1
|
Yamaguchi Y, Madhyastha H, Madhyastha R, Choijookhuu N, Hishikawa Y, Pengjam Y, Nakajima Y, Maruyama M. Arsenic acid inhibits proliferation of skin fibroblasts, and increases cellular senescence through ROS mediated MST1-FOXO signaling pathway. J Toxicol Sci 2016; 41:105-13. [PMID: 26763397 DOI: 10.2131/jts.41.105] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Arsenic exposure through drinking water is a major public health problem. It causes a number of toxic effects on skin. Arsenic has been reported to inhibit cell proliferation in in vitro conditions. However, reports about the molecular mechanisms are limited. Here, we investigated the mechanism involved in arsenic acid-mediated inhibition of cell proliferation using mouse skin fibroblast cell line. The present study found that 10 ppm arsenic acid inhibited cell proliferation, without any effect on cell death. Arsenic acid induced the generation of reactive oxygen species (ROS), resulting in oxidative stress to DNA. It also activated the mammalian Ste20-like protein kinase 1 (MST1); however the serine/threonine kinase Akt was downregulated. Forkhead box O (FOXO) transcription factors are activated through phosphorylation by MST1 under stress conditions. They are inhibited by phosphorylation by Akt through external and internal stimuli. Activation of FOXOs results in their nuclear localization, followed by an increase in transcriptional activity. Our results showed that arsenic induced the nuclear translocation of FOXO1 and FOXO3a, and altered the cell cycle, with cells accumulating at the G2/M phase. These effects caused cellular senescence. Taken together, our results indicate that arsenic acid inhibited cell proliferation through cellular senescence process regulated by MST1-FOXO signaling pathway.
Collapse
Affiliation(s)
- Yuya Yamaguchi
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Increased susceptibility of H-Ras(G12V)-transformed human urothelial cells to the genotoxic effects of sodium arsenite. Arch Toxicol 2014; 89:1971-9. [PMID: 25199681 DOI: 10.1007/s00204-014-1344-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/14/2014] [Indexed: 01/23/2023]
Abstract
Inorganic arsenite (iAs) is a human carcinogen. Numerous studies have shown that mutation-activated H-Ras is frequently observed in human urothelial carcinomas. The interaction between iAs, an environmental factor, and H-Ras, an oncogene, is not clear. In this study, we explored the genotoxic effects of iAs in human urothelial cells ectopically expressing H-Ras (G12V) an activated H-Ras oncogene. Our results showed that H-Ras(G12V)-transformed human urothelial cells (HUC-RAS) were more susceptible to arsenite-induced cell death, DNA damage, micronuclei formation and anchorage-independent growth than control cells (HUC-neo). Furthermore, iAs treatment induced higher intracellular levels of reactive oxygen species (ROS) in the HUC-RAS cells than in the HUC-neo cells. N-acetyl-L-cysteine could suppress the iAs-induced increases in ROS and genetic damage. We further demonstrated that the intracellular glutathione levels were significantly elevated by the iAs treatment of the HUC-neo cells, but that this effect was not observed in the HUC-RAS cells. The iAs treatment induced higher superoxide dismutase activity in the HUC-neo cells than in the HUC-RAS cells. Alternatively, catalase activity was higher in the HUC-RAS cells than in the HUC-neo cells, but this enzyme was significantly suppressed by iAs. Moreover, iAs activated the ERK and JNK signaling pathways, which are involved in iAs-induced ROS production and genetic damage. Taken together, our present results suggest that elevated catalase activity in H-Ras(G12V)-transformed cells is significantly suppressed by iAs via activation of ERK and JNK signaling pathways and hence attenuate the defense of the neoplastic transformed cells against iAs-induced oxidative injuries.
Collapse
|
3
|
Kumar A, Kesari VP, Khan PK. Fish micronucleus assay to assess genotoxic potential of arsenic at its guideline exposure in aquatic environment. Biometals 2013; 26:337-46. [DOI: 10.1007/s10534-013-9620-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 03/07/2013] [Indexed: 01/12/2023]
|
4
|
Khan PK, Kesari VP, Kumar A. Mouse micronucleus assay as a surrogate to assess genotoxic potential of arsenic at its human reference dose. CHEMOSPHERE 2013; 90:993-997. [PMID: 22906486 DOI: 10.1016/j.chemosphere.2012.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/10/2012] [Accepted: 07/13/2012] [Indexed: 06/01/2023]
Abstract
Exposure to high contents of arsenic (a genotoxic carcinogen) in humans through drinking water is one of the most serious concerns in many parts of the world including India. The United States Environmental Protection Agency (USEPA) has recommended a permissible limit of daily exposure in humans to arsenic as its reference dose (0.3 μg kg(-1) d(-1)) with almost no likelihood of any adverse effect. The present work was a quantitative assessment of the genotoxic potential of arsenic at the exposure level of its human reference dose through micronucleus (MN) assay in mice. The animals were exposed to various doses of arsenic through oral gavaging for 15 consecutive days. Significant increases in the frequency of micronucleated erythrocytes were observed in mice upon exposure to arsenic which occurred even at its human reference dose and in a dose-dependent manner. The study of the genotoxic potential of arsenic in humans at lower exposure levels (including its human reference dose) is, therefore, highly desirable for risk assessment and hazard identification.
Collapse
Affiliation(s)
- Parimal K Khan
- Toxicogenetics Laboratory, Department of Zoology, Patna University, Patna 800 005, India.
| | | | | |
Collapse
|
5
|
Chen YJ, Lin YP, Chow LP, Lee TC. Proteomic identification of Hsp70 as a new Plk1 substrate in arsenic trioxide-induced mitotically arrested cells. Proteomics 2011; 11:4331-45. [PMID: 21887822 DOI: 10.1002/pmic.201100329] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/09/2011] [Accepted: 08/18/2011] [Indexed: 01/01/2023]
Abstract
We previously demonstrated that when arsenic trioxide (ATO)-induced mitotically arrested HeLa S3 cells (AIMACs) were treated with staurosporine (SSP) the cells rapidly exited mitosis. To better define the cellular targets and the underlying mechanisms of AIMACs, we applied 2-D DIGE followed by LC-MS/MS analysis and showed that SSP induced a significant change in the phosphoproteome of AIMACs. Among the proteins whose phosphorylation was modulated by SSP, we identified Hsp70, Rad 23B, and eukaryotic translation initiation factor 4B as potentially new substrates of polo-like kinase 1 (Plk1), an essential serine/threonine kinase with versatile mitotic functions. Since Hsp70 is a stress protein responsible for ATO treatment, we further identified Thr(13) , Ser(362) , Ser(631) , and Ser(633) on Hsp70 intracellularly phosphorylated in AIMACs by combining TiO(2) phospho-peptides enrichment and MS/MS analysis. Using antibody specifically against phosph-Ser(631) Hsp70 and further aided by expression of kinase-dead Plk1 and pharmacological inhibition of Plk1, we concluded that Ser(631) on Hsp70 is phosphorylated by Plk1 in AIMACs. By immnuofluorescent staining, we found the colocalization of Hsp70 and Plk1 in AIMACs but not in interphase cells. In addition, Plk1-mediated phosphorylation of Hsp70 prevented AIMACs from mitotic death. Our results reveal that Hsp70 is a novel substrate of Plk1 and that its phosphorylation contributes to attenuation of ATO-induced mitotic abnormalities.
Collapse
Affiliation(s)
- Yu J Chen
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
6
|
Liu SY, Wen CY, Lee YJ, Lee TC. XPC silencing sensitizes glioma cells to arsenic trioxide via increased oxidative damage. Toxicol Sci 2010; 116:183-93. [PMID: 20403967 DOI: 10.1093/toxsci/kfq113] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Arsenic exerts its cytotoxicity via the generation of reactive oxygen species and inhibition of DNA repair. How arsenic disturbs oxidative DNA damage repair is, however, unclear. We found that arsenic trioxide (ATO), like ultraviolet (UV) irradiation, induced the expression of xeroderma pigmentosum group C (XPC) but not of xeroderma pigmentosum A in a human glioma cell line, U87. To explore the role of XPC in the toxic effects of ATO, small interfering RNA was used to silence XPC (siXPC) in U87 cells. siXPC cells were more susceptible to UV irradiation and ATO-induced cell death than control cells. Increased siXPC cell death induced by ATO was accompanied by increased senescence and autophagy. Because increased DNA strand breaks in siXPC cells were observed only when cells were concomitantly treated with ATO and DNA repair inhibitors, XPC silencing apparently did not interfere with repair of ATO-induced DNA damage. Although intracellular ROS levels were not significantly enhanced in siXPC cells, ATO treatment did result in increased 8-hydroxy-2'-deoxyguanosine and hyperoxidized peroxiredoxin. Enhanced superoxide production and autophagy by ATO in siXPC cells were suppressed by co-incubation with N-acetylcysteine (NAC). Furthermore, XPC silencing caused decreased glutathione levels and increased catalase and Mn-superoxide dismutase activities. Increased catalase activity in siXPC cells was suppressed by ATO treatment. XPC silencing also enhanced reporter activity of activator protein-1, whereas enhanced activity was suppressed by NAC. Taken together, our results indicate that XPC silencing causes increased ATO susceptibility by disturbing redox homeostasis rather than reducing DNA repair.
Collapse
Affiliation(s)
- Shin-Yi Liu
- Department of Biomedical Image and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | | | | | | |
Collapse
|
7
|
Wang A, Kligerman AD, Holladay SD, Wolf DC, Robertson JL. Arsenate and dimethylarsinic acid in drinking water did not affect DNA damage repair in urinary bladder transitional cells or micronuclei in bone marrow. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:760-770. [PMID: 19472316 DOI: 10.1002/em.20496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Arsenic is a human skin, lung, and urinary bladder carcinogen, and may act as a cocarcinogen in the skin and urinary bladder. Possible modes of action of arsenic carcinogenesis/cocarcinogenesis include oxidative stress induction and inhibition of DNA damage repair. We investigated the effects of arsenic in drinking water on DNA damage repair in urinary bladder transitional cells and on micronucleus formation in bone marrow. F344 rats were given 100 ppm arsenate [As(V)] or dimethylarsinic acid [DMA(V)] in drinking water for 1 week. The in vivo repair of cyclophosphamide (CP)-induced DNA damage resulting from a single oral gavage of CP, and the in vitro repair of hydrogen peroxide (H(2)O(2))- or formaldehyde-induced DNA damage, resulting from adding H(2)O(2) or formaldehyde into cell medium, were measured by the Comet assay. DMA(V) effects were not observed on either CP-induced DNA damage induction or on DNA repair. Neither DMA(V) nor As(V) increased the H(2)O(2)- or formaldehyde-induced DNA damage, and neither inhibited the repair of H(2)O(2)-induced DNA damage. Neither DMA(V) nor As(V) increased the micronucleus frequency, nor did they elevate micronucleus frequency resulting from CP treatment above the level observed by the treatment with CP alone. These results suggest that arsenic carcinogenesis/cocarcinogenesis in the urinary bladder may not be via DNA damage repair inhibition. To our knowledge this is the first report of arsenic effects on DNA damage repair in the urinary bladder.
Collapse
Affiliation(s)
- Amy Wang
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland Regional College of Veterinary Medicine, Blacksburg, Virginia 24061, USA.
| | | | | | | | | |
Collapse
|
8
|
Avani G, Rao MV. In vitro genotoxicity assays to evaluate the role of vitamin A on arsenic in human lymphocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:635-638. [PMID: 18499251 DOI: 10.1016/j.ecoenv.2008.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 02/26/2008] [Accepted: 03/23/2008] [Indexed: 05/26/2023]
Abstract
Ground water contamination of arsenic in drinking water is a burning problem worldwide; especially in West Bengal (India) and Bangladesh. The main endeavor in this study was to assess the role of vitamin A (2.72 microM/7 ml culture), a naturally occurring antioxidant upon arsenic-induced genotoxicity; with respect to chromosomal aberrations (structural and numerical) and micronuclei. Whole blood cultures set for 72 h were exposed to test chemicals for a period of 24 h ahead of harvesting. Arsenic concentrations tested in the present study are 0.36, 0.72 and 1.4 microM/7 ml culture. Mitomycin C (MMC), the direct acting mutagen was used as positive control. Our data indicates that at concentrations tested, arsenic-induced increase in the mean frequencies of these genotoxic indices were diminished by vitamin A, indicating its protective role towards cells from arsenic exerted injury.
Collapse
Affiliation(s)
- G Avani
- Zoology Department, Gujarat University, Ahmedabad, India.
| | | |
Collapse
|
9
|
Kinobe RT, Dercho RA, Nakatsu K. Inhibitors of the heme oxygenase - carbon monoxide system: on the doorstep of the clinic? Can J Physiol Pharmacol 2008; 86:577-99. [PMID: 18758507 DOI: 10.1139/y08-066] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past decade has seen substantial developments in our understanding of the physiology, pathology, and pharmacology of heme oxygenases (HO), to the point that investigators in the field are beginning to contemplate therapies based on administration of HO agonists or HO inhibitors. A significant amount of our current knowledge is based on the judicious application of metalloporphyrin inhibitors of HO, despite their limitations of selectivity. Recently, imidazole-based compounds have been identified as potent and more selective HO inhibitors. This 'next generation' of HO inhibitors offers a number of desirable characteristics, including isozyme selectivity, negligible effects on HO protein expression, and physicochemical properties favourable for in vivo distribution. Some of the applications of HO inhibitors that have been suggested are treatment of hyperbilirubinemia, neurodegenerative disorders, certain types of cancer, and bacterial and fungal infections. In this review, we address various approaches to altering HO activity with a focus on the potential applications of second-generation inhibitors of HO.
Collapse
Affiliation(s)
- Robert T Kinobe
- Department of Pharmacology and Toxicology, Queen's University, Kingston, ON Canada
| | | | | |
Collapse
|
10
|
Chow JM, Huang GC, Lin HY, Shen SC, Yang LY, Chen YC. Cytotoxic effects of metal protoporphyrins in glioblastoma cells: Roles of albumin, reactive oxygen species, and heme oxygenase-1. Toxicol Lett 2008; 177:97-107. [DOI: 10.1016/j.toxlet.2008.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 12/24/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022]
|
11
|
Avani G, Rao MV. In vitro cytogenetic effects of Andrographis paniculata (kalmegh) on arsenic. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2008; 15:221-5. [PMID: 17482447 DOI: 10.1016/j.phymed.2007.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 03/20/2007] [Indexed: 05/15/2023]
Abstract
In vitro effects of arsenic in human peripheral lymphocytes (HPL) at three different doses - 3.6x10(-4), 1.4 x 10(-3) and 0.72 x 10(-3) microM for 24h before harvesting on sister chromatid exchanges (SCE), Cell cycle proliferative index/replicative index (CCPI/RI), %M(1), %M(2) and %M(3), population doubling time (PDT) and average generation time (AGT) were examined. Andrographis paniculata (commonly referred to as 'kalmegh') has been used for centuries in traditional Indian and Chinese herbal medicine as a safe, natural folk remedy for assorted health concerns. In the present study, kalmegh (0.01 microg/7ml culture media) was used along with the highest dose of arsenic; the results showed that arsenic induced increase in these genotoxic endpoints were fairly diminished by kalmegh. In addition, mutagenic in vitro effect of ethyl methanesulphonate (EMS) was used as a positive control in this study. It is thus concluded from this study that Andrographis has a protective role in arsenic toxicity.
Collapse
Affiliation(s)
- G Avani
- Department of Zoology, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad 380 009, Gujarat, India.
| | | |
Collapse
|
12
|
Avani G, Rao MV. Genotoxic effects in human lymphocytes exposed to arsenic and vitamin A. Toxicol In Vitro 2007; 21:626-31. [PMID: 17307329 DOI: 10.1016/j.tiv.2006.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 12/13/2006] [Accepted: 12/19/2006] [Indexed: 10/23/2022]
Abstract
Arsenic is a ubiquitous trace element and a well-established human carcinogen. In search for an 'antidote' to this global poison, this work was undertaken to study the probable beneficial effect of vitamin A upon arsenic induced genotoxicity. Peripheral blood lymphocyte culture was carried out to study the effects of arsenic at three different dose levels (0.5, 1 and 2 microg) for 24 h prior to harvesting. In addition, mutagenic in vitro effect of ethyl methanesulphonate was studied as a positive control. Genotoxic variables presented here are sister chromatid exchanges (SCE), cell cycle proliferative index/replicative index (CCPI/RI), average generation time (AGT) and population doubling time (PDT). Inevitably, arsenic treatment showed dose-dependent augmentation in the incidences of SCE and CCPI/RI together with AGT and PDT. However, vitamin A supplemented arsenic cultures demonstrated remarkable resurgence in the described genotoxic parameters. This data shows that vitamin A might be a useful interventional treatment in arsenic poisoning.
Collapse
Affiliation(s)
- G Avani
- Department of Zoology, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad 380 009, Gujarat, India.
| | | |
Collapse
|
13
|
Lee PC, Ho IC, Lee TC. Oxidative stress mediates sodium arsenite-induced expression of heme oxygenase-1, monocyte chemoattractant protein-1, and interleukin-6 in vascular smooth muscle cells. Toxicol Sci 2005; 85:541-50. [PMID: 15689417 DOI: 10.1093/toxsci/kfi101] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Arsenic exposure is associated with an increased risk of vascular disorders, and results in increased oxidative stress in endothelial cells and vascular smooth muscle cells (VSMCs). Since oxidative stress is involved in regulating the expression of genes related to atherogenesis, we investigated its involvement in the enhanced expression of three atherosclerosis-related genes coding for heme oxygenase-1 (HO-1), monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in VSMCs treated with inorganic sodium arsenite (iAs). In human VSMCs (hVSMCs) and rat VSMCs (rVSMCs), HO-1, MCP-1, and IL-6 mRNA levels were significantly increased by iAs treatment. An increase in HO-1 protein levels in hVSMCs was confirmed by Western blotting technique, while increased MCP-1 and IL-6 secretion by hVSMCs was demonstrated by enzyme-linked immunosorbent assay. Although modulators of oxidative stress inhibited this iAs-induced increase in the expression of these three genes, different modulators had differential effects. In iAs-treated rVSMCs, catalase, dimethylsulfoxide, and L-omega-nitro-L-arginine significantly inhibited the increase in expression of all three genes, allopurinol inhibited the increase in MCP-1 and IL-6 expression, but had no effect on HO-1 expression, while superoxide dismutase had no significant effect on HO-1 expression, but had an inhibitory effect on IL-6 expression and a stimulatory effect on MCP-1 expression. Therefore, iAs may enhance the expression of HO-1, MCP-1, and IL-6 in VSMCs via different reactive oxygen molecules. Furthermore, using tin protoporphyrin IX (SnPP) and anti-MCP-1 antibody to abolish iAs-induced HO-1 and MCP-1 activity, respectively, shows that HO-1 has protective effect against iAs-induced injury in VSMCs and MCP-1 is chemoattractive to human monocytes, THP-1.
Collapse
Affiliation(s)
- Pei-Chung Lee
- Institute of Biopharmaceutical Science, School of Life Sciences, National Yang-Ming University, Pei-Tou, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
14
|
Martínez V, Creus A, Venegas W, Arroyo A, Beck JP, Gebel TW, Surrallés J, Marcos R. Micronuclei assessment in buccal cells of people environmentally exposed to arsenic in northern Chile. Toxicol Lett 2005; 155:319-27. [PMID: 15603927 DOI: 10.1016/j.toxlet.2004.10.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 10/15/2004] [Accepted: 10/21/2004] [Indexed: 11/24/2022]
Abstract
To determine the genotoxic risk associated to environmental arsenic exposure, the frequency of micronuclei in buccal cells (BCMN) of people drinking arsenic-contaminated water has been evaluated. A group of 105 individuals from the Antofagasta region (north Chile), and 102 individuals from the area of Concepcion, used as reference group, were included in the study. Arsenic concentration in drinking water was high (0.75 mg/L) in the Antofagasta area, 75-fold the maximum recommended level by WHO (0.01 mg/L), while the values obtained in Concepcion were significantly lower (0.002 mg/L). Individual measures of arsenic exposure were also determined in fingernails, which clearly confirm the existence of chronic exposure in the sampled populations from the Antofagasta region (10.15 microg/g versus 3.57 microg/g). The cytogenetic results indicate that, although the BCMN frequency is higher in exposed than in controls, this increase does not attain statistical significance. When the exposure biomarkers were related with the cytogenetic values, no correlations were observed between BCMN and arsenic content in water or in fingernails. In addition, the genotoxicity values do not seem to be related to the ethnic origin from people belonging to the exposed group. As a conclusion it appears that, in the studied population, the chronic ingestion of arsenic-contaminated water does not induce cytogenetic damage, measured as micronuclei, in the cells of the oral mucous in a significant extent.
Collapse
Affiliation(s)
- V Martínez
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Edifici Cn, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Martínez V, Creus A, Venegas W, Arroyo A, Beck JP, Gebel TW, Surrallés J, Marcos R. Evaluation of micronucleus induction in a Chilean population environmentally exposed to arsenic. Mutat Res 2004; 564:65-74. [PMID: 15474412 DOI: 10.1016/j.mrgentox.2004.07.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 07/19/2004] [Accepted: 07/22/2004] [Indexed: 11/21/2022]
Abstract
In the present study we have evaluated whether or not environmental exposure to arsenic in ground drinking-water results in a significant increase in the frequency of micronuclei (MN) in peripheral blood lymphocytes. Thus, 106 individuals from the Antofagasta region (North Chile), together with 111 individuals from the area of Concepción, were used in this investigation. In the Antofagasta area, arsenic levels in drinking-water as high as 0.750 mg/L were measured. In Concepción, located about 2500 km towards the south and used as reference area, arsenic levels in tap water were as low as 0.002 mg/L. The total content of arsenic in fingernails was determined as a biomarker of individual exposure. The cytogenetic results obtained in this study indicate that in the exposed group the overall frequency of binucleated micronucleated cells (BNMN) is higher than in the reference group, the difference being statistically significant. In addition, no differences were found between the exposed and the reference groups, regarding the cytokinesis-block proliferation index (CBPI). No association was observed between BNMN and arsenic content in water or arsenic in fingernails. On the other hand, when the exposed group was divided according to their Atacameno or Caucasian ethnicity, no significant differences were observed between them. In addition, as usually found in other human biomonitoring studies, sex and age are factors that modulate the frequency of MN in both exposed and reference populations.
Collapse
Affiliation(s)
- V Martínez
- Departament de Genètica i de Microbiologia, Grup de Mutagènesi, Facultat de Ciències, Universitat Autònoma de Barcelona, Edifici Cn, Cerdanyola del Vallès, Bellaterra 08193, Spain
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Grant DJ, Hall IJ, Eastmond DA, Jones IM, Bell DA. Bilirubin UDP-glucuronosyltransferase 1A1 (UGT1A1) gene promoter polymorphisms and HPRT, glycophorin A, and micronuclei mutant frequencies in human blood. Mutat Res 2004; 560:1-10. [PMID: 15099818 DOI: 10.1016/j.mrgentox.2004.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 12/22/2003] [Accepted: 01/29/2004] [Indexed: 11/21/2022]
Abstract
A dinucleotide repeat polymorphism (5-, 6-, 7-, or 8-TA units) has been identified within the promoter region of UDP-glucuronosyltransferase 1A1 (UGT1A1) gene. The 7-TA repeat allele has been associated with elevated serum bilirubin levels that cause a mild hyperbilirubinemia (Gilbert's syndrome). Studies suggest that promoter transcriptional activity of UGT1A1 is inversely related to the number of TA repeats, and that unconjugated bilirubin concentration increases directly with the number of TA repeat elements. Because bilirubin is a known antioxidant, we hypothesized that UGT1A1 repeats associated with higher bilirubin may be protective against oxidative damage. We examined the effect of UGT1A1 genotype on somatic mutant frequency in the hypoxanthine-guanine phosphoribosyl-transferase (HPRT) gene in human lymphocytes and the glycophorin A (GPA) gene of red blood cells (both N0, NN mutants), and the frequency of lymphocyte micronuclei (both kinetochore (K)-positive or micronuclei K-negative) in 101 healthy smoking and nonsmoking individuals. As hypothesized, genotypes containing 7- and 8-TA displayed marginally lower GPA_NN mutant frequency relative to 5/5, 5/6, 6/6 genotypes ( [Formula: see text] ). In contrast, our analysis showed that lower expressing UGT1A1 alleles (7- and 8-TA) were associated with modestly increased HPRT mutation frequency ( [Formula: see text] ), while the same low-expression genotypes were not significantly associated with micronuclei frequencies (K-positive or K-negative) when compared to high-expression genotypes (5- and 6-TA). We found weak evidence that UGT1A1 genotypes containing 7- and 8-TA were associated with increased GPA_NØ mutant frequency relative to 5/5, 5/6, 6/6 genotypes ( [Formula: see text] ). These data suggest that UGT1A1 genotype may modulate somatic mutation of some types, in some cell lineages, by a mechanism not involving bilirubin antioxidant activity. More detailed studies examining UGT1A1 promoter variation, oxidant/antioxidant balance and genetic damage will be needed.
Collapse
Affiliation(s)
- Delores J Grant
- Environmental Genomics Section, Laboratory of Computational Biology and Risk Assessment, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
17
|
Yang Y, Ohta K, Shimizu M, Morimoto K, Goto C, Nakai A, Toma T, Kasahara Y, Yachie A, Seki H, Koizumi S. Selective protection of renal tubular epithelial cells by heme oxygenase (HO)-1 during stress-induced injury. Kidney Int 2003; 64:1302-9. [PMID: 12969148 DOI: 10.1046/j.1523-1755.2003.00231.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The renal pathology of human heme oxygenase (HO)-1 deficiency is characterized by advanced tubulointerstitial injury, whereas the glomerular structures are affected little. These facts suggest that the renal tubuli are dependent on intrinsic HO-1 production for their survival under oxidative stresses. METHODS We compared the patterns of HO-1 expression by primary cultured human mesangial cells (HMCs) and renal proximal tubular epithelial cells (HRPTECs) in vitro. Furthermore, the cytoprotective roles of HO-1 induced in these cells were evaluated by stress-induced cytotoxicity assays. HO-1 expressions in HRPTECs and HMCs were evaluated by immunoblotting, and by reverse transcriptase (RT) and/or real time polymerase chain reaction (PCR). RESULTS In HRPTECs, both HO-1 mRNA expression and protein production peaked at around 12 h and persisted until 24 h after hemin stimulation. In contrast, HO-1 mRNA expression and protein production by HMCs peaked at 4 h and 6 h respectively, and the levels declined rapidly, being undetectable at 24 h. The peak level of HO-1 expression was significantly higher in HRPTECs than in HMCs. Oxidative stress-induced cell injury in HRPTECs was significantly reduced when HO-1 production had been induced prior to the culture. In contrast, HO-1 induction had little cytoprotective effect on HMCs. Tin protoporphyrin (SnPP), an inhibitor of HO function, significantly reversed the cytoprotection by HO-1. CONCLUSION These data suggest that HRPTECs are more susceptible to oxidative stress and are significantly more dependent on HO-1 for protection against noxious stimuli than HMCs. Collectively, these results indicate that HO-1 is an important protective factor for kidney tissue, in particular, renal tubular epithelial cells.
Collapse
Affiliation(s)
- Yonghong Yang
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shen ZY, Shen WY, Chen MH, Shen J, Cai WJ, Yi Z. Nitric oxide and calcium ions in apoptotic esophageal carcinoma cells induced by arsenite. World J Gastroenterol 2002; 8:40-3. [PMID: 11833068 PMCID: PMC4656622 DOI: 10.3748/wjg.v8.i1.40] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To Quantitatively analyze the nitri oxide (NO) and Ca2+ in apoptosis of esophageal carcinoma cells induced by arsenic trioxide (As2O3).
METHODS: The cell line SHEEC1, a malignant esophageal epithelial cell induced by HPV in synergy with TPA in our laboratory, was cultured in a serum-free medium and treated with As2O3. Before and after administration of As2O3, NO production in cultured medium was detected quantitatively using the Griess Colorimetric method. Intracellular Ca2+ was labeled by using the fluorescent dye Fluo3-AM and detected under confocal laser scanning microscope (CLSM), which was able to acquire data in real-time enabling Ca2+ dynamics of individual cells in vitro. The apoptotic cells were examined under electron microscopy.
RESULTS: Intracellular concentration of Ca2+ increased from 1.00 units to 1.09-1.38 units of fluorescent intensity at As2O3 treatment and NO products subsequently released from As2O3-treated cells increased from 0.98-1.00 × 10-2μmol·L-1 up to 1.48-1.52 × 10-2μmol·L-1 and maintained in a high level continuously. Finally apoptosis of cells occurred, chromatin being agglutinated, cells shrunk, nuclei became round and mitochondria swelled.
CONCLUSION: Ca2+ and NO increased with cell damage and apoptosis in cells treated by As2O3. The Ca2+ is an initial messenger to the apoptotic pathway. To investigate Ca2+ and NO will be a new direction for studying the apoptotic signaling messenger of the esophageal carcinoma cells induced by As2O3.
Collapse
Affiliation(s)
- Zhong-Ying Shen
- Department of Pathology, Medical College of Shantou University, 22 Xinling Road, Shantou 515031, Guandong Province, China.
| | | | | | | | | | | |
Collapse
|
19
|
Ho IC, Lee TC. Arsenite pretreatment attenuates benzo[a]pyrene cytotoxicity in a human lung adenocarcinoma cell line by decreasing cyclooxygenase-2 levels. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2002; 65:245-263. [PMID: 11911489 DOI: 10.1080/15287390252800846] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Both simultaneous and sequential exposure to arsenite and benzo[a]pyrene (BaP) potentially occur in human populations drinking arsenic-contaminated water or burning arsenic-contaminated coal. Although arsenite and BaP are both well-documented hazardous substances and human carcinogens, interactions between these two agents have not been well defined. In this study, we demonstrated that posttreatment with arsenite synergistically enhanced the cytotoxicity of BaP for a human lung adenocarcinoma cell line, CL3. In contrast, pretreatment of CL3 cells with arsenite attenuated BaP cytotoxicity. Involvement of heat-shock protein 70 and heme oxygenase-1 in this arsenite-mediated attenuation of BaP cytotoxicity was ruled out. Our data also indicated that arsenite pretreatment did not affect the BaP-mediated induction of CYP1A1, the initial enzyme involved in its metabolic activation, but did result in a significant decrease in mRNA and protein levels of cyclooxygenase-2 (COX-2), which is required to convert the BaP metabolite BaP 7,8-dihydrodiol to the ultimate epoxide. In contrast to the high susceptibility of CL3 cells to BaP, the human lung carcinoma cells, H460, and CL3R15 cells (arsenic-resistant CL3 cells) showed normal CYP1A1 inducibility by BaP, had negligible amounts of COX-2, and were highly resistant to BaP. The involvement of COX-2 in BaP activation was confirmed by transfection of H460 cells with a recombinant adenovirus, Ad-pgk-Cox2, coding for COX-2, which resulted in a significant increase in the levels of the COX-2 product prostaglandin E2 in the medium and in the susceptibility of H460 cells to BaP. The present study confirms the importance of COX-2 in BaP activation and demonstrates that the arsenite-mediated attenuation of BaP cytotoxicity is mediated by a reduction in COX-2 levels.
Collapse
Affiliation(s)
- I-Ching Ho
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | | |
Collapse
|