1
|
He Z, Song J, Li X, Li X, Zhu H, Wu C, Xiao W, Du X, Ni J, Li N, Liu Q. Bis(ethylmaltolato)oxidovanadium (IV) alleviates neuronal apoptosis through regulating peroxisome proliferator-activated receptor γ in a triple transgenic animal model of Alzheimer's disease. J Biol Inorg Chem 2021; 26:551-568. [PMID: 34240269 DOI: 10.1007/s00775-021-01874-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/16/2021] [Indexed: 12/27/2022]
Abstract
Endoplasmic reticulum stress (ER stress) plays a critical role in neuronal apoptosis along with the aggravation of Alzheimer's disease (AD). Nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcription factor that is involved in regulating ER stress in Alzheimer's disease (AD), therefore, this protein could be a promising therapeutic target for AD. Vanadium compounds, such as vanadyl acetylacetonate, sodium metavanadate and bis(maltolato)oxovanadium, are well-known as puissant PPARγ modulators. Thus, we are curious whether bis(ethylmaltolato)oxidovanadium (IV) (BEOV) can ameliorate ER stress and subsequent neuronal apoptosis by regulating PPARγ in AD models. To this end, we determined the effect of BEOV on behavioral performance, ER stress and neuronal apoptosis in the triple transgenic mouse AD model (3×Tg-AD). Our results showed that BEOV improved cognitive abilities and reduced the ER stress- and apoptosis-associated proteins in the brains of 3×Tg-AD mice. In vitro administration of BEOV in primary hippocampal neurons and N2asw cells achieved similar results in repressing ER stress. In addition, cotreatment with GW9662 (an antagonist of PPARγ) effectively blocked these neuroprotective effects of BEOV, which provided strong evidence that PPARγ-dependent signaling plays a key role in protecting against ER stress and neuronal apoptosis in AD. In conclusion, our data demonstrated that BEOV alleviated neuronal apoptosis triggered by ER stress by regulating PPARγ in a 3×Tg-AD model.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China.,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jianxi Song
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Xuexia Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China.,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Huazhang Zhu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Chong Wu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Wen Xiao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China.,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China. .,Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China. .,Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518033, China.
| |
Collapse
|
2
|
Abstract
Ultra-trace elements or occasionally beneficial elements (OBE) are the new categories of minerals including vanadium (V). The importance of V is attributed due to its multifaceted biological roles, i.e., glucose and lipid metabolism as an insulin-mimetic, antilipemic and a potent stress alleviating agent in diabetes when vanadium is administered at lower doses. It competes with iron for transferrin (binding site for transportation) and with lactoferrin as it is secreted in milk also. The intracellular enzyme protein tyrosine phosphatase, causing the dephosphorylation at beta subunit of the insulin receptor, is inhibited by vanadium, thus facilitating the uptake of glucose inside the cell but only in the presence of insulin. Vanadium could be useful as a potential immune-stimulating agent and also as an antiinflammatory therapeutic metallodrug targeting various diseases. Physiological state and dose of vanadium compounds hold importance in causing toxicity also. Research has been carried out mostly on laboratory animals but evidence for vanadium importance as a therapeutic agent are available in humans and large animals also. This review examines the potential biochemical and molecular role, possible kinetics and distribution, essentiality, immunity, and toxicity-related study of vanadium in a biological system.
Collapse
Affiliation(s)
| | - Veena Mani
- National Dairy Research Institute, Karnal, Haryana, India
| | | |
Collapse
|
3
|
Folarin OR, Adaramoye OA, Akanni OO, Olopade JO. Changes in the brain antioxidant profile after chronic vanadium administration in mice. Metab Brain Dis 2018; 33:377-385. [PMID: 28744799 DOI: 10.1007/s11011-017-0070-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 07/11/2017] [Indexed: 12/11/2022]
Abstract
Vanadium is known to induce reactive oxygen species (ROS) in biological systems. Exposure to vanadium has been linked to neurological defects affecting the central nervous system (CNS) early in life and culminates later to neurodegeneration. This study was designed to evaluate the effects of chronic vanadium exposure on antioxidant profile in mice, and progressive changes after withdrawal from treatment. A total of 85 male BALB/c mice (4 weeks old) were used for the experiment and were divided into three groups of vanadium exposed (3 mg/kg i.p at 3-18 months treatment), matched controls, and animals exposed to vanadium for three months and thereafter vanadium was withdrawn. Vanadium exposure caused significant increases (p<0.05) in levels of malondialdehyde (MDA), hydrogen peroxide (H2O2) generation and nitric oxide with a concomitant decrease (p<0.05) in the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione-S-transferase and a decline in the level of reduced glutathione (GSH) after 6 months of vanadium exposure in the brain. This trend continued in all vanadium-exposed groups (9, 12, 15 and 18 months) relative to the matched controls. Withdrawal after 3 months of vanadium exposure significantly reversed oxidative stress in intoxicated mice from 9 to 15 months after vanadium withdrawal. We have shown that chronic administration of vanadium led to oxidative stress in the brain which is reversible only after a long period of vanadium withdrawal.
Collapse
Affiliation(s)
- O R Folarin
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Medical Laboratory Science, Ladoke Akintola University, Oshogbo, Nigeria
| | - O A Adaramoye
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - O O Akanni
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - J O Olopade
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
4
|
El Karib AO, Al-Ani B, Al-Hashem F, Dallak M, Bin-Jaliah I, El-Gamal B, Bashir SO, Eid RA, Haidara MA. Insulin and vanadium protect against osteoarthritis development secondary to diabetes mellitus in rats. Arch Physiol Biochem 2016; 122:148-54. [PMID: 26939846 DOI: 10.3109/13813455.2016.1159698] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Diabetic complications such as cardiovascular disease and osteoarthritis (OA) are among the common public health problems. The effect of insulin on OA secondary to diabetes has not been investigated before in animal models. Therefore, we sought to determine whether insulin and the insulin-mimicking agent, vanadium can protect from developing OA in diabetic rats. METHODS Type 1 diabetes mellitus (T1DM) was induced in Sprague-Dawley rats and treated with insulin and/or vanadium. Tissues harvested from the articular cartilage of the knee joint were examined by scanning electron microscopy, and blood samples were assayed for oxidative stress and inflammatory biomarkers. RESULTS Eight weeks following the induction of diabetes, a profound damage to the knee joint compared to the control non-diabetic group was observed. Treatment of diabetic rats with insulin and/or vanadium differentially protected from diabetes-induced cartilage damage and deteriorated fibrils of collagen fibers. The relative biological potencies were insulin + vanadium >> insulin > vanadium. Furthermore, there was about 2- to 5-fold increase in TNF-α (from 31.02 ± 1.92 to 60.5 ± 1.18 pg/ml, p < 0.0001) and IL-6 (from 64.67 ± 8.16 to 338.0 ± 38.9 pg/ml, p < 0.0001) cytokines and free radicals measured as TBARS (from 3.21 ± 0.37 to 11.48 ± 1.5 µM, p < 0.0001) in the diabetic group, which was significantly reduced with insulin and or vanadium. Meanwhile, SOD decreased (from 17.79 ± 8.9 to 8.250.29, p < 0.0001) and was increased with insulin and vanadium. The relative potencies of the treating agents on inflammatory and oxidative stress biomarkers were insulin + vanadium >> insulin > vanadium. CONCLUSION The present study demonstrates that co-administration of insulin and vanadium to T1DM rats protect against diabetes-induced OA possibly by lowering biomarkers of inflammation and oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Refaat A Eid
- c Department of Pathology , College of Medicine, King Khalid University , Abha , Saudi Arabia , and
| | - Mohamed A Haidara
- a Department of Physiology
- d Department of Physiology , Kasr al-Aini Faculty of Medicine, Cairo University , Cairo , Egypt
| |
Collapse
|
5
|
Pirmoradi L, Noorafshan A, Safaee A, Dehghani GA. Quantitative Assessment of Proliferative Effects of Oral Vanadium on Pancreatic Islet Volumes and Beta Cell Numbers of Diabetic Rats. IRANIAN BIOMEDICAL JOURNAL 2015; 20:18-25. [PMID: 26459400 PMCID: PMC4689278 DOI: 10.7508/ibj.2016.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background: Oral vanadyl sulfate (vanadium) induces normoglycemia, proliferates beta cells and prevents pancreatic islet atrophy in streptozotocin-induced diabetic rats. Soteriological method is used to quantitate the proliferative effects of vanadium on beta-cell numbers and islet volumes of normal and diabetic rats. Methods: Adult male Sprague-Dawley rats were made diabetic with intravenous streptozotocin injection (40 mg/kg). Normal and diabetic rats were divided into four groups. While control normal and diabetic (CD) groups used water, vanadium-treated normal (VTN) and diabetic (VTD) groups used solutions containing vanadyl sulfate (0.5-1 mg/mL, VOSO4+5H2O). Tail blood samples were used to measure blood glucose (BG) and plasma insulin. Two months after treatment, rats were sacrificed, pancreata prepared, and stereology method was used to quantitatively evaluate total beta cell numbers (TBCN) and total islet volumes (TISVOL). Results: Normoglycemia persisted in VTN with significantly decreased plasma insulin (0.190.08 vs. 0.970.27 ng/dL, P<0.002). The respective high BG (53249 vs. 14446 mg/dL, P<0.0001) and reduced plasma insulin (0.260.15 vs. 0.540.19 ng/dL, P<0.002) seen in CD were reversed in VTD during vanadium treatment or withdrawal. While the induction of diabetes, compared to their control, significantly decreased TISVOL (1.90.2 vs. 3.030.6 mm3, P<0.003) and TBCN (0.990.1 vs. 3.20.2 x 106, P<0.003), vanadium treatment significantly increased TISVOL (2.90.8 and 4.071.0 mm3, P<0.003) and TBCN (1.50.3 and 3.80.6 x 106, P<0.03). Conclusion: Two-month oral vanadium therapy in STZ-diabetic rats ameliorated hyperglycemia by partially restoring plasma insulin. This action was through proliferative actions of vanadium in preventing islet atrophy by increasing beta-cell numbers.
Collapse
Affiliation(s)
- Leila Pirmoradi
- Dept. of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Noorafshan
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akbar Safaee
- Dept. of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholam Abbas Dehghani
- Dept. of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran.,Endocrine and Metabolism Research Center, Nemazi hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Pirmoradi L, Mohammadi MT, Safaei A, Mesbah F, Dehghani GA. Does the relief of glucose toxicity act as a mediator in proliferative actions of vanadium on pancreatic islet beta cells in streptozocin diabetic rats? IRANIAN BIOMEDICAL JOURNAL 2015; 18:173-80. [PMID: 24842144 PMCID: PMC4048482 DOI: 10.6091/ibj.1329.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background: Data shows vanadium protects pancreatic beta cells (BC) from diabetic animals. Whether this effect is direct or through the relief of glucose toxicity is not clear. This study evaluated the potential effect of oral vanadyl sulfate (vanadium) on glycemic status and pancreatic BC of normal and diabetic rats. Methods: Rats were divided into five groups of normal and diabetic. Diabetes was induced with streptozocin (40 mg/kg, i.v.). Normal rats used water (CN) or vanadium (1 mg/ml VOSO4, VTN). Diabetic rats used water (CD), water plus daily neutral protamine Hagedorn insulin injection (80 U/kg, ITD) or vanadium (VTD). Blood samples were taken for blood glucose (BG, mg/dL) and insulin (ng/dL) measurements. After two months, the pancreata of sacrificed rats were prepared for islet staining. Results: Pre-treated normal BG was 88 ± 2, and diabetic BG was 395 ± 9. The final BG in CD, VTD, and ITD was 509 ± 22, 138 ± 14, and 141 ± 14, respectively. Insulin in VTN (0.75 ± 0.01) and VTD (0.78 ± 0.01) was similar, higher than CD (0.51 ± 0.07) but lower than CN (2.51 ± 0.02). VTN islets compared to CN had larger size and denser central core insulin immunoreactivity with plentiful BC. CD and ITD islets were atrophied and had scattered insulin immunoreactivity spots and low BC mass. VTD islets were almost similar to CN. Conclusion: Besides insulin-like activity, vanadium protected pancreatic islet BC, and the relief of glucose toxicity happening with vanadium had a little role in this action.
Collapse
Affiliation(s)
- Leila Pirmoradi
- Dept. of Physiology, Nemazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Akbar Safaei
- Dept. of Pathology, Nemazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fakhardin Mesbah
- Dept. of Anatomy, Nemazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholam Abbas Dehghani
- Dept. of Physiology, Nemazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.,Dept. of Pathology, Nemazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Li L, Gao L, Liu S, Liu Q, Sun S, Huan Y, Li C, Peng J, Hou G, Li L, Liu W, Shen Z. Bis(α-furancarboxylato)oxovanadium(IV) exerts durable antidiabetic effects and suppresses matrix metalloproteinase-2 activity in spontaneous type 2 diabetic KKAy mice. Biol Trace Elem Res 2013; 153:329-39. [PMID: 23649370 DOI: 10.1007/s12011-013-9689-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 04/25/2013] [Indexed: 01/14/2023]
Abstract
Vanadium compounds maintain euglycemic effects in diabetic rats long after drug withdrawal and bis(α-furancarboxylato)oxovanadium(IV) (BFOV) possesses potent antidiabetic effects in diabetic rats. Here, we investigated the treatment and posttreatment effects of BFOV in diabetic Kuo Kondo [1, 2] with Ay gene (KKAy) mice, and whether these effects were associated with changes in matrix metalloproteinases (MMPs). KKAy mice received normal saline or BFOV initially at 70 μmol/kg/day for 1 month, which was tapered to 17 μmol/kg/day in the next 2 months and discontinued thereafter. Compared to diabetic controls, fasting plasma glucose (FPG) was reduced by 46 and 19 % in KKAy mice after 70 μmol/kg BFOV for 1 month and 3 months after BFOV withdrawal, respectively. OGTT and ITT showed improved glucose tolerance and a better response of FPG to insulin with a significant decrease in HOMA-IR and a marked rise in the insulin sensitivity index after 70 μmol/kg BFOV for 1 month and 4 months after BFOV withdrawal (P <0.05 in all vs. diabetic controls). BFOV treatment resulted in a moderate but significant reduction in body weight and systolic blood pressure (SBP) at 1 month of treatment and 4 months following BFOV withdrawal (P <0.05 in all vs. diabetic controls). Gelatin zymography showed that serum MMP2 activity was significantly reduced and immunoblotting assays further showed that MMP2 expression was markedly downregulated in the liver after 1 month of treatment with 70 μmol/kg and 4 months after BFOV withdrawal (P <0.05 in all vs. diabetic controls). These results suggested that BFOV possessed potent treatment and posttreatment effects in KKAy mice with improved metabolic profile and reduced body weight and SBP. Furthermore, these effects were associated with decreased MMP2 expression and activity in diabetic KKAy mice.
Collapse
Affiliation(s)
- Linyi Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, Beijing 100050, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Roy S, Mondru AK, Dontamalla SK, Vaddepalli RP, Sannigrahi S, Veerareddy PR. Methoxy VO-salen stimulates pancreatic β cell survival by upregulation of eNOS and downregulation of apoptosis in STZ-induced diabetic rats. Biol Trace Elem Res 2011; 144:1095-111. [PMID: 21748304 DOI: 10.1007/s12011-011-9139-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/30/2011] [Indexed: 12/21/2022]
Abstract
The present study was designed to investigate the effect of MetVO-salen in ameliorating diabetes and oxidative stress in the pancreas of diabetic rats. Streptozotocin (STZ)-induced diabetic rats were treated with MetVO-salen complex intraperitonially (0.3 and 0.6 mg/kg) thrice a week and continued for 8 weeks. Total cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides in serum, and blood glucose were estimated. Furthermore, oxidative stress in rats was also investigated in terms of superoxide dismutase (SOD), catalase, lipid peroxidation, and glutathione (GSH). In addition, the anti-diabetic activity of MetVO-salen was also investigated by assessing histopathological, immunohistochemical in terms of endothelial nitric oxide synthase expression, and apoptotic events in pancreas. Treatment with MetVO-salen complex reduced the blood glucose level and significantly altered the serum biochemical parameters of diabetic rats. Treatment with above complex decreased the lipid peroxidation and the antioxidant enzymes such as SOD, CAT, and GSH to near-control levels. Histopathological, immunohistochemical, and apoptotic studies also revealed that MetVO-salen-induced amelioration of the diabetic state appears to be significant to the preservation of a functional portion of the pancreatic β cells which initially prevent STZ toxicity. This study provides new direction for the management of diabetes but needs further clinical evaluation.
Collapse
Affiliation(s)
- Souvik Roy
- Department of Pharmacology, NSHM College of Pharmaceutical Technology, 124 B.L. Saha Road, Kolkata, 700053, India.
| | | | | | | | | | | |
Collapse
|
9
|
Gao Z, Zhang C, Yu S, Yang X, Wang K. Vanadyl bisacetylacetonate protects β cells from palmitate-induced cell death through the unfolded protein response pathway. J Biol Inorg Chem 2011; 16:789-98. [PMID: 21512771 DOI: 10.1007/s00775-011-0780-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/26/2011] [Indexed: 01/08/2023]
Abstract
Endoplasmic reticulum (ER) stress induced by free fatty acids (FFA) is important to β-cell loss during the development of type 2 diabetes. To test whether vanadium compounds could influence ER stress and the responses in their mechanism of antidiabetic effects, we investigated the effects and the mechanism of vanadyl bisacetylacetonate [VO(acac)(2)] on β cells upon treatment with palmitate, a typical saturated FFA. The experimental results showed that VO(acac)(2) could enhance FFA-induced signaling pathways of unfolded protein responses by upregulating the prosurvival chaperone immunoglobulin heavy-chain binding protein/78-kDa glucose-regulated protein and downregulating the expression of apoptotic C/EBP homologous protein, and consequently the reduction of insulin synthesis. VO(acac)(2) also ameliorated FFA-disturbed Ca(2+) homeostasis in β cells. Overall, VO(acac)(2) enhanced stress adaption, thus protecting β cells from palmitate-induced apoptosis. This study provides some new insights into the mechanisms of antidiabetic vanadium compounds.
Collapse
Affiliation(s)
- Zhonglan Gao
- State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
10
|
Khan S, Kazi TG, Baig JA, Kolachi NF, Afridi HI, Wadhwa SK, Shah AQ, Kandhro GA, Shah F. Cloud point extraction of vanadium in pharmaceutical formulations, dialysate and parenteral solutions using 8-hydroxyquinoline and nonionic surfactant. JOURNAL OF HAZARDOUS MATERIALS 2010; 182:371-376. [PMID: 20619536 DOI: 10.1016/j.jhazmat.2010.06.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/04/2010] [Accepted: 06/10/2010] [Indexed: 05/29/2023]
Abstract
A cloud point extraction (CPE) method has been developed for the determination of trace quantity of vanadium ions in pharmaceutical formulations (PF), dialysate (DS) and parenteral solutions (PS). The CPE of vanadium (V) using 8-hydroxyquinoline (oxine) as complexing reagent and mediated by nonionic surfactant (Triton X-114) was investigated. The parameters that affect the extraction efficiency of CPE, such as pH of sample solution, concentration of oxine and Triton X-114, equilibration temperature and time period for shaking were investigated in detail. The validity of CPE of V was checked by standard addition method in real samples. The extracted surfactant-rich phase was diluted with nitric acid in ethanol, prior to subjecting electrothermal atomic absorption spectrometry. Under these conditions, the preconcentration of 50 mL sample solutions, allowed raising an enrichment factor of 125-fold. The lower limit of detection obtained under the optimal conditions was 42 ng/L. The proposed method has been successfully applied to the determination of trace quantity of V in various pharmaceutical preparations with satisfactory results. The concentration ranges of V in PF, DS and PS samples were found in the range of 10.5-15.2, 0.65-1.32 and 1.76-6.93 microg/L, respectively.
Collapse
Affiliation(s)
- Sumaira Khan
- Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hypoglycemic effect of polysaccharides produced by submerged mycelial culture of Laetiporus sulphureus on streptozotocininduced diabetic rats. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-009-0160-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
12
|
Lemhadri A, Zeggwagh NA, Maghrani M, Jouad H, Michel JB, Eddouks M. Hypoglycaemic effect of Calamintha officinalis Moench. in normal and streptozotocin-induced diabetic rats. J Pharm Pharmacol 2010; 56:795-9. [PMID: 15231045 DOI: 10.1211/0022357023510] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
The purpose of this study was to investigate the effects of a water extract from the aerial parts of Calamintha officinalis Moench., after either a single dose or daily oral administration for 15 days, on plasma blood glucose concentrations and basal insulin levels in normal and streptozotocin-induced diabetic rats (STZ diabetic rats). The results clearly demonstrated the hypoglycaemic effect of this plant extract in both normal and STZ diabetic rats. In addition, no changes were observed in basal plasma insulin concentrations after treatment with this plant in normal or STZ diabetic rats, indicating that the underlying mechanism of the plant's pharmacological action seems to be independent of insulin secretion. We conclude that the aqueous C. officinalis extract exhibits a significant hypoglycaemic effect in normal and STZ diabetic rats without affecting basal plasma insulin concentrations, and supports, therefore, its traditional use by the Moroccan population.
Collapse
Affiliation(s)
- A Lemhadri
- UFR PNPE BP 21, Errachidia, 52000, Morocco
| | | | | | | | | | | |
Collapse
|
13
|
Administration of sesamol improved blood-brain barrier function in streptozotocin-induced diabetic rats. Exp Brain Res 2009; 197:23-34. [PMID: 19565232 DOI: 10.1007/s00221-009-1866-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 05/15/2009] [Indexed: 12/28/2022]
Abstract
Uncontrolled or poorly controlled blood glucose during diabetes is an important factor in worsened vascular function. While evidence suggests that hyperglycemia-induced oxidative stress plays a prominent role in development of microangiopathy of the retina, kidney, and nerves, the role oxidative stress plays on blood-brain barrier (BBB) function and structure has lagged behind. In this study, a natural antioxidant, sesamol, was administered to streptozotocin (STZ)-induced diabetic rats to examine the role that oxidative stress plays on BBB structure and function. Experiments were conducted at 56 days after STZ injection. Male Sprague-Dawley rats randomly were divided into four treatment groups CON--control; STZ--STZ-induced diabetes; CON + S--control + sesamol; STZ + S--STZ-induced diabetes + sesamol. Functional and structural changes to the BBB were measured by in situ brain perfusion and western blot analysis of changes in tight junction protein expression. Oxidative stress markers were visualized by fluorescent confocal microscopy and assayed by spectrophotometric analysis. Results demonstrated that the increased BBB permeability observed in STZ-induced diabetic rats was attenuated in STZ + S rats to levels observed in CON. Sesamol treatment reduced the negative impact of STZ-induced diabetes on tight junction protein expression in isolated cerebral microvessels. Oxidative stress markers were elevated in STZ as compared to CON. STZ + S displayed an improved antioxidant capacity which led to a reduced expression of superoxide and peroxynitrite and reduced lipid peroxidation. In conclusion, this study showed that sesamol treatment enhanced antioxidant capacity of the diabetic brain and led to decreased perturbation of hyperglycemia-induced changes in BBB structure and function.
Collapse
|
14
|
Kim JM, Chung JY, Lee SY, Choi EW, Kim MK, Hwang CY, Youn HY. Hypoglycemic effects of vanadium on alloxan monohydrate induced diabetic dogs. J Vet Sci 2007; 7:391-5. [PMID: 17106233 PMCID: PMC3242150 DOI: 10.4142/jvs.2006.7.4.391] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The hypoglycemic effects after oral administration of vanadium have been studied previously in many species such as rats, mice and even humans. However, there has been no prior report on the glucose lowering effect of vanadium on diabetic dogs. Therefore, the purpose of this study was to evaluate the hypoglycemic effects of oral vanadium on diabetic dogs. Diabetes mellitus in the dogs studied was induced by alloxan monohydrate intravenous injection. The dogs were divided into two groups, one was the diabetic control (DC) group (n = 4) and the other was the vanadium treated (DV) group (n = 6). Fresh water was supplied to the dogs in the DC group, but sodium metavanadate solution (0.1~0.2 mg/ml) was given to the dogs in DV group from one week after the alloxan injection. The fasting glucose levels, fructosamine and serum chemistry profiles were compared between the two groups weekly for three weeks. The fasting blood glucose levels in DV group were significantly lower than those in the DC group (p < 0.01). Fructosamine levels in the DV group were also lower than those in the DC group (p < 0.05). The serum chemistry profiles were not significantly different in comparisons between the two groups. However, the cholesterol levels were significantly lower in the DV group compared to the DC group (p < 0.05). Our findings showed that oral vanadium administration had a hypoglycemic effect on chemically induced diabetic dogs.
Collapse
Affiliation(s)
- Joo-Min Kim
- Department of Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Facchini DM, Yuen VG, Battell ML, McNeill JH, Grynpas MD. The effects of vanadium treatment on bone in diabetic and non-diabetic rats. Bone 2006; 38:368-77. [PMID: 16256449 DOI: 10.1016/j.bone.2005.08.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 08/19/2005] [Accepted: 08/19/2005] [Indexed: 12/24/2022]
Abstract
Vanadium-based drugs lower glucose by enhancing the effects of insulin. Oral vanadium drugs are being tested for the treatment of diabetes. Vanadium accumulates in bone, though it is not known if incorporated vanadium affects bone quality. Nine- to 12-month-old control and streptozotocin-induced diabetic female Wistar rats were given bis(ethylmaltolato)oxovanadium(IV) (BEOV), a vanadium-based anti-diabetic drug, in drinking water for 12 weeks. Non-diabetic rats received 0, 0.25 or 0.75 mg/ml BEOV. Groups of diabetic rats were either untreated or treated with 0.25-0.75 mg/ml BEOV as necessary to lower blood glucose in each rat. In diabetic rats, this resulted in a Controlled Glucose group, simulating relatively well-managed diabetes, and an Uncontrolled Glucose group, simulating poorly managed diabetes. Plasma insulin, glucose and triglyceride assays assessed the diabetic state. Bone mineral density (BMD), mechanical testing, mineral assessment and histomorphometry measured the effects of diabetes on bone and the effects of BEOV on non-diabetic and diabetic bone. Diabetes decreased plasma insulin and increased plasma glucose and triglycerides. In bone, diabetes decreased BMD, strength, mineralization, bone crystal length, and bone volume and connectivity. Treatment was effective in incorporating vanadium into bone. In all treated groups, BEOV increased osteoid volume. In non-diabetic bone, BEOV increased cortical bone toughness, mineralization and bone formation. In controlled glucose rats, BEOV lowered plasma glucose and improved BMD, mechanical strength, mineralization, bone crystal length and bone formation rate. In poorly controlled rats, BEOV treatment slightly lowered plasma glucose but did not improve bone properties. These results suggest that BEOV improves diabetes-related bone dysfunction primarily by improving the diabetic state. BEOV also appeared to increase bone formation. Our study found no negative effects of vanadium accumulation in bone in either diabetic or non-diabetic rats at the dose given.
Collapse
Affiliation(s)
- D M Facchini
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Ave., Toronto, Canada M5G 1X5.
| | | | | | | | | |
Collapse
|
16
|
Bolkent S, Bolkent S, Yanardag R, Tunali S. Protective effect of vanadyl sulfate on the pancreas of streptozotocin-induced diabetic rats. Diabetes Res Clin Pract 2005; 70:103-9. [PMID: 16188572 DOI: 10.1016/j.diabres.2005.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2005] [Indexed: 11/20/2022]
Abstract
The aim of this study is to examine from a biochemical and histological perspective, whether vanadium has a protective effect on the pancreas of diabetic rats. Male, 6-6.5 months old, Swiss albino rats were divided into four groups. Group I: control (intact) animals (n=13). Group II: control rats given vanadyl sulfate (n=5). Group III: streptozotocin-induced diabetic animals (n=11). Group IV: streptozotocin-induced diabetic animals given vanadyl sulfate (n=11). Vanadyl sulfate was given by gavage technique to rats in a dose of 100mg/kg daily for 60 days, after experimental animals were made diabetic. On day 60, the pancreas tissue and blood samples were taken from the animals. In the streptozotocin-induced diabetic group, blood glucose levels significantly increased in contrast to the loss of body weight, but vanadyl sulfate in streptozotocin-diabetic rats reduced blood glucose levels and increased both blood glutathione levels and body weight. Tissue sections were immunostained using an insulin antibody. The control group given vanadyl sulfate was no different from the other intact control group considering the insulin immunoreactivity in B cells. In pancreatic islets of the diabetic group, a decrease in the number of immunoreactive B cells was observed in comparison to the control group. On the other hand, pancreatic islets of the diabetic group given vanadyl sulfate showed a higher number of immunoreactive B cells in comparison to the diabetic group. According to the immunohistochemical and biochemical results obtained, it was concluded that vanadyl sulfate can regenerate B cells of endocrine pancreas in experimental diabetes.
Collapse
Affiliation(s)
- Sema Bolkent
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, 34098-Cerrahpasa, Istanbul, Turkey.
| | | | | | | |
Collapse
|
17
|
Clark TA, Edel AL, Heyliger CE, Pierce GN. Effective control of glycemic status and toxicity in Zucker diabetic fatty rats with an orally administered vanadate compound. Can J Physiol Pharmacol 2005; 82:888-94. [PMID: 15573149 DOI: 10.1139/y04-109] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A novel black tea decoction containing vanadate has successfully replaced insulin in a rat model of insulin-dependent diabetes but is untested in non-insulin-dependent diabetic animals. A tea-vanadate decoction (TV) containing 30 or 40 mg sodium orthovanadate was administered by oral gavage to two groups of Zucker diabetic fatty rats and a conventional water vehicle containing 30 or 40 mg of sodium orthovanadate to two others. In the latter group receiving the 30-mg dose, vanadate induced diarrhea in 50% of the rats and death in 10%. In contrast, TV-treated rats had no incidence of diarrhea and no deaths. Symptoms were more severe in both groups with higher vanadate doses, so these were discontinued. After approximately 16 weeks, the level of vanadium in plasma and tissue extracts was negligible in a further group of untreated rats but highly elevated after vanadate treatment. Vanadium levels were not significantly different between the TV-treated diabetic rats and the diabetic rats given vanadate in a water vehicle. Over the 115 days of the study, blood glucose levels increased from approximately 17 to 25 mmol/L in untreated diabetic rats. This was effectively lowered (to <10 mmol/L) by TV treatment. Fasting blood glucose levels were 5, 7, and 20 mmol/L in control (nondiabetic, untreated), TV-treated and untreated diabetic rats, respectively. Rats required treatment with TV for only approximately 50% of the days in the study. Increase in body mass during the study was significantly lower in untreated diabetic rats (despite higher food intake) than the other groups. Body mass gain and food intake were normal in TV-treated rats. Water intake was 28 mL/rat daily in control rats, 130 mL/rat daily in untreated diabetic rats, and 52 mL/rat daily in TV-treated diabetic rats. Plasma creatinine and aspartate aminotransferase levels were significantly depressed in untreated diabetic rats, and TV treatment normalized this. Our results demonstrate that a novel oral therapy containing black tea and vanadate possesses a striking capacity to regulate glucose and attenuates complications in a rat model of type II diabetes.
Collapse
Affiliation(s)
- Tod A Clark
- The National Centre for Agri-food Research in Medicine, St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
18
|
Clark TA, Heyliger CE, Edel AL, Goel DP, Pierce GN. Codelivery of a tea extract prevents morbidity and mortality associated with oral vanadate therapy in streptozotocin-induced diabetic rats. Metabolism 2004; 53:1145-51. [PMID: 15334376 DOI: 10.1016/j.metabol.2004.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oral administration of vanadate has a strong hypoglycemic effect but results in toxic side effects like life-threatening diarrhea. Tea is known to have potent antidiarrhea effects. We investigated the potential of suspending the vanadate in a tea decoction to reduce the diarrheatic action of vanadate. A concentrated extract of Lichee black tea was, therefore, added to sodium orthovanadate. Streptozotocin (STZ)-induced diabetic rats were orally gavaged with vanadate suspended in water or in the tea decoction, or with the tea extract alone. Blood glucose levels were assessed daily over 11 weeks with levels greater than 10 mmol/L warranting therapeutic intervention. Both the vanadate/water and vanadate/tea solutions acutely reduced blood glucose. The tea extract alone had no effect. The majority of vanadate/water-treated rats developed diarrhea and mortality rates approached 40%. Vanadate/tea-treated diabetic rats experienced no diarrhea or mortality and liver and kidney analyses (plasma ALT and creatinine, blood urea nitrogen [BUN], and urine-specific gravity) were normal. Animals treated with vanadate/tea retained blood glucose levels less than 10 mmol/L for an average of 24 consecutive days without subsequent treatments. Cataract formation was completely prevented. The mechanism of action of vanadate may have involved beta-cell stimulation because vanadate/tea-treated diabetic rats exhibited normal plasma insulin levels. In summary, because of its long-lasting effects, oral administration, and lack of side effects, vanadate/tea represents a potentially important alternative therapy for an insulin-deficient diabetic state.
Collapse
Affiliation(s)
- Tod A Clark
- The National Centre for Agrifood Research in Medicine, University of Mannitoba, Winnipeg, Canada
| | | | | | | | | |
Collapse
|
19
|
Ramachandran B, Ravi K, Narayanan V, Kandaswamy M, Subramanian S. Protective effect of macrocyclic binuclear oxovanadium complex on oxidative stress in pancreas of streptozotocin induced diabetic rats. Chem Biol Interact 2004; 149:9-21. [PMID: 15356917 DOI: 10.1016/j.cbi.2004.06.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic hyperglycemia in diabetes is a major causative factor of free radical generation which further leads to many secondary diabetic complications via the damage to cellular proteins, membrane lipids, nucleic acids and eventually to cell death. Recently we have reported on the hypoglycemic efficacy of a new macrocyclic binuclear oxovanadium complex and its non-toxic nature. This study focuses on the effect of the above complex in ameliorating oxidative stress in the pancreas of diabetic rats. Streptozotocin induced diabetic rats were treated orally with the vanadium complex (5 mg/kg/body weight) for 30 days and the level of pancreatic antioxidants and lipid peroxides were determined. Treatment with the macrocyclic binuclear oxovanadium complex decreased the lipid peroxides and the antioxidant enzymes such as superoxide dismutase, catalase and glutathione peroxidase to near control levels. Histological examinations also revealed the protective effect of the complex on pancreatic beta cells. The results demonstrate the protective effect of the macrocyclic binuclear oxovanadium complex on the pancreatic antioxidant status.
Collapse
|
20
|
Mukherjee B, Patra B, Mahapatra S, Banerjee P, Tiwari A, Chatterjee M. Vanadium--an element of atypical biological significance. Toxicol Lett 2004; 150:135-43. [PMID: 15093669 DOI: 10.1016/j.toxlet.2004.01.009] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 12/18/2003] [Accepted: 01/20/2004] [Indexed: 11/30/2022]
Abstract
The biological image of the transition element vanadium ferments a great deal of contradiction-from toxicity to essentiality. Importance of this element as micro-nutrient is yet to be unequivocally accepted by biologists and biomedical scientists. In spite of toxicity, it seems interesting to analyze the different biological roles of the element. Vanadium compounds have been proven to be associated with various implications in the pathogenesis of some human diseases and also in maintaining normal body functions. Salts of vanadium interfere with an essential array of enzymatic systems such as different ATPases, protein kinases, ribonucleases and phosphatases. While vanadium deficiency accounts for several physiological malfunctionings including thyroid, glucose and lipid metabolism, etc., several genes are regulated by this element or by its compounds, which include genes for tumor necrosis factor-alpha (TNF-alpha), Interleukin-8 (IL-8), activator protein-1 (AP-1), ras, c-raf-1, mitogen activated protein kinase (MAPK), p53, nuclear factors-kappaB, etc. All these seem to be not far from its recognition as an element of pharmacological and nutritional significance, which is revealed through its increasing therapeutic uses in diabetes. Vanadium is also emerging as a potent anti-carcinogenic agent. This review summarizes the developments related to vanadium biology as a whole by analyzing the general biochemical functions of vanadium.
Collapse
Affiliation(s)
- Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | | | | | | | | | | |
Collapse
|
21
|
Cheta D, Orasanu G, Nicolaie T, Iordachescu D, Buligescu S, Constantin C, Hassanain M, Coman A, Enache M, Negru R, Tica V, Timofte D, Gutu D, Panaite C. The influence of sodium metavanadate on the process of diabetogenesis in BB rats. J Cell Mol Med 2004; 7:447-54. [PMID: 14754513 PMCID: PMC6740263 DOI: 10.1111/j.1582-4934.2003.tb00247.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Vanadium has been shown to be beneficial in the oral treatment of animal models of type 1 and type 2 diabetes. The aim of the study was to evaluate the short-term effects of sodium metavanadate in prediabetic BB-DP rats. To do this, 96 rats were divided into 4 equal groups. Groups V1, V2, V3 were treated with sodium metavanadate (0.1, 0.2 and 0.3 mg/ml respectively) and sodium chloride (0.5 mg/ml) in drinking water for 7 days. Group C received only sodium chloride (0.5 mg/ml). Blood glucose (BG), glycosuria, ketonuria, body weight and insulinemia were determined. The age of onset of diabetes was significantly higher for groups V2, V3 compared to group C, (p<0.05) and depends on the metavanadate concentration (V3 vs. V1, p=0.006). The incidence of diabetes was lower in the rats treated with metavanadate than in the control group, but this difference was not statistically significant. In diabetic rats, the BG at the onset was higher in group C than in groups V, p<0.05. Insulinemia, at the onset of the treatment as well as immediately after its cessation showed a drop in the treatment groups, proportionally to the dosage of vanadium, but later increased slowly and continuously until the end of the experiment. In conclusion, metavanadate delays the development of diabetes in BB-DP rats, but does not prevent its onset. A milder form of diabetes occurs in diabetic rats treated with metavanadate. The effects depend on the metavanadate concentration and 0.2 mg/ml is preferable.
Collapse
Affiliation(s)
- D Cheta
- "N Paulescu" Institute, 2nd Clinic of Diabetes, Nutrition and Metabolic Diseases, Bucharest, Romania.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yuen VG, Bhanot S, Battell ML, Orvig C, McNeill JH. Chronic glucose-lowering effects of rosiglitazone and bis(ethylmaltolato)oxovanadium(IV) in ZDF rats. Can J Physiol Pharmacol 2003; 81:1049-55. [PMID: 14719040 DOI: 10.1139/y03-094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to determine if there was a synergistic or additive effect of a thiazolidinedione derivative (rosiglitazone (ROS)) and a vanadium compound (bis(ethylmaltolato)oxovanadium(IV) (BEOV)) on plasma glucose and insulin levels following chronic oral administration to Zucker diabetic fatty (ZDF) rats. Whole-blood vanadium levels were determined at time 0 and at days 1, 6, and 18. The doses of BEOV (0.1 mmol/kg) and ROS (2.8 µmol/kg) were selected to produce a glucose-lowering effect in 30% (ED30) of animals. Both drugs were administered daily by oral gavage as suspensions in 1% carboxymethylcellulose (CMC) in a volume of 2.5 mL/kg. The total volume administered to all rats was 5 mL/(kg·day). The combination of BEOV and ROS was effective in lowering plasma glucose levels to <9 mmol/L in 60% of fatty animals as compared with 30% for BEOV and 10% for ROS alone. The age-dependent decrease in plasma insulin levels associated with β-cell failure in the ZDF rats did not occur in the BEOV-treated fatty groups. There was no effect of any treatment on body weight; however, there was a significant reduction in both food and fluid intake in fatty groups treated with BEOV. There were no overt signs of toxicity and no mortality in this study. Both BEOV and ROS were effective in lowering plasma glucose levels, as stated above, and there was at least an additive effect when BEOV and ROS were used in combination.Key words: rosigitazone, bis(ethylmaltolato)oxovanadium(IV), diabetes, ZDF rats.
Collapse
Affiliation(s)
- Violet G Yuen
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
23
|
De Cremer K, Cornelis R, Strijckmans K, Dams R, Lameire N, Vanholder R. Behaviour of vanadate and vanadium-transferrin complex on different anion-exchange columns. Application to in vivo 48V-labelled rat serum. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 775:143-52. [PMID: 12113980 DOI: 10.1016/s1570-0232(02)00278-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The behaviour of free [48V]vanadate and [48V]vanadium-transferrin complex was investigated on five different anion-exchange columns (Mono Q 5/5 HR, Hitrap Q HP, Sepharose Q FF, Sepharose DEAE FF and Hitrap Q XL). The recovery of both V-compounds was quantitative. The peak shape and retention time of vanadate varied according to the type of column. The vanadium-transferrin complex also showed different elution patterns depending on the type of column. Especially in case of the Sepharose Q FF, Mono Q 5/5 HR and Hitrap Q XL columns the vanadium-transferrin binding was degraded during elution on the column. The results clearly prove that care should be taken as to the choice of column for speciation purposes of vanadium compounds in order to prevent various artefacts showing up in the chromatograms. A Hitrap Q HP column was used to fractionate different vanadium compounds in rat serum.
Collapse
Affiliation(s)
- Koen De Cremer
- Laboratory for Analytical Chemistry, Institute of Nuclear Sciences, Ghent University, Proeftuinstraat 86, B-9000 Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
24
|
De Cremer K, Cornelis R, Strijckmans K, Dams R, Lameire N, Vanholder R. Fractionation of vanadium in urine of Wistar rats as a function of time after intraperitoneal injection. J Inorg Biochem 2002; 90:71-7. [PMID: 12009258 DOI: 10.1016/s0162-0134(02)00396-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[(48)V]Vanadium was intraperitoneally injected into Wistar rats. Urine and feces were collected at regular intervals (n=19) between 1 and 144 h after injection. In case of urine, maximal excretion (V activity/ml urine) of vanadium was seen 3 h after injection. In case of feces, a maximum appeared 32 h after injection. Urine samples were fractionated on two types of gel filtration column (Superose 12 HR 10/30 and Superdex Peptide 10/30). We found that vanadium in urine exists as both high (protein-bound) and low molecular mass species and that the partition about these forms depends on the time elapsed after injection. After 1 h, respectively, four (one high molecular and three low molecular mass species) and five (one high molecular and four low molecular mass species) vanadium peaks were present in the chromatograms of the Superose 12 and the Superdex Peptide columns. Then 3 h after injection, a different high molecular species showed up in the chromatograms, while the first high molecular and some low molecular mass species disappeared. Vanadium in urine after 8 h occurred as one high (slightly different from the high molecular complex after 3 h) and one low molecular mass complex. However, after 48 h the pattern changed again and vanadium in urine was excreted largely as one low molecular mass species, presumably one of the species that also occurred 1 h after injection but was not present in the period 6-24 h.
Collapse
Affiliation(s)
- Koen De Cremer
- Laboratory for Analytical Chemistry, Institute for Nuclear Sciences, Ghent University, Proeftuinstraat 86, B-9000 Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
25
|
Mohammad A, Bhanot S, McNeill JH. In vivo effects of vanadium in diabetic rats are independent of changes in PI-3 kinase activity in skeletal muscle. Mol Cell Biochem 2001; 223:103-8. [PMID: 11681710 DOI: 10.1023/a:1017913130401] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The PI-3 kinase signalling pathway is an important pathway in mediating the glucoregulatory effects of insulin and skeletal muscle (SKM) is the major tissue involved in glucose utilization. In diabetes this pathway is impaired, either due to lack of insulin as in Type I diabetes, or due to insulin resistance as in Type 2 diabetes. Bis(maltolato)-oxovanadium IV (BMOV), an insulin mimetic/enhancing agent, produces a marked glucose lowering effect in models of both types of diabetes. Some in vitro studies have shown that phosphatidylinositol 3 kinase (PI-3 kinase) activity is enhanced by vanadium. In the present study we looked at changes in PI-3 kinase expression and activity in SKM from STZ-diabetic and fa/fa Zucker rats treated with BMOV for 3 weeks. Although BMOV treatment completely normalized glucose levels in STZ-diabetic rats, no effect was observed on basal or insulin-stimulated PI-3 kinase activity. In fatty Zucker rats, activation of PI-3 kinase activity after insulin injection was impaired as compared to age matched lean controls, but BMOV again did not affect the activity. These results suggest that although PI-3 kinase is an important signalling factor in glucose utilization, vanadium treatment does not reduce hyperglycemia through activation of SKM PI-3 kinase in vivo.
Collapse
Affiliation(s)
- A Mohammad
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
26
|
De Cremer K, Cornelis R, Strijckmans K, Dams R, Lameire N, Vanholder R. Non-ideal behaviour of free vanadate on a Superose 12 size-exclusion column. Application to in vivo 48V-labelled rat spleen homogenate. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2001; 757:21-9. [PMID: 11419745 DOI: 10.1016/s0378-4347(01)00023-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Seven chromatographic columns were evaluated for the recovery of 48V-radiolabelled vanadate. Further, the behaviour of vanadate (H2VO4-) was studied on a size-exclusion column Superose 12 as a function of (a) buffer salt molarity, (b) different buffer salts, (c) different buffers and (d) organic solvents added to the buffer. As opposed to the unsatisfactory recovery of V-compounds on other columns, we recovered the vanadium quantitatively. We observed that in most cases vanadate eluted after the total volume of the Superose 12 column. This indicates a non-ideal behaviour of vanadate. However, through this non-ideal behaviour it was possible to separate low-molecular-mass bound (Mr<5000) and unbound vanadium which would not be possible under normal behaviour. A possible explanation for this non-ideal behaviour of vanadium is put forward. The method has been successfully applied for the fractionation of different vanadium species in rat spleen homogenate.
Collapse
Affiliation(s)
- K De Cremer
- Institute of Nuclear Sciences, Ghent University, Belgium.
| | | | | | | | | | | |
Collapse
|
27
|
Cam MC, Brownsey RW, McNeill JH. Mechanisms of vanadium action: insulin-mimetic or insulin-enhancing agent? Can J Physiol Pharmacol 2001. [PMID: 11077984 DOI: 10.1139/y00-053] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The demonstration that the trace element vanadium has insulin-like properties in isolated cells and tissues and in vivo has generated considerable enthusiasm for its potential therapeutic value in human diabetes. However, the mechanisms by which vanadium induces its metabolic effects in vivo remain poorly understood, and whether vanadium directly mimics or rather enhances insulin effects is considered in this review. It is clear that vanadium treatment results in the correction of several diabetes-related abnormalities in carbohydrate and lipid metabolism, and in gene expression. However, many of these in vivo insulin-like effects can be ascribed to the reversal of defects that are secondary to hyperglycemia. The observations that the glucose-lowering effect of vanadium depends on the presence of endogenous insulin whereas metabolic homeostasis in control animals appears not to be affected, suggest that vanadium does not act completely independently in vivo, but augments tissue sensitivity to low levels of plasma insulin. Another crucial consideration is one of dose-dependency in that insulin-like effects of vanadium in isolated cells are often demonstrated at high concentrations that are not normally achieved by chronic treatment in vivo and may induce toxic side effects. In addition, vanadium appears to be selective for specific actions of insulin in some tissues while failing to influence others. As the intracellular active forms of vanadium are not precisely defined, the site(s) of action of vanadium in metabolic and signal transduction pathways is still unknown. In this review, we therefore examine the evidence for and against the concept that vanadium is truly an insulin-mimetic agent at low concentrations in vivo. In considering the effects of vanadium on carbohydrate and lipid metabolism, we conclude that vanadium acts not globally, but selectively and by enhancing, rather than by mimicking the effects of insulin in vivo.
Collapse
Affiliation(s)
- M C Cam
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia,Vancouver, Canada
| | | | | |
Collapse
|
28
|
Wang J, Yuen VG, McNeill JH. Effect of vanadium on insulin and leptin in Zucker diabetic fatty rats. Mol Cell Biochem 2001; 218:93-6. [PMID: 11330843 DOI: 10.1023/a:1007229910582] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Vanadium exhibits a variety of insulin-mimetic actions in vitro and in vivo. The mechanism(s) of the effect of vanadium on leptin in Zucker diabetic fatty (ZDF) rats, a model of Type 2 diabetes, is unclear. Since insulin is a stimulator of leptin production and secretion and vanadium is an insulin-mimetic or insulin-enhancing agent, we studied how vanadium affected plasma leptin levels in vivo and the relationship between plasma insulin, leptin and body fat in ZDF rats. Zucker lean and ZDF rats at 9-week old were chronically treated with bis(ethylmaltolato)oxovanadium(IV) (BEOV), an organic vanadium compound, by oral gavage daily for 3 weeks. At termination, the total body fat was weighed and blood was collected for insulin, leptin and glucose assay. BEOV treatment (0.1 mmol/kg/day) significantly decreased plasma glucose levels in ZDF rats and did not change food intake and body fat content either in lean or ZDF rats. Following 3-week treatment, plasma insulin and leptin levels in BEOV treated ZDF rats were significantly higher, 1.5 and 0.5 fold than untreated rats, respectively. The correlation coefficients in ZDF rats showed that plasma leptin levels were correlated to plasma insulin levels, but not to body fat. These data indicate that plasma leptin levels parallel plasma insulin levels, and the effects of vanadium on leptin appear to be mediated by insulin in ZDF rats.
Collapse
Affiliation(s)
- J Wang
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
29
|
Shafrir E, Spielman S, Nachliel I, Khamaisi M, Bar-On H, Ziv E. Treatment of diabetes with vanadium salts: general overview and amelioration of nutritionally induced diabetes in the Psammomys obesus gerbil. Diabetes Metab Res Rev 2001; 17:55-66. [PMID: 11241892 DOI: 10.1002/1520-7560(2000)9999:9999<::aid-dmrr165>3.0.co;2-j] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Numerous investigations have demonstrated the beneficial effect of vanadium salts on diabetes in streptozotocin (STZ)-diabetic rats, in rodents with genetically determined diabetes and in human subjects. The amelioration of diabetes included the abolition of hyperglycemia, preservation of insulin secretion, reduction in hepatic glucose production, enhanced glycolysis and lipogenesis and improved muscle glucose uptake through GLUT4 elevation and translocation. The molecular basis of vanadium salt action is not yet fully elucidated. Although evidence has been provided that the insulin receptor is activated, the possibility exists that cytosolic non-receptor tyrosine kinase, direct phosphorylation of IRS-1 and activation of PI3-K, leading to GLUT4 translocation, are involved. The raised phosphorylation of proteins in the insulin signaling pathway appears to be related to the inhibition of protein tyrosine phosphatase (PTPase) activity by vanadium salts. NOVEL EXPERIMENTS The model utilized in our study was Psammomys obesus (sand rat), a desert gerbil which becomes hyperglycemic and hyperinsulinemic on an ad libitum high energy (HE) diet. In contrast to the previously investigated insulin deficient models, vanadyl sulphate was used to correct insulin resistance and hyperinsulinemia, which led to beta-cell loss. Administration of 5 mg/kg vanadyl sulfate for 5 days resulted in prolonged restoration of normoglycemia and normoinsulinemia in most animals, return of glucose tolerance to normal, and a reduction of hepatic phosphoenolpyruvate carboxykinase activity. There was no change in food consumption and in regular growth during or after the vanadyl treatment. Pretreatment with vanadyl sulfate, followed by transfer to a HE diet, significantly delayed the onset of hyperglycemia. Hyperinsulinemic-euglycemic clamp of vanadyl sulfate treated Psammomys demonstrated an improvement in glucose utilization. However, vanadyl sulfate was ineffective when administered to animals which lost their insulin secretion capacity on protracted HE diet, but substantially reduced the hyperglycemia when given together with exogenous insulin. The in vitro insulin activation of liver and muscle insulin receptors isolated from vanadyl treated Psammomys was ineffective. The in vivo vanadyl treatment restored muscle GLUT4 total protein and mRNA contents in addition to membrane GLUT4 protein, in accordance with the increased glucose utilization during the clamp study. These results indicate that short-term vanadyl sulfate treatment corrects the nutritionally induced, insulin resistant diabetes. This action requires the presence of insulin for its beneficial effect. Thus, vanadyl action in P. obesus appears to be the result of insulin potentiation rather than mimicking, with activation of the signaling pathway proteins leading to GLUT4 translocation, probably distal to the insulin receptor.
Collapse
Affiliation(s)
- E Shafrir
- Department of Biochemistry and Diabetes Research Unit, Hadassah University Hospital and Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Vanadium is a steel-grey, corrosion-resistant metal, which exists in oxidation states ranging from -1 to +5. Metallic vanadium does not occur in nature, and the most common valence states are +3, +4, and +5. The pentavalent form (VO3-) predominates in extracellular body fluids whereas the quadrivalent form (VO+2) is the most common intracellular form. Because of its hardness and its ability to form alloys, vanadium (i.e., ferrovanadium) is a common component of hard steel alloys used in machines and tools. Although most foods contain low concentrations of vanadium (< 1 ng/g), food is the major source of exposure to vanadium for the general population. High air concentrations of vanadium occur in the occupation setting during boiler-cleaning operations as a result of the presence of vanadium oxides in the dust. The lungs absorb soluble vanadium compounds (V2O5) well, but the absorption of vanadium salts from the gastrointestinal tract is poor. The excretion of vanadium by the kidneys is rapid with a biological half-life of 20-40 hours in the urine. Vanadium is probably an essential trace element, but a vanadium-deficiency disease has not been identified in humans. The estimated daily intake of the US population ranges from 10-60 micrograms V. Vanadyl sulfate is a common supplement used to enhance weight training in athletes at doses up to 60 mg/d. In vitro and animal studies indicate that vanadate and other vanadium compounds increase glucose transport activity and improve glucose metabolism. In general, the toxicity of vanadium compounds is low. Pentavalent compounds are the most toxic and the toxicity of vanadium compounds usually increases as the valence increases. Most of the toxic effects of vanadium compounds result from local irritation of the eyes and upper respiratory tract rather than systemic toxicity. The only clearly documented effect of exposure to vanadium dust is upper respiratory tract irritation characterized by rhinitis, wheezing, nasal hemorrhage, conjunctivitis, cough, sore throat, and chest pain. Case studies have described the onset of asthma after heavy exposure to vanadium compounds, but clinical studies to date have not detected an increased prevalence of asthma in workers exposed to vanadium.
Collapse
|
31
|
Badmaev V, Prakash S, Majeed M. Vanadium: a review of its potential role in the fight against diabetes. J Altern Complement Med 1999; 5:273-91. [PMID: 10381252 DOI: 10.1089/acm.1999.5.273] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The potential role of vanadium in human health is described as a building material of bones and teeth. However, another very interesting and promising application for vanadium in human health emerges from recent studies that evaluated the role of vanadium in the management of diabetes. Vanadium is present in a variety of foods that we commonly eat. Skim milk, lobster, vegetable oils, many vegetables, grains and cereals are rich source of vanadium (>1 ppm). Fruits, meats, fish, butter, cheese, and beverages are relatively poor sources of vanadium. The daily dietary intake in humans has been estimated to vary from 10 microg to 2 mg of elemental vanadium, depending on the environmental sources of this mineral in the air, water, and food of the particular region tested. In animals, vanadium has been shown essential (1-10 microg vanadium per gram of diet). There is only circumstantial evidence that vanadium is essential for humans. However, in doses ranging from 0.083 mmol/d to 0.42 mmol/d, vanadium has shown therapeutic potential in clinical studies with patients of both insulin-dependent diabetes mellitus (IDDM) and noninsulin-dependent diabetes mellitus (NIDDM) type. Although vanadium has a significant biological potential, it has a poor therapeutic index, and attempts have been made to reduce the dose of vanadium required for therapeutic effectiveness. Organic forms of vanadium, as opposed to the inorganic sulfate salt of vanadium, are recognized as safer, more absorbable, and able to deliver a therapeutic effect up to 50% greater than the inorganic forms. The goal is to provide vanadium with better gastrointestinal absorption, and in a form that is best able to produce the desired biological effects. As a result, numerous organic complexes of vanadium have been developed including bis(maltolato)oxovanadium (BMOV), bis(cysteinamide N-octyl)oxovanadium known as Naglivan, bis(pyrrolidine-N-carbodithioato)oxovanadium, vanadyl-cysteine methyl ester, and bis-glycinato oxovanadium (BGOV). The health benefits of vanadium and the safety and efficacy of the available vanadium supplements are discussed in this review.
Collapse
Affiliation(s)
- V Badmaev
- Sabinsa Corporation, Piscataway, New Jersey 08854, USA.
| | | | | |
Collapse
|
32
|
Hu M, Wu Y, Wu H. Influence of streptozotocin-induced diabetes in rats on the lithium content of tissue and the effect of dietary lithium supplements on this diabetic condition. Metabolism 1999; 48:558-63. [PMID: 10337853 DOI: 10.1016/s0026-0495(99)90050-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To study the effects of lithium supplementation on the diabetic condition, we measured the lithium concentration in the liver, kidney, and muscle from streptozotocin (STZ)-induced diabetic male Sprague-Dawley (SD) rats that were either treated or untreated with peroral lithium carbonate (0.3 mg/mL). The data showed that the lithium content of the liver and muscle was significantly lower in STZ rats than in normal control rats (0.22 +/- 0.05 v 1.30 +/- 0.15, P < .01, and 0.79 +/- 0.30 v 2.48 +/- 2.00 microg/g, respectively). After 4 weeks of lithium carbonate supplementation, we found that (1) the lithium content of the liver and muscle returned to the normal range, (2) the extent of STZ-mediated destruction of beta cells in the pancreas decreased, (3) fasting blood glucose (FBG) and 2-hour postprandial blood glucose (PBG) decreased (P < .05), (4) among the indicators of oxidative stress and antioxidant defenses, blood lipid peroxidate (LPO) decreased and erythrocyte superoxide dismutase (RBC-SOD) and glutathione (GSH) returned to normal, and (5) hepatic LPO decreased and glutathione peroxidase (GSH-Px) increased. These results suggest that the restoration of lithium to control levels in the liver and muscle of diabetic animals is associated not only with decreased blood glucose but also with reduced oxidative stress, and consequently with the protection of insulin-secreting pancreatic islet cells.
Collapse
Affiliation(s)
- M Hu
- Institute of Metabolism and Endocrinology, The Second Affiliated Hospital, Hunan Medical University, Changsha, China
| | | | | |
Collapse
|
33
|
Yuen VG, Vera E, Battell ML, Li WM, McNeill JH. Acute and chronic oral administration of bis(maltolato)oxovanadium(IV) in Zucker diabetic fatty (ZDF) rats. Diabetes Res Clin Pract 1999; 43:9-19. [PMID: 10199584 DOI: 10.1016/s0168-8227(98)00120-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This is a preliminary study in which both acute and chronic oral administration of bis(maltolato)oxovanadium (IV) (BMOV) was examined in the Zucker diabetic fatty (ZDF) rat, an animal model that develops overt hyperglycemia in the presence of hyperinsulinemia followed by beta-cell depletion. At 9-10 weeks of age, in the presence of hyperglycemia, hyperinsulinemia and hyperlipidemia, an acute oral gavage dose response was conducted to determine glucose-lowering properties of BMOV, time of response and effect of BMOV on plasma insulin levels. Doses of BMOV greater than 0.2 mmol/kg resulted in plasma glucose levels of less than 9 mmol/l. The highest dose administered (0.8 mmol/kg) significantly reduced plasma insulin (initial: 2.83+/-0.2, final: 1.23+/-0.09 nmol/l, P<0.05) and plasma triglyceride (initial: 4.94+/-0.33, final: 1.55+/-0.07 mmol/l, P<0.05) levels. At 15 weeks of age, in the presence of hyperglycemia, hyperlipidemia and normal insulin levels, BMOV was administered orally in the drinking water for a 10-week period to determine the effect of treatment on glucose, insulin and lipid levels. BMOV treatment significantly reduced plasma glucose levels (final BMOV-treated: 13.25+/-1.43, untreated: 28.71+/-0.6 mmol/l, P<0.05) and effectively preserved pancreatic beta-cell function. These data suggest a role for BMOV as a therapeutic agent in non-insulin-dependent diabetes mellitus through improvement in glucose homeostasis and preservation of insulin reserves.
Collapse
Affiliation(s)
- V G Yuen
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
34
|
Wasan KM, Ng SP, Wong W, Rodrigues BB. Streptozotocin- and alloxan-induced diabetes modifies total plasma and lipoprotein lipid concentration and composition without altering cholesteryl ester transfer activity. PHARMACOLOGY & TOXICOLOGY 1998; 83:169-75. [PMID: 9820878 DOI: 10.1111/j.1600-0773.1998.tb01464.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The objectives of this study were to determine the total plasma and lipoprotein lipid concentration and composition and cholesteryl ester transfer activity in two diabetic animal models (alloxan-induced diabetes in rabbits and streptozotocin-induced diabetes in rats). Furthermore, we wanted to determine if the severity of diabetes influences lipoprotein lipid profiles and cholesteryl ester transfer activity. Rats and rabbits were randomly divided into non-diabetic and diabetic groups. Rats were administered either 55 mg/kg or 100 mg/kg of streptozotocin intravenously through the tail vein, while rabbits were administered 100 mg/kg or 200 mg/kg of alloxan intravenously through the marginal ear vein under light anesthesia. Hyperglycaemia was tested for at 48 hr following the doses. Total and lipoprotein cholesterol and triglyceride concentrations using enzymatic kits and cholesteryl ester transfer activity from low-density lipoproteins to high-density lipoproteins using 3H-cholesteryl ester incorporated into low-density lipoproteins were determined. Elevations in both total and lipoprotein cholesterol and triglyceride concentrations and alterations in lipoprotein lipid composition are observed following the onset of drug-induced diabetes in rats and rabbits compared to non-diabetics. However, these findings were observed only in animals administered the higher streptozotocin and alloxan dose. Furthermore, cholesteryl ester transfer from low-density lipoproteins to high-density lipoproteins is not significantly different in drug-induced diabetic compared to non-diabetic rats and rabbits, regardless of which streptozotocin and alloxan dose was used. These findings suggest that difference in lipoprotein lipid concentration and composition as a result of drug-induced diabetes is independent of cholesteryl ester transfer activity in both rats and rabbits. Furthermore, diabetic severity may influence lipoprotein metabolism in these animal models.
Collapse
Affiliation(s)
- K M Wasan
- Division of Pharmaceutics and Biopharmaceutics, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|