9-12 wk, 1-12 wk) (P(SF) < 0.05). The NOR layers presented higher eggshell quality (redness, yellowness, brightness, eggshell ratio) at 12 wk (P(laying) < 0.05). Eggshell quality was found to be improved by SF (eggshell strength and eggshell thickness), egg albumen quality (higher albumen height and Haugh unit) at 12 wk (P(SF) < 0.05). Supplementing with SF led to an increase in eggshell strength in LOW group (P(laying*SF) < 0.05). The higher serum lever of glucose (GLU) and lower serum lever of follicle stimulating hormone (FSH) were in NOR group (P(laying) < 0.05). Supplementing SF in diets increased serum of estradiol (E2) and insulin-like growth factors-1 (IGF-1), decreased serum of FSH (P(SF) < 0.05). The NOR layers presented lower estrogen receptor α (ERα), estrogen receptor β (ERβ), B lymphoma 2 associated X protein (Bax), cytochrome c (Cytc), interleukin 6 (IL-6), caspase3, caspase9, IKKα, P50, and P65 expression in the ovary (P(laying) < 0.05). Dietary SF supplementation decreased the anti-Müllerian hormone receptor (AMHR), Bax, caspase3, caspase9, Cytc, IL-6, IKKα, P50, P65 expression in the ovary (P(SF) < 0.05). These findings indicated that layers with NOR group had higher production performance, egg quality, and ovarian function, while dietary supplementation with SF improved production performance and ovarian function by reducing inflammation and apoptosis-related genes expression in ovary.
Collapse
Affiliation(s)
- Taoyan Qiang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianping Wang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Ding
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiufeng Zeng
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiping Bai
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Lv
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yue Xuan
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanwei Peng
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Keying Zhang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
13
|
Yoshimura Y, Hashimoto Y, Okada H, Takegami M, Nakajima H, Miyoshi T, Yoshimura T, Yamazaki M, Hamaguchi M, Fukui M. Changes in glycemic control and skeletal muscle mass indices after dapagliflozin treatment in individuals with type 1 diabetes mellitus. J Diabetes Investig 2023; 14:1175-1182. [PMID: 37424302 PMCID: PMC10512910 DOI: 10.1111/jdi.14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/02/2023] [Accepted: 06/21/2023] [Indexed: 07/11/2023] Open
Abstract
AIMS/INTRODUCTION Dapagliflozin is used for individuals with type 1 diabetes, although the effect of this medication on skeletal muscle mass is not well established. In addition, there are few studies examining the effects of good glycemic control on skeletal muscle mass in type 1 diabetes patients. We investigated changes in glycemic control and skeletal muscle mass with dapagliflozin in individuals with type 1 diabetes, and the association between these changes. MATERIALS AND METHODS This was a post-hoc analysis of a multicenter, open-label, non-randomized, prospective, interventional study in individuals with type 1 diabetes. The participants received dapagliflozin at 5 mg/day for 4 weeks, and were reviewed before and after treatment. Weight- and height-corrected appendicular skeletal muscle mass (ASM) were calculated as indices of skeletal muscle mass using bioelectrical impedance analysis. RESULTS A total of 36 individuals were included in the analysis. After the 4 weeks of dapagliflozin treatment, ASM/height2 decreased in the body mass index <23 group (P = 0.004). ASM / weight decreased in all men aged >60 years. The change in ASM / weight (%) was negatively correlated with the change in glycated hemoglobin (%;P = 0.023). The change in ASM / height2 (kg/m2 ) was also positively correlated with the change in time within the glucose range of 70-180 mg/dL (P = 0.036). CONCLUSION Dapagliflozin treatment of individuals with type 1 diabetes, particularly non-obese individuals and older men, might result in loss of skeletal muscle mass. However, good glycemic control during treatment might prevent the onset and progression of sarcopenia.
Collapse
Affiliation(s)
- Yuta Yoshimura
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
- Department of Metabolism and ImmunologySaiseikai Suita HospitalSuitaJapan
| | - Yoshitaka Hashimoto
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
- Department of Diabetes and EndocrinologyMatsushita Memorial HospitalMoriguchiJapan
| | - Hiroshi Okada
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Maya Takegami
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Hanako Nakajima
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Tomoki Miyoshi
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Takashi Yoshimura
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Masahiro Yamazaki
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
- Department of Metabolism and ImmunologyJapanese Red Cross Kyoto Daini HospitalKyotoJapan
| | - Masahide Hamaguchi
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Michiaki Fukui
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| |
Collapse
|
14
|
Sims S, Barak O, Ryu V, Miyashita S, Kannangara H, Korkmaz F, Wizman S, Macdonald A, Gumerova A, Goosens K, Zaidi M, Yuen T, Lizneva D, Frolinger T. Absent LH signaling rescues the anxiety phenotype in aging female mice. Mol Psychiatry 2023; 28:3324-3331. [PMID: 37563278 DOI: 10.1038/s41380-023-02209-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
Clinical studies and experimental data together support a role for pituitary gonadotropins, including luteinizing hormone (LH), otherwise considered solely as fertility hormones, in age-related cognitive decline. Furthermore, rising levels of LH in post-menopausal women have been implicated in the high prevalence of mood disorders. This study was designed to examine the effect of deficient LH signaling on both cognitive and emotional behavior in 12-month-old Lhcgr-/- mice. For this, we established and validated a battery of five tests, including Dark-Light Box (DLB), Y-Maze Spontaneous Alternation, Novel Object Recognition (NOR), and contextual and cued Fear Conditioning (FCT) tests. We found that 12-month-old female wild type mice display a prominent anxiety phenotype on DLB and FCT. This phenotype was not seen in 12-month-old female Lhcgr-/- mice, indicating full phenotypic rescue. Furthermore, there was no effect of LHCGR depletion on recognition memory or working spatial memory on NOR and Y-maze testing, respectively, in 12-month-old mice, notwithstanding the absence of a basal phenotype in wild type littermates. The latter data do not exclude an effect of LH on cognition documented in previous studies. Finally, 12-month-old male mice and 3-month-old male and female mice did not consistently display deficits on any test. The data collectively document, for the first time, that loss of LH signaling reverses age-related emotional disturbances, a prelude to future targeted therapies that block LH action.
Collapse
Affiliation(s)
- Steven Sims
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Orly Barak
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vitaly Ryu
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sari Miyashita
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hasni Kannangara
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Funda Korkmaz
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Soleil Wizman
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anne Macdonald
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anisa Gumerova
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ki Goosens
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mone Zaidi
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Tony Yuen
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Daria Lizneva
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Tal Frolinger
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
15
|
Sun L, Fu J, Mu Z, Duan X, Chan P, Xiu S. Association between body fat and sarcopenia in older adults with type 2 diabetes mellitus: A cross-sectional study. Front Endocrinol (Lausanne) 2023; 14:1094075. [PMID: 36777353 PMCID: PMC9911832 DOI: 10.3389/fendo.2023.1094075] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES To investigate the association between body fat (BF%) and sarcopenia in older adults with type 2 diabetes mellitus (T2DM) and potential link with increased levels of inflammatory indicators and insulin resistance. METHODS A total of 543 older adults with T2DM were included in this cross-sectional study. Appendicular skeletal muscle (ASM), handgrip strength and gait speed were measured to diagnose sarcopenia according to the updated Asian Working Group for Sarcopenia (AWGS) 2019 criteria. Body composition data were tested using dual-energy X-ray absorptiometry (DEXA). Levels of serum high-sensitive C-reactive protein (hs-CRP), interleukin-6, fasting blood insulin (FINS), hemoglobin A1c (HbA1c), 25-hydroxyvitamin D3 [25(OH) D3] were also determined. RESULTS The prevalence of sarcopenia in all participants was 8.84%, of which 11.90% were male and 5.84% females. The Pearson's correlation analysis revealed that BF% was negatively correlated with gait speed in men and women (R =-0.195, P=0.001; R = -0.136, P =0.025, respectively). After adjusting for all potential confounders, sarcopenia was positive associated with BF% (male, OR: 1.38, 95% CI: 1.15-1.65, P< 0.001; female, OR: 1.30, 95% CI: 1.07-1.56, P=0.007), and negatively associated with body mass index (BMI) (male, OR: 0.57, 95% CI: 0.44-0.73, P<0.001; female, OR: 0.48, 95% CI: 0.33-0.70, P<0.001). No significant differences were found in hs-CRP, interleukin-6, and insulin resistance between older T2DM adults with and without sarcopenia. CONCLUSION Higher BF% was linked to an increased risk of sarcopenia in older adults with T2DM, suggesting the importance of assessing BF% rather than BMI alone to manage sarcopenia.
Collapse
Affiliation(s)
- Lina Sun
- Department of Endocrinology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Junling Fu
- Department of Endocrinology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhijing Mu
- Department of Endocrinology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoye Duan
- Department of Endocrinology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Piu Chan
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurobiology, Neurology and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Clinical Center for Parkinson’s Disease, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Parkinson’s Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- *Correspondence: Piu Chan, ; Shuangling Xiu,
| | - Shuangling Xiu
- Department of Endocrinology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Piu Chan, ; Shuangling Xiu,
| |
Collapse
|
16
|
Taurine Improves Sperm Mitochondrial Indices, Blunts Oxidative Stress Parameters, and Enhances Steroidogenesis and Kinematics of Sperm in Lead-Exposed Mice. Reprod Sci 2022; 30:1891-1910. [DOI: 10.1007/s43032-022-01140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
|
17
|
Yassin A, Saad F, Alwani M, Aboumarzouk OM, Al-Zoubi RM, Nettleship J, Kelly D, Al-Ansari A. The effects of long-term testosterone treatment on endocrine parameters in hypogonadal men: 12-year data from a prospective controlled registry study. Aging Male 2022; 25:185-191. [PMID: 35903984 DOI: 10.1080/13685538.2022.2099828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Testosterone therapy (TTh) is the primary treatment for aging men with functional hypogonadism. Whilst the benefits of testosterone (T) replacement are well-evidenced, the long-term data for TTh on metabolic and endocrine parameters is limited. Here we present the effect of TTh on endocrine parameters in hypogonadal men at a 12-year follow-up. In this single-centre, cumulative, prospective, registry study, 321 hypogonadal men (mean age: 58.9 years) received testosterone undecanoate injections in 12-week intervals for up to 12 years. Blood samples were taken at every other visit to measure levels of total T (TT), calculated free T, sex hormone-binding globulin (SHBG), estradiol, luteinizing hormone (LH), follicle-stimulating hormone (FSH), progesterone and prolactin. We observed an increase in TT of 15.5 nmol/L (p < 0.0001), a reduction in SHBG of 10.5 nmol/L (p < 0.0001) and an increase in calculated free T of 383.04 pmol/L (p < 0.0001) over the study period. This was accompanied by an increase in estradiol levels by 14.9 pmol/L (p < 0.0001), and decreases in progesterone (0.2 ng/mL, p < 0.0001), LH (10.4 U/L, p < 0.0001) and FSH (8.4 U/L, p < 0.0001) were demonstrated at 12-years. The levels of prolactin remained unchanged. Long-term TTh altered hormonal parameters to predictably modify the endocrine system. These effects were sustained during the entire observation time of 12 years.
Collapse
Affiliation(s)
- Aksam Yassin
- Department of Surgery, Division of Urology/Andrology & Men's Health, Hamad Medical Corporation, Doha, Qatar
- Center of Medicine and Health Sciences, Dresden International University, Dresden, Germany
| | - Farid Saad
- Center of Medicine and Health Sciences, Dresden International University, Dresden, Germany
- Gulf Medical University School of Medicine, Ajman, U.A.E
| | - Mustafa Alwani
- School of Medicine, Jordan University of Science and Technology, Irbid, Jordan
- Surgical Research Section, Hamad Medical Corporation, Doha, Qatar
| | - Omar M Aboumarzouk
- Department of Surgery, Division of Urology/Andrology & Men's Health, Hamad Medical Corporation, Doha, Qatar
| | - Raed M Al-Zoubi
- Department of Surgery, Division of Urology/Andrology & Men's Health, Hamad Medical Corporation, Doha, Qatar
| | - Joanne Nettleship
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Daniel Kelly
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
- Biomolecular Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Abdulla Al-Ansari
- Department of Surgery, Division of Urology/Andrology & Men's Health, Hamad Medical Corporation, Doha, Qatar
- Center of Medicine and Health Sciences, Dresden International University, Dresden, Germany
| |
Collapse
|
18
|
Abstract
Sexual function, and testosterone (T) levels, progressively decline in aging men. Associated morbidities and metabolic disorders can accelerate the phenomenon. The specific contribution of low T to sexual function impairment in aging men has still not been completely clarified. Similarly, the role of T replacement therapy (TRT), as well as the combination of TRT with phosphodiesterase type 5 inhibitors (PDE5i) for patients with erectile dysfunction (ED), is still conflicting. Here we aim to summarize and critically discuss all available data supporting the contribution of low T to sexual impairment observed with aging as well as the possible role of TRT. Available data on men with sexual dysfunction show that reduced sexual desire is the most important correlate of male hypogonadism. Conversely, aging and associated morbidities substantially attenuate the relationship between ED and T. TRT is effective in improving sexual function in middle-aged and older subjects but its role is small and extremely variable. Lifestyle interventions can result in similar outcomes to those of TRT. In conclusion, it is our opinion that PDE5i along with lifestyle measures should be considered the first approach for treating ED even in subjects with milder T deficiency. When these interventions fail or are difficult to apply, TRT should be considered.
Collapse
Affiliation(s)
- Giovanni Corona
- Endocrinology Unit, Medical Department, Maggiore-Bellaria Hospital, Azienda Usl, Bologna, Italy
| | - Mario Maggi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Mario Serio, Italy.
| |
Collapse
|
19
|
Metzger C, Rau J, Stefanov A, Joseph RM, Allaway HC, Allen MR, Hook MA. Inflammaging and bone loss in a rat model of spinal cord injury. J Neurotrauma 2022; 40:901-917. [PMID: 36226413 DOI: 10.1089/neu.2022.0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) results in significant loss of sublesional bone, adding to the comorbidity of SCI with an increased risk of fracture and post-fracture complications. Unfortunately, the effect of SCI on skeletal health is also likely to rise as the average age of SCI has increased and there are well-known negative effects of age on bone. To date, however, the impact of age and age-associated inflammation (inflammaging) on skeletal health after SCI remains largely unknown. To address this, we compared bone parameters in young (3 month) and middle-aged (9 month) male and female rats with a moderate thoracic contusion injury, to age and sex matched sham-operated controls. Skeletal parameters, locomotor function and serum cytokine levels were assessed at both subchronic (30 days) and chronic (180 days) time points post injury. We hypothesized that SCI would lead to a dramatic loss of bone immediately after injury in all SCI-groups, with inflammaging leading to greater loss in middle-aged SCI rats. We also predicted that while younger rats may re-establish bone properties in more chronic phases of SCI, middle-aged rats would not. Supporting these hypothesis, trabecular bone volume was significantly lower in male and young female SCI rats early after injury. Contrary to our hypothesis, however, there was greater loss of trabecular bone volume, relative to age-matched shams, in young compared to middle-aged SCI rats with no effects of SCI on trabecular bone volume in middle-aged female rats. Moreover, despite recovery of weight-supported locomotor activity, bone loss persisted into the chronic phase of injury for the young rats. Bone formation rates were lower in young male SCI rats, regardless of the time since injury, while both young and middle-aged female SCI rats had lower bone formation in the subchronic but not chronic phase of SCI. In middle-aged rats, SCI-induced higher osteoclast surfaces, which also persisted into the chronic phase of SCI in middle-aged females. Neither age nor SCI-induced increases in inflammation seemed to be associated with bone loss. In fact, SCI had more dramatic and persistent effects on bone in male rats, while aging and SCI elevated serum cytokines only in female rats. Overall, this study demonstrates SCI-induced loss of bone and altered bone turnover in male and female rats that persists into the chronic phase post-injury. The sex and age dependent variations in bone turnover and serum cytokines, however, underscore the need to further explore both mechanisms and potential therapeutics in multiple demographics.
Collapse
Affiliation(s)
- Corinne Metzger
- Indiana University School of Medicine, 12250, Anatomy Cell Biology Physiology, Indianapolis, Indiana, United States;
| | - Josephina Rau
- Texas A&M University Health Science Center Department of Neuroscience and Experimental Therapeutics, 205278, 8447 Riverside Parkway, Bryan, Texas, United States, 77807-3260;
| | - Alexander Stefanov
- Texas A&M University Health Science Center Department of Neuroscience and Experimental Therapeutics, 205278, 8447 Riverside Pkwy, Bryan, Texas, United States, 77807.,Texas A&M Institute for Neuroscience, 464968, College Station, Texas, United States;
| | - Rose M Joseph
- Texas A&M School of Medicine, Department of Neuroscience and Experimental Therapeutics, Bryan, Texas, United States;
| | - Heather C Allaway
- Louisiana State University, 5779, School of Kinesiology, Baton Rouge, Louisiana, United States;
| | - Matthew R Allen
- Indiana University School of Medicine, 12250, Anatomy Cell Biology Physiology, Indianapolis, Indiana, United States;
| | - Michelle A Hook
- Texas A&M School of Medicine, Department of Neuroscience and Experimental Therapeutics, Bryan, Texas, United States;
| |
Collapse
|
20
|
Alemany M. The Roles of Androgens in Humans: Biology, Metabolic Regulation and Health. Int J Mol Sci 2022; 23:11952. [PMID: 36233256 PMCID: PMC9569951 DOI: 10.3390/ijms231911952] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Androgens are an important and diverse group of steroid hormone molecular species. They play varied functional roles, such as the control of metabolic energy fate and partition, the maintenance of skeletal and body protein and integrity and the development of brain capabilities and behavioral setup (including those factors defining maleness). In addition, androgens are the precursors of estrogens, with which they share an extensive control of the reproductive mechanisms (in both sexes). In this review, the types of androgens, their functions and signaling are tabulated and described, including some less-known functions. The close interrelationship between corticosteroids and androgens is also analyzed, centered in the adrenal cortex, together with the main feedback control systems of the hypothalamic-hypophysis-gonads axis, and its modulation by the metabolic environment, sex, age and health. Testosterone (T) is singled out because of its high synthesis rate and turnover, but also because age-related hypogonadism is a key signal for the biologically planned early obsolescence of men, and the delayed onset of a faster rate of functional losses in women after menopause. The close collaboration of T with estradiol (E2) active in the maintenance of body metabolic systems is also presented Their parallel insufficiency has been directly related to the ravages of senescence and the metabolic syndrome constellation of disorders. The clinical use of T to correct hypoandrogenism helps maintain the functionality of core metabolism, limiting excess fat deposition, sarcopenia and cognoscitive frailty (part of these effects are due to the E2 generated from T). The effectiveness of using lipophilic T esters for T replacement treatments is analyzed in depth, and the main problems derived from their application are discussed.
Collapse
Affiliation(s)
- Marià Alemany
- Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 635, 08028 Barcelona, Catalonia, Spain;
- Institut de Biomedicina, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
21
|
Gupta P, Kumar S. Sarcopenia and Endocrine Ageing: Are They Related? Cureus 2022; 14:e28787. [PMID: 36225400 PMCID: PMC9533189 DOI: 10.7759/cureus.28787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/04/2022] [Indexed: 11/05/2022] Open
|
22
|
Reiss LA, Kirk J, Claussen AD, Fallon JB. Animal Models of Hearing Loss after Cochlear Implantation and Electrical Stimulation. Hear Res 2022; 426:108624. [DOI: 10.1016/j.heares.2022.108624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/28/2022] [Accepted: 09/23/2022] [Indexed: 11/04/2022]
|
23
|
Da Ros CT, Da Ros LU, Da Ros JPU. The role of clomiphene citrate in late onset male hypogonadism. Int Braz J Urol 2022; 48:850-856. [PMID: 35168314 PMCID: PMC9388170 DOI: 10.1590/s1677-5538.ibju.2021.0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/21/2022] Open
|
24
|
Overman MJ, Pendleton N, O'Neill TW, Bartfai G, Casanueva FF, Forti G, Rastrelli G, Giwercman A, Han TS, Huhtaniemi IT, Slowikowska-Hilczer J, Lean ME, Punab M, Lee DM, Antonio L, Gielen E, Rutter MK, Vanderschueren D, Wu FC, Tournoy J. Reproductive hormone levels, androgen receptor CAG repeat length and their longitudinal relationships with decline in cognitive subdomains in men: The European Male Ageing Study. Physiol Behav 2022; 252:113825. [PMID: 35487276 DOI: 10.1016/j.physbeh.2022.113825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/08/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE It has been proposed that endogenous sex hormone levels may present a modifiable risk factor for cognitive decline. However, the evidence for effects of sex steroids on cognitive ageing is conflicting. We therefore investigated associations between endogenous hormone levels, androgen receptor CAG repeat length, and cognitive domains including visuoconstructional abilities, visual memory, and processing speed in a large-scale longitudinal study of middle-aged and older men. METHODS Men aged 40-79 years from the European Male Ageing Study (EMAS) underwent cognitive assessments and measurements of hormone levels at baseline and follow-up (mean = 4.4 years, SD ± 0.3 years). Hormone levels measured included total and calculated free testosterone and estradiol, dihydrotestosterone, luteinizing hormone, follicle-stimulating hormone, dehydroepiandrosterone sulphate and sex hormone-binding globulin. Cognitive function was assessed using the Rey-Osterrieth Complex Figure Copy and Recall, the Camden Topographical Recognition Memory and the Digit Symbol Substitution Test. Multivariate linear regressions were used to examine associations between baseline and change hormone levels, androgen receptor CAG repeat length, and cognitive decline. RESULTS Statistical analyses included 1,827 and 1,423 participants for models investigating relationships of cognition with hormone levels and CAG repeat length, respectively. In age-adjusted models, we found a significant association of higher baseline free testosterone (β=-0.001, p=0.005) and dihydrotestosterone levels (β=-0.065, p=0.003) with greater decline on Rey-Osterrieth Complex Figure Recall over time. However, these effects were no longer significant following adjustment for centre, health, and lifestyle factors. No relationships were observed between any other baseline hormone levels, change in hormone levels, or androgen receptor CAG repeat length with cognitive decline in the measured domains. CONCLUSIONS In this large-scale prospective study there was no evidence for an association between endogenous sex hormone levels or CAG repeat length and cognitive ageing in men. These data suggest that sex steroid levels do not affect visuospatial function, visual memory, or processing speed in middle-aged and older men.
Collapse
Affiliation(s)
- Margot J Overman
- Gerontology and Geriatrics, KU Leuven, Leuven, Belgium; Department of Psychiatry, University of Oxford, UK
| | - Neil Pendleton
- Clinical & Cognitive Neurosciences, Institute of Brain, Behaviour and Mental Health, The University of Manchester, UK
| | - Terence W O'Neill
- Centre for Epidemiology Versus Arthritis, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Gyorgy Bartfai
- Department of Obstetrics, Gynaecology and Andrology, Albert Szent-György Medical University, Szeged, Hungary
| | - Felipe F Casanueva
- Department of Medicine, Santiago de Compostela University Spain; CIBEROBN Instituto de Salud Carlos III. Santiago de Compostela, Spain
| | - Gianni Forti
- Endocrinology Unit, University of Florence, Florence, Italy
| | - Giulia Rastrelli
- Sexual Medicine and Andrology Unit, Department of Experimental, Clinical, and Biomedical Sciences, University of Florence, Florence, Italy
| | - Aleksander Giwercman
- Reproductive Medicine Centre, Skåne University Hospital, University of Lund, Lund, Sweden
| | - Thang S Han
- Institute of Cardiovascular Research, Royal Holloway University of London, Egham, Surrey, UK
| | - Ilpo T Huhtaniemi
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, London UK
| | | | - Michael Ej Lean
- Department of Human Nutrition, University of Glasgow, Glasgow, UK
| | - Margus Punab
- Andrology Unit, Tartu University Hospital, Tartu, Estonia
| | - David M Lee
- Faculty of Health, Psychology and Social Care, Manchester Metropolitan University, Manchester, UK
| | - Leen Antonio
- Department of Andrology and Endocrinology, KU Leuven, Leuven, Belgium; Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Evelien Gielen
- Geriatric Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Martin K Rutter
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Medical and Human Sciences, Institute of Human Development, University of Manchester, Manchester, UK; Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Dirk Vanderschueren
- Department of Andrology and Endocrinology, KU Leuven, Leuven, Belgium; Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Frederick Cw Wu
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Medical and Human Sciences, Institute of Human Development, University of Manchester, Manchester, UK
| | - Jos Tournoy
- Geriatric Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium.
| |
Collapse
|
25
|
Zhou Y, Tian R, Wang X, Sun J, Zhu L, An X. The occurrence of hypogonadotropic hypogonadism in Chinese men with type 2 diabetes. Clin Endocrinol (Oxf) 2022; 96:837-846. [PMID: 35075664 DOI: 10.1111/cen.14680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
Abstract
CONTEXT The previous studies showed that hypogonadotropic hypogonadism (HH) occurred commonly in men with type 2 diabetes. However, since all the cohorts tested were from American and European studies, the occurrence of HH/nongonadal illness (NGI) in Chinese populations is unclear. OBJECTIVE The study aimed to explore the occurrence of HH/NGI in Chinese men with type 2 diabetes. Furthermore, the correlative factors and predictors of hypogonadism were investigated. DESIGN We conducted a cross-sectional study of 637 Chinese men with type 2 diabetes aged 20-75 years in our clinic. The prevalence of HH/NGI was investigated by measuring serum total testosterone (TT), sex hormone-binding globulin (SHBG), luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in the enrolled subjects. Free testosterone (FT) was calculated by using SHBG and TT levels and hypogonadism was defined as TT lower than 10.4 nmol/L and calculated FT (cFT) lower than 0.225 nmol/L. The LH cut-off value for defining HH/NGI was 9.4 mIU/ml. RESULTS The results suggested that 31.9% of male Chinese type 2 diabetes patients had hypogonadism and 26.5% of subjects in our cohort were determined as HH/NGI. The occurrence of hypogonadism was markedly correlated with body mass index (BMI). There was a significant association between TT, cFT and SHBG levels with BMI. TT levels are inversely correlated with BMI and homeostasis model assessment-estimated insulin resistance (HOMA-IR) while positively related with SHBG. The cFT levels were inversely correlated with age, LH, FSH, BMI and HOMA-IR. Multiple regression analysis suggested that SHBG, BMI and HOMA-IR were significant predictors of TT and cFT. CONCLUSION Our present study offered the first evidence that the occurrence of HH/NGI in Chinese male type 2 diabetes was 26.5%. TT and cFT were significantly correlated with BMI, SHBG and HOMA-IR in Chinese men with type 2 diabetes.
Collapse
Affiliation(s)
- Yuexin Zhou
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ruina Tian
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xuening Wang
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiaxing Sun
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lin Zhu
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaofei An
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
26
|
Peng X, Hou L, Zhao Y, Lin T, Wang H, Gao L, Yue J. Frailty and testosterone level in older adults: a systematic review and meta-analysis. Eur Geriatr Med 2022; 13:663-673. [PMID: 35107811 DOI: 10.1007/s41999-022-00614-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
PURPOSE We conducted a systematic review to evaluate the relationship between total testosterone (TT), free testosterone (fT), or sex hormone-binding globulin (SHBG) and frailty in older adults. METHODS We systematically searched nine databases (e.g. MEDLINE, Embase, ACP Journal Club, and the Cochrane library et al.) for papers on frailty and androgen levels published up to October 10, 2021. We calculated the odds ratio (OR) for the relationship between testosterone level and frailty by performing meta-analysis. RESULTS The search strategy yielded 311 hits in all databases combined. Eleven (seven cross-sectional studies and four cohort studies) met the inclusion criteria for meta-analysis. Among cross-sectional studies, meta-analysis revealed a significant association between TT and frailty in men (OR = 1.37 [95% CI 1.09, 1.72]) not women (OR = 1.06 [0.84, 1.34]). The fT was also significantly association with frailty in men (OR = 1.55 [1.06, 2.25] not women (OR = 1.35 [0.91, 2.01]). Cohort studies showed the same result in TT (OR = 1.09 [1.02, 1.18]) and fT (OR = 1.15 [1.02, 1.30]) for men. We did not find a significant association between SHBG and frailty. CONCLUSION The findings of this systematic review and meta-analysis suggest that TT and fT were significantly associated with frailty in older men but not women.
Collapse
Affiliation(s)
- Xuchao Peng
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan Province, China
| | - Lisha Hou
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan Province, China
| | - Yanli Zhao
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan Province, China
| | - Taiping Lin
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan Province, China
| | - Hui Wang
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan Province, China
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Langli Gao
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan Province, China.
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
- West China School of Nursing, Sichuan University, Chengdu, China.
| | - Jirong Yue
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan Province, China
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Characterization of Longitudinal Testosterone, Cortisol, and Musth in Male Asian Elephants ( Elephas maximus), Effects of Aging, and Adrenal Responses to Social Changes and Health Events. Animals (Basel) 2022; 12:ani12101332. [PMID: 35625178 PMCID: PMC9137588 DOI: 10.3390/ani12101332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/04/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
Simple Summary The conservation of endangered species and sustainability of managed populations requires good health and welfare of individuals. Male elephants experience a biological phenomenon called “musth”, characterized by a suite of physiological and behavioral changes which serve to facilitate copulation between the sexes, but can also pose unique challenges under human care. This study characterized longitudinal patterns of circulating testosterone and cortisol in relation to musth in four adult Asian elephant bulls and assessed age-related effects on musth activity and adrenal responses to social changes and clinical health events. All bulls exhibited regular annual musth cycles, and there was no clear evidence of chronically elevated cortisol secretion outside of musth. Circulating cortisol covaried positively with testosterone and musth, highlighting intrinsic patterns that should be considered when evaluating the impact of changes on adrenal glucocorticoid activity. Testosterone decreased with age in sexually mature bulls, whereas age-related changes in cortisol varied across individuals, with the three older bulls showing the greatest rate of change during musth. Changes in cortisol were associated with treatment for Mycobacterium tuberculosis in two bulls, but not with activation of disease. In contrast to physiological factors, there was no evidence that social changes involving male herdmates impacted adrenal glucocorticoid activity in the short term. This study highlights the importance of longitudinal hormone monitoring to track changes in physiological function and identify factors that may influence welfare, which is important for making more informed decisions on how to manage male elephants under varying degrees of human care. Abstract The conservation of endangered species and sustainability of managed populations requires considerations to ensure the health and welfare of individuals. Male elephants experience a biological phenomenon called “musth”, which is characterized by increased testosterone production, temporal gland secretion and urine dribbling, heightened aggression and sexual behavior, and therefore can pose unique challenges for human safety and animal welfare. This study characterized longitudinal (9 to 22 years) patterns of circulating testosterone and cortisol in relation to musth in four adult Asian elephant bulls spanning ages from 12 to 54 years. Age-related effects on musth activity and adrenal responses to social changes and clinical health events were also examined. All bulls exhibited regular annual musth cycles. Circulating cortisol covaried positively with testosterone and musth, highlighting intrinsic patterns that should be considered when evaluating the impact of social, health, and environmental changes on adrenal glucocorticoid activity. Except for an end-of-life cortisol increase in one bull, there was no clear evidence of chronically elevated cortisol secretion outside of musth in any individual. Testosterone decreased with age in sexually mature bulls, whereas age-related changes in cortisol varied across individuals, with the three older bulls showing the greatest rate of change during musth versus inter-musth periods. In contrast to physiological factors, there was no evidence of social factors, such as addition of a new male and death of male herdmates, impacting adrenal glucocorticoid activity in these bulls in the short term. Changes in cortisol were associated with treatment for Mycobacterium tuberculosis (M. tb) in two bulls, increasing after start of treatment and decreasing with cessation of treatment, but were not clearly associated with activation of disease. This study highlights the importance of longitudinal hormone monitoring to track changes in physiological function and responses to social, health, and environmental change in elephant bulls, which is important for making more informed decisions on how to manage male elephants under varying degrees of human care to ensure welfare and safety.
Collapse
|
28
|
Potluri T, Taylor MJ, Stulberg JJ, Lieber RL, Zhao H, Bulun SE. An estrogen-sensitive fibroblast population drives abdominal muscle fibrosis in an inguinal hernia mouse model. JCI Insight 2022; 7:e152011. [PMID: 35439171 PMCID: PMC9090253 DOI: 10.1172/jci.insight.152011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Greater than 25% of all men develop an inguinal hernia in their lifetime, and more than 20 million inguinal hernia repair surgeries are performed worldwide each year. The mechanisms causing abdominal muscle weakness, the formation of inguinal hernias, or their recurrence are largely unknown. We previously reported that excessively produced estrogen in the lower abdominal muscles (LAMs) triggers extensive LAM fibrosis, leading to hernia formation in a transgenic male mouse model expressing the human aromatase gene (Aromhum). To understand the cellular basis of estrogen-driven muscle fibrosis, we performed single-cell RNA sequencing on LAM tissue from Aromhum and wild-type littermates. We found a fibroblast-like cell group composed of 6 clusters, 2 of which were validated for their enrichment in Aromhum LAM tissue. One of the potentially novel hernia-associated fibroblast clusters in Aromhum was enriched for the estrogen receptor-α gene (Esr1hi). Esr1hi fibroblasts maximally expressed estrogen target genes and seemed to serve as the progenitors of another cluster expressing ECM-altering enzymes (Mmp3hi) and to upregulate expression of proinflammatory, profibrotic genes. The discovery of these 2 potentially novel and unique hernia-associated fibroblasts may lead to the development of novel treatments that can nonsurgically prevent or reverse inguinal hernias.
Collapse
Affiliation(s)
- Tanvi Potluri
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, and
| | - Matthew J. Taylor
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, and
| | - Jonah J. Stulberg
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Richard L. Lieber
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
- Shirley Ryan AbilityLab, Chicago, Illinois, USA
| | - Hong Zhao
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, and
| | - Serdar E. Bulun
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, and
| |
Collapse
|
29
|
Dominguez LJ, Barbagallo M. Antiageing strategies. PATHY'S PRINCIPLES AND PRACTICE OF GERIATRIC MEDICINE 2022:1442-1458. [DOI: 10.1002/9781119484288.ch115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
30
|
Curley M, Darbey A, O'Donnell L, Kilcoyne KR, Wilson K, Mungall W, Rebourcet D, Guo J, Mitchell RT, Smith LB. Leukemia inhibitory factor-receptor signalling negatively regulates gonadotrophin-stimulated testosterone production in mouse Leydig Cells. Mol Cell Endocrinol 2022; 544:111556. [PMID: 35031431 DOI: 10.1016/j.mce.2022.111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 11/26/2022]
Abstract
Testicular Leydig cells (LCs) are the principal source of circulating testosterone in males. LC steroidogenesis maintains sexual function, fertility and general health, and is influenced by various paracrine factors. The leukemia inhibitory factor receptor (LIFR) is expressed in the testis and activated by different ligands, including leukemia inhibitory factor (LIF), produced by peritubular myoid cells. LIF can modulate LC testosterone production in vitro under certain circumstances, but the role of consolidated signalling through LIFR in adult LC function in vivo has not been established. We used a conditional Lifr allele in combination with adenoviral vectors expressing Cre-recombinase to generate an acute model of LC Lifr-KO in the adult mouse testis, and showed that LC Lifr is not required for short term LC survival or basal steroidogenesis. However, LIFR-signalling negatively regulates steroidogenic enzyme expression and maximal gonadotrophin-stimulated testosterone biosynthesis, expanding our understanding of the intricate regulation of LC steroidogenic function.
Collapse
Affiliation(s)
- Michael Curley
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Annalucia Darbey
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Liza O'Donnell
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia; Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
| | - Karen R Kilcoyne
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Kirsten Wilson
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Will Mungall
- Bioresearch and Veterinary Services, University of Edinburgh, the Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, United Kingdom
| | - Diane Rebourcet
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jingtao Guo
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom; Royal Hospital for Children and Young People, Edinburgh, EH91LF, United Kingdom
| | - Lee B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom; College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
31
|
Human-Induced Pluripotent Stem Cell-Based Models for Studying Sex-Specific Differences in Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1387:57-88. [PMID: 34921676 DOI: 10.1007/5584_2021_683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The prevalence of neurodegenerative diseases is steadily increasing worldwide, and epidemiological studies strongly suggest that many of the diseases are sex-biased. It has long been suggested that biological sex differences are crucial for neurodegenerative diseases; however, how biological sex affects disease initiation, progression, and severity is not well-understood. Sex is a critical biological variable that should be taken into account in basic research, and this review aims to highlight the utility of human-induced pluripotent stem cells (iPSC)-derived models for studying sex-specific differences in neurodegenerative diseases, with advantages and limitations. In vitro systems utilizing species-specific, renewable, and physiologically relevant cell sources can provide powerful platforms for mechanistic studies, toxicity testings, and drug discovery. Matched healthy, patient-derived, and gene-corrected human iPSCs, from both sexes, can be utilized to generate neuronal and glial cell types affected by specific neurodegenerative diseases to study sex-specific differences in two-dimensional (2D) and three-dimensional (3D) human culture systems. Such relatively simple and well-controlled systems can significantly contribute to the elucidation of molecular mechanisms underlying sex-specific differences, which can yield effective, and potentially sex-based strategies, against neurodegenerative diseases.
Collapse
|
32
|
Zhou Y, Ni S, Li C, Song L, Zhang S. Gonadal rejuvenation of mice by GDF11. J Gerontol A Biol Sci Med Sci 2021; 77:892-901. [PMID: 34791251 DOI: 10.1093/gerona/glab343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 11/15/2022] Open
Abstract
Growth differentiation factor 11 (GDF11), also known as bone morphogenetic protein 11 (BMP11), has been shown to have rejuvenation and anti-aging properties, but little information is available regarding the role of GDF11 in reproductive system to date. In this study, we first confirmed the bioavailability of recombinant GDF11 (rGDF11) by oral delivery in mice. We also showed that dietary intake of rGDF11 had little influence on body and gonadal (ovary/testis) weights of recipient mice, indicating their general condition and physiology were not affected. Based on these findings, we started to test the function of rGDF11 in ovary and testis of mice and to explore the underlying mechanisms. It was found that to some extent, rGDF11 could attenuate the senescence of ovarian and testicular cells, and contribute to the recovery of ovarian and testicular endocrine functions. Moreover, rGDF11 could rescue the diminished ovarian reserve in female mice and enhance the activities of marker enzymes of testicular function (SDH and G6PD) in male mice, suggesting a potential improvement of fertility. Notably, rGDF11 markedly promoted the activities of antioxidant enzymes in the ovary and testis, and remarkably reduced the levels of lipid peroxidation, protein oxidation and ROS in the ovary and testis. Collectively, these results suggest that GDF11 can protect ovarian and testicular functions of aged mice via slowing down the generation of ROS through enhancing activities of antioxidant enzymes.
Collapse
Affiliation(s)
- Yang Zhou
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shousheng Ni
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Congjun Li
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Lili Song
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
33
|
Huang LT, Wang JH. The Therapeutic Intervention of Sex Steroid Hormones for Sarcopenia. Front Med (Lausanne) 2021; 8:739251. [PMID: 34760899 PMCID: PMC8573092 DOI: 10.3389/fmed.2021.739251] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/29/2021] [Indexed: 01/09/2023] Open
Abstract
Sarcopenia, characterized by the excessive loss of skeletal muscle mass, strength, and function, is associated with the overall poor muscle performance status of the elderly, and occurs more frequently in those with chronic diseases. The causes of sarcopenia are multifactorial due to the inherent relationship between muscles and molecular mechanisms, such as mitochondrial function, inflammatory pathways, and circulating hormones. Age-related changes in sex steroid hormone concentrations, including testosterone, estrogen, progesterone, and their precursors and derivatives, are an important aspect of the pathogenesis of sarcopenia. In this review, we provide an understanding of the treatment of sarcopenia through the regulation of sex steroid hormones. The potential benefits and future research emphasis of each sex steroid hormone therapeutic intervention (testosterone, SARMs, estrogen, SERMs, DHEA, and progesterone) for sarcopenia are discussed. Enhanced understanding of the role of sex steroid hormones in the treatment for sarcopenia could lead to the development of hormone therapeutic approaches in combination with specific exercise and nutrition regimens.
Collapse
Affiliation(s)
- Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-He Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Sumien N, Cunningham JT, Davis DL, Engelland R, Fadeyibi O, Farmer GE, Mabry S, Mensah-Kane P, Trinh OTP, Vann PH, Wilson EN, Cunningham RL. Neurodegenerative Disease: Roles for Sex, Hormones, and Oxidative Stress. Endocrinology 2021; 162:6360925. [PMID: 34467976 PMCID: PMC8462383 DOI: 10.1210/endocr/bqab185] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 02/08/2023]
Abstract
Neurodegenerative diseases cause severe impairments in cognitive and motor function. With an increasing aging population and the onset of these diseases between 50 and 70 years, the consequences are bound to be devastating. While age and longevity are the main risk factors for neurodegenerative diseases, sex is also an important risk factor. The characteristic of sex is multifaceted, encompassing sex chromosome complement, sex hormones (estrogens and androgens), and sex hormone receptors. Sex hormone receptors can induce various signaling cascades, ranging from genomic transcription to intracellular signaling pathways that are dependent on the health of the cell. Oxidative stress, associated with aging, can impact the health of the cell. Sex hormones can be neuroprotective under low oxidative stress conditions but not in high oxidative stress conditions. An understudied sex hormone receptor that can induce activation of oxidative stress signaling is the membrane androgen receptor (mAR). mAR can mediate nicotinamide adenine dinucleotide-phosphate (NADPH) oxidase (NOX)-generated oxidative stress that is associated with several neurodegenerative diseases, such as Alzheimer disease. Further complicating this is that aging can alter sex hormone signaling. Prior to menopause, women experience more estrogens than androgens. During menopause, this sex hormone profile switches in women due to the dramatic ovarian loss of 17β-estradiol with maintained ovarian androgen (testosterone, androstenedione) production. Indeed, aging men have higher estrogens than aging women due to aromatization of androgens to estrogens. Therefore, higher activation of mAR-NOX signaling could occur in menopausal women compared with aged men, mediating the observed sex differences. Understanding of these signaling cascades could provide therapeutic targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Nathalie Sumien
- Department of Pharmacology & Neuroscience, Center for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - J Thomas Cunningham
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Delaney L Davis
- Department of Pharmacology & Neuroscience, Center for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rachel Engelland
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Oluwadarasimi Fadeyibi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - George E Farmer
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Steve Mabry
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Paapa Mensah-Kane
- Department of Pharmacology & Neuroscience, Center for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Oanh T P Trinh
- Department of Pharmacology & Neuroscience, Center for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Philip H Vann
- Department of Pharmacology & Neuroscience, Center for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - E Nicole Wilson
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: Rebecca L. Cunningham, PhD, Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3400 Camp Bowie Boulevard, Fort Worth, TX, USA, 76107-2699.
| |
Collapse
|
35
|
Cauley JA, Ellenberg SS, Schwartz AV, Ensrud KE, Keaveny TM, Snyder PJ. Effect of testosterone treatment on the trabecular bone score in older men with low serum testosterone. Osteoporos Int 2021; 32:2371-2375. [PMID: 34080044 PMCID: PMC8563386 DOI: 10.1007/s00198-021-06022-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022]
Abstract
UNLABELLED The trabecular bone score (TBS) is an indirect measure of vertebral bone microarchitecture. Our objective was to examine the effect of testosterone treatment on TBS. One hundred and ninety-seven hypogonadal men were randomized to testosterone or placebo. After 12 months, there was no difference in the changes in TBS by randomized group. INTRODUCTION In the Bone Trial of the Testosterone Trials, testosterone treatment increased trabecular volumetric bone mineral density (vBMD) and increased estimated bone strength as determined by finite element analysis. The trabecular bone score (TBS) is an indirect measure of vertebral bone microarchitecture. TBS predicts fracture independent of lumbar spine areal (a) BMD. The objective of this study was to examine the effect of testosterone treatment on TBS compared to its effects on vBMD and aBMD. METHODS Two hundred and eleven men were enrolled in the Bone Trial of the Testosterone Trials. Of these, 197 men had 2 repeat TBS and vBMD measurements; 105 men were allocated to receive testosterone, and 92 men to placebo for 1 year. TBS, aBMD, and vBMD were assessed at baseline and month 12. RESULTS There was no difference in the percent change in TBS by randomized group: 1.6% (95% confidence intervals (CI) 0.2-3.9) in the testosterone group and 1.4% (95% CI -0.2, 3.1) in the placebo group. In contrast, vBMD increased by 6% (95% CI 4.5-7.5) in the testosterone group compared to 0.4% (95% CI -1.65-0.88) in the placebo groups. CONCLUSIONS TBS is not clinically useful in monitoring the 1-year effect of testosterone treatment on bone structure in older hypogonadal men.
Collapse
Affiliation(s)
- J A Cauley
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 130 DeSoto Street, A533, Pittsburgh, PA, 15261, USA.
| | - S S Ellenberg
- Department of Biostatistics, Epidemiology and Bioinformatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A V Schwartz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - K E Ensrud
- Division of Epidemiology and Community Health, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - T M Keaveny
- Departments of Mechanical Engineering and Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - P J Snyder
- Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
36
|
Zambrano E, Nathanielsz PW, Rodríguez-González GL. Developmental programming and ageing of male reproductive function. Eur J Clin Invest 2021; 51:e13637. [PMID: 34107063 DOI: 10.1111/eci.13637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022]
Abstract
Developmental programming predisposes offspring to metabolic, behavioural and reproductive dysfunction in adult life. Evidence is accumulating that ageing phenotype and longevity are in part developmentally programmed in each individual. Unfortunately, there are few studies addressing the effects of developmental programming by maternal nutrition on the rate of ageing of the male reproductive system. This review will discuss effects of foetal exposure to maternal environmental challenges on male offspring fertility and normal ageing of the male reproductive system. We focus on several key factors involved in reproductive ageing such as decreased hormone production, DNA fragmentation, oxidative stress, telomere shortening, epigenetics, maternal lifestyle and nutrition. There is compelling evidence that ageing of the male reproductive system is developmentally programmed. Both maternal over- or undernutrition accelerate ageing of male offspring reproductive function through similar mechanisms such as decreased serum testosterone levels, increase in oxidative stress biomarkers in both the testes and sperm and changes in sperm quality. Importantly, even in adult life, exercise in male offspring of obese mothers improves adverse effects of programming on reproductive function. Maternal consumption of a low-protein diet causes transgenerational effects in progeny via the paternal line. The seminal fluid has effects on the intrauterine environment. Programming by male factors may involve more than just the sperm. Improving knowledge on developmental programming ageing interactions will improve not only male health and life span but also the health of future generations by reducing programming via the paternal line.
Collapse
Affiliation(s)
- Elena Zambrano
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | | | - Guadalupe L Rodríguez-González
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| |
Collapse
|
37
|
Alwani M, Al-Zoubi RM, Al-Qudimat A, Yassin A, Aboumarzouk O, Al-Rumaihi K, Talib R, Al-Ansari A. The impact of long-term Testosterone Therapy (TTh) in renal function (RF) among hypogonadal men: An observational cohort study. Ann Med Surg (Lond) 2021; 69:102748. [PMID: 34471531 PMCID: PMC8387920 DOI: 10.1016/j.amsu.2021.102748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Testosterone therapy (TTh) is the main treatment for elderly men with hypogonadism. No evidence of the long-term effectiveness of TTh on renal function is reported to date. METHODS In this study, we evaluated the long-term TTh of testosterone undecanoate (TU) administration on renal function parameters in 496 symptomatic hypogonadal men, with T levels ≤350 ng/dL. The treatment group (T-group) consisted of 312 patients and obtained TU 1000 mg for 12 weeks followed by 6-week intervals and for up to 8 years. The remaining 184 hypogonadal men, who opted against TTh, served as a control group (C-group). The two groups were similar in criteria prior to treatment. We evaluated renal function by calculating serum creatinine, urea, uric acid, and glomerular filtration rate (GFR) according to Mayo Clinic guidelines for 8 years. This study obeys the ethical guidelines of German medical association according to Section 15 of the Professional Code, document for AY- Ref. EK/CH/AU signed on Jun 2015. RESULTS During the study period, the T-group exhibited lower levels of urea (47.0 ± 11.8 to 34.0 ± 13.9 mg/dL), uric acid (6.57 ± 1.2 to 5.49 ± 1.5 mg/dL), serum creatinine (0.90 ± 0.10 to 1.12 ± 0.9 mg/dL), and higher-level in GFR (87.0 ± 12.9 to 98.0 ± 8.0 mL/min/1.73 m2), which were significant. Alternatively, the C-group exhibited an increase in their serum creatinine (1.16 ± 0.31 to 1.19 ± 0.58 mg/dL), an increase in uric acid (5.54 ± 1.2 to 5.44 ± 1.7 mg/dL), and a decrease in GFR (92.0 ± 20.1 to 87.0 ± 26.1 mL/min/1.73 m2). A total of 25 deaths (7.8%) was recorded in the T-group, among them 11 (44%) were cardiovascular. On the other hand, 28 patients (15.2%) died in C-group and all deaths (100%) were found to cardiovascular causes. CONCLUSION The results suggest that long-term TTh could improve renal function in hypogonadal men comparing to slight deterioration observed in patients without intervention. In addition to reduce mortality in cardiovascular patients, almost to the half.
Collapse
Affiliation(s)
- Mustafa Alwani
- Surgical Research Section, Department of Surgery Hamad Medical Corporation, Doha, Qatar
- School of Medicine, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110, Jordan
| | - Raed M. Al-Zoubi
- Surgical Research Section, Department of Surgery Hamad Medical Corporation, Doha, Qatar
- Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110, Jordan
| | - Ahmad Al-Qudimat
- Surgical Research Section, Department of Surgery Hamad Medical Corporation, Doha, Qatar
| | - Aksam Yassin
- Surgical Research Section, Department of Surgery Hamad Medical Corporation, Doha, Qatar
- Department of Surgery, Division of Urology/Andrology, Hamad Medical Corporation, Doha, Qatar
- Center of Medicine and Health Sciences, Dresden International University, Dresden, Germany
| | - Omar Aboumarzouk
- Surgical Research Section, Department of Surgery Hamad Medical Corporation, Doha, Qatar
| | - Khaled Al-Rumaihi
- Department of Surgery, Division of Urology/Andrology, Hamad Medical Corporation, Doha, Qatar
| | - Raidh Talib
- Department of Surgery, Division of Urology/Andrology, Hamad Medical Corporation, Doha, Qatar
| | - Abdulla Al-Ansari
- Surgical Research Section, Department of Surgery Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
38
|
Buch A, Marcus Y, Shefer G, Zimmet P, Stern N. Approach to Obesity in the Older Population. J Clin Endocrinol Metab 2021; 106:2788-2805. [PMID: 34406394 DOI: 10.1210/clinem/dgab359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Indexed: 12/14/2022]
Abstract
Until recently, weight loss in older obese people was feared because of ensuing muscle loss and frailty. Facing overall increasing longevity, high rates of obesity in older individuals (age ≥ 65 years) and a growing recognition of the health and functional cost of the number of obesity years, abetted by evidence that intentional weight loss in older obese people is safe, this approach is gradually, but not unanimously, being replaced by more active principles. Lifestyle interventions that include reduced but sufficient energy intake, age-adequate protein and micronutrient intake, coupled with aerobic and resistance exercise tailored to personal limitations, can induce weight loss with improvement in frailty indices. Sustained weight loss at this age can prevent or ameliorate diabetes. More active steps are controversial. The use of weight loss medications, particularly glucagon-like peptide-1 analogs (liraglutide as the first example), provides an additional treatment tier. Its safety and cardiovascular health benefits have been convincingly shown in older obese patients with type 2 diabetes mellitus. In our opinion, this option should not be denied to obese individuals with prediabetes or other obesity-related comorbidities based on age. Finally, many reports now provide evidence that bariatric surgery can be safely performed in older people as the last treatment tier. Risk-benefit issues should be considered with extreme care and disclosed to candidates. The selection process requires good presurgical functional status, individualized consideration of the sequels of obesity, and reliance on centers that are highly experienced in the surgical procedure as well as short-term and long-term subsequent comprehensive care and support.
Collapse
Affiliation(s)
- Assaf Buch
- The Sagol Center for Epigenetics of Aging and Metabolism, Tel Aviv-Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Yonit Marcus
- The Sagol Center for Epigenetics of Aging and Metabolism, Tel Aviv-Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Tel Aviv 6423906, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gabi Shefer
- The Sagol Center for Epigenetics of Aging and Metabolism, Tel Aviv-Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Paul Zimmet
- The Sagol Center for Epigenetics of Aging and Metabolism, Tel Aviv-Sourasky Medical Center, Tel Aviv 6423906, Israel
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Naftali Stern
- The Sagol Center for Epigenetics of Aging and Metabolism, Tel Aviv-Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Tel Aviv 6423906, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
39
|
Adamyan L, Elagin V, Vechorko V, Stepanian A, Dashko A, Doroshenko D, Aznaurova Y, Sorokin M, Suntsova M, Garazha A, Buzdin A. COVID-19 - associated inhibition of energy accumulation pathways in human semen samples. ACTA ACUST UNITED AC 2021; 2:355-364. [PMID: 34377996 PMCID: PMC8339600 DOI: 10.1016/j.xfss.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 11/25/2022]
Abstract
Objective To investigate transcriptional alterations in human semen samples associated with COVID-19 infection. Design Retrospective observational cohort study. Setting City hospital. Patient(s) Ten patients who had recovered from mild COVID-19 infection. Eight of these patients had different sperm abnormalities that were diagnosed before infection. The control group consisted of 5 healthy donors without known abnormalities and no history of COVID-19 infection. Intervention(s) We used RNA sequencing to determine gene expression profiles in all studied biosamples. Original standard bioinformatic instruments were used to analyze activation of intracellular molecular pathways. Main Outcome Measure(s) Routine semen analysis, gene expression levels, and molecular pathway activation levels in semen samples. Result(s) We found statistically significant inhibition of genes associated with energy production pathways in the mitochondria, including genes involved in the electron transfer chain and genes involved in toll-like receptor signaling. All protein-coding genes encoded by the mitochondrial genome were significantly down-regulated in semen samples collected from patients after recovery from COVID-19. Conclusion(s) Our results may provide a molecular basis for the previously observed phenomenon of decreased sperm motility associated with COVID-19 infection. Moreover, the data will be beneficial for the optimization of preconception care for men who have recently recovered from COVID-19 infection.
Collapse
Affiliation(s)
- Leila Adamyan
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20b1 Delegatskaya St., Moscow, 127473, Russian Federation
| | - Vladimir Elagin
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20b1 Delegatskaya St., Moscow, 127473, Russian Federation.,O.M. Filatov City clinical hospital №15, 23 Veshnjakovskaja St., Moscow, 111539, Russian Federation
| | - Valeriy Vechorko
- O.M. Filatov City clinical hospital №15, 23 Veshnjakovskaja St., Moscow, 111539, Russian Federation
| | - Assia Stepanian
- Academia of Women's Health and Endoscopic Surgery, 755 Mount Vernon Hwy, Atlanta, GA, 30328, USA
| | - Anton Dashko
- O.M. Filatov City clinical hospital №15, 23 Veshnjakovskaja St., Moscow, 111539, Russian Federation
| | - Dmitriy Doroshenko
- O.M. Filatov City clinical hospital №15, 23 Veshnjakovskaja St., Moscow, 111539, Russian Federation
| | - Yana Aznaurova
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20b1 Delegatskaya St., Moscow, 127473, Russian Federation
| | - Maxim Sorokin
- Moscow Institute of Physics and Technology (National Research University), 9 Institutskij pereulok, Dolgoprudnyj city, Moscow region, 141700, Russian Federation.,OmicsWay Corp., 340 S Lemon Ave, Walnut, CA, 91789, USA.,World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., Moscow, 119435, Russian Federation
| | - Maria Suntsova
- World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., Moscow, 119435, Russian Federation
| | | | - Anton Buzdin
- Moscow Institute of Physics and Technology (National Research University), 9 Institutskij pereulok, Dolgoprudnyj city, Moscow region, 141700, Russian Federation.,OmicsWay Corp., 340 S Lemon Ave, Walnut, CA, 91789, USA.,World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., Moscow, 119435, Russian Federation
| |
Collapse
|
40
|
Chico-Sordo L, Córdova-Oriz I, Polonio AM, S-Mellado LS, Medrano M, García-Velasco JA, Varela E. Reproductive aging and telomeres: Are women and men equally affected? Mech Ageing Dev 2021; 198:111541. [PMID: 34245740 DOI: 10.1016/j.mad.2021.111541] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
Successful reproduction is very important for individuals and for society. Currently, the human health span and lifespan are the object of intense and productive investigation with great achievements, compared to the last century. However, reproduction span does not progress concomitantly with lifespan. Reproductive organs age, decreasing the levels of sexual hormones, which are protectors of health through their action on several organs of the body. Thus, this is the starting point of the organismal decay and infertility. This starting point is easily detected in women. In men, it goes under the surface, undetected, but it goes, nevertheless. Regarding fertility, aging alters the hormonal equilibrium, decreases the potential of reproductive organs, diminishes the quality of the gametes and worsen the reproductive outcomes. All these events happen at a different pace and affecting different organs in women and men. The question is what molecular pathways are involved in reproductive aging and if there is a possible halting or even reversion of the aging events. Answers to all these points will be explained in the present review.
Collapse
Affiliation(s)
- Lucía Chico-Sordo
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - Isabel Córdova-Oriz
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - Alba María Polonio
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - Lucía Sánchez S-Mellado
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - Marta Medrano
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; IVIRMA Madrid, Spain.
| | - Juan Antonio García-Velasco
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain; IVIRMA Madrid, Spain; Rey Juan Carlos University, Madrid, Spain.
| | - Elisa Varela
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Rey Juan Carlos University, Madrid, Spain.
| |
Collapse
|
41
|
Environmental Factors-Induced Oxidative Stress: Hormonal and Molecular Pathway Disruptions in Hypogonadism and Erectile Dysfunction. Antioxidants (Basel) 2021; 10:antiox10060837. [PMID: 34073826 PMCID: PMC8225220 DOI: 10.3390/antiox10060837] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/09/2023] Open
Abstract
Hypogonadism is an endocrine disorder characterized by inadequate serum testosterone production by the Leydig cells of the testis. It is triggered by alterations in the hypothalamic–pituitary–gonadal axis. Erectile dysfunction (ED) is another common disorder in men that involves an alteration in erectile response–organic, relational, or psychological. The incidence of hypogonadism and ED is common in men aged over 40 years. Hypogonadism (including late-onset hypogonadism) and ED may be linked to several environmental factors-induced oxidative stresses. The factors mainly include exposure to pesticides, radiation, air pollution, heavy metals and other endocrine-disrupting chemicals. These environmental risk factors may induce oxidative stress and lead to hormonal dysfunctions. To better understand the subject, the study used many keywords, including “hypogonadism”, “late-onset hypogonadism”, “testosterone”, “erectile dysfunction”, “reactive oxygen species”, “oxidative stress”, and “environmental pollution” in major online databases, such as SCOPUS and PUBMED to extract relevant scientific information. Based on these parameters, this review summarizes a comprehensive insight into the important environmental issues that may have a direct or indirect association with hypogonadism and ED in men. The study concludes that environmental factors-induced oxidative stress may cause infertility in men. The hypothesis and outcomes were reviewed critically, and the mechanistic approaches are applied through oxidant-sensitive pathways. This study also provides reccomendations on future therapeutic interventions and protective measures against such adverse environmental factors-induced hypogonadism and ED.
Collapse
|
42
|
Ambhore NS, Kalidhindi RSR, Sathish V. Sex-Steroid Signaling in Lung Diseases and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:243-273. [PMID: 33788197 DOI: 10.1007/978-3-030-63046-1_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sex/gender difference exists in the physiology of multiple organs. Recent epidemiological reports suggest the influence of sex-steroids in modulating a wide variety of disease conditions. Sex-based discrepancies have been reported in pulmonary physiology and various chronic inflammatory responses associated with lung diseases like asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, and rare lung diseases. Notably, emerging clinical evidence suggests that several respiratory diseases affect women to a greater degree, with increased severity and prevalence than men. Although sex-specific differences in various lung diseases are evident, such differences are inherent to sex-steroids, which are major biological variables in men and women who play a central role to control these differences. The focus of this chapter is to comprehend the sex-steroid biology in inflammatory lung diseases and to understand the mechanistic role of sex-steroids signaling in regulating these diseases. Exploring the roles of sex-steroid signaling in the regulation of lung diseases and inflammation is crucial for the development of novel and effective therapy. Overall, we will illustrate the importance of differential sex-steroid signaling in lung diseases and their possible clinical implications for the development of complementary and alternative medicine to treat lung diseases.
Collapse
Affiliation(s)
- Nilesh Sudhakar Ambhore
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | | | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
43
|
Banica T, Verroken C, Reyns T, Mahmoud A, T'Sjoen G, Fiers T, Kaufman JM, Lapauw B. Early Decline of Androgen Levels in Healthy Adult Men: An Effect of Aging Per Se? A Prospective Cohort Study. J Clin Endocrinol Metab 2021; 106:1074-1083. [PMID: 33382411 DOI: 10.1210/clinem/dgaa915] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 01/05/2023]
Abstract
CONTEXT Androgen levels have been shown to decline in aging men. However, there is no consensus on the effect of aging, (changes in) body mass index (BMI), lifestyle factors, and intercurrent disease. OBJECTIVE Investigating longitudinal changes in serum androgen levels in healthy men in relation to body composition, lifestyle factors, and intercurrent disease. DESIGN, SETTING, AND PARTICIPANTS Longitudinal, population-based sibling pair study at a university research center. 999 healthy men aged 24 to 46 years of whom 691 were reevaluated after a mean period of 12 years. MAIN OUTCOME MEASURES Serum SHBG, LH, and FSH levels measured using immuno-assays. Testosterone (T), estradiol (E2), dihydro-testosterone (DHT), and androstenedione (Adione) measured using liquid chromatography-tandem mass spectometry, free T calculated (cFT). RESULTS Baseline age was 34 ± 6 years. Mean BMI increased by 1.19 kg/m2, T levels decreased by 14.2% (20.8 nmol/L vs. 17.8 nmol/L), cFT by 19.1% (392 pmol/L vs. 317 pmol/L), DHT by 15.6% (1.5 nmol/L vs.1.3 nmol/L), and Adione by 10.7% (3.7 nmol/L vs. 3.3 nmol/L; all P < 0.001). E2 did not change over time. SHBG increased by 3.0% (39.8 nmol/L vs. 41.0 nmol/L), LH by 5.8% (4.6 U/L vs. 4.9 U/L) and FSH by 14.7% (4.3 U/L vs. 5.1 U/L) (all P < 0.001). For T, cFT, DHT, Adione, and SHBG, these longitudinal changes persisted after adjustment for confounders (all P < 0.001). CONCLUSION Serum androgen levels start declining early during adult life and independently from changes in BMI and other lifestyle factors, suggesting that aging per se leads to an altered sex steroid status. Given the concurrent rise in gonadotropin levels, the decline in androgen status most likely arises from primary decrease in testicular function.
Collapse
Affiliation(s)
- Thiberiu Banica
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | | | - Tim Reyns
- Department of Clinical Chemistry, Ghent University Hospital, Ghent, Belgium
| | - Ahmed Mahmoud
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Guy T'Sjoen
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Tom Fiers
- Department of Clinical Chemistry, Ghent University Hospital, Ghent, Belgium
| | - Jean-Marc Kaufman
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Bruno Lapauw
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
44
|
Zhang Q, Yang C, Zhang M, Lu X, Cao W, Xie C, Li X, Wu J, Zhong C, Geng S. Protective effects of ginseng stem-leaf saponins on D-galactose-induced reproductive injury in male mice. Aging (Albany NY) 2021; 13:8916-8928. [PMID: 33714944 PMCID: PMC8034965 DOI: 10.18632/aging.202709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/20/2021] [Indexed: 12/16/2022]
Abstract
Panax ginseng is a perennial plant in the Araliaceae family. In this study, we investigated the protective effects of ginseng stem-leaf saponins (GSLS) isolated from P. ginseng against D-galactose-induced reproductive function decline, oxidative stress, and inflammatory response. Reproductive injuries were induced in mice via the subcutaneous injection of D-galactose (300 mg/kg) for six weeks. The mice were then treated with GSLS by intragastric administration. GSLS inhibited markers of oxidative stress and inflammatory cytokines induced by D-galactose in serum, liver and kidney, whereas GSLS increased the activities of antioxidant enzymes. Compared to the mice treated only with D-galactose, GSLS treatment significantly increased the average path velocity, straight line velocity, curvilinear velocity, and amplitude of the lateral head displacement of mouse sperm. Meanwhile, GSLS significantly increased the testosterone level and reduced the cortisol, FSH, and LH levels. Histopathological examination revealed alterations in the number and the arrangement of spermatogenic cells in the seminiferous tubules of the mice in the GSLS group. GSLS treatment suppressed MAPKs pathway activation in testes. These results suggest that GSLS can attenuate D-galactose-induced oxidative stress and inflammatory response in serum, liver and kidney, and ameliorate reproductive damage by inhibiting MAPKs signaling pathway.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Chenying Yang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Min Zhang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xiaomin Lu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Wanshuang Cao
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jieshu Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shanshan Geng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| |
Collapse
|
45
|
Tallis J, Shelley S, Degens H, Hill C. Age-Related Skeletal Muscle Dysfunction Is Aggravated by Obesity: An Investigation of Contractile Function, Implications and Treatment. Biomolecules 2021; 11:372. [PMID: 33801275 PMCID: PMC8000988 DOI: 10.3390/biom11030372] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is a global epidemic and coupled with the unprecedented growth of the world's older adult population, a growing number of individuals are both old and obese. Whilst both ageing and obesity are associated with an increased prevalence of chronic health conditions and a substantial economic burden, evidence suggests that the coincident effects exacerbate negative health outcomes. A significant contributor to such detrimental effects may be the reduction in the contractile performance of skeletal muscle, given that poor muscle function is related to chronic disease, poor quality of life and all-cause mortality. Whilst the effects of ageing and obesity independently on skeletal muscle function have been investigated, the combined effects are yet to be thoroughly explored. Given the importance of skeletal muscle to whole-body health and physical function, the present study sought to provide a review of the literature to: (1) summarise the effect of obesity on the age-induced reduction in skeletal muscle contractile function; (2) understand whether obesity effects on skeletal muscle are similar in young and old muscle; (3) consider the consequences of these changes to whole-body functional performance; (4) outline important future work along with the potential for targeted intervention strategies to mitigate potential detrimental effects.
Collapse
Affiliation(s)
- Jason Tallis
- Centre for Applied Biological and Exercise Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV15FB, UK;
| | - Sharn Shelley
- Centre for Applied Biological and Exercise Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV15FB, UK;
| | - Hans Degens
- Research Centre for Musculoskeletal Science & Sports Medicine, Department of Life Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK;
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Cameron Hill
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London SE1 1UL, UK;
| |
Collapse
|
46
|
Gao J, Yuan R, Yang S, Wang Y, Huang Y, Yan L, Jiang H, Qiao J. Age-related changes in human conventional semen parameters and sperm chromatin structure assay-defined sperm DNA/chromatin integrity. Reprod Biomed Online 2021; 42:973-982. [PMID: 33785305 DOI: 10.1016/j.rbmo.2021.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
RESEARCH QUESTION What are the correlations between male age, traditional semen parameters, sperm DNA fragmentation index (DFI) and high DNA stainability (HDS) in a sufficiently large sample size? DESIGN Retrospective cohort study of 18,441 semen samples, with data divided into seven age groups according to male age: ≤25, 26-30, 31-35, 36-40, 41-45, 46-50 and ≥51 years. RESULTS Age was negatively correlated with semen volume, total sperm count, motility and HDS, and positively correlated with sperm concentration and DFI (P < 0.001). After 35 years of age, semen volume and total sperm count began to decline. After 30 years of age, motility and HDS decreased consistently. Sperm concentration and DFI increased from 26-30 years of age. DFI was negatively correlated with sperm concentration, total sperm count, motility and normal morphology (P < 0.001) and positively correlated with semen volume and HDS (P < 0.001). HDS was negatively correlated with all parameters (P < 0.001) except semen volume (r = -0.013, P = 0.074) and DFI (r = 0.124, P < 0.001). Patients aged ≥40 years had higher DFI than those aged <40 years in the entire cohort, in the abnormal semen parameters cohort, and in the normal semen parameters cohort (OR 2.145, 2.042, 1.948, respectively, P < 0.001). The ≥40 years age group had a lower HDS than the <40 years age group in the entire cohort and abnormal semen parameters cohort (OR 0.719, 0.677, respectively, P < 0.001). CONCLUSIONS Ageing is a negative effector of sperm quantity and quality, and routine sperm parameters have weak but significant correlations with sperm DNA/chromatin integrity.
Collapse
Affiliation(s)
- Jiangman Gao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
| | - Renpei Yuan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Siwei Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Yuanyuan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
| | - Ying Huang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
| | - Hui Jiang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
47
|
Abstract
Over the past two decades several large cohort studies have been performed to disclose the changes of sex hormone in elderly and their clinical significance. Beyond the decline of total testosterone, aging is accompanied by a sex hormone binding globulin (SHBG) increase, a steeper free testosterone decline, while gonadotropins may be increased or inappropriately normal, with important contribution of comorbidities (e.g., obesity) to these changes. Actually, it has become firm the concept that the biochemical finding of testosterone deficiency alone is not sufficient for diagnosing hypogonadism in older men. The definition of late-onset hypogonadism (LOH) includes low serum testosterone levels coupled with signs and symptoms related to hypogonadism. Indeed, the combination of multiple factors all contributing to the testosterone decline, with other concurrent comorbidities further overlapping, makes the clinical correlates of LOH highly heterogeneous. For all these reasons both the diagnosis and the therapeutic management of LOH, especially the decision about starting testosterone replacement treatment, remain challenging.
Collapse
|
48
|
A chronic low dosage of taurine induces muscle weakness in castrated-aged mice. TRANSLATIONAL MEDICINE OF AGING 2021. [DOI: 10.1016/j.tma.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
49
|
Hao E, Chang LY, Wang DH, Chen YF, Huang RI, Chen H. Dietary Supplementation with Ferula Improves Productive Performance, Serum Levels of Reproductive Hormones, and Reproductive Gene Expression in Aged Laying Hens. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2021. [DOI: 10.1590/1806-9061-2020-1319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- E Hao
- Hebei Agricultural University, China
| | - LY Chang
- Hebei Agricultural University, China
| | - DH Wang
- Hebei Agricultural University, China
| | - YF Chen
- Hebei Agricultural University, China
| | - RI Huang
- Hebei Agricultural University, China
| | - H Chen
- Hebei Agricultural University, China
| |
Collapse
|
50
|
Advances in Knowledge of Androgens: How Intentional and Accidental Neurosteroid Changes Inform Us of Their Action and Role. CURRENT SEXUAL HEALTH REPORTS 2020. [DOI: 10.1007/s11930-020-00276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Purpose of Review
Here, we summarize current knowledge of androgens’ action gained over the recent years.
Recent Findings
Neurosteroids are produced in the brain and peripheral nerves, independent of endocrine glands have been investigated for how they are regulated, and have actions via non-steroid receptor targets to mediate social, affective, and cognitive behavior and to protect the brain. Androgens’ organizing actions in the peri-natal period have effects throughout the lifetime that may be recapitulated later in life during critical periods and at times of challenge. Developmental changes in androgens occur during mid-childhood, adrenarche, puberty, adolescence, young adulthood, middle age, and andropause. Changes in androgens with a 5α-reductase inhibitor, such as finasteride, result in disruptions in organizational and activational functions of androgens that can be unremitting.
Summary
Normal developmental or perturbation in androgens through other means can cause changes in androgen-sensitive phenotypes throughout the lifespan, in part through actions of neurosteroids.
Collapse
|