1
|
Levman J, McCann B, Baumer N, Lam MY, Shiohama T, Cogger L, MacDonald A, Takahashi E. Structural Magnetic Resonance Imaging-Based Surface Morphometry Analysis of Pediatric Down Syndrome. BIOLOGY 2024; 13:575. [PMID: 39194513 DOI: 10.3390/biology13080575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Down syndrome (DS) is a genetic disorder characterized by intellectual disability whose etiology includes an additional partial or full copy of chromosome 21. Brain surface morphometry analyses can potentially assist in providing a better understanding of structural brain differences, and may help characterize DS-specific neurodevelopment. We performed a retrospective surface morphometry study of 73 magnetic resonance imaging (MRI) examinations of DS patients (aged 1 day to 22 years) and compared them to a large cohort of 993 brain MRI examinations of neurotypical participants, aged 1 day to 32 years. Surface curvature measurements, absolute surface area measurements, and surface areas as a percentage of total brain surface area (%TBSA) were extracted from each brain region in each examination. Results demonstrate broad reductions in surface area and abnormalities of surface curvature measurements across the brain in DS. After adjusting our regional surface area measurements as %TBSA, abnormally increased presentation in DS relative to neurotypical controls was observed in the left precentral, bilateral entorhinal, left parahippocampal, and bilateral perirhinal cortices, as well as Brodmann's area 44 (left), and the right temporal pole. Findings suggest the presence of developmental abnormalities of regional %TBSA in DS that can be characterized from clinical MRI examinations.
Collapse
Affiliation(s)
- Jacob Levman
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Boston, MA 02129, USA
- Nova Scotia Health Authority, Halifax, NS B3H 1V8, Canada
| | - Bernadette McCann
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Nicole Baumer
- Department of Neurology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Melanie Y Lam
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Liam Cogger
- Department of Education, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Allissa MacDonald
- Department of Biology, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Emi Takahashi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Boston, MA 02129, USA
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA 02215, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Murphy AJ, Wilton SD, Aung-Htut MT, McIntosh CS. Down syndrome and DYRK1A overexpression: relationships and future therapeutic directions. Front Mol Neurosci 2024; 17:1391564. [PMID: 39114642 PMCID: PMC11303307 DOI: 10.3389/fnmol.2024.1391564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Down syndrome is a genetic-based disorder that results from the triplication of chromosome 21, leading to an overexpression of many triplicated genes, including the gene encoding Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A). This protein has been observed to regulate numerous cellular processes, including cell proliferation, cell functioning, differentiation, and apoptosis. Consequently, an overexpression of DYRK1A has been reported to result in cognitive impairment, a key phenotype of individuals with Down syndrome. Therefore, downregulating DYRK1A has been explored as a potential therapeutic strategy for Down syndrome, with promising results observed from in vivo mouse models and human clinical trials that administered epigallocatechin gallate. Current DYRK1A inhibitors target the protein function directly, which tends to exhibit low specificity and selectivity, making them unfeasible for clinical or research purposes. On the other hand, antisense oligonucleotides (ASOs) offer a more selective therapeutic strategy to downregulate DYRK1A expression at the gene transcript level. Advances in ASO research have led to the discovery of numerous chemical modifications that increase ASO potency, specificity, and stability. Recently, several ASOs have been approved by the U.S. Food and Drug Administration to address neuromuscular and neurological conditions, laying the foundation for future ASO therapeutics. The limitations of ASOs, including their high production cost and difficulty delivering to target tissues can be overcome by further advances in ASO design. DYRK1A targeted ASOs could be a viable therapeutic approach to improve the quality of life for individuals with Down syndrome and their families.
Collapse
Affiliation(s)
- Aidan J. Murphy
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - May T. Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Craig S. McIntosh
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
3
|
Erdemli Gürsel B, Ercan İ, Şahin İ, Öngen G. Morphometric Shape Analysis of Corpus Callosum in Children With Down Syndrome. Clin Pediatr (Phila) 2024; 63:815-821. [PMID: 37650518 DOI: 10.1177/00099228231196933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Down syndrome (DS) is characterized by varying degrees of mental retardation and delay in neurocognitive functions. Herein, we analyzed the morphometric shape of the corpus callosum (CC) in children with DS. Twenty-three DS cases underwent magnetic resonance imaging and have grossly normal CC, and 23 control group cases were included in this retrospective study (2012-2020). The CC was obtained from T2-weighted mid-sagittal images, and certain anatomical points were marked on the CC. Statistical geometric shapes and deformations of CC were evaluated for both groups. The age range of patients with DS and control group was 6 to 42 months. A statistically significant difference was found in the shape of CC between the groups (P < .001). Deformation was most evident in the splenium in the DS group.
Collapse
Affiliation(s)
- Başak Erdemli Gürsel
- Department of Radiology, Bursa Uludağ University Faculty of Medicine, Bursa, Turkey
| | - İlker Ercan
- Department of Biostatistics, Bursa Uludağ University Faculty of Medicine, Bursa, Turkey
| | - İbrahim Şahin
- Department of Biostatistics, Bursa Uludağ University Institute of Health Sciences, Bursa, Turkey
| | - Gökhan Öngen
- Department of Radiology, Bursa Uludağ University Faculty of Medicine, Bursa, Turkey
| |
Collapse
|
4
|
Llambrich S, Tielemans B, Saliën E, Atzori M, Wouters K, Van Bulck V, Platt M, Vanherp L, Gallego Fernandez N, Grau de la Fuente L, Poptani H, Verlinden L, Himmelreich U, Croitor A, Attanasio C, Callaerts-Vegh Z, Gsell W, Martínez-Abadías N, Vande Velde G. Pleiotropic effects of trisomy and pharmacologic modulation on structural, functional, molecular, and genetic systems in a Down syndrome mouse model. eLife 2024; 12:RP89763. [PMID: 38497812 PMCID: PMC10948151 DOI: 10.7554/elife.89763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Down syndrome (DS) is characterized by skeletal and brain structural malformations, cognitive impairment, altered hippocampal metabolite concentration and gene expression imbalance. These alterations were usually investigated separately, and the potential rescuing effects of green tea extracts enriched in epigallocatechin-3-gallate (GTE-EGCG) provided disparate results due to different experimental conditions. We overcame these limitations by conducting the first longitudinal controlled experiment evaluating genotype and GTE-EGCG prenatal chronic treatment effects before and after treatment discontinuation. Our findings revealed that the Ts65Dn mouse model reflected the pleiotropic nature of DS, exhibiting brachycephalic skull, ventriculomegaly, neurodevelopmental delay, hyperactivity, and impaired memory robustness with altered hippocampal metabolite concentration and gene expression. GTE-EGCG treatment modulated most systems simultaneously but did not rescue DS phenotypes. On the contrary, the treatment exacerbated trisomic phenotypes including body weight, tibia microarchitecture, neurodevelopment, adult cognition, and metabolite concentration, not supporting the therapeutic use of GTE-EGCG as a prenatal chronic treatment. Our results highlight the importance of longitudinal experiments assessing the co-modulation of multiple systems throughout development when characterizing preclinical models in complex disorders and evaluating the pleiotropic effects and general safety of pharmacological treatments.
Collapse
Affiliation(s)
- Sergi Llambrich
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Birger Tielemans
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Ellen Saliën
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Marta Atzori
- Department of Human Genetics, KU LeuvenLeuvenBelgium
| | - Kaat Wouters
- Laboratory of Biological Psychology, KU LeuvenLeuvenBelgium
| | | | - Mark Platt
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of LiverpoolLiverpoolUnited Kingdom
| | - Laure Vanherp
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Nuria Gallego Fernandez
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de BarcelonaBarcelonaSpain
| | - Laura Grau de la Fuente
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de BarcelonaBarcelonaSpain
| | - Harish Poptani
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of LiverpoolLiverpoolUnited Kingdom
| | - Lieve Verlinden
- Clinical and Experimental Endocrinology, KU LeuvenLeuvenBelgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Anca Croitor
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | | | | | - Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Neus Martínez-Abadías
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de BarcelonaBarcelonaSpain
| | | |
Collapse
|
5
|
Jain A, Boyd NK, Paulsen KC, Vogel BN, Nguyen L, Santoro JD. Ophthalmologic and neuro-ophthalmologic findings in children with Down syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2023; 193:e32068. [PMID: 37794641 DOI: 10.1002/ajmg.c.32068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Down syndrome, also known as Trisomy 21, is a genetic disorder associated with mild-to-moderate intellectual disability, delays in growth, and characteristic facial features. A wide range of ocular complications are seen in children with Down syndrome, including strabismus, nystagmus, refractive errors, congenital cataracts, the presence of keratoconus, and decreased visual acuity. Early ophthalmic examination is needed for early diagnosis and treatment in patients. This narrative review examines ocular manifestations in children with Down syndrome and the importance of prompt ophthalmic interventions for treatment.
Collapse
Affiliation(s)
| | - Natalie K Boyd
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Kelli C Paulsen
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Benjamin N Vogel
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Lina Nguyen
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Jonathan D Santoro
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
6
|
Peng M, Lovos A, Bottrill K, Hughes K, Sampsel M, Lee NR, Abbeduto L, Thurman AJ, Edgin J. Extended trajectory of spatial memory errors in typical and atypical development: The role of binding and precision. Hippocampus 2023; 33:1171-1188. [PMID: 37706613 PMCID: PMC10638674 DOI: 10.1002/hipo.23576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/06/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023]
Abstract
Spatial reconstruction, a method for evaluating how individuals remember the placement of objects, has traditionally been evaluated through the aggregate estimation of placement errors. However, this approach may obscure the nature of task errors. Specifically, recent data has suggested the importance of examining the precision of responses, as well as absolute performance on item-context bindings. In contrast to traditional analysis approaches based on the distance between the target and the reconstructed item, in this study we further explored three types of errors (swap error, global error, and local distance) that may all contribute to the distance, with particular emphasis on swap errors and local distance due to their associations with item-context bindings and memory precision, respectively. We examined these errors in children aged 3-18 years, making comparisons between children with typical development (TD) and children with Down syndrome (DS), a population with known memory challenges. As expected, older children outperformed younger children in terms of overall memory accuracy. Of importance is that we measured uneven maturational trajectories of memory abilities across the various error types. Specifically, both remembered locations (irrespective of object identity) and swap errors (object-location binding errors) align with the overall memory accuracy. Memory precision, as measured by local distance in simpler set size 2 trials, mirrored overall memory accuracy. However, for more complex set size 3 trials, local distance remained stable before age 8 and showed age-related change thereafter. The group with DS showed reduced precision compared to a TD matched group, and measures of precision, and to a lesser extent binding errors, correlated with standard neuropsychological outcomes. Overall, our study contributed to a fine-grained understanding of developing spatial memory ability in a large sample of typical developing children and a memory impaired population. These findings contribute to a growing body of research examining precision as a key factor in memory performance.
Collapse
Affiliation(s)
- Maomiao Peng
- Department of Psychology, The University of Arizona, Tucson, USA
| | - Annalysa Lovos
- Department of Psychology, The University of Arizona, Tucson, USA
| | - Kenneth Bottrill
- Department of Psychology, The University of Arizona, Tucson, USA
| | - Katharine Hughes
- Department of Psychology, The University of Arizona, Tucson, USA
| | - Miranda Sampsel
- Department of Psychology, The University of Arizona, Tucson, USA
| | - Nancy Raitano Lee
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, USA
| | - Leonard Abbeduto
- MIND Institute, University of California Davis Health, Sacramento, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis Health, Sacramento, USA
| | - Angela John Thurman
- MIND Institute, University of California Davis Health, Sacramento, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis Health, Sacramento, USA
| | - Jamie Edgin
- Department of Psychology, The University of Arizona, Tucson, USA
| |
Collapse
|
7
|
Hamadelseed O, Skutella T. Correlating MRI-based brain volumetry and cognitive assessment in people with Down syndrome. Brain Behav 2023; 13:e3186. [PMID: 37496380 PMCID: PMC10570489 DOI: 10.1002/brb3.3186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
INTRODUCTION Down syndrome (DS) is the most common genetic cause of intellectual disability. Children and adults with DS show deficits in language performance and explicit memory. Here, we used magnetic resonance imaging (MRI) on children and adults with DS to characterize changes in the volume of specific brain structures involved in memory and language and their relationship to features of cognitive-behavioral phenotypes. METHODS Thirteen children and adults with the DS phenotype and 12 age- and gender-matched healthy controls (age range 4-25) underwent an assessment by MRI and a psychological evaluation for language and cognitive abilities. RESULTS The cognitive profile of people with DS showed deficits in different cognition and language domains correlating with reduced volumes of specific regional and subregional brain structures, confirming previous related studies. Interestingly, in our study, people with DS also showed more significant parahippocampal gyrus volumes, in agreement with the results found in earlier reports. CONCLUSIONS The memory functions and language skills affected in studied individuals with DS correlate significantly with the reduced volume of specific brain regions, allowing us to understand DS's cognitive-behavioral phenotype. Our results provide an essential basis for early intervention and the design of rehabilitation management protocols.
Collapse
Affiliation(s)
- Osama Hamadelseed
- Department of Neuroanatomy, Institute of Anatomy and Cell BiologyUniversity of HeidelbergHeidelbergGermany
| | - Thomas Skutella
- Department of Neuroanatomy, Institute of Anatomy and Cell BiologyUniversity of HeidelbergHeidelbergGermany
| |
Collapse
|
8
|
Wagner MW, Bernhard N, Mndebele G, Vidarsson L, Ertl-Wagner BB. Volumetric differences of thalamic nuclei in children with trisomy 21. Neuroradiol J 2023; 36:581-587. [PMID: 36942548 PMCID: PMC10569191 DOI: 10.1177/19714009231166100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
OBJECTIVES Histological studies have shown alterations of thalamic nuclei in patients with Down syndrome (DS). The correlation of these changes on MRI (magnetic resonance imaging) is unclear. Therefore, this study investigates volumetric differences of thalamic nuclei in children with DS compared to controls. METHODS Patients were retrospectively identified between 01/2000 and 10/2021. Patient inclusion criteria were: (1) 0-18 years of age, (2) diagnosis of DS, and (3) availability of a brain MRI without parenchymal injury and a non-motion-degraded volumetric T1-weighted sequence. Whole thalamus and thalamic nuclei (n = 25) volumes were analyzed bilaterally relative to the total brain volume (TBV). Two-sided t-tests were used to evaluate differences between groups. Differences were considered significant if the adjusted p-value was <0.05 after correction for multiple hypothesis testing using the Holm-Bonferroni method. RESULTS 21 children with DS (11 females, 52.4%, mean age: 8.6 ± 4.3 years) and 63 age- and sex-matched controls (32 females, 50.8%, 8.6 ± 4.3 years) were studied using automated volumetric segmentation. Significantly smaller ratios were found for nine thalamic nuclei and the whole thalamus on the right and five thalamic nuclei on the left. TBV was significantly smaller in patients with DS (p < 0.001). No significant differences were found between the groups for age and sex. CONCLUSIONS In this exploratory volumetric analysis of the thalamus and thalamic nuclei, we observed statistically significant volumetric changes in children with DS. Our findings confirm prior neuroimaging and histological studies and extend the range of involved thalamic nuclei in pediatric DS.
Collapse
Affiliation(s)
- Matthias W Wagner
- Department of Diagnostic Imaging, Division of Neuroradiology, The Hospital for Sick Children, Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Nirit Bernhard
- The Hospital for Sick Children Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Gopolang Mndebele
- Department of Diagnostic Imaging, Division of Neuroradiology, The Hospital for Sick Children, Department of Medical Imaging, University of Toronto, Toronto, Canada
- Department of Diagnostic Imaging, Nelson Mandela Children’s Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | - Logi Vidarsson
- Department of Diagnostic Imaging, Division of Neuroradiology, The Hospital for Sick Children, Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Birgit B Ertl-Wagner
- Department of Diagnostic Imaging, Division of Neuroradiology, The Hospital for Sick Children, Department of Medical Imaging, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
Hamadelseed O, Chan MKS, Wong MBF, Skutella T. Distinct neuroanatomical and neuropsychological features of Down syndrome compared to related neurodevelopmental disorders: a systematic review. Front Neurosci 2023; 17:1225228. [PMID: 37600012 PMCID: PMC10436105 DOI: 10.3389/fnins.2023.1225228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Objectives We critically review research findings on the unique changes in brain structure and cognitive function characteristic of Down syndrome (DS) and summarize the similarities and differences with other neurodevelopmental disorders such as Williams syndrome, 22q11.2 deletion syndrome, and fragile X syndrome. Methods We conducted a meta-analysis and systematic literature review of 84 studies identified by searching PubMed, Google Scholar, and Web of Science from 1977 to October 2022. This review focuses on the following issues: (1) specific neuroanatomic and histopathological features of DS as revealed by autopsy and modern neuroimaging modalities, (2) language and memory deficits in DS, (3) the relationships between these neuroanatomical and neuropsychological features, and (4) neuroanatomic and neuropsychological differences between DS and related neurodevelopmental syndromes. Results Numerous post-mortem and morphometric neuroimaging investigations of individuals with DS have reported complex changes in regional brain volumes, most notably in the hippocampal formation, temporal lobe, frontal lobe, parietal lobe, and cerebellum. Moreover, neuropsychological assessments have revealed deficits in language development, emotional regulation, and memory that reflect these structural changes and are more severe than expected from general cognitive dysfunction. Individuals with DS also show relative preservation of multiple cognitive, linguistic, and social domains compared to normally developed controls and individuals with other neurodevelopmental disorders. However, all these neurodevelopment disorders exhibit substantial heterogeneity among individuals. Conclusion People with Down syndrome demonstrate unique neurodevelopmental abnormalities but cannot be regarded as a homogenous group. A comprehensive evaluation of individual intellectual skills is essential for all individuals with neurodevelopment disorders to develop personalized care programs.
Collapse
Affiliation(s)
- Osama Hamadelseed
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Mike K. S. Chan
- EW European Wellness Academy GmbH, Edenkoben, Germany
- Baden R&D Laboratories GmbH, Edenkoben, Germany
| | - Michelle B. F. Wong
- EW European Wellness Academy GmbH, Edenkoben, Germany
- Baden R&D Laboratories GmbH, Edenkoben, Germany
- Stellar Biomolecular Research GmbH, Edenkoben, Germany
| | - Thomas Skutella
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Fukami-Gartner A, Baburamani AA, Dimitrova R, Patkee PA, Ojinaga-Alfageme O, Bonthrone AF, Cromb D, Uus AU, Counsell SJ, Hajnal JV, O’Muircheartaigh J, Rutherford MA. Comprehensive volumetric phenotyping of the neonatal brain in Down syndrome. Cereb Cortex 2023; 33:8921-8941. [PMID: 37254801 PMCID: PMC10350827 DOI: 10.1093/cercor/bhad171] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 06/01/2023] Open
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual disability with a wide range of neurodevelopmental outcomes. To date, there have been very few in vivo neuroimaging studies of the neonatal brain in DS. In this study we used a cross-sectional sample of 493 preterm- to term-born control neonates from the developing Human Connectome Project to perform normative modeling of regional brain tissue volumes from 32 to 46 weeks postmenstrual age, accounting for sex and age variables. Deviation from the normative mean was quantified in 25 neonates with DS with postnatally confirmed karyotypes from the Early Brain Imaging in DS study. Here, we provide the first comprehensive volumetric phenotyping of the neonatal brain in DS, which is characterized by significantly reduced whole brain, cerebral white matter, and cerebellar volumes; reduced relative frontal and occipital lobar volumes, in contrast with enlarged relative temporal and parietal lobar volumes; enlarged relative deep gray matter volume (particularly the lentiform nuclei); and enlargement of the lateral ventricles, amongst other features. In future, the ability to assess phenotypic severity at the neonatal stage may help guide early interventions and, ultimately, help improve neurodevelopmental outcomes in children with DS.
Collapse
Affiliation(s)
- Abi Fukami-Gartner
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, United Kingdom
| | - Ana A Baburamani
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Ralica Dimitrova
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, United Kingdom
| | - Prachi A Patkee
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Olatz Ojinaga-Alfageme
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London WC1E 7HX, United Kingdom
| | - Alexandra F Bonthrone
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Alena U Uus
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, United Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, United Kingdom
| | - Jonathan O’Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, United Kingdom
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, United Kingdom
| |
Collapse
|
11
|
Csumitta KD, Gotts SJ, Clasen LS, Martin A, Raitano Lee N. Youth with Down syndrome display widespread increased functional connectivity during rest. Sci Rep 2022; 12:9836. [PMID: 35701489 PMCID: PMC9198034 DOI: 10.1038/s41598-022-13437-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/16/2022] [Indexed: 12/31/2022] Open
Abstract
Studies of resting-state functional connectivity in young people with Down syndrome (DS) have yielded conflicting results. Some studies have found increased connectivity while others have found a mix of increased and decreased connectivity. No studies have examined whole-brain connectivity at the voxel level in youth with DS during an eyes-open resting-state design. Additionally, no studies have examined the relationship between connectivity and network selectivity in youth with DS. Thus, the current study sought to fill this gap in the literature. Nineteen youth with DS (Mage = 16.5; range 7-23; 13 F) and 33 typically developing (TD) youth (Mage = 17.5; range 6-24; 18 F), matched on age and sex, completed a 5.25-min eyes-open resting-state fMRI scan. Whole-brain functional connectivity (average Pearson correlation of each voxel with every other voxel) was calculated for each individual and compared between groups. Network selectivity was then calculated and correlated with functional connectivity for the DS group. Results revealed that whole-brain functional connectivity was significantly higher in youth with DS compared to TD controls in widespread regions throughout the brain. Additionally, participants with DS had significantly reduced network selectivity compared to TD peers, and selectivity was significantly related to connectivity in all participants. Exploratory behavioral analyses revealed that regions showing increased connectivity in DS predicted Verbal IQ, suggesting differences in connectivity may be related to verbal abilities. These results indicate that network organization is disrupted in youth with DS such that disparate networks are overly connected and less selective, suggesting a potential target for clinical interventions.
Collapse
Affiliation(s)
- Kelsey D Csumitta
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, 19103, USA.
| | - Stephen J Gotts
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Liv S Clasen
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Alex Martin
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Nancy Raitano Lee
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, 19103, USA.
| |
Collapse
|
12
|
McCann B, Levman J, Baumer N, Lam MY, Shiohama T, Cogger L, MacDonald A, Ijner P, Takahashi E. Structural magnetic resonance imaging demonstrates volumetric brain abnormalities in down syndrome: Newborns to young adults. Neuroimage Clin 2021; 32:102815. [PMID: 34520978 PMCID: PMC8441087 DOI: 10.1016/j.nicl.2021.102815] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/29/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022]
Abstract
Down syndrome (DS) is a genetic disorder caused by the presence of an extra full or partial copy of chromosome 21 and characterized by intellectual disability. We hypothesize that performing a retrospective analysis of 73 magnetic resonance imaging (MRI) examinations of participants with DS (aged 0 to 22 years) and comparing them to a large cohort of 993 brain MRI examinations of neurotypical participants (aged 0 to 32 years), will assist in better understanding what brain differences may explain phenotypic developmental features in DS, as well as to provide valuable confirmation of prospective literature findings clinically. Measurements for both absolute volumes and volumes corrected as a percentage of estimated total intracranial volume (%ETIV) were extracted from each examination. Our results presented novel findings such as volume increases (%ETIV) in the perirhinal cortex, entorhinal cortex, choroid plexus, and Brodmann's areas (BA) 3a, 3b, and 44, as well as volume decreases (%ETIV) in the white matter of the cuneus, the paracentral lobule, the postcentral gyrus, and the supramarginal gyrus. We also confirmed volumetric brain abnormalities previously discussed in the literature. Findings suggest the presence of volumetric brain abnormalities in DS that can be detected clinically with MRI.
Collapse
Affiliation(s)
- Bernadette McCann
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Jacob Levman
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada.
| | - Nicole Baumer
- Department of Neurology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Melanie Y Lam
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Liam Cogger
- Department of Education, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Allissa MacDonald
- Department of Biology, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Prahar Ijner
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, 401 Park Dr., Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Suite 2301, Charlestown, MA 02129, USA
| |
Collapse
|
13
|
Moreno DG, Utagawa EC, Arva NC, Schafernak KT, Mufson EJ, Perez SE. Postnatal Cytoarchitecture and Neurochemical Hippocampal Dysfunction in Down Syndrome. J Clin Med 2021; 10:jcm10153414. [PMID: 34362198 PMCID: PMC8347520 DOI: 10.3390/jcm10153414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022] Open
Abstract
Although the prenatal hippocampus displays deficits in cellular proliferation/migration and volume, which are later associated with memory deficits, little is known about the effects of trisomy 21 on postnatal hippocampal cellular development in Down syndrome (DS). We examined postnatal hippocampal neuronal profiles from autopsies of DS and neurotypical (NTD) neonates born at 38-weeks’-gestation up to children 3 years of age using antibodies against non-phosphorylated (SMI-32) and phosphorylated (SMI-34) neurofilament, calbindin D-28k (Calb), calretinin (Calr), parvalbumin (Parv), doublecortin (DCX) and Ki-67, as well as amyloid precursor protein (APP), amyloid beta (Aβ) and phosphorylated tau (p-tau). Although the distribution of SMI-32-immunoreactive (-ir) hippocampal neurons was similar at all ages in both groups, pyramidal cell apical and basal dendrites were intensely stained in NTD cases. A greater reduction in the number of DCX-ir cells was observed in the hippocampal granule cell layer in DS. Although the distribution of Calb-ir neurons was similar between the youngest and oldest NTD and DS cases, Parv-ir was not detected. Conversely, Calr-ir cells and fibers were observed at all ages in DS, while NTD cases displayed mainly Calr-ir fibers. Hippocampal APP/Aβ-ir diffuse-like plaques were seen in DS and NTD. By contrast, no Aβ1–42 or p-tau profiles were observed. These findings suggest that deficits in hippocampal neurogenesis and pyramidal cell maturation and increased Calr immunoreactivity during early postnatal life contribute to cognitive impairment in DS.
Collapse
Affiliation(s)
- David G. Moreno
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (D.G.M.); (E.C.U.); (E.J.M.)
| | - Emma C. Utagawa
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (D.G.M.); (E.C.U.); (E.J.M.)
| | - Nicoleta C. Arva
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Kristian T. Schafernak
- Department of Pathology and Laboratory Medicine, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA;
| | - Elliott J. Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (D.G.M.); (E.C.U.); (E.J.M.)
| | - Sylvia E. Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (D.G.M.); (E.C.U.); (E.J.M.)
- Correspondence: ; Tel.: +6-02-406-3342
| |
Collapse
|
14
|
Koenig KA, Oh SH, Stasko MR, Roth EC, Taylor HG, Ruedrich S, Wang ZI, Leverenz JB, Costa ACS. High resolution structural and functional MRI of the hippocampus in young adults with Down syndrome. Brain Commun 2021; 3:fcab088. [PMID: 33977271 PMCID: PMC8100000 DOI: 10.1093/braincomms/fcab088] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/19/2021] [Accepted: 03/22/2021] [Indexed: 11/29/2022] Open
Abstract
Down syndrome is the phenotypic consequence of trisomy 21, with clinical presentation including both neurodevelopmental and neurodegenerative components. Although the intellectual disability typically displayed by individuals with Down syndrome is generally global, it also involves disproportionate deficits in hippocampally-mediated cognitive processes. Hippocampal dysfunction may also relate to Alzheimer’s disease-type pathology, which can appear in as early as the first decade of life and becomes universal by age 40. Using 7-tesla MRI of the brain, we present an assessment of the structure and function of the hippocampus in 34 individuals with Down syndrome (mean age 24.5 years ± 6.5) and 27 age- and sex-matched typically developing healthy controls. In addition to increased whole-brain mean cortical thickness and lateral ventricle volumes (P < 1.0 × 10−4), individuals with Down syndrome showed selective volume reductions in bilateral hippocampal subfields cornu Ammonis field 1, dentate gyrus, and tail (P < 0.005). In the group with Down syndrome, bilateral hippocampi showed widespread reductions in the strength of functional connectivity, predominately to frontal regions (P < 0.02). Age was not related to hippocampal volumes or functional connectivity measures in either group, but both groups showed similar relationships of age to whole-brain volume measures (P < 0.05). Finally, we performed an exploratory analysis of a subgroup of individuals with Down syndrome with both imaging and neuropsychological assessments. This analysis indicated that measures of spatial memory were related to mean cortical thickness, total grey matter volume and right hemisphere hippocampal subfield volumes (P < 0.02). This work provides a first demonstration of the usefulness of high-field MRI to detect subtle differences in structure and function of the hippocampus in individuals with Down syndrome, and suggests the potential for development of MRI-derived measures as surrogate markers of drug efficacy in pharmacological studies designed to investigate enhancement of cognitive function.
Collapse
Affiliation(s)
- Katherine A Koenig
- Imaging Sciences, Imaging Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Se-Hong Oh
- Imaging Sciences, Imaging Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin 449-791, Republic of Korea
| | - Melissa R Stasko
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Elizabeth C Roth
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - H Gerry Taylor
- Abigail Wexner Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, OH 43215, USA
| | - Stephen Ruedrich
- Department of Psychiatry, University Hospitals, Cleveland, OH 44106, USA
| | - Z Irene Wang
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Alberto C S Costa
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Psychiatry, University Hospitals, Cleveland, OH 44106, USA
| |
Collapse
|
15
|
Wu D, Zhang Y, Cheng B, Mori S, Reeves RH, Gao FJ. Time-dependent diffusion MRI probes cerebellar microstructural alterations in a mouse model of Down syndrome. Brain Commun 2021; 3:fcab062. [PMID: 33937769 PMCID: PMC8063586 DOI: 10.1093/braincomms/fcab062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 01/27/2023] Open
Abstract
The cerebellum is a complex system with distinct cortical laminar organization. Alterations in cerebellar microstructure are common and associated with many factors such as genetics, cancer and ageing. Diffusion MRI (dMRI) provides a non-invasive tool to map the brain structural organization, and the recently proposed diffusion-time (td )-dependent dMRI further improves its capability to probe the cellular and axonal/dendritic microstructures by measuring water diffusion at multiple spatial scales. The td -dependent diffusion profile in the cerebellum and its utility in detecting cerebellar disorders, however, are not yet elucidated. Here, we first deciphered the spatial correspondence between dMRI contrast and cerebellar layers, based on which the cerebellar layer-specific td -dependent dMRI patterns were characterized in both euploid and Ts65Dn mice, a mouse model of Down syndrome. Using oscillating gradient dMRI, which accesses diffusion at short td 's by modulating the oscillating frequency, we detected subtle changes in the apparent diffusivity coefficient of the cerebellar internal granular layer and Purkinje cell layer of Ts65Dn mice that were not detectable by conventional pulsed gradient dMRI. The detection sensitivity of oscillating gradient dMRI increased with the oscillating frequency at both the neonatal and adult stages. The td -dependence, quantified by ΔADC map, was reduced in Ts65Dn mice, likely associated with the reduced granule cell density and abnormal dendritic arborization of Purkinje cells as revealed from histological evidence. Our study demonstrates superior sensitivity of short-td diffusion using oscillating gradient dMRI to detect cerebellar microstructural changes in Down syndrome, suggesting the potential application of this technique in cerebellar disorders.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Bei Cheng
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Susumu Mori
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Feng J Gao
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Tarui T, Im K, Madan N, Madankumar R, Skotko BG, Schwartz A, Sharr C, Ralston SJ, Kitano R, Akiyama S, Yun HJ, Grant E, Bianchi DW. Quantitative MRI Analyses of Regional Brain Growth in Living Fetuses with Down Syndrome. Cereb Cortex 2021; 30:382-390. [PMID: 31264685 DOI: 10.1093/cercor/bhz094] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/04/2019] [Accepted: 04/14/2019] [Indexed: 01/06/2023] Open
Abstract
Down syndrome (DS) is the most common liveborn autosomal chromosomal anomaly and is a major cause of developmental disability. Atypical brain development and the resulting intellectual disability originate during the fetal period. Perinatal interventions to correct such aberrant development are on the horizon in preclinical studies. However, we lack tools to sensitively measure aberrant structural brain development in living human fetuses with DS. In this study, we aimed to develop safe and precise neuroimaging measures to monitor fetal brain development in DS. We measured growth patterns of regional brain structures in 10 fetal brains with DS (29.1 ± 4.2, weeks of gestation, mean ± SD, range 21.7~35.1) and 12 control fetuses (25.2 ± 5.0, range 18.6~33.3) using regional volumetric analysis of fetal brain MRI. All cases with DS had confirmed karyotypes. We performed non-linear regression models to compare fitted regional growth curves between DS and controls. We found decreased growth trajectories of the cortical plate (P = 0.033), the subcortical parenchyma (P = 0.010), and the cerebellar hemispheres (P < 0.0001) in DS compared to controls. This study provides proof of principle that regional volumetric analysis of fetal brain MRI facilitates successful evaluation of brain development in living fetuses with DS.
Collapse
Affiliation(s)
- Tomo Tarui
- Mother Infant Research Institute, Fetal Neonatal Neurology Program, Pediatric Neurology, Tufts Medical Center, Boston, MA, USA
| | - Kiho Im
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Neel Madan
- Radiology, Tufts Medical Center, Boston, MA, USA
| | - Rajeevi Madankumar
- Maternal Fetal Medicine, Obstetrics and Gynecology, Long Island Jewish Medical Center Northwell Health, New Hyde Park, NY, USA
| | - Brian G Skotko
- Down Syndrome Program, Genetics, Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Allie Schwartz
- Down Syndrome Program, Genetics, Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Christianne Sharr
- Down Syndrome Program, Genetics, Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Steven J Ralston
- Maternal Fetal Medicine, Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rie Kitano
- Mother Infant Research Institute, Fetal Neonatal Neurology Program, Pediatric Neurology, Tufts Medical Center, Boston, MA, USA
| | - Shizuko Akiyama
- Mother Infant Research Institute, Fetal Neonatal Neurology Program, Pediatric Neurology, Tufts Medical Center, Boston, MA, USA
| | - Hyuk Jin Yun
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Diana W Bianchi
- Prenatal Genomics and Fetal Therapy Section, Medical Gen etics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| |
Collapse
|
17
|
Thomas MSC, Ojinaga Alfageme O, D'Souza H, Patkee PA, Rutherford MA, Mok KY, Hardy J, Karmiloff-Smith A. A multi-level developmental approach to exploring individual differences in Down syndrome: genes, brain, behaviour, and environment. RESEARCH IN DEVELOPMENTAL DISABILITIES 2020; 104:103638. [PMID: 32653761 PMCID: PMC7438975 DOI: 10.1016/j.ridd.2020.103638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 05/06/2023]
Abstract
In this article, we focus on the causes of individual differences in Down syndrome (DS), exemplifying the multi-level, multi-method, lifespan developmental approach advocated by Karmiloff-Smith (1998, 2009, 2012, 2016). We evaluate the possibility of linking variations in infant and child development with variations in the (elevated) risk for Alzheimer's disease (AD) in adults with DS. We review the theoretical basis for this argument, considering genetics, epigenetics, brain, behaviour and environment. In studies 1 and 2, we focus on variation in language development. We utilise data from the MacArthur-Bates Communicative Development Inventories (CDI; Fenson et al., 2007), and Mullen Scales of Early Learning (MSEL) receptive and productive language subscales (Mullen, 1995) from 84 infants and children with DS (mean age 2;3, range 0;7 to 5;3). As expected, there was developmental delay in both receptive and expressive vocabulary and wide individual differences. Study 1 examined the influence of an environmental measure (socio-economic status as measured by parental occupation) on the observed variability. SES did not predict a reliable amount of the variation. Study 2 examined the predictive power of a specific genetic measure (apolipoprotein APOE genotype) which modulates risk for AD in adulthood. There was no reliable effect of APOE genotype, though weak evidence that development was faster for the genotype conferring greater AD risk (ε4 carriers), consistent with recent observations in infant attention (D'Souza, Mason et al., 2020). Study 3 considered the concerted effect of the DS genotype on early brain development. We describe new magnetic resonance imaging methods for measuring prenatal and neonatal brain structure in DS (e.g., volumes of supratentorial brain, cortex, cerebellar volume; Patkee et al., 2019). We establish the methodological viability of linking differences in early brain structure to measures of infant cognitive development, measured by the MSEL, as a potential early marker of clinical relevance. Five case studies are presented as proof of concept, but these are as yet too few to discern a pattern.
Collapse
Affiliation(s)
- Michael S C Thomas
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London WC1E 7HX, United Kingdom.
| | - Olatz Ojinaga Alfageme
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London WC1E 7HX, United Kingdom; Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas's Hospital, London, SE1 7EH, United Kingdom
| | - Hana D'Souza
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London WC1E 7HX, United Kingdom; Department of Psychology & Newnham College, University of Cambridge, Cambridge CB3 9DF, United Kingdom
| | - Prachi A Patkee
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas's Hospital, London, SE1 7EH, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas's Hospital, London, SE1 7EH, United Kingdom
| | - Kin Y Mok
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, United Kingdom
| | - John Hardy
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, United Kingdom
| | - Annette Karmiloff-Smith
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London WC1E 7HX, United Kingdom
| |
Collapse
|
18
|
Joyce A, Elphick H, Farquhar M, Gringras P, Evans H, Bucks RS, Kreppner J, Kingshott R, Martin J, Reynolds J, Rush C, Gavlak J, Hill CM. Obstructive Sleep Apnoea Contributes to Executive Function Impairment in Young Children with Down Syndrome. Behav Sleep Med 2020; 18:611-621. [PMID: 31311334 DOI: 10.1080/15402002.2019.1641501] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE/BACKGROUND Children with Down syndrome (DS) commonly experience difficulties with executive function (EF). They are also vulnerable to obstructive sleep apnoea (OSA). OSA is associated with EF deficits in typically developing children. A recent study reported an association between OSA and cognitive deficits in 38 school-aged children with DS. We experimentally investigated EF behaviours in young children with DS, and their association with OSA. PARTICIPANTS AND METHODS Children with DS were recruited to take part in a larger study of OSA (N = 202). Parents of 80 children (50 male) aged 36 to 71 months (M = 56.90, SD = 10.19 months) completed the Behavior Rating Inventory of Executive Function - Preschool Version (BRIEF-P). Of these 80 children, 69 were also successfully studied overnight with domiciliary cardiorespiratory polygraphy to diagnose OSA. RESULTS Obstructive apnoea/hypopnoea index was in the normal range (0-1.49/h) for 28 children but indicated OSA (≥1.5/h) in 41 children. Consistent with previous research, we found a large effect for children experiencing particular weaknesses in working memory, planning and organising, whilst emotional control was a relative strength. OSA was associated with poorer working memory (β = .23, R2 = .05, p = .025), emotional control (β = .20, R2 = .04, p = .047) and shifting (β = .24, R2 = .06, p = .023). CONCLUSIONS Findings suggest that known EF difficulties in DS are already evident at this young age. Children with DS already have limited cognitive reserve and can ill afford additional EF deficit associated with OSA. OSA is amenable to treatment and should be actively treated in these children to promote optimal cognitive development.
Collapse
Affiliation(s)
- Anna Joyce
- Centre for Innovative Research Across the Lifecourse, Coventry University , Coventry, UK
| | - Heather Elphick
- Department of Paediatric Respiratory Medicine, Sheffield Children's NHS Foundation Trust , Sheffield, UK
| | - Michael Farquhar
- Evelina London Children's Hospital, Guys & St Thomas's NHS Trust , London, UK
| | - Paul Gringras
- Evelina London Children's Hospital, Guys & St Thomas's NHS Trust , London, UK
| | - Hazel Evans
- Southampton Children's Hospital, Southampton University NHS Trust , Southampton, UK
| | - Romola S Bucks
- School of Psychological Science, University of Western Australia , Perth, Australia
| | - Jana Kreppner
- School of Psychology, University of Southampton , Southampton, UK
| | - Ruth Kingshott
- Department of Paediatric Respiratory Medicine, Sheffield Children's NHS Foundation Trust , Sheffield, UK
| | - Jane Martin
- Southampton Biomedical Research Unit, Southampton General Hospital , Southampton, UK
| | - Janine Reynolds
- Department of Paediatric Respiratory Medicine, Sheffield Children's NHS Foundation Trust , Sheffield, UK
| | - Carla Rush
- Evelina London Children's Hospital, Guys & St Thomas's NHS Trust , London, UK
| | - Johanna Gavlak
- Southampton Children's Hospital, Southampton University NHS Trust , Southampton, UK
| | - Catherine M Hill
- Southampton Children's Hospital, Southampton University NHS Trust , Southampton, UK.,School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton , Southampton, UK
| |
Collapse
|
19
|
Lee NR, Nayak A, Irfanoglu MO, Sadeghi N, Stoodley CJ, Adeyemi E, Clasen LS, Pierpaoli C. Hypoplasia of cerebellar afferent networks in Down syndrome revealed by DTI-driven tensor based morphometry. Sci Rep 2020; 10:5447. [PMID: 32214129 PMCID: PMC7096514 DOI: 10.1038/s41598-020-61799-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
Quantitative magnetic resonance imaging (MRI) investigations of brain anatomy in children and young adults with Down syndrome (DS) are limited, with no diffusion tensor imaging (DTI) studies covering that age range. We used DTI-driven tensor based morphometry (DTBM), a novel technique that extracts morphometric information from diffusion data, to investigate brain anatomy in 15 participants with DS and 15 age- and sex-matched typically developing (TD) controls, ages 6-24 years (mean age ~17 years). DTBM revealed marked hypoplasia of cerebellar afferent systems in DS, including fronto-pontine (middle cerebellar peduncle) and olivo-cerebellar (inferior cerebellar peduncle) connections. Prominent gray matter hypoplasia was observed in medial frontal regions, the inferior olives, and the cerebellum. Very few abnormalities were detected by classical diffusion MRI metrics, such as fractional anisotropy and mean diffusivity. Our results highlight the potential importance of cerebro-cerebellar networks in the clinical manifestations of DS and suggest a role for DTBM in the investigation of other brain disorders involving white matter hypoplasia or atrophy.
Collapse
Affiliation(s)
- Nancy Raitano Lee
- Drexel University, Department of Psychology, Philadelphia, PA, 19104, USA.
| | - Amritha Nayak
- National Institute of Biomedical Imaging and Bioengineering, NIH, Quantitative Medical Imaging Section, Bethesda, MD, 20892, USA
| | - M Okan Irfanoglu
- National Institute of Biomedical Imaging and Bioengineering, NIH, Quantitative Medical Imaging Section, Bethesda, MD, 20892, USA
| | - Neda Sadeghi
- National Institute of Biomedical Imaging and Bioengineering, NIH, Quantitative Medical Imaging Section, Bethesda, MD, 20892, USA
| | | | | | - Liv S Clasen
- National Institute of Mental Health, NIH, Developmental Neurogenomics Unit, Human Genetics Branch, Bethesda, MD, 20892, USA
| | - Carlo Pierpaoli
- National Institute of Biomedical Imaging and Bioengineering, NIH, Quantitative Medical Imaging Section, Bethesda, MD, 20892, USA
| |
Collapse
|
20
|
Shiohama T, Levman J, Baumer N, Takahashi E. Structural Magnetic Resonance Imaging-Based Brain Morphology Study in Infants and Toddlers With Down Syndrome: The Effect of Comorbidities. Pediatr Neurol 2019; 100:67-73. [PMID: 31036426 PMCID: PMC6755072 DOI: 10.1016/j.pediatrneurol.2019.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Down syndrome (DS) is the most prevalent chromosomal disorder characterized by intellectual disability, multiple organ anomalies, generalized muscular hypotonia, and characteristic physical features. The presence of DS-associated medical comorbidities has contributed to brain morphologic changes. The aim of this study was to evaluate brain morphologic characteristics during infant and toddler ages in patients with DS using structural brain magnetic resonance imaging. METHODS Structural brain T1-weighted magnetic resonance images from participants with DS with complete chromosome 21 trisomy (n = 20; 1.6 ± 0.6 [mean ± standard deviation] years old) were analyzed using FreeSurfer. The measurements were compared with those of 60 gender- and age-matched neurotypical controls by Cohen's d statistic and unpaired t test with false discovery rate correction for multiple comparisons and analyzed using a univariate general linear model with the following DS-associated medical comorbidities: congenital cardiac disease, infantile spasms, and hypothyroidism. RESULTS We identified 27 candidate measurements with large effect sizes (absolute d > 0.8) and statistically significant differences (P < 6.9 × 10-3). Among them were decreased volumes in bilateral cerebellar gray matter and right cerebellar white matter and brainstem and cortical abnormalities in the right superior temporal, right rostral anterior cingulate, and left rostral middle frontal gyrus, independent of comorbid effects. Only bilateral cerebellar gray matter volumes and brainstem volume showed differences between DS and healthy groups during infancy. CONCLUSION These results suggest that cerebellar gray matter and brainstem may represent the primary regions affected by the presence of an additional copy of chromosome 21.
Collapse
Affiliation(s)
- Tadashi Shiohama
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Pediatrics, Chiba University Hospital, Chiba-shi, Chiba, Japan.
| | - Jacob Levman
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA,Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, 2323 Notre Dame Ave, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Nicole Baumer
- Down Syndrome Program, Developmental Medicine Center, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
21
|
Li Y, Shen M, Stockton ME, Zhao X. Hippocampal deficits in neurodevelopmental disorders. Neurobiol Learn Mem 2018; 165:106945. [PMID: 30321651 DOI: 10.1016/j.nlm.2018.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022]
Abstract
Neurodevelopmental disorders result from impaired development or maturation of the central nervous system. Both genetic and environmental factors can contribute to the pathogenesis of these disorders; however, the exact causes are frequently complex and unclear. Individuals with neurodevelopmental disorders may have deficits with diverse manifestations, including challenges with sensory function, motor function, learning, memory, executive function, emotion, anxiety, and social ability. Although these functions are mediated by multiple brain regions, many of them are dependent on the hippocampus. Extensive research supports important roles of the mammalian hippocampus in learning and cognition. In addition, with its high levels of activity-dependent synaptic plasticity and lifelong neurogenesis, the hippocampus is sensitive to experience and exposure and susceptible to disease and injury. In this review, we first summarize hippocampal deficits seen in several human neurodevelopmental disorders, and then discuss hippocampal impairment including hippocampus-dependent behavioral deficits found in animal models of these neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yue Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michael E Stockton
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
22
|
Abstract
OBJECTIVES As surprisingly little is known about the developing brain studied in vivo in youth with Down syndrome (DS), the current review summarizes the small DS pediatric structural neuroimaging literature and begins to contextualize existing research within a developmental framework. METHODS A systematic review of the literature was completed, effect sizes from published studies were reviewed, and results are presented with respect to the DS cognitive behavioral phenotype and typical brain development. RESULTS The majority of DS structural neuroimaging studies describe gross differences in brain morphometry and do not use advanced neuroimaging methods to provide nuanced descriptions of the brain. There is evidence for smaller total brain volume (TBV), total gray matter (GM) and white matter, cortical lobar, hippocampal, and cerebellar volumes. When reductions in TBV are accounted for, specific reductions are noted in subregions of the frontal lobe, temporal lobe, cerebellum, and hippocampus. A review of cortical lobar effect sizes reveals mostly large effect sizes from early childhood through adolescence. However, deviance is smaller in adolescence. Despite these smaller effects, frontal GM continues to be largely deviant in adolescence. An examination of age-frontal GM relations using effect sizes from published studies and data from Lee et al. (2016) reveals that while there is a strong inverse relationship between age and frontal GM volume in controls across childhood and adolescence, this is not observed in DS. CONCLUSIONS Further developmentally focused research, ideally using longitudinal neuroimaging, is needed to elucidate the nature of the DS neuroanatomic phenotype during childhood and adolescence. (JINS, 2018, 24, 966-976).
Collapse
|
23
|
Rafii MS, Lukic AS, Andrews RD, Brewer J, Rissman RA, Strother SC, Wernick MN, Pennington C, Mobley WC, Ness S, Matthews DC. PET Imaging of Tau Pathology and Relationship to Amyloid, Longitudinal MRI, and Cognitive Change in Down Syndrome: Results from the Down Syndrome Biomarker Initiative (DSBI). J Alzheimers Dis 2018; 60:439-450. [PMID: 28946567 DOI: 10.3233/jad-170390] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Adults with Down syndrome (DS) represent an enriched population for the development of Alzheimer's disease (AD), which could aid the study of therapeutic interventions, and in turn, could benefit from discoveries made in other AD populations. OBJECTIVES 1) Understand the relationship between tau pathology and age, amyloid deposition, neurodegeneration (MRI and FDG PET), and cognitive and functional performance; 2) detect and differentiate AD-specific changes from DS-specific brain changes in longitudinal MRI. METHODS Twelve non-demented adults, ages 30 to 60, with DS were enrolled in the Down Syndrome Biomarker Initiative (DSBI), a 3-year, observational, cohort study to demonstrate the feasibility of conducting AD intervention/prevention trials in adults with DS. We collected imaging data with 18F-AV-1451 tau PET, AV-45 amyloid PET, FDG PET, and volumetric MRI, as well as cognitive and functional measures and additional laboratory measures. RESULTS All amyloid negative subjects imaged were tau-negative. Among the amyloid positive subjects, three had tau in regions associated with Braak stage VI, two at stage V, and one at stage II. Amyloid and tau burden correlated with age. The MRI analysis produced two distinct volumetric patterns. The first differentiated DS from normal (NL) and AD, did not correlate with age or amyloid, and was longitudinally stable. The second pattern reflected AD-like atrophy and differentiated NL from AD. Tau PET and MRI atrophy correlated with several cognitive and functional measures. CONCLUSIONS Tau accumulation is associated with amyloid positivity and age, as well as with progressive neurodegeneration measurable using FDG and MRI. Tau correlates with cognitive decline, as do AD-specific hypometabolism and atrophy.
Collapse
Affiliation(s)
- Michael S Rafii
- Alzheimer's Therapeutic Research Institute (ATRI), Keck School of Medicine, University of Southern California, San Diego, USA.,Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, USA
| | | | | | - James Brewer
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, USA.,Veterans Administration Medical Center, La Jolla, CA, USA
| | - Stephen C Strother
- ADM Diagnostics, Northbrook, IL, USA.,Rotman Research Institute, Baycrest, Toronto, ON, CA, USA
| | - Miles N Wernick
- ADM Diagnostics, Northbrook, IL, USA.,Medical Imaging Research Center, Illinois Institute of Technology, Chicago, IL, USA
| | | | - William C Mobley
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Seth Ness
- Janssen Research and Development LLC, Raritan, NJ, USA
| | | | | |
Collapse
|
24
|
Stagni F, Giacomini A, Emili M, Guidi S, Bartesaghi R. Neurogenesis impairment: An early developmental defect in Down syndrome. Free Radic Biol Med 2018; 114:15-32. [PMID: 28756311 DOI: 10.1016/j.freeradbiomed.2017.07.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 02/06/2023]
Abstract
Down syndrome (DS) is characterized by brain hypotrophy and intellectual disability starting from early life stages. Accumulating evidence shows that the phenotypic features of the DS brain can be traced back to the fetal period since the DS brain exhibits proliferation potency reduction starting from the critical time window of fetal neurogenesis. This defect is worsened by the fact that neural progenitor cells exhibit reduced acquisition of a neuronal phenotype and an increase in the acquisition of an astrocytic phenotype. Consequently, the DS brain has fewer neurons in comparison with the typical brain. Although apoptotic cell death may be increased in DS, this does not seem to be the major cause of brain hypocellularity. Evidence obtained in brains of individuals with DS, DS-derived induced pluripotent stem cells (iPSCs), and DS mouse models has provided some insight into the mechanisms underlying the developmental defects due to the trisomic condition. Although many triplicated genes may be involved, in the light of the studies reviewed here, DYRK1A, APP, RCAN1 and OLIG1/2 appear to be particularly important determinants of many neurodevelopmental alterations that characterize DS because their triplication affects both the proliferation and fate of neural precursor cells as well as apoptotic cell death. Based on the evidence reviewed here, pathways downstream to these genes may represent strategic targets, for the design of possible interventions.
Collapse
Affiliation(s)
- Fiorenza Stagni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Andrea Giacomini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Emili
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
25
|
Annus T, Wilson LR, Acosta-Cabronero J, Cardenas-Blanco A, Hong YT, Fryer TD, Coles JP, Menon DK, Zaman SH, Holland AJ, Nestor PJ. The Down syndrome brain in the presence and absence of fibrillar β-amyloidosis. Neurobiol Aging 2017; 53:11-19. [PMID: 28192686 PMCID: PMC5391869 DOI: 10.1016/j.neurobiolaging.2017.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 01/01/2017] [Accepted: 01/06/2017] [Indexed: 11/26/2022]
Abstract
People with Down syndrome (DS) have a neurodevelopmentally distinct brain and invariably developed amyloid neuropathology by age 50. This cross-sectional study aimed to provide a detailed account of DS brain morphology and the changes occuring with amyloid neuropathology. Forty-six adults with DS underwent structural and amyloid imaging—the latter using Pittsburgh compound B (PIB) to stratify the cohort into PIB-positive (n = 19) and PIB-negative (n = 27). Age-matched controls (n = 30) underwent structural imaging. Group differences in deep gray matter volumetry and cortical thickness were studied. PIB-negative people with DS have neurodevelopmentally atypical brain, characterized by disproportionately thicker frontal and occipitoparietal cortex and thinner motor cortex and temporal pole with larger putamina and smaller hippocampi than controls. In the presence of amyloid neuropathology, the DS brains demonstrated a strikingly similar pattern of posterior dominant cortical thinning and subcortical atrophy in the hippocampus, thalamus, and striatum, to that observed in non-DS Alzheimer's disease. Care must be taken to avoid underestimating amyloid-associated morphologic changes in DS due to disproportionate size of some subcortical structures and thickness of the cortex.
Collapse
Affiliation(s)
- Tiina Annus
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Douglas House, Cambridge, UK.
| | - Liam R Wilson
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Douglas House, Cambridge, UK
| | - Julio Acosta-Cabronero
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK
| | | | - Young T Hong
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Tim D Fryer
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jonathan P Coles
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Shahid H Zaman
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Douglas House, Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Elizabeth House, Fulbourn Hospital, Fulbourn, Cambridge, UK
| | - Anthony J Holland
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Douglas House, Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Elizabeth House, Fulbourn Hospital, Fulbourn, Cambridge, UK
| | - Peter J Nestor
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| |
Collapse
|
26
|
Gunbey HP, Bilgici MC, Aslan K, Has AC, Ogur MG, Alhan A, Incesu L. Structural brain alterations of Down's syndrome in early childhood evaluation by DTI and volumetric analyses. Eur Radiol 2016; 27:3013-3021. [PMID: 27798752 DOI: 10.1007/s00330-016-4626-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/26/2016] [Accepted: 09/29/2016] [Indexed: 01/31/2023]
Abstract
OBJECTIVES To provide an initial assessment of white matter (WM) integrity with diffusion tensor imaging (DTI) and the accompanying volumetric changes in WM and grey matter (GM) through volumetric analyses of young children with Down's syndrome (DS). METHODS Ten children with DS and eight healthy control subjects were included in the study. Tract-based spatial statistics (TBSS) were used in the DTI study for whole-brain voxelwise analysis of fractional anisotropy (FA) and mean diffusivity (MD) of WM. Volumetric analyses were performed with an automated segmentation method to obtain regional measurements of cortical volumes. RESULTS Children with DS showed significantly reduced FA in association tracts of the fronto-temporo-occipital regions as well as the corpus callosum (CC) and anterior limb of the internal capsule (p < 0.05). Volumetric reductions included total cortical GM, cerebellar GM and WM volume, basal ganglia, thalamus, brainstem and CC in DS compared with controls (p < 0.05). CONCLUSION These preliminary results suggest that DTI and volumetric analyses may reflect the earliest complementary changes of the neurodevelopmental delay in children with DS and can serve as surrogate biomarkers of the specific elements of WM and GM integrity for cognitive development. KEY POINTS • DS is the most common genetic cause of intellectual disability. • WM and GM structural alterations represent the neurological features of DS. • DTI may identify the earliest aging process changes. • DTI-volumetric analyses can serve as surrogate biomarkers of neurodevelopment in DS.
Collapse
Affiliation(s)
- Hediye Pınar Gunbey
- Faculty of Medicine, Department of Radiology, Ondokuz Mayıs University, Neuroradiology Section, 55139, Kurupelit, Samsun, Turkey.
| | - Meltem Ceyhan Bilgici
- Faculty of Medicine, Department of Radiology, Ondokuz Mayıs University, Neuroradiology Section, 55139, Kurupelit, Samsun, Turkey
| | - Kerim Aslan
- Faculty of Medicine, Department of Radiology, Ondokuz Mayıs University, Neuroradiology Section, 55139, Kurupelit, Samsun, Turkey
| | - Arzu Ceylan Has
- National Magnetic Resonance Research Center, Bilkent University, Ankara, Turkey
| | | | - Aslıhan Alhan
- Department of Statistics, Ufuk University, Ankara, Turkey
| | - Lutfi Incesu
- Faculty of Medicine, Department of Radiology, Ondokuz Mayıs University, Neuroradiology Section, 55139, Kurupelit, Samsun, Turkey
| |
Collapse
|
27
|
Menéndez-González M, de Celis Alonso B, Salas-Pacheco J, Arias-Carrión O. Structural Neuroimaging of the Medial Temporal Lobe in Alzheimer's Disease Clinical Trials. J Alzheimers Dis 2016; 48:581-9. [PMID: 26402089 DOI: 10.3233/jad-150226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Atrophy in the medial temporal lobe (MTA) is being used as a criterion to support a diagnosis of Alzheimer's disease (AD). There are several structural neuroimaging approaches for quantifying MTA, including semiquantitative visual rating scales, volumetry (3D), planimetry (2D), and linear measures (1D). Current applications of structural neuroimaging in Alzheimer's disease clinical trials (ADCTs) incorporate it as a tool for improving the selection of subjects for enrollment or for stratification, for tracking disease progression, or providing evidence of target engagement for new therapeutic agents. It may also be used as a surrogate marker, providing evidence of disease-modifying effects. However, despite the widespread use of volumetric magnetic resonance imaging (MRI) in ADCTs, there are some important challenges and limitations, such as difficulties in the interpretation of results, limitations in translating results into clinical practice, and reproducibility issues, among others. Solutions to these issues may arise from other methodologies that are able to link the results of volumetric MRI from trials with conventional MRIs performed in routine clinical practice (linear or planimetric methods). Also of potential benefit are automated volumetry, using indices for comparing the relative rate of atrophy of different regions instead of absolute rates of atrophy, and combining structural neuroimaging with other biomarkers. In this review, authors present the existing structural neuroimaging approaches for MTA quantification. They then discuss solutions to the limitations of the different techniques as well as the current challenges of the field. Finally, they discuss how the current advances in AD neuroimaging can help AD diagnosis.
Collapse
Affiliation(s)
- Manuel Menéndez-González
- Unidad de Neurología, Hospital Álvarez-Buylla, Mieres, Asturias, España.,Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Asturias, España.,Instituto de Neurociencias, Universidad de Oviedo, Oviedo, Asturias, España
| | - Benito de Celis Alonso
- Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, México.,Facultad para el Desarrollo, Carlos Sigüenza, Puebla, México
| | - José Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General Dr. Manuel Gea González/IFC-UNAM, México DF, México
| |
Collapse
|
28
|
Lee NR, Adeyemi EI, Lin A, Clasen LS, Lalonde FM, Condon E, Driver DI, Shaw P, Gogtay N, Raznahan A, Giedd JN. Dissociations in Cortical Morphometry in Youth with Down Syndrome: Evidence for Reduced Surface Area but Increased Thickness. Cereb Cortex 2016; 26:2982-90. [PMID: 26088974 PMCID: PMC4898663 DOI: 10.1093/cercor/bhv107] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Detailed descriptions of cortical anatomy in youth with Down syndrome (DS), the most common genetic cause of intellectual disability (ID), are scant. Thus, the current study examined deviations in cortical thickness (CT) and surface area (SA), at high spatial resolution, in youth with DS, to identify focal differences relative to typically developing (TD) youth. Participants included 31 youth with DS and 45 age- and sex-matched TD controls (mean age ∼16 years; range = 5-24 years). All participants completed T1-weighted ASSET-calibrated magnetization prepared rapid gradient echo scans on a 3-T magnetic resonance imaging scanner. Replicating prior investigations, cortical volume was reduced in DS compared with controls. However, a novel dissociation for SA and CT was found-namely, SA was reduced (predominantly in frontal and temporal regions) while CT was increased (notably in several regions thought to belong to the default mode network; DMN). These findings suggest that reductions in SA rather than CT are driving the cortical volume reductions reported in prior investigations of DS. Moreover, given the link between DMN functionality and Alzheimer's symptomatology in chromosomally typical populations, future DS studies may benefit from focusing on the cortex in DMN regions, as such investigations may provide clues to the precocious onset of Alzheimer's disease in this at-risk group.
Collapse
Affiliation(s)
- Nancy Raitano Lee
- Child Psychiatry Branch
- Department of Psychology, Drexel University, Philadelphia, PA 19104, USA
| | | | | | | | | | - Ellen Condon
- Functional MRI Core Facility, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | | | - Philip Shaw
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | | | | | - Jay N. Giedd
- Child Psychiatry Branch
- Department of Psychiatry, University of California, La Jolla, CA 92093, USA
| |
Collapse
|
29
|
Matthews DC, Lukic AS, Andrews RD, Marendic B, Brewer J, Rissman RA, Mosconi L, Strother SC, Wernick MN, Mobley WC, Ness S, Schmidt ME, Rafii MS. Dissociation of Down syndrome and Alzheimer's disease effects with imaging. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2016. [PMID: 28642933 PMCID: PMC5477635 DOI: 10.1016/j.trci.2016.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction Down Syndrome (DS) adults experience accumulation of Alzheimer's disease (AD)–like amyloid plaques and tangles and a high incidence of dementia and could provide an enriched population to study AD-targeted treatments. However, to evaluate effects of therapeutic intervention, it is necessary to dissociate the contributions of DS and AD from overall phenotype. Imaging biomarkers offer the potential to characterize and stratify patients who will worsen clinically but have yielded mixed findings in DS subjects. Methods We evaluated 18F fluorodeoxyglucose positron emission tomography (PET), florbetapir PET, and structural magnetic resonance (sMR) image data from 12 nondemented DS adults using advanced multivariate machine learning methods. Results Our results showed distinctive patterns of glucose metabolism and brain volume enabling dissociation of DS and AD effects. AD-like pattern expression corresponded to amyloid burden and clinical measures. Discussion These findings lay groundwork to enable AD clinical trials with characterization and disease-specific tracking of DS adults.
Collapse
Affiliation(s)
| | | | | | | | - James Brewer
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Robert A Rissman
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Lisa Mosconi
- Department of Psychiatry, New York University Langone School of Medicine, New York, NY, USA
| | - Stephen C Strother
- ADM Diagnostics, Northbrook, IL, USA.,Rotman Research Institute, Baycrest Hospital and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Miles N Wernick
- ADM Diagnostics, Northbrook, IL, USA.,Departments of Electrical and Computer Engineering and Biomedical Engineering, Medical Imaging Research Center, Illinois Institute of Technology, Chicago, IL, USA
| | - William C Mobley
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Seth Ness
- Janssen Research and Development LLC, Raritan, NJ, USA
| | | | - Michael S Rafii
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, USA
| |
Collapse
|
30
|
Cramer NP, Xu X, F Haydar T, Galdzicki Z. Altered intrinsic and network properties of neocortical neurons in the Ts65Dn mouse model of Down syndrome. Physiol Rep 2015; 3:3/12/e12655. [PMID: 26702072 PMCID: PMC4760451 DOI: 10.14814/phy2.12655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 11/24/2022] Open
Abstract
All individuals with Down syndrome (DS) have a varying but significant degree of cognitive disability. Although hippocampal deficits clearly play an important role, behavioral studies also suggest that deficits within the neocortex contribute to somatosensory deficits and impaired cognition in DS. Using thalamocortical slices from the Ts65Dn mouse model of DS, we investigated the intrinsic and network properties of regular spiking neurons within layer 4 of the somatosensory cortex. In these neurons, the membrane capacitance was increased and specific membrane resistance decreased in slices from Ts65Dn mice. Examination of combined active and passive membrane properties suggests that trisomic layer 4 neurons are less excitable than those from euploid mice. The frequencies of excitatory and inhibitory spontaneous synaptic activities were also reduced in Ts65Dn neurons. With respect to network activity, spontaneous network oscillations (Up states) were shorter and less numerous in the neocortex from Ts65Dn mice when compared to euploid. Up states evoked by electrical stimulation of the ventrobasal nucleus (VBN) of the thalamus were similarly affected in Ts65Dn mice. Additionally, monosynaptic EPSCs and polysynaptic IPSCs evoked by VBN stimulation were significantly delayed in layer 4 regular spiking neurons from Ts65Dn mice. These results indicate that, in the Ts65Dn model of DS, the overall electrophysiological properties of neocortical neurons are altered leading to aberrant network activity within the neocortex. Similar changes in DS individuals may contribute to sensory and cognitive dysfunction and therefore may implicate new targets for cognitive therapies in this developmental disorder.
Collapse
Affiliation(s)
- Nathan P Cramer
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine and Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Xiufen Xu
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine and Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Tarik F Haydar
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Zygmunt Galdzicki
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine and Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
31
|
Romano A, Moraschi M, Cornia R, Bozzao A, Gagliardo O, Chiacchiararelli L, Iani C, Stella G, Albertini G, Pierallini A. Age effects on cortical thickness in young Down's syndrome subjects: a cross-sectional gender study. Neuroradiology 2015; 57:401-11. [PMID: 25560246 DOI: 10.1007/s00234-014-1482-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/15/2014] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The aim of this study was to determine differences in the characteristic pattern of age-related cortical thinning in men and women with Down's syndrome (DS) by means of MRI and automatic cortical thickness measurements and a cross-sectional design, in a large cohort of young subjects. METHODS Eighty-four subjects with DS, 30 females (11-35 years, mean age ± SD = 22.8 ± 5.9) and 54 males (11-35 years, mean age ± SD = 21.5 ± 6.5), were examined using a 1.5-T scanner. MRI-based quantification of cortical thickness was performed using FreeSurfer software package. For all subjects participating in the study, the Pearson product-moment correlation coefficient between age and mean cortical thickness values has been evaluated. RESULTS A significant negative correlation between cortical thickness and age was found in female DS subjects, predominantly in frontal and parietal lobes, bilaterally. In male DS subjects, a significant negative correlation between cortical thickness and age was found in the right fronto-temporal lobes and cingulate regions. Whole brain mean cortical thickness values were significantly negative correlated with age only in female DS subjects. CONCLUSIONS Females with Down's syndrome showed a strong correlation between cortical thickness and age, already in early age. We suggest that the cognitive impairment due to hormonal deficit in the postmenopausal period could be emphasized by the early structural decline of gray matter in female DS subjects.
Collapse
Affiliation(s)
- Andrea Romano
- San Raffaele Foundation Rome, Rehabilitation Facility Ceglie Messapica, Merit Project RBNE08E8CZ, Via di Grottarossa 1035, 00189, Rome, Italy,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Martínez-Castilla P, Burt M, Borgatti R, Gagliardi C. Facial emotion recognition in Williams syndrome and Down syndrome: A matching and developmental study. Child Neuropsychol 2014; 21:668-92. [DOI: 10.1080/09297049.2014.945408] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Dennis EL, Thompson PM. Typical and atypical brain development: a review of neuroimaging studies. DIALOGUES IN CLINICAL NEUROSCIENCE 2014. [PMID: 24174907 PMCID: PMC3811107 DOI: 10.31887/dcns.2013.15.3/edennis] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the course of development, the brain undergoes a remarkable process of restructuring as it adapts to the environment and becomes more efficient in processing information. A variety of brain imaging methods can be used to probe how anatomy, connectivity, and function change in the developing brain. Here we review recent discoveries regarding these brain changes in both typically developing individuals and individuals with neurodevelopmental disorders. We begin with typical development, summarizing research on changes in regional brain volume and tissue density, cortical thickness, white matter integrity, and functional connectivity. Space limits preclude the coverage of all neurodevelopmental disorders; instead, we cover a representative selection of studies examining neural correlates of autism, attention deficit/hyperactivity disorder, Fragile X, 22q11.2 deletion syndrome, Williams syndrome, Down syndrome, and Turner syndrome. Where possible, we focus on studies that identify an age by diagnosis interaction, suggesting an altered developmental trajectory. The studies we review generally cover the developmental period from infancy to early adulthood. Great progress has been made over the last 20 years in mapping how the brain matures with MR technology. With ever-improving technology, we expect this progress to accelerate, offering a deeper understanding of brain development, and more effective interventions for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Emily L Dennis
- Imaging Genetics Center, Laboratory of Neuro Imaging, Dept of Neurology & Psychiatry, UCLA School of Medicine, Los Angeles, California, USA
| | | |
Collapse
|
34
|
Fernandez F, Edgin JO. Poor Sleep as a Precursor to Cognitive Decline in Down Syndrome : A Hypothesis. ACTA ACUST UNITED AC 2013; 3:124. [PMID: 24558640 PMCID: PMC3928031 DOI: 10.4172/2161-0460.1000124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We propose that sleep disruption is a lever arm that influences how cognition emerges in development and then declines in response to Alzheimer disease in people with Down syndrome. Addressing sleep disruptions might be an overlooked way to improve cognitive outcomes in this population. This article is a contribution to a Special Issue on Down Syndrome curated by the editors of the Journal of Alzheimer’s Disease & Parkinsonism.
Collapse
Affiliation(s)
- Fabian Fernandez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jamie O Edgin
- Department of Psychology and Cognitive Science Program, Sonoran University, Center for Excellence in Developmental Disabilities, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
35
|
From abnormal hippocampal synaptic plasticity in down syndrome mouse models to cognitive disability in down syndrome. Neural Plast 2012; 2012:101542. [PMID: 22848844 PMCID: PMC3403629 DOI: 10.1155/2012/101542] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/02/2012] [Accepted: 05/07/2012] [Indexed: 12/17/2022] Open
Abstract
Down syndrome (DS) is caused by the overexpression of genes on triplicated regions of human chromosome 21 (Hsa21). While the resulting physiological and behavioral phenotypes vary in their penetrance and severity, all individuals with DS have variable but significant levels of cognitive disability. At the core of cognitive processes is the phenomenon of synaptic plasticity, a functional change in the strength at points of communication between neurons. A wide variety of evidence from studies on DS individuals and mouse models of DS indicates that synaptic plasticity is adversely affected in human trisomy 21 and mouse segmental trisomy 16, respectively, an outcome that almost certainly extensively contributes to the cognitive impairments associated with DS. In this review, we will highlight some of the neurophysiological changes that we believe reduce the ability of trisomic neurons to undergo neuroplasticity-related adaptations. We will focus primarily on hippocampal networks which appear to be particularly impacted in DS and where consequently the majority of cellular and neuronal network research has been performed using DS animal models, in particular the Ts65Dn mouse. Finally, we will postulate on how altered plasticity may contribute to the DS cognitive disability.
Collapse
|