1
|
Galal SM, El Kiki SM, Elgazzar EM. The Potential Therapeutic Approach of Ursodeoxycholic Acid as a Potent Activator of ACE-2 on Cerebral Disorders Induced by γ-irradiation in Rats. Cell Biochem Funct 2024; 42:e70024. [PMID: 39660593 DOI: 10.1002/cbf.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
The present investigation assesses ursodeoxycholic acid's efficacy (UDCA) as an ACE2 activator against gamma irradiation through activating the renin-angiotensin system's (RAS) beneficial axis, ACE2/Ang-(1-7)/Mas1 via its profitable influence on inflammation, oxidative stress, and neuronal damage caused by irradiation (IRR). Four groups of rats were treated as follows: control group, group receiving UDCA (100 mg/kg/day) for 14 days by gavage, group irradiated at 6 Gy, and group receiving UDCA post-irradiation for 14 days. The results revealed that gamma-irradiation (6 Gy) caused a substantial drop in the cerebral ACE2/Ang-(1-7)/Mas1 axis and remarkably increased the expression of cerebral inflammatory mediators: tumor necrosis factor-α (TNF-α), nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6) and interleukin-1β (IL-1β) combined with significant elevation in cyclooxygenase-II (COX-II), (NADPH) oxidases (NOX4), lipooxygenase (LOX) activities and nitric oxide (NO) content. Moreover, it greatly enhanced the reduction in N-methyl-d-aspartate (NMDA) level, while dramatically increasing gamma-aminobutyric acid (GABA) level and neuronal nitric oxide synthases (nNOS) enzyme activity in cerebral tissue homogenate. Irradiated rats' brain sections underwent histological investigation using hematoxylin and eosin staining, which revealed cellular damage and a pathological appearance. The administration of UDCA inverts these unusual alterations. In conclusion, UDCA treatment efficiently normalizes the above-mentioned pathological abnormalities and avoids the development of IRR-associated neurological dysfunction by upregulating the beneficial axis of RAS in the brain. Hence, ursodeoxycholic acid presents a novel option for patient care during radiotherapy.
Collapse
Affiliation(s)
- Shereen Mohamed Galal
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Shereen Mohamed El Kiki
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Eman Mahmoud Elgazzar
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
2
|
Hadipour E, Khodadadi M, Emami SA, Haghighi SR, Ramazani E, Tayarani-Najaran Z. Protective effect of Auraptene, a novel acetylcholinesterase inhibitor, on hydrogen peroxide-induced cell toxicity in PC12 cells. Toxicol Res (Camb) 2024; 13:tfae217. [PMID: 39712640 PMCID: PMC11655956 DOI: 10.1093/toxres/tfae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/21/2024] [Accepted: 12/07/2024] [Indexed: 12/24/2024] Open
Abstract
OBJECTIVE Alzheimer's disease (ad) is a progressive and degenerative disorder of the central nervous system that is associated with cognitive and memory impairment. The main factors which have been implicated in neurodegeneration of ad are oxidative stress and cholinergic neurons dysfunction. Here, we examined the effects of auraptene, a novel acetylcholinesterase (AChE) inhibitor, on hydrogen peroxide (H2O2)-induced cell death in PC12 cells. METHODS Thereby, we measured cell viability, intracellular reactive oxygen species (ROS) production, AChE inhibitory activity, cell damage and apoptosis with AlmarBlue, 2', 7'-dichlorodihydrofluorescein diacetate (DCFH-DA), Ellman method, lactate dehydrogenase (LDH) release, propidium iodide (PI) staining and western blot analysis, respectively. RESULTS H2O2 (150 μM) resulted in the cell death and apoptosis while, pretreatment with auraptene (10, 20 and 50 μM) significantly increased the viability (P < 0.01), and at 5-50 μM decreased ROS amount (P < 0.05 and P < 0.001). Pretreatment with auraptene (10, 20 and 50 μM) lessened AChE activity (P < 0.001), and at 20 and 50 μM reduced the release of LDH (P < 0.001), and at (10, 20 and 50 μM) diminished the percentage of apoptotic cells (P < 0.001). Also, pretreatment with auraptene at 10,20 and 50 μM prevented from poly (ADP-ribose) polymerase (PARP) cleavage (P < 0.001), and cytochrome c release (P < 0.01 and P < 0.001). The amount of caspase 3 activity (P < 0.001) and survivin (P < 0.001) were elevated after pretreatment of cells with auraptene at 10-50 μM and 10 and 50 μM. CONCLUSION It seems that auraptene has the ability to slow down or stop H2O2-induced nerve cells death by reducing the activity of AChE and suppression of internal pathway of apoptosis.
Collapse
Affiliation(s)
- Elham Hadipour
- Department of Biology, Faculty of Sciences, University of Guilan, Gilan Province, Rasht, Namjou Blvd, 7H7P+4WF, 193833697, Iran
| | - Mahdi Khodadadi
- Department of Pharmacology, Medical Toxicology Research Centre, Mashhad University of Medical Sciences, Mashhad, Azadi Square, Ferdowsi University Campus, Faculty of Medicine, Floor 1+, 9177948564, Iran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Khorasan Razavi, Mashhad, Azadi Square, 9177948954, Iran
| | - Samaneh Rahamouz Haghighi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Khorasan Razavi, Mashhad, Azadi Square, 9177948954, Iran
| | - Elham Ramazani
- Department of Biology, Yazd University, R9Q4+69H Safaeih, Yazd, Yazd Province, 8915818411, Iran
| | - Zahra Tayarani-Najaran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Khorasan Razavi, Mashhad, Azadi Square, 9177948954, Iran
| |
Collapse
|
3
|
Vanga MK, Bhukya R, Thumma V, Tamalapakula V, Boddu LS, Manga V. Antioxidant and Antimicrobial Activities of 4H-Chromene Based Indole-Pyrimidine Hybrids: Synthesis and Molecular Docking Studies. Chem Biodivers 2024; 21:e202401583. [PMID: 39133616 DOI: 10.1002/cbdv.202401583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/12/2024] [Indexed: 10/11/2024]
Abstract
A series of 4H-Chromene Based Indole-Pyrimidine Hybrids synthesized using simple and efficient multicomponent reaction. The title molecules were evaluated for their invitro antioxidant and antimicrobial activities. Compounds 8 g containing bromo substituted naphthalene displayed potent antioxidant activity with IC50 value of 1.09±0.34 μM and 1.10±0.36 μM. Compound 10 a, a 4-methylphenyl derivative presented potent activity with antioxidant activity with IC50 value of 1.29±0.35 μM and 1.43±0.38 μM. Subsequently, compounds 8 a, 8 b, 8 d and 10 g had shown prominent percentage of inhibition and derived effective IC50 values in comparison to reference drug Ascorbic Acid. The invitro antimicrobial activity carried out against two gram positive and two gram-negative bacteria, and two fungal strains using Ampicillin and Itraconazole as refence drugs. Compound 10 f exhibited exceptional efficacy against all types of bacterial and fungal strains compared to Ampicillin and Itraconazole, compounds 8 e and 8 g showed activity against bacterial strains whereas compound 10 g exhibited the most effective zone of inhibition against fungal strains. The molecular docking study against crystal structure of NADPH oxidase obtained supporting docking scores and showed notable binding interactions such as H-bond and hydrophobic.
Collapse
Affiliation(s)
- Murali Krishna Vanga
- Department of Chemistry, Osmania University, Hyderabad, 500007, Telangana, India
| | - Rambabu Bhukya
- Department of Chemistry, Osmania University, Hyderabad, 500007, Telangana, India
| | - Vishnu Thumma
- Department of Sciences and Humanities, Matrusri Engineering College, Hyderabad, 500059, Telangana, India
| | - Vani Tamalapakula
- University College of Technology, Osmania University, Hyderabad, Telangana, 500007, India
| | - Lakshmi Satya Boddu
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Telangana, 502313, India
| | - Vijjulatha Manga
- Department of Chemistry, Osmania University, Hyderabad, 500007, Telangana, India
- Telangana Mahila Viswavidyalayam, Hyderabad, Hyderabad, Telangana, 500095, India
| |
Collapse
|
4
|
Kim TK, Hong JM, Kim J, Kim KH, Han SJ, Kim IC, Oh H, Jo DG, Yim JH. Therapeutic Potential of Ramalin Derivatives with Enhanced Stability in the Treatment of Alzheimer's Disease. Molecules 2024; 29:5223. [PMID: 39598614 PMCID: PMC11597085 DOI: 10.3390/molecules29225223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Alzheimer's disease (AD) remains a significant public health challenge with limited effective treatment options. Ramalin, a compound derived from Antarctic lichens, has shown potential in the treatment of AD because of its strong antioxidant and anti-inflammatory properties. However, its instability and toxicity have hindered the development of Ramalin as a viable therapeutic agent. The primary objective of this study was to synthesize and evaluate novel Ramalin derivatives with enhanced stabilities and reduced toxic profiles, with the aim of retaining or improving their therapeutic potential against AD. The antioxidant, anti-inflammatory, anti-BACE-1, and anti-tau activities of four synthesized Ramalin derivatives (i.e., RA-Hyd-Me, RA-Hyd-Me-Tol, RA-Sali, and RA-Benzo) were evaluated. These derivatives demonstrated significantly improved stabilities compared to the parent compound, with RA-Sali giving the most promising results. More specifically, RA-Sali exhibited a potent BACE-1 inhibitory activity and effectively reduced tau phosphorylation, a critical factor in AD pathology. Despite exhibiting reduced antioxidant activities compared to the parent compound, these derivatives represent a potential multi-targeted approach for AD treatment, marking a significant step forward in the development of stable and effective AD therapeutics.
Collapse
Affiliation(s)
- Tai Kyoung Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (T.K.K.); (J.-M.H.); (J.K.); (K.H.K.); (S.J.H.); (I.-C.K.)
| | - Ju-Mi Hong
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (T.K.K.); (J.-M.H.); (J.K.); (K.H.K.); (S.J.H.); (I.-C.K.)
| | - Jaewon Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (T.K.K.); (J.-M.H.); (J.K.); (K.H.K.); (S.J.H.); (I.-C.K.)
- Department of Plant Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kyung Hee Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (T.K.K.); (J.-M.H.); (J.K.); (K.H.K.); (S.J.H.); (I.-C.K.)
- Department of Chemistry, Hanseo University, Seosan 31962, Republic of Korea
| | - Se Jong Han
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (T.K.K.); (J.-M.H.); (J.K.); (K.H.K.); (S.J.H.); (I.-C.K.)
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (T.K.K.); (J.-M.H.); (J.K.); (K.H.K.); (S.J.H.); (I.-C.K.)
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Joung Han Yim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (T.K.K.); (J.-M.H.); (J.K.); (K.H.K.); (S.J.H.); (I.-C.K.)
| |
Collapse
|
5
|
Myakala N, Thumma V, Kandula K, Rayala N, Boddu LS, Anagani KDB. Screening for antimicrobial and antioxidant activities of quinazolinone based isoxazole and isoxazoline derivatives, synthesis and In silico studies. Mol Divers 2024:10.1007/s11030-024-11032-2. [PMID: 39487898 DOI: 10.1007/s11030-024-11032-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Two novel series of quinazolinone based isoxazole and isoxazoline hybrid compounds were synthesized from 6-aminoquinazolinone as a key precursor. The title compounds were achieved in synthetic routes via propargylation and allylation reactions of the precursor followed by cyclization with various chloroximes. The new compounds 4a-g and 6a-g were screened for their antimicrobial activity against two Gram-positive bacteria, two Gram-negative bacteria and two fungi by employing Ampicillin and Itraconazole as standard reference. Among all, the 4-bromosubstituted analogues in isoxazole series 4d and in isoxazoline series 6d demonstrated potent activity against all bacterial and fungal strains compared to Ampicillin as well as Itraconazole. The MIC of these compounds were determined as 0.012 μM. The antioxidant investigation revealed that compounds 4f and 6f with dimethyl substitution, exhibited significant activity. Their respective IC50 values were 1.28 ± 0.33, 1.39 ± 0.38 µM and 1.07 ± 0.24, 1.10 ± 0.26 µM, when compared to Ascorbic acid. The compounds 4 g and 6 g with dichloro substitution, exhibited promising results with IC50 values were 2.72 ± 0.34 µM and 2.78 ± 0.41 µM for 4 g, and 2.24 ± 0.93 µM and 2.45 ± 0.53 µM for 6 g, respectively. Their antimicrobial and antioxidant activities were authenticated by the molecular docking study against crystal structure of DNA gyrase and NADPH oxidase. The predicted ADME properties of these molecules progressed favourable drug-likeness properties.
Collapse
Affiliation(s)
- Nagaraju Myakala
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | - Vishnu Thumma
- Department of Sciences and Humanities, Matrusri Engineering College, Hyderabad, Telangana, 500059, India
| | - Kotaiah Kandula
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | - Nagamani Rayala
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | - Lakshmi Satya Boddu
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Telangana, 502313, India
| | - Kanaka Durga Bhavani Anagani
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
6
|
Forqani MA, Akbarian M, Amirahmadi S, Soukhtanloo M, Hosseini M, Forouzanfar F. Carvacrol improved learning and memory and attenuated the brain tissue oxidative damage in aged male rats. Int J Neurosci 2024; 134:1242-1249. [PMID: 37694395 DOI: 10.1080/00207454.2023.2257877] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/01/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Introduction: Aging is an unavoidable process in the body that is accompanied by impaired tissue homeostasis and various changes. Carvacrol has attracted considerable attention for its wide range of pharmacological activities. Therefore, this study attempted to explore the protective effect of carvacrol in aged rats.Materiel and methods: The aged rats were given carvacrol (15 or 30 mg/kg/day) for 4 weeks. Morris water maze and passive avoidance tests were used to determine the learning and memory abilities of the rats. The hippocampus and cortex samples were taken for biochemical analysis.Results: In comparison to young control rats, aged control rats showed learning and memory deficits. There was improvement in the Morris water navigation test and passive avoidance test performance in the treatment groups versus the aged control group. An increment in malondialdehyde (MDA) and a decrease in total thiol groups in the hippocampus and cortex samples of aged control rats in comparison to the young control group were observed. Carvacrol decreased MDA levels and increased total thiol groups in the hippocampus and cortex samples of aged rats.Conclusion: Carvacrol improved learning and memory in aged rats, probably through its anti-oxidation effects.
Collapse
Affiliation(s)
| | - Mahsan Akbarian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sabiheh Amirahmadi
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Guo C, Yin Y, Ma Z, Xu F, Wang S. Astilbin exerts a neuroprotective effect by upregulating the signaling of nuclear NF-E2-related factor 2 in vitro. Heliyon 2024; 10:e37276. [PMID: 39296123 PMCID: PMC11409207 DOI: 10.1016/j.heliyon.2024.e37276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Objective The present study aims to evaluate the impact of Astilbin (AST) on cortical neuron survival in vitro under conditions of oxygen-glucose deprivation and reoxygenation (OGD/R) and determine the role of NF-E2-related factor 2 (Nrf2) in this process. Methods Primary neurons were pre-treated with various concentrations of AST for 8 h before OGD induction. Cell viability and lactate dehydrogenase (LDH) leakage were assessed to determine the optimal concentration. Biomarkers related to oxidative stress, antioxidant enzyme activities, and apoptosis were evaluated at 24 h post-OGD/R. To investigate the involvement of Nrf2 in AST-mediated neuroprotection, we conducted molecular docking and microscale thermophoresis analyses, as well as examined the expression levels of Nrf2 and its regulatory genes including heme oxygenase-1(HO-1), (NAD(P)H: quinone oxidoreductase 1 (NQO-1), and peroxiredoxin 1 (Prdx1). Additionally, lentivirus-mediated knockdown of Nrf2 and overexpression of Nrf2 with L-sulforaphane (SFN) were performed, followed by an assessment of cell viability, oxidative stress, antioxidant enzyme activities and apoptosis. Results Pre-treatment with AST reduced oxidative stress levels while increasing antioxidant enzyme activities and mitigating neuronal apoptosis. After OGD/R exposure, AST upregulated nuclear Nrf2 expression and increased the expression of HO-1, NQO-1 and Prdx1 in the cytoplasm. However, the knockdown of Nrf2 abolished the antioxidative and protective effects exerted by AST treatment. Conversely, combining AST with the Nrf2 agonist SFN demonstrated an enhancement in the protective effects provided by AST. These results demonstrate that Nrf2-dependent antioxidant responses contribute to AST-induced tolerance against neuronal injury caused by OGD/R injury. Conclusions Overall findings support the ability of AST to protect primary neurons from OGD/R-induced damage through activation of Nrf2-dependent antioxidant responses.
Collapse
Affiliation(s)
- Chao Guo
- Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ying Yin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhongying Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fangqin Xu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shiquan Wang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Han Y, Wang C, Li X, Liang G. PARP-1 dependent cell death pathway (Parthanatos) mediates early brain injury after subarachnoid hemorrhage. Eur J Pharmacol 2024; 978:176765. [PMID: 38906236 DOI: 10.1016/j.ejphar.2024.176765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a neurological condition with high mortality and poor prognosis, and there are currently no effective therapeutic drugs available. Poly (ADP-ribose) polymerase 1 (PARP-1) dependent cell death pathway-parthanatos is closely associated with stroke. We investigated improvements in neurological function, oxidative stress, blood-brain barrier and parthanatos-related protein expression in rats with SAH after intraperitoneal administration of PARP-1 inhibitor (AG14361). Our study found that the expression of parthanatos-related proteins was significantly increased after SAH. Immunofluorescence staining showed increased expression of apoptosis-inducing factor (AIF) in the nucleus after SAH. Administration of PARP-1 inhibitor significantly reduced malondialdehyde (MDA) level and the expression of parthanatos-related proteins. Immunofluorescence staining showed that PARP-1 inhibitor reduced the expression of 8-hydroxy-2' -deoxyguanosine (8-OHdG) and thus reduced oxidative stress. Moreover, PARP-1 inhibitor could inhibit inflammation-associated proteins level and neuronal apoptosis, protect the blood-brain barrier and significantly improve neurological function after SAH. These results suggest that PARP-1 inhibitor can significantly improve SAH, and the underlying mechanism may be through inhibiting parthanatos pathway.
Collapse
Affiliation(s)
- Yuwei Han
- Institute of Neurology, General Hospital of Northern Theater Command, China
| | - Chenchen Wang
- Institute of Neurology, General Hospital of Northern Theater Command, China
| | - Xiaoming Li
- Institute of Neurology, General Hospital of Northern Theater Command, China.
| | - Guobiao Liang
- Institute of Neurology, General Hospital of Northern Theater Command, China.
| |
Collapse
|
9
|
Flieger J, Forma A, Flieger W, Flieger M, Gawlik PJ, Dzierżyński E, Maciejewski R, Teresiński G, Baj J. Carotenoid Supplementation for Alleviating the Symptoms of Alzheimer's Disease. Int J Mol Sci 2024; 25:8982. [PMID: 39201668 PMCID: PMC11354426 DOI: 10.3390/ijms25168982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by, among other things, dementia and a decline in cognitive performance. In AD, dementia has neurodegenerative features and starts with mild cognitive impairment (MCI). Research indicates that apoptosis and neuronal loss occur in AD, in which oxidative stress plays an important role. Therefore, reducing oxidative stress with antioxidants is a natural strategy to prevent and slow down the progression of AD. Carotenoids are natural pigments commonly found in fruits and vegetables. They include lipophilic carotenes, such as lycopene, α- and β-carotenes, and more polar xanthophylls, for example, lutein, zeaxanthin, canthaxanthin, and β-cryptoxanthin. Carotenoids can cross the blood-brain barrier (BBB) and scavenge free radicals, especially singlet oxygen, which helps prevent the peroxidation of lipids abundant in the brain. As a result, carotenoids have neuroprotective potential. Numerous in vivo and in vitro studies, as well as randomized controlled trials, have mostly confirmed that carotenoids can help prevent neurodegeneration and alleviate cognitive impairment in AD. While carotenoids have not been officially approved as an AD therapy, they are indicated in the diet recommended for AD, including the consumption of products rich in carotenoids. This review summarizes the latest research findings supporting the potential use of carotenoids in preventing and alleviating AD symptoms. A literature review suggests that a diet rich in carotenoids should be promoted to avoid cognitive decline in AD. One of the goals of the food industry should be to encourage the enrichment of food products with functional substances, such as carotenoids, which may reduce the risk of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Wojciech Flieger
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Michał Flieger
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Piotr J. Gawlik
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Eliasz Dzierżyński
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Ryszard Maciejewski
- Institute of Health Sciences, John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland;
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland;
| |
Collapse
|
10
|
Tran DB, Le NKN, Duong MT, Yuna K, Pham LAT, Nguyen QCT, Tragoolpua Y, Kaewkod T, Kamei K. Drosophila models of the anti-inflammatory and anti-obesity mechanisms of kombucha tea produced by Camellia sinensis leaf fermentation. Food Sci Nutr 2024; 12:5722-5733. [PMID: 39139927 PMCID: PMC11317715 DOI: 10.1002/fsn3.4223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 08/15/2024] Open
Abstract
Kombucha tea is a traditional beverage originating from China and has recently gained popularity worldwide. Kombucha tea is produced by the fermentation of tea leaves and is characterized by its beneficial properties and varied chemical content produced during the fermentation process, which includes organic acids, amino acids, vitamins, minerals, and other biologically active compounds. Kombucha tea is often consumed as a health drink to combat obesity and inflammation; however, the bioactive effects of kombucha tea have not been thoroughly researched. In this study, we reveal the underlying mechanisms of the beneficial properties of kombucha tea and how they protect against obesity and inflammation by studying Drosophila models. We established an inflammatory Drosophila model by knocking down the lipid storage droplet-1 gene, a human perilipin-1 ortholog. In this model, dysfunction of lipid storage droplet-1 induces inflammation by enhancing the infiltration of hemocytes into adipose tissues, increasing reactive oxygen species production, elevating levels of proinflammatory cytokines, and promoting the differentiation of hemocytes into macrophages. These processes are regulated by the c-Jun N-terminal Kinase (JNK) pathway. Using this unique Drosophila model that mimics mammalian inflammation, we verified the beneficial effects of kombucha tea on reducing tissue inflammation. Our data confirms that kombucha tea effectively improves inflammatory conditions by suppressing the expression of cytokines and proinflammatory responses induced by lipid storage droplet-1 dysfunction. It was found that kombucha tea consumption alleviated the production of reactive oxygen species and activated the JNK signaling pathway, signifying its potential as an anti-inflammatory agent against systemic inflammatory responses connected to the JNK pathway. Kombucha tea reduced triglyceride accumulation by increasing the activity of Brummer (a lipase), thereby promoting lipolysis in third-instar larvae. Therefore, kombucha tea could be developed as a novel, functional beverage to protect against obesity and inflammation. Our study also highlights the potential use of this innovative model to evaluate the effects of bioactive compounds derived from natural products.
Collapse
Affiliation(s)
- Duy Binh Tran
- Department of Functional ChemistryKyoto Institute of TechnologyKyotoJapan
- Department of Surgery, College of MedicineUniversity of IllinoisChicagoIllinoisUSA
| | | | - Minh Tue Duong
- Department of Functional ChemistryKyoto Institute of TechnologyKyotoJapan
| | - Kamo Yuna
- Department of Functional ChemistryKyoto Institute of TechnologyKyotoJapan
| | - L. A. Tuan Pham
- Department of Functional ChemistryKyoto Institute of TechnologyKyotoJapan
- Department of Molecular PathologyHanoi Medical UniversityHanoiVietnam
| | - Q. C. Thanh Nguyen
- Department of Functional ChemistryKyoto Institute of TechnologyKyotoJapan
- Department of Chemistry, College of Natural SciencesCantho UniversityCantho CityVietnam
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Research Center of Deep Technology in Beekeeping and bee Products for Sustainable Development Goals (SMART BEE SDGs), Faculty of ScienceChiang Mai UniversityChiang MaiThailand
| | - Thida Kaewkod
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Research Center of Deep Technology in Beekeeping and bee Products for Sustainable Development Goals (SMART BEE SDGs), Faculty of ScienceChiang Mai UniversityChiang MaiThailand
| | - Kaeko Kamei
- Department of Functional ChemistryKyoto Institute of TechnologyKyotoJapan
| |
Collapse
|
11
|
Bansal R, Singh R, Dutta TS, Dar ZA, Bajpai A. Indanone: a promising scaffold for new drug discovery against neurodegenerative disorders. Drug Discov Today 2024; 29:104063. [PMID: 38901670 DOI: 10.1016/j.drudis.2024.104063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/03/2024] [Accepted: 06/08/2024] [Indexed: 06/22/2024]
Abstract
Indanone is a versatile scaffold that has a number of pharmacological properties. The successful development and ensuing approval of indanone-derived donepezil as a drug of choice for Alzheimer's disease attracted significant scientific interest in this moiety. Indanones could act as small molecule chemical probes as they have strong affinity towards several critical enzymes associated with the pathophysiology of various neurological disorders. Inhibition of these enzymes elevates the levels of neuroprotective brain chemicals such as norepinephrine, serotonin and dopamine. Further, indanone derivatives are capable of modulating the activities of both monoamine oxidases (MAO-A and -B) and acetylcholinesterase (AChE), and thus could be useful in various neurodegenerative diseases. This review article presents a panoramic view of the research carried out on the indanone nucleus in the development of potential neuroprotective agents.
Collapse
Affiliation(s)
- Ranju Bansal
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India.
| | - Ranjit Singh
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Tuhin Shubra Dutta
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Zahid Ahmad Dar
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Ankit Bajpai
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| |
Collapse
|
12
|
Ambala S, Thumma V, Mallikanti V, Bathini V, K J, Pochampally J. Synthesis of New Chroman-4-one Based 1,2,3-Triazole Analogues as Antioxidant and Anti-Inflammatory Agents. Chem Biodivers 2024; 21:e202400587. [PMID: 38718104 DOI: 10.1002/cbdv.202400587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/08/2024] [Indexed: 06/19/2024]
Abstract
A library of new chroman-4-one based 1,2,3-triazole analogues were synthesized involving a series of condensation, cyclization, Suzuki coupling and copper catalysed click chemistry protocols. The newly synthesized compounds 8a-l were screened for their invitro antioxidant and anti-inflammatory activities by employing Ascorbic acid and Diclofenac as reference drugs respectively. The compound without any substituent on benzyl ring (8a), compound with -Cl substituent in para position of benzyl ring (8i), and compound with ethoxy substituent in para position of benzyl ring (8k) exhibited potent antioxidant and anti-inflammatory activities with higher percentage of inhibition. To understand their binding affinities, molecular docking study of these three compounds performed against NADPH oxidase with presented outstanding docking scores and promising binding interactions like H-bond and hydrophobic.
Collapse
Affiliation(s)
- Shankaraiah Ambala
- Department of Chemistry, Osmania University, Hyderabad, 500007, Telangana, India
| | - Vishnu Thumma
- Department of Sciences and Humanities, Matrusri Engineering College, Hyderabad, 500059, Telangana, India
| | | | - Vineesha Bathini
- Department of Chemistry, Osmania University, Hyderabad, 500007, Telangana, India
| | - Jyothi K
- St. Marys College of Pharmacy, Secunderabad, Hyderabad, 500025, Telangana, India
| | | |
Collapse
|
13
|
Kaur K, Kulkarni YA, Wairkar S. Exploring the potential of quercetin in Alzheimer's Disease: Pharmacodynamics, Pharmacokinetics, and Nanodelivery systems. Brain Res 2024; 1834:148905. [PMID: 38565372 DOI: 10.1016/j.brainres.2024.148905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/04/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease (AD) is a primary cause of dementia that affects millions of people worldwide and its prevalence is likely to increase largely in the coming decades. Multiple complex pathways, such as oxidative stress, tau and amyloid-beta (Aβ) pathology, and cholinergic dysfunction, are involved in the pathogenesis of Alzheimer's disease. The conventional treatments provide only symptomatic relief and not a complete cure for the disease. On the other hand, recent studies have looked into the possibility of flavonoids as an effective therapeutic strategy for treating AD. Quercetin, a well-known flavonol, has been extensively studied for AD treatment. Therefore, this review mainly focuses on the pharmacokinetics properties of quercetin and its modes of action, such as antioxidant, anti-inflammatory, anti-amyloidogenic, and neuroprotective properties, which are beneficial in treating AD. It also highlights the nano delivery systems of quercetin, including liposomes, nanostructures lipid carriers, solid lipid nanoparticles, nanoemulsions, microemulsions, self-emulsifying drug delivery systems, and nanoparticles reported for AD treatment. The remarkable potential of quercetin nanocarriers has been reflected in enhancing its bioavailability and therapeutic efficacy. Therefore, clinical studies must be conducted to explore it as a therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Komaldeep Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India.
| |
Collapse
|
14
|
Ghosh S, Kumar V, Mukherjee H, Saini S, Gupta S, Chauhan S, Kushwaha K, Lahiri D, Sircar D, Roy P. Assessment of the mechanistic role of an Indian traditionally used ayurvedic herb Bacopa monnieri (L.)Wettst. for ameliorating oxidative stress in neuronal cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117899. [PMID: 38341111 DOI: 10.1016/j.jep.2024.117899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/23/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE This study has important ethnopharmacological implications since it systematically investigated the therapeutic potential of Bacopa monnieri(L.) Wettst. (Brahmi) in treating neurological disorders characterized by oxidative stress-a growing issue in the aging population. Bacopa monnieri, which is strongly rooted in Ayurveda, has long been recognized for its neuroprotective and cognitive advantages. The study goes beyond conventional wisdom by delving into the molecular complexities of Bacopa monnieri, particularly its active ingredient, Bacoside-A, in countering oxidative stress. The study adds to the ethnopharmacological foundation for using this herbal remedy in the context of neurodegenerative disorders by unravelling the scientific underpinnings of Bacopa monnieri's effectiveness, particularly at the molecular level, against brain damage and related conditions influenced by oxidative stress. This dual approach, which bridges traditional wisdom and modern investigation, highlights Bacopa monnieri's potential as a helpful natural remedy for oxidative stress-related neurological diseases. AIM OF THE STUDY The aim of this study is to investigate the detailed molecular mechanism of action (in vitro, in silico and in vivo) of Bacopa monnieri (L.) Wettst. methanolic extract and its active compound, Bacoside-A, against oxidative stress in neurodegenerative disorders. MATERIALS AND METHODS ROS generation activity, mitochondrial membrane potential, calcium deposition and apoptosis were studied through DCFDA, Rhodamine-123, FURA-2 AM and AO/EtBr staining respectively. In silico study to check the effect of Bacoside-A on the Nrf-2 and Keap1 axis was performed through molecular docking study and validated experimentally through immunofluorescence co-localization study. In vivo antioxidant activity of Bacopa monnieri extract was assessed by screening the oxidative stress markers and stress-inducing hormone levels as well as through histopathological analysis of tissues. RESULTS The key outcome of this study is that the methanolic extract of Bacopa monnieri (BME) and its active component, Bacoside-A, protect against oxidative stress in neurodegenerative diseases. At 100 and 20 μg/ml, BME and Bacoside-A respectively quenched ROS, preserved mitochondrial membrane potential, decreased calcium deposition, and inhibited HT-22 mouse hippocampus cell death. BME and Bacoside-A regulated the Keap1 and Nrf-2 axis and their downstream antioxidant enzyme-specific genes to modify cellular antioxidant machinery. In vivo experiments utilizing rats subjected to restrained stress indicated that pre-treatment with BME (50 mg/kg) downregulated oxidative stress markers and stress-inducing hormones, and histological staining demonstrated that BME protected the neuronal cells of the Cornu Ammonis (CA1) area in the hippocampus. CONCLUSIONS Overall, the study suggests that Bacopa monnieri(L.) Wettst. has significant potential as a natural remedy for neurodegenerative disorders, and its active compounds could be developed as new drugs for the prevention and treatment of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Souvik Ghosh
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India; Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India; Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Viney Kumar
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Haimanti Mukherjee
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Saakshi Saini
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Sumeet Gupta
- Department of Pharmacy, Maharshi Markandeshwar University (Deemed to Be University), Mullana, Haryana, 133207, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Komal Kushwaha
- Plant Molecular Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Debrupa Lahiri
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India; Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Debabrata Sircar
- Plant Molecular Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
15
|
Bhadhprasit W, Kinoshita C, Matsumura N, Aoyama K. Erythroid Differentiation Regulator 1 as a Regulator of Neuronal GSH Synthesis. Antioxidants (Basel) 2024; 13:771. [PMID: 39061840 PMCID: PMC11274251 DOI: 10.3390/antiox13070771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Erythroid differentiation regulator 1 (Erdr1) is a cytokine known to play important roles in cell survival under stressful conditions, maintenance of cellular growth homeostasis, and activation of the immune system. However, the impact of Erdr1 on neurons remains undefined. In this study, we present novel evidence that Erdr1 plays a role in regulating glutathione (GSH) synthesis via glutamate transporter-associated protein 3-18 (GTRAP3-18), an anchor protein in the endoplasmic reticulum that holds excitatory amino acid carrier 1 (EAAC1) in neurons. Both DNA microarray and quantitative real-time PCR analyses revealed an approximately 2-fold increase in Erdr1 levels in the hippocampus of GTRAP3-18-deficient mice compared to those of wild-type mice. Knockdown of Erdr1 in vitro resulted in a decrease in GTRAP3-18 levels, leading to an increase in EAAC1 expression and intracellular GSH levels, and subsequently, cytoprotective effects against oxidative stress. Our findings shed light on the regulatory mechanisms involving Erdr1, GTRAP3-18, EAAC1, and GSH in the context of neuronal defense against oxidative stress. Understanding the intricate interplay among these molecules may pave the way for the development of promising therapeutic strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, Tokyo 173-8605, Japan; (W.B.); (C.K.); (N.M.)
| |
Collapse
|
16
|
Balakrishnan R, Jannat K, Choi DK. Development of dietary small molecules as multi-targeting treatment strategies for Alzheimer's disease. Redox Biol 2024; 71:103105. [PMID: 38471283 PMCID: PMC10945280 DOI: 10.1016/j.redox.2024.103105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Cognitive dysfunction can occur both in normal aging and age-related neurological disorders, such as mild cognitive impairment and Alzheimer's disease (AD). These disorders have few treatment options due to side effects and limited efficacy. New approaches to slow cognitive decline are urgently needed. Dietary interventions (nutraceuticals) have received considerable attention because they exhibit strong neuroprotective properties and may help prevent or minimize AD symptoms. Biological aging is driven by a series of interrelated mechanisms, including oxidative stress, neuroinflammation, neuronal apoptosis, and autophagy, which function through various signaling pathways. Recent clinical and preclinical studies have shown that dietary small molecules derived from natural sources, including flavonoids, carotenoids, and polyphenolic acids, can modulate oxidative damage, cognitive impairments, mitochondrial dysfunction, neuroinflammation, neuronal apoptosis, autophagy dysregulation, and gut microbiota dysbiosis. This paper reviews research on different dietary small molecules and their bioactive constituents in the treatment of AD. Additionally, the chemical structure, effective dose, and specific molecular mechanisms of action are comprehensively explored. This paper also discusses the advantages of using nanotechnology-based drug delivery, which significantly enhances oral bioavailability, safety, and therapeutic effect, and lowers the risk of adverse effects. These agents have considerable potential as novel and safe therapeutic agents that can prevent and combat age-related AD.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju, 27478, South Korea; Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, 27478, South Korea
| | - Khoshnur Jannat
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, 27478, South Korea
| | - Dong-Kug Choi
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju, 27478, South Korea; Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, 27478, South Korea.
| |
Collapse
|
17
|
Elbeltagy M, Mansour S, Zayed JA, Alrafayia MAB, Alhesa A, Salman A. Fluvoxamine Ameliorates the Damage to the Neuro-Behavioral Status of Rats Caused by the Administration of Valproic Acid by Preventing Cognitive Memory Deficits and Decreased Hippocampal Cellular Proliferation. Cureus 2024; 16:e58578. [PMID: 38770498 PMCID: PMC11103936 DOI: 10.7759/cureus.58578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
Fluvoxamine is a major antidepressant of the selective serotonin-reuptake inhibitor class, previously studied as a drug that improves cognitive memory by enhancing hippocampal cell division and proliferation. Valproic acid (VPA) is a commonly used antiepileptic drug and mood stabilizer that has negative effects on cognitive memory as it inhibits cellular division and proliferation in the hippocampus. This study assessed the protective effects of fluvoxamine treatment versus the memory impairment, decreased hippocampal cellular proliferation, and weight loss produced by VPA treatment. The cognitive memory of 40 male Sprague-Dawley rats was assessed by the novel object location (NOL) test. Immunostaining by Ki67 and glutathione peroxidase 1 (GPX-1) was performed to quantify the number of dividing cells in the subgranular zone (SGZ) of the dentate gyrus and to assess the antioxidant activity of different treatments, respectively. Results showed that the VPA group had fewer Ki67-positive cells than the control group (p < 0.001), indicating reduced hippocampal proliferation. In contrast, the VPA and fluvoxamine combination group showed increased proliferation (p < 0.001) compared to VPA alone. Notably, fluvoxamine treatment significantly differed in cell counts compared to other groups (p < 0.001). Fluvoxamine also attenuated the weight loss caused by VPA (p < 0.0001). Our data suggested that fluvoxamine therapy attenuated the VPA-induced decrease in SGZ cellular proliferation, memory, and weight in rats.
Collapse
Affiliation(s)
| | - Shahd Mansour
- School of Medicine, University of Jordan, Amman, JOR
| | - Jana A Zayed
- School of Medicine, University of Jordan, Amman, JOR
| | | | | | | |
Collapse
|
18
|
Sirakawin C, Lin D, Zhou Z, Wang X, Kelleher R, Huang S, Long W, Pires‐daSilva A, Liu Y, Wang J, Vinnikov IA. SKN-1/NRF2 upregulation by vitamin A is conserved from nematodes to mammals and is critical for lifespan extension in Caenorhabditis elegans. Aging Cell 2024; 23:e14064. [PMID: 38100161 PMCID: PMC10928581 DOI: 10.1111/acel.14064] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 03/13/2024] Open
Abstract
Vitamin A (VA) is a micronutrient essential for the physiology of many organisms, but its role in longevity and age-related diseases remains unclear. In this work, we used Caenorhabditis elegans to study the impact of various bioactive compounds on lifespan. We demonstrate that VA extends lifespan and reduces lipofuscin and fat accumulation while increasing resistance to heat and oxidative stress. This resistance can be attributed to high levels of detoxifying enzymes called glutathione S-transferases, induced by the transcription factor skinhead-1 (SKN-1). Notably, VA upregulated the transcript levels of skn-1 or its mammalian ortholog NRF2 in both C. elegans, human cells, and liver tissues of mice. Moreover, the loss-of-function genetic models demonstrated a critical involvement of the SKN-1 pathway in longevity extension by VA. Our study thus provides novel insights into the molecular mechanism of anti-aging and anti-oxidative effects of VA, suggesting that this micronutrient could be used for the prevention and/or treatment of age-related disorders.
Collapse
Affiliation(s)
- Chaweewan Sirakawin
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Dongfa Lin
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory for Molecular Enzymology and Engineering, School of Life SciencesJilin UniversityChangchunChina
| | - Ziyue Zhou
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoxin Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | | | - Shangyuan Huang
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Weimiao Long
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | | | - Yu Liu
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Jingjing Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ilya A. Vinnikov
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
19
|
Lal R, Dharavath RN, Chopra K. Nrf2 Signaling Pathway: a Potential Therapeutic Target in Combating Oxidative Stress and Neurotoxicity in Chemotherapy-Induced Cognitive Impairment. Mol Neurobiol 2024; 61:593-608. [PMID: 37644279 DOI: 10.1007/s12035-023-03559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/05/2023] [Indexed: 08/31/2023]
Abstract
Chemotherapy-induced cognitive impairment (CICI) is one of the major adverse effects of antineoplastic drugs, which decrease the quality of life in cancer survivors. Extensive experimental and clinical research suggests that chemotherapeutic drugs generate an enormous amount of reactive oxygen species (ROS), contributing to oxidative stress, neuroinflammation, blood-brain barrier (BBB) disruption, and neuronal death, eventually leading to CICI. Despite the progress in exploring different pathological mechanisms of CICI, effective treatment to prevent CICI progression has not been developed yet. Nrf2 is the principal transcription factor that regulates cellular redox balance and inflammation-related gene expression. Emerging evidence suggests that upregulation of Nrf2 and its target genes could suppress oxidative stress, and neuroinflammation, restore BBB integrity, and increase neurogenesis. This review discusses the role of Nrf2 in CICI, how it responds to oxidative stress, inflammation, neurotoxicity, and potential Nrf2 activators that could be used to enhance Nrf2 activation in CICI.
Collapse
Affiliation(s)
- Roshan Lal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Ravinder Naik Dharavath
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
| | - Kanwaljit Chopra
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
20
|
Armenta-Castro A, Núñez-Soto MT, Rodriguez-Aguillón KO, Aguayo-Acosta A, Oyervides-Muñoz MA, Snyder SA, Barceló D, Saththasivam J, Lawler J, Sosa-Hernández JE, Parra-Saldívar R. Urine biomarkers for Alzheimer's disease: A new opportunity for wastewater-based epidemiology? ENVIRONMENT INTERNATIONAL 2024; 184:108462. [PMID: 38335627 DOI: 10.1016/j.envint.2024.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
While Alzheimer's disease (AD) diagnosis, management, and care have become priorities for healthcare providers and researcher's worldwide due to rapid population aging, epidemiologic surveillance efforts are currently limited by costly, invasive diagnostic procedures, particularly in low to middle income countries (LMIC). In recent years, wastewater-based epidemiology (WBE) has emerged as a promising tool for public health assessment through detection and quantification of specific biomarkers in wastewater, but applications for non-infectious diseases such as AD remain limited. This early review seeks to summarize AD-related biomarkers and urine and other peripheral biofluids and discuss their potential integration to WBE platforms to guide the first prospective efforts in the field. Promising results have been reported in clinical settings, indicating the potential of amyloid β, tau, neural thread protein, long non-coding RNAs, oxidative stress markers and other dysregulated metabolites for AD diagnosis, but questions regarding their concentration and stability in wastewater and the correlation between clinical levels and sewage circulation must be addressed in future studies before comprehensive WBE systems can be developed.
Collapse
Affiliation(s)
| | - Mónica T Núñez-Soto
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Kassandra O Rodriguez-Aguillón
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Alberto Aguayo-Acosta
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Mariel Araceli Oyervides-Muñoz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Shane A Snyder
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, Singapore
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain; Sustainability Cluster, School of Engineering at the UPES, Dehradun, Uttarakhand, India
| | - Jayaprakash Saththasivam
- Water Center, Qatar Environment & Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Qatar
| | - Jenny Lawler
- Water Center, Qatar Environment & Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Qatar
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
21
|
Saul MC, Litkowski EM, Hadad N, Dunn AR, Boas SM, Wilcox JAL, Robbins JE, Wu Y, Philip VM, Merrihew GE, Park J, De Jager PL, Bridges DE, Menon V, Bennett DA, Hohman TJ, MacCoss MJ, Kaczorowski CC. Hippocampus Glutathione S Reductase Potentially Confers Genetic Resilience to Cognitive Decline in the AD-BXD Mouse Population. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574219. [PMID: 38260300 PMCID: PMC10802440 DOI: 10.1101/2024.01.09.574219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Alzheimer's disease (AD) is a prevalent and costly age-related dementia. Heritable factors account for 58-79% of variation in late-onset AD, but substantial variation remains in age-of- onset, disease severity, and whether those with high-risk genotypes acquire AD. To emulate the diversity of human populations, we utilized the AD-BXD mouse panel. This genetically diverse resource combines AD genotypes with multiple BXD strains to discover new genetic drivers of AD resilience. Comparing AD-BXD carriers to noncarrier littermates, we computed a novel quantitative metric for resilience to cognitive decline in the AD-BXDs. Our quantitative AD resilience trait was heritable and genetic mapping identified a locus on chr8 associated with resilience to AD mutations that resulted in amyloid brain pathology. Using a hippocampus proteomics dataset, we nominated the mitochondrial glutathione S reductase protein (GR or GSHR) as a resilience factor, finding that the DBA/2J genotype was associated with substantially higher GR abundance. By mapping protein QTLs (pQTLs), we identified synaptic organization and mitochondrial proteins coregulated in trans with a cis-pQTL for GR. We found four coexpression modules correlated with the quantitative resilience score in aged 5XFAD mice using paracliques, which were related to cell structure, protein folding, and postsynaptic densities. Finally, we found significant positive associations between human GSR transcript abundance in the brain and better outcomes on AD-related cognitive and pathology traits in the Religious Orders Study/Memory and Aging project (ROSMAP). Taken together, these data support a framework for resilience in which neuronal antioxidant pathway activity provides for stability of synapses within the hippocampus.
Collapse
|
22
|
Javed H, Meeran MFN, Jha NK, Ashraf GM, Ojha S. Sesamol: A Phenolic Compound of Health Benefits and Therapeutic Promise in Neurodegenerative Diseases. Curr Top Med Chem 2024; 24:797-809. [PMID: 38141184 DOI: 10.2174/0115680266273944231213070916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 12/25/2023]
Abstract
Sesamol, one of the key bioactive ingredients of sesame seeds (Sesamum indicum L.), is responsible for many of its possible nutritional benefits. Both the Chinese and Indian medical systems have recognized the therapeutic potential of sesame seeds. It has been shown to have significant therapeutic potential against oxidative stress, inflammatory diseases, metabolic syndrome, neurodegeneration, and mental disorders. Sesamol is a benign molecule that inhibits the expression of inflammatory indicators like numerous enzymes responsible for inducing inflammation, protein kinases, cytokines, and redox status. This review summarises the potential beneficial effects of sesamol against neurological diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Recently, sesamol has been shown to reduce amyloid peptide accumulation and attenuate cognitive deficits in AD models. Sesamol has also been demonstrated to reduce the severity of PD and HD in animal models by decreasing oxidative stress and inflammatory pathways. The mechanism of sesamol's pharmacological activities against neurodegenerative diseases will also be discussed in this review.
Collapse
Affiliation(s)
- Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, UP, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates
| |
Collapse
|
23
|
Eskandani R, Zibaii MI. Unveiling the biological effects of radio-frequency and extremely-low frequency electromagnetic fields on the central nervous system performance. BIOIMPACTS : BI 2023; 14:30064. [PMID: 39104617 PMCID: PMC11298025 DOI: 10.34172/bi.2023.30064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/09/2023] [Accepted: 11/26/2023] [Indexed: 08/07/2024]
Abstract
Introduction Radiofrequency electromagnetic radiation (RF-EMR) and extremely low-frequency electromagnetic fields (ELF-EMF) have emerged as noteworthy sources of environmental pollution in the contemporary era. The potential biological impacts of RF-EMR and ELF-EMF exposure on human organs, particularly the central nervous system (CNS), have garnered considerable attention in numerous research studies. Methods This article presents a comprehensive yet summarized review of the research on the explicit/implicit effects of RF-EMR and ELF-EMF exposure on CNS performance. Results Exposure to RF-EMR can potentially exert adverse effects on the performance of CNS by inducing changes in the permeability of the blood-brain barrier (BBB), neurotransmitter levels, calcium channel regulation, myelin protein structure, the antioxidant defense system, and metabolic processes. However, it is noteworthy that certain reports have suggested that RF-EMR exposure may confer cognitive benefits for various conditions and disorders. ELF-EMF exposure has been associated with the enhancement of CNS performance, marked by improved memory retention, enhanced learning ability, and potential mitigation of neurodegenerative diseases. Nevertheless, it is essential to acknowledge that ELF-EMF exposure has also been linked to the induction of anxiety states, oxidative stress, and alterations in hormonal regulation. Moreover, ELF-EMR exposure alters hippocampal function, notch signaling pathways, the antioxidant defense system, and synaptic activities. Conclusion The RF-EMR and ELF-EMF exposures exhibit both beneficial and adverse effects. Nevertheless, the precise conditions and circumstances under which detrimental or beneficial effects manifest (either individually or simultaneously) remain uncertain.
Collapse
Affiliation(s)
- Ramin Eskandani
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 19839-69411, Iran
| | - Mohammad Ismail Zibaii
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 19839-69411, Iran
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran 19839-69411, Iran
| |
Collapse
|
24
|
Yust BG, Wilkinson F, Rao NZ. Variables Affecting the Extraction of Antioxidants in Cold and Hot Brew Coffee: A Review. Antioxidants (Basel) 2023; 13:29. [PMID: 38247454 PMCID: PMC10812495 DOI: 10.3390/antiox13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Coffee beans are a readily available, abundant source of antioxidants used worldwide. With the increasing interest in and consumption of coffee beverages globally, research into the production, preparation, and chemical profile of coffee has also increased in recent years. A wide range of variables such as roasting temperature, coffee grind size, brewing temperature, and brewing duration can have a significant impact on the extractable antioxidant content of coffee products. While there is no single standard method for measuring all of the antioxidants found in coffee, multiple methods which introduce the coffee product to a target molecule or reagent can be used to deduce the overall radical scavenging capacity. In this article, we profile the effect that many of these variables have on the quantifiable concentration of antioxidants found in both cold and hot brew coffee samples. Most protocols for cold brew coffee involve an immersion or steeping method where the coffee grounds are in contact with water at or below room temperature for several hours. Generally, a higher brewing temperature or longer brewing time yielded greater antioxidant activity. Most studies also found that a lower degree of coffee bean roast yielded greater antioxidant activity.
Collapse
Affiliation(s)
- Brian G. Yust
- College of Humanities & Sciences, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Frank Wilkinson
- Department of Biological and Chemical Sciences, College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19144, USA; (F.W.); (N.Z.R.)
| | - Niny Z. Rao
- Department of Biological and Chemical Sciences, College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19144, USA; (F.W.); (N.Z.R.)
| |
Collapse
|
25
|
Alshaman R, Qushawy M, Mokhtar HI, Ameen AM, El-Sayed RM, Alamri ES, Elabbasy LM, Helaly AMN, Elkhatib WF, Alyahya EM, Zaitone SA. Marula oil nanoemulsion improves motor function in experimental parkinsonism via mitigation of inflammation and oxidative stress. Front Pharmacol 2023; 14:1293306. [PMID: 38116076 PMCID: PMC10729903 DOI: 10.3389/fphar.2023.1293306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/25/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction: Parkinson's disease (PD) is a neurologic condition exhibiting motor dysfunction that affects old people. Marula oil (M-Oil) has been used longley in cosmetics and curing skin disorders. M-Oil is particularly stable due to its high concentration of monounsaturated fatty acids and natural antioxidants. The current study formulated M-Oil in an o/w nanoemulsion (M-NE) preparations and tested its anti-inflammatory and antioxidant actions against experimental parkinsonism. Methods: Four experimental groups of male albino mice were used and assigned as vehicle, PD, PD + M-Oil and PD + M-NE. Locomotor function was evaluated using the open field test and the cylinder test. Striatal samples were used to measure inflammatory and oxidative stress markers. Results: The results indicated poor motor performance of the mice in PD control group then, improvements were recorded after treatment with crude M-Oil or M-NE. In addition, we found high expression and protein of inflammatory markers and malondialdehyde levels in PD group which were downregulated by using doses of crude M-Oil or M-NE. Hence, formulating M-Oil in form of M-NE enhanced its physical characters. Discussion: This finding was supported by enhanced biological activity of M-NE as anti-inflammatory and antioxidant agent that resulted in downregulation of the inflammatory burden and alleviation of locomotor dysfunction in experimental PD in mice.
Collapse
Affiliation(s)
- Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Mona Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, El Arish, Egypt
| | - Hatem I. Mokhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, Egypt
| | - Angie M. Ameen
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Rehab M. El-Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sinai University, El Arish, Egypt
| | - Eman Saad Alamri
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Lamiaa M. Elabbasy
- Department of Medical Biochemistry and Molecular Biotechnology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, Riyadh, Saudi Arabia
| | - Ahmed M. N. Helaly
- Department of Forensic Medicine and Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Walid F. Elkhatib
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Cairo, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
| | - Eidah M. Alyahya
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
26
|
Das T, Das S, Kumar P, C A B, Mandal D. Coal waste-derived synthesis of yellow oxidized graphene quantum dots with highly specific superoxide dismutase activity: characterization, kinetics, and biological studies. NANOSCALE 2023; 15:17861-17878. [PMID: 37885430 DOI: 10.1039/d3nr04259f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The disintegration of coal-based precursors for the scalable production of nanozymes relies on the fate of solvothermal pyrolysis. Herein, we report a novel economic and scalable strategy to fabricate yellow luminescent graphene quantum dots (YGQDs) by remediating unburnt coal waste (CW). The YGQDs (size: 7-8 nm; M.W: 3157.9 Da) were produced using in situ "anion-radical" assisted bond cleavage in water (within 8 h; at 121 °C) with yields of ∼87%. The presence of exposed surface and edge groups, such as COOH, C-O-C, and O-H, as structural defects accounted for its high fluorescence with εmax ∼530 nm at pH 7. Besides, these defects also acted as radical stabilizers, demonstrating prominent anti-oxidative activity of ∼4.5-fold higher than standard ascorbic acid (AA). In addition, the YGQDs showed high biocompatibility towards mammalian cells, with 500 μM of treatment dose showing <15% cell death. The YGQDs demonstrated specific superoxide dismutase (SOD) activity wherein 15 μM YGQDs equalled the activity of 1-unit biological SOD (bSOD), measured using the pyrogallol assay. The Km for YGQDs was ∼10-fold higher than that for bSOD. However, the YGQDs retained their SOD activity in harsh conditions like high temperatures or denaturing reactions, where the activity of bSOD is completely lost. The binding affinity of YGQDs for superoxide ions, measured from isothermal calorimetry (ITC) studies, was only 10-fold lower than that of bSOD (Kd of 586 nM vs. 57.3 nM). Further, the pre-treatment of YGQDs (∼10-25 μM) increased the cell survivability to >75-90% in three cell lines during ROS-mediated cell death, with the highest survivability being shown for C6-cells. Next, the ROS-induced apoptosis in C6-cells (model for neurodegenerative diseases study), wherein YGQDs uptake was confirmed by confocal microscopy, showed ∼5-fold apoptosis alleviation with only 5 μM pretreatment. The YGQDs also restored the expression of pro-inflammatory Th1 cytokines (TNF-α, IFN-γ, IL-6) and anti-inflammatory Th2 cytokines (IL-10) to their basal levels, with a net >3-fold change observed. This further explains the molecular mechanism for the antioxidant property of YGQDs. The high specific SOD activity associated with YGQDs may provide the cheapest alternative source for producing large-scale SOD-based nanozymes that can treat various oxidative stress-linked disorders/diseases.
Collapse
Affiliation(s)
- Tushar Das
- Department of Chemistry, National Institute of Technology Patna, Bihar 800005, India.
| | - Subrata Das
- Department of Chemistry, National Institute of Technology Patna, Bihar 800005, India.
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, Vaishali 844102, India.
| | - Betty C A
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400085, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, Vaishali 844102, India.
| |
Collapse
|
27
|
Lee YJ, Kim EA, Kang N, Park A, Heo SJ. Antioxidant Effects of Turbo cornutus By-Products Visceral Extract against Hydrogen Peroxide-Induced Oxidative Stress by Regulating MAPK and Akt Signaling Pathways in Vero Cells. Foods 2023; 12:3660. [PMID: 37835313 PMCID: PMC10572179 DOI: 10.3390/foods12193660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Turbo cornutus, a marine gastropod mollusk commonly called sea snail, is found along the southern coast of Korea and holds considerable importance as a marine food resource, particularly on Jeju Island, Korea. Data are scarce on the antioxidant activity of hot water extracts from T. cornutus visceral tissue. Therefore, this study was performed to evaluate the antioxidant activities of T. cornutus visceral tissue hot water extract (TVE) and the underlying mechanisms against hydrogen peroxide-induced oxidative stress in Vero cells. The amino acid composition and antioxidant effects of TVE were evaluated. Furthermore, the impact of TVE on the expression of proteins within the mitogen-activated protein kinase (MAPK) pathway is investigated. TVE showed a concentration-dependent enhancement in its scavenging activities against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals (IC50 = 1.07 ± 0.06 mg/mL) and hydrogen peroxide (IC50 = 0.33 ± 0.03 mg/mL). TVE reduced intracellular reactive oxygen species (ROS) production and maintained cell viability under H2O2-induced oxidative stress by suppressing apoptosis in Vero cells. Additionally, TVE demonstrated regulatory effects on the MAPK and protein kinase B (Akt) signaling pathways activated by H2O2. In conclusion, the findings from our study propose that TVE holds potential as a bioactive component in the formulation of functional foods.
Collapse
Affiliation(s)
- Yeon-Ji Lee
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (Y.-J.L.); (E.-A.K.); (N.K.); (A.P.)
| | - Eun-A Kim
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (Y.-J.L.); (E.-A.K.); (N.K.); (A.P.)
| | - Nalae Kang
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (Y.-J.L.); (E.-A.K.); (N.K.); (A.P.)
| | - Areumi Park
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (Y.-J.L.); (E.-A.K.); (N.K.); (A.P.)
| | - Soo-Jin Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (Y.-J.L.); (E.-A.K.); (N.K.); (A.P.)
- Department of Marine Technology & Convergence Engineering (Marine Biotechnology), University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
28
|
Mekkawy MH, Karam HM, Mohamed MA, Lotfy DM. Evaluation of Glycogen Synthase Kinase Pathway for Assessing the Antidepressant-like Effect of Glucosamine as a Radioprotector in Rats: Behavioral and Biochemical Studies. Dose Response 2023; 21:15593258231217845. [PMID: 38022903 PMCID: PMC10666705 DOI: 10.1177/15593258231217845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Radiotherapy is a very important tool in the treatment of cancer; nevertheless, its side effects are a hindrance to its use. The present study is designed to evaluate glucosamine effects against radiation-induced brain oxidative stress and depression-like effect in rats. Four groups of female Wister rats were used as control, irradiated (4 × 2 Gy), glucosamine (1 g/kg P.O), and glucosamine + irradiated group. The behavioral responses are estimated. The brain hippocampi of the rats are separated to evaluate oxidative stress biochemical parameters and glycogen synthase kinase pathway in addition to the biogenic amines. Irradiation exposure led to disturbances in the behavioral assessments (forced swimming test, light-dark box, and open field test) and a significant decrease in brain GSH, neurotransmitters (serotonin, norepinephrine, and dopamine), phosphatidylinositol 3 kinase (PI3K), and phosphorylated protein kinase-B (p-AKT) levels. Additionally, MDA and ROS levels increased significantly post-irradiation along with the phosphorylated glycogen synthase kinase (p-GSK3). Glucosamine administration before irradiation caused improvement in the behavioral valuations and the biochemical parameters in the brain as well. Glucosamine might be used as a radioprotector to improve brain function and as an antidepressant drug. It could be promising as a future therapy in managing depression occurring during radiotherapy.
Collapse
Affiliation(s)
- Mai H. Mekkawy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Heba M. Karam
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Marwa A. Mohamed
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Dina M. Lotfy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
29
|
Xia X, Li M, Wei R, Li J, Lei Y, Zhang M. Intracerebral hirudin injection alleviates cognitive impairment and oxidative stress and promotes hippocampal neurogenesis in rats subjected to cerebral ischemia. Neuropathology 2023; 43:362-372. [PMID: 36918198 DOI: 10.1111/neup.12897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 03/16/2023]
Abstract
Cerebral ischemia starts with cerebral blood flow interruption that causes severely limited oxygen and glucose supply, eliciting a cascade of pathological events, such as excitotoxicity, oxidative stress, calcium dysregulation, and inflammatory response, which could ultimately result in neuronal death. Hirudin has beneficial effects in ischemic stroke and possesses antioxidant and anti-inflammatory properties. Therefore, we investigated the biological functions of hirudin and its related mechanisms in cerebral ischemia. The ischemia-like conditions were induced by transient middle cerebral artery occlusion (MCAO). To investigate hirudin roles, intracerebroventricular injection of 10 U hirudin was given to the rats. Cognitive and motor functions were examined by beam walking and Morris water maze tests. 2,3,5-triphenyl tetrazolium chloride-stained brain sections were used to measure infarct volume. Oxidative stress was determined by assessment of oxidative stress markers. The proliferated cells were labeled by BrdU and Nestin double staining. Western blotting was performed to measure protein levels. Hirudin administration improved cognitive and motor deficits post-ischemia. Hirudin reduced brain infarction and neurological damage in MCAO-subjected rats. Hirudin alleviated oxidative stress and enhanced neurogenesis in ischemic rats. Hirudin facilitated the promotion of phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and serine-threonine kinase. In sum, hirudin alleviates cognitive deficits by attenuating oxidative stress and promoting hippocampal neurogenesis through the regulation of ERK1/2 and serine-threonine kinase in MCAO-subjected rats.
Collapse
Affiliation(s)
- Xianfeng Xia
- Department of Traditional Chinese Medicine, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Min Li
- Department of Neurology, Baoji Third People's Hospital, Baoji, China
| | - Renxian Wei
- Department of Traditional Chinese Medicine, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Jin Li
- Department of Traditional Chinese Medicine, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Yulin Lei
- Department of Traditional Chinese Medicine, Zhucheng Street Hospital, Wuhan, China
| | - Meikui Zhang
- Department of Traditional Chinese Medicine, The General Hospital of Chinese PLA, Beijing, China
| |
Collapse
|
30
|
Zheng B, Kuang Y, Yuan D, Huang H, Liu S. The research landscape of immunology research in spinal cord injury from 2012 to 2022. JOR Spine 2023; 6:e1261. [PMID: 37780822 PMCID: PMC10540832 DOI: 10.1002/jsp2.1261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/21/2023] [Accepted: 04/30/2023] [Indexed: 10/03/2023] Open
Abstract
Background Spinal cord injury (SCI) is defined as traumatic damage to the spinal cord, affecting over three million patients worldwide, and there is still no treatment for the injured spinal cord itself. In recent years, immunology research on SCI has been published in various journals. Methods To systematically analyze the research hotspots and dynamic scientific developments of immunology research in SCI, we conducted a bibliometric and knowledge map analysis to help researchers gain a global perspective in this research field. Results The bibliometric study we completed included 1788 English-language papers published in 553 journals by 8861 authors from 1901 institutions in 66 countries/regions. Based on the references and keyword analysis, researchers in the past 10 years have mainly focused on the research directions of "monocyte chemoattractor protein 1," "nitric oxide," "pain," and "nitric oxide synthase" related to immunological research in SCI. However, with the development of other new directions such as "extracellular vesicles" (2019-2022), "Regenerative medicine" (2019-2022), "stromal cells" (2018-2022), "motor recovery" (2019-2022), and "glial activation" (2019-2022). Researchers prefer to study the application of regenerative strategies in SCI, the mechanism of extracellular vesicles in the development of SCI, the activation of spinal glial cells in SCI, and the pathways of motor recovery. This bibliometric analysis of immunology research in SCI summarizes the current status of this research field. The relationship between extracellular vesicles, regenerative medicine, stromal cells, motor recovery, and glial activation is currently a major research frontier. Further research and cooperation worldwide need to be enhanced. Conclusion We believe that our research can help researchers quickly grasp the current hotspot of immunology research in SCI and determine a new direction for future research.
Collapse
Affiliation(s)
- Bowen Zheng
- Department of Musculoskeletal Tumor, People's HospitalPeking UniversityBeijingChina
- Beijing Key Laboratory of Musculoskeletal TumorBeijingPeople's Republic of China
| | - Yirui Kuang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Dun Yuan
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Haoxuan Huang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Songlin Liu
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
31
|
Plotnikov MB, Chernysheva GA, Smol’yakova VI, Aliev OI, Anishchenko AM, Ulyakhina OA, Trofimova ES, Ligacheva AA, Anfinogenova ND, Osipenko AN, Kovrizhina AR, Khlebnikov AI, Schepetkin IA, Drozd AG, Plotnikov EV, Atochin DN, Quinn MT. Neuroprotective Effects of Tryptanthrin-6-Oxime in a Rat Model of Transient Focal Cerebral Ischemia. Pharmaceuticals (Basel) 2023; 16:1057. [PMID: 37630972 PMCID: PMC10457995 DOI: 10.3390/ph16081057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
The activation of c-Jun N-terminal kinase (JNK) plays an important role in stroke outcomes. Tryptanthrin-6-oxime (TRYP-Ox) is reported to have high affinity for JNK and anti-inflammatory activity and may be of interest as a promising neuroprotective agent. The aim of this study was to investigate the neuroprotective effects of TRYP-Ox in a rat model of transient focal cerebral ischemia (FCI), which involved intraluminal occlusion of the left middle cerebral artery (MCA) for 1 h. Animals in the experimental group were administered intraperitoneal injections of TRYP-Ox 30 min before reperfusion and 23 and 47 h after FCI. Neurological status was assessed 4, 24, and 48 h following FCI onset. Treatment with 5 and 10 mg/kg of TRYP-Ox decreased mean scores of neurological deficits by 35-49 and 46-67% at 24 and 48 h, respectively. At these doses, TRYP-Ox decreased the infarction size by 28-31% at 48 h after FCI. TRYP-Ox (10 mg/kg) reduced the content of interleukin (IL) 1β and tumor necrosis factor (TNF) in the ischemic core area of the MCA region by 33% and 38%, respectively, and attenuated cerebral edema by 11% in the left hemisphere, which was affected by infarction, and by 6% in the right, contralateral hemisphere 24 h after FCI. TRYP-Ox reduced c-Jun phosphorylation in the MCA pool at 1 h after reperfusion. TRYP-Ox was predicted to have high blood-brain barrier permeability using various calculated descriptors and binary classification trees. Indeed, reactive oxidant production was significantly lower in the brain homogenates from rats treated with TRYP-Ox versus that in control animals. Our data suggest that the neuroprotective activity of TRYP-Ox may be due to the ability of this compound to inhibit JNK and exhibit anti-inflammatory and antioxidant activity. Thus, TRYP-Ox may be considered a promising neuroprotective agent that potentially could be used for the development of new treatment strategies in cerebral ischemia.
Collapse
Affiliation(s)
- Mark B. Plotnikov
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634028, Russia; (M.B.P.); (G.A.C.); (V.I.S.); (O.I.A.); (A.M.A.); (O.A.U.); (E.S.T.); (A.A.L.)
- Faculty of Radiophysics, National Research Tomsk State University, Tomsk 634050, Russia
| | - Galina A. Chernysheva
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634028, Russia; (M.B.P.); (G.A.C.); (V.I.S.); (O.I.A.); (A.M.A.); (O.A.U.); (E.S.T.); (A.A.L.)
| | - Vera I. Smol’yakova
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634028, Russia; (M.B.P.); (G.A.C.); (V.I.S.); (O.I.A.); (A.M.A.); (O.A.U.); (E.S.T.); (A.A.L.)
| | - Oleg I. Aliev
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634028, Russia; (M.B.P.); (G.A.C.); (V.I.S.); (O.I.A.); (A.M.A.); (O.A.U.); (E.S.T.); (A.A.L.)
| | - Anna M. Anishchenko
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634028, Russia; (M.B.P.); (G.A.C.); (V.I.S.); (O.I.A.); (A.M.A.); (O.A.U.); (E.S.T.); (A.A.L.)
- Department of Pharmacology, Siberian State Medical University, Tomsk 634050, Russia;
| | - Olga A. Ulyakhina
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634028, Russia; (M.B.P.); (G.A.C.); (V.I.S.); (O.I.A.); (A.M.A.); (O.A.U.); (E.S.T.); (A.A.L.)
| | - Eugene S. Trofimova
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634028, Russia; (M.B.P.); (G.A.C.); (V.I.S.); (O.I.A.); (A.M.A.); (O.A.U.); (E.S.T.); (A.A.L.)
- Department of Pharmacology, Siberian State Medical University, Tomsk 634050, Russia;
| | - Anastasia A. Ligacheva
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634028, Russia; (M.B.P.); (G.A.C.); (V.I.S.); (O.I.A.); (A.M.A.); (O.A.U.); (E.S.T.); (A.A.L.)
| | - Nina D. Anfinogenova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia;
| | - Anton N. Osipenko
- Department of Pharmacology, Siberian State Medical University, Tomsk 634050, Russia;
| | - Anastasia R. Kovrizhina
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk 634050, Russia; (A.R.K.); (A.I.K.)
| | - Andrei I. Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk 634050, Russia; (A.R.K.); (A.I.K.)
| | - Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
| | - Anastasia G. Drozd
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia; (A.G.D.); (E.V.P.)
| | - Evgenii V. Plotnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia; (A.G.D.); (E.V.P.)
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia
| | - Dmitriy N. Atochin
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02115, USA
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
| |
Collapse
|
32
|
Gholami Mahmoudian Z, Ghanbari A, Rashidi I, Amiri I, Komaki A. Minocycline effects on memory and learning impairment in the beta-amyloid-induced Alzheimer's disease model in male rats using behavioral, biochemical, and histological methods. Eur J Pharmacol 2023:175784. [PMID: 37179042 DOI: 10.1016/j.ejphar.2023.175784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 04/13/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Alzheimer's disease (AD), as an advanced neurodegenerative disease, is characterized by the everlasting impairment of memory, which is determined by hyperphosphorylation of intracellular Tau protein and accumulation of beta-amyloid (Aβ) in the extracellular space. Minocycline is an antioxidant with neuroprotective effects that can freely cross the blood-brain barrier (BBB). This study investigated the effect of minocycline on the changes in learning and memory functions, activities of blood serum antioxidant enzymes, neuronal loss, and the number of Aβ plaques after AD induced by Aβ in male rats. Healthy adult male Wistar rats (200-220g) were divided randomly into 11 groups (n = 10). The rats received minocycline (50 and 100 mg/kg/day; per os (P.O.)) before, after, and before/after AD induction for 30 days. At the end of the treatment course, behavioral performance was measured by standardized behavioral paradigms. Subsequently, brain samples and blood serum were collected for histological and biochemical analysis. The results indicated that Aβ injection impaired learning and memory performances in the Morris water maze test, reduced exploratory/locomotor activities in the open field test, and enhanced anxiety-like behavior in the elevated plus maze. The behavioral deficits were accompanied by hippocampal oxidative stress (decreased glutathione (GSH) peroxidase enzyme activity and increased malondialdehyde (MDA) levels in the brain (hippocampus) tissue), increased number of Aβ plaques, and neuronal loss in the hippocampus evidenced by Thioflavin S and H&E staining, respectively. Minocycline improved anxiety-like behavior, recovered Aβ-induced learning and memory deficits, increased GSH and decreased MDA levels, and prevented neuronal loss and the accumulation of Aβ plaques. Our results demonstrated that minocycline has neuroprotective effects and can reduce memory dysfunction, which are due to its antioxidant and anti-apoptotic effects.
Collapse
Affiliation(s)
| | - Ali Ghanbari
- Department of Anatomical Science, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Iraj Rashidi
- Department of Anatomical Science, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Iraj Amiri
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
33
|
Chew LA, Iannaccone A. Gene-agnostic approaches to treating inherited retinal degenerations. Front Cell Dev Biol 2023; 11:1177838. [PMID: 37123404 PMCID: PMC10133473 DOI: 10.3389/fcell.2023.1177838] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Most patients with inherited retinal degenerations (IRDs) have been waiting for treatments that are "just around the corner" for decades, with only a handful of seminal breakthroughs happening in recent years. Highlighting the difficulties in the quest for curative therapeutics, Luxturna required 16 years of development before finally obtaining United States Food and Drug Administration (FDA) approval and its international equivalents. IRDs are both genetically and phenotypically heterogeneous. While this diversity offers many opportunities for gene-by-gene precision medicine-based approaches, it also poses a significant challenge. For this reason, alternative (or parallel) strategies to identify more comprehensive, across-the-board therapeutics for the genetically and phenotypically diverse IRD patient population are very appealing. Even when gene-specific approaches may be available and become approved for use, many patients may have reached a disease stage whereby these approaches may no longer be viable. Thus, alternate visual preservation or restoration therapeutic approaches are needed at these stages. In this review, we underscore several gene-agnostic approaches that are being developed as therapeutics for IRDs. From retinal supplementation to stem cell transplantation, optogenetic therapy and retinal prosthetics, these strategies would bypass at least in part the need for treating every individual gene or mutation or provide an invaluable complement to them. By considering the diverse patient population and treatment strategies suited for different stages and patterns of retinal degeneration, gene agnostic approaches are very well poised to impact favorably outcomes and prognosis for IRD patients.
Collapse
Affiliation(s)
- Lindsey A. Chew
- Duke Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Alessandro Iannaccone
- Duke Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
34
|
Singh L, Kaur N, Bhatti R. Neuroprotective potential of biochanin-A and review of the molecular mechanisms involved. Mol Biol Rep 2023; 50:5369-5378. [PMID: 37039995 DOI: 10.1007/s11033-023-08397-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/17/2023] [Indexed: 04/12/2023]
Abstract
Biochanin-A is a naturally occurring plant phytoestrogen, which mimics specific the agonistic activity of estrogens. Biochanin-A is known to possess numerous activities, including neuroprotective, anti-diabetic, hepatoprotective, anti-inflammatory, antioxidant, and antimicrobial activities, along with the anticancer activity. Neuroinflammation is thought to play a pivotal pathological role in neurodegenerative disease. Sustained neuroinflammatory processes lead to progressive neuronal damage in Parkinson's and Alzheimer's disease. Activation of PI3K/Akt cascade and inhibition of MAPK signaling cascade have been observed to be responsible for conferring protection against neuroinflammation in neurodegenerative diseases. An increased oxidative stress promotes neuronal apoptosis via potentiating the TLR-4/NF-κB and inhibiting PI3K/Akt signaling mediated increase in pro-apoptotic and decreases in antiapoptotic proteins. Various authors have explored biochanin-A's neuroprotective effect by using various cell lines and animal models. Biochanin-A has been reported to mediate its neuroprotective via reducing the level of oxidants, inflammatory mediators, MAPK, TLR-4, NF-κB, NADPH oxidase, AchE, COX-2 and iNOS. Whereas, it has been observed to increase the level of anti-oxidants, along with phosphorylation of PI3K and Akt proteins. The current review has been designed to provide insights into the neuroprotective effect of biochanin-A and possible signaling pathways leading to protection against neuroinflammation and apoptosis in the central nervous system. This review will be helpful in guiding future researchers to further explore biochanin A at a mechanistic level to obtain useful lead molecules.
Collapse
Affiliation(s)
- Lovedeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Navneet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rajbir Bhatti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
35
|
Pilipović K, Jurišić Grubešić R, Dolenec P, Kučić N, Juretić L, Mršić-Pelčić J. Plant-Based Antioxidants for Prevention and Treatment of Neurodegenerative Diseases: Phytotherapeutic Potential of Laurus nobilis, Aronia melanocarpa, and Celastrol. Antioxidants (Basel) 2023; 12:antiox12030746. [PMID: 36978994 PMCID: PMC10045087 DOI: 10.3390/antiox12030746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
With the progress of medicine, especially in the last century, life expectancy increased considerably. As a result, age-related diseases also increased, especially malignancies and degenerative diseases of the central nervous system. The incidence and prevalence of neurodegenerative diseases steadily increased over the years, but despite efforts to uncover the pathophysiological processes behind these conditions, they remain elusive. Among the many theories, oxidative stress was proposed to be involved in neurodegenerative processes and to play an important role in the morbidity and progression of various neurodegenerative disorders. Accordingly, a number of studies discovered the potential of natural plant constituents to have significant antioxidant activity. This review focused on several plant-based antioxidants that showed promising results in the prevention and treatment of neurodegenerative diseases. Laurus nobilis, Aronia melanocarpa, and celastrol, a chemical compound isolated from the root extracts of Tripterygium wilfordii and T. regelii, are all known to be rich in antioxidant polyphenols.
Collapse
Affiliation(s)
- Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia
| | - Renata Jurišić Grubešić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia
| | - Petra Dolenec
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia
| | - Natalia Kučić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia
| | - Lea Juretić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia
| | - Jasenka Mršić-Pelčić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia
| |
Collapse
|
36
|
Antimicrobial and Antioxidant Properties of Chemically Analyzed Essential Oil of Artemisia annua L. (Asteraceae) Native to Mediterranean Area. Life (Basel) 2023; 13:life13030807. [PMID: 36983962 PMCID: PMC10055474 DOI: 10.3390/life13030807] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Artemisia annua (AA) is an aromatic plant belonging to the Asteraceae family, which has long been known for its several medicinal virtues. In addition, essential oils (EOs) extracted from AA have a wide range of therapeutic properties. Therefore, this study aimed to investigate the phytochemical composition, anti-microbial, and anti-oxidant properties of Artemisia annua essential oil (EOAA). EO was extracted, and its chemical constituents were ascertained by the use of GC-MS analysis. EOAA shows remarkable antioxidant capacities of DPPH free radical scavenging with an IC50 value of 29 ± 5.3 μg/mL and ferric reducing antioxidant power with an EC50 value of 9.21 ± 0.3 µg/mL, and it also has a good total antioxidant capacity of 911.59 ± 115.71 milligrams of ascorbic acid equivalence per gram of EO (mg AAE/g EO). Moreover, the in vitro antimicrobial screening results indicate that EOAA has shown promising antibacterial activity, especially against the Escherichia coli strain, and it also shows significant antifungal activity against Fusarium oxysporum and Candida albicans yeasts. Taken together, our findings highlight the importance of EOAA as a source of strong antioxidant and antimicrobial agents, which could be used as an alternative form to control free radicals and combat drug-resistant microbes.
Collapse
|
37
|
Somin S, Kulasiri D, Samarasinghe S. Alleviating the unwanted effects of oxidative stress on Aβ clearance: a review of related concepts and strategies for the development of computational modelling. Transl Neurodegener 2023; 12:11. [PMID: 36907887 PMCID: PMC10009979 DOI: 10.1186/s40035-023-00344-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
Treatment for Alzheimer's disease (AD) can be more effective in the early stages. Although we do not completely understand the aetiology of the early stages of AD, potential pathological factors (amyloid beta [Aβ] and tau) and other co-factors have been identified as causes of AD, which may indicate some of the mechanism at work in the early stages of AD. Today, one of the primary techniques used to help delay or prevent AD in the early stages involves alleviating the unwanted effects of oxidative stress on Aβ clearance. 4-Hydroxynonenal (HNE), a product of lipid peroxidation caused by oxidative stress, plays a key role in the adduction of the degrading proteases. This HNE employs a mechanism which decreases catalytic activity. This process ultimately impairs Aβ clearance. The degradation of HNE-modified proteins helps to alleviate the unwanted effects of oxidative stress. Having a clear understanding of the mechanisms associated with the degradation of the HNE-modified proteins is essential for the development of strategies and for alleviating the unwanted effects of oxidative stress. The strategies which could be employed to decrease the effects of oxidative stress include enhancing antioxidant activity, as well as the use of nanozymes and/or specific inhibitors. One area which shows promise in reducing oxidative stress is protein design. However, more research is needed to improve the effectiveness and accuracy of this technique. This paper discusses the interplay of potential pathological factors and AD. In particular, it focuses on the effect of oxidative stress on the expression of the Aβ-degrading proteases through adduction of the degrading proteases caused by HNE. The paper also elucidates other strategies that can be used to alleviate the unwanted effects of oxidative stress on Aβ clearance. To improve the effectiveness and accuracy of protein design, we explain the application of quantum mechanical/molecular mechanical approach.
Collapse
Affiliation(s)
- Sarawoot Somin
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, 7647, New Zealand.,Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch, 7647, New Zealand
| | - Don Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, 7647, New Zealand. .,Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch, 7647, New Zealand.
| | - Sandhya Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, 7647, New Zealand
| |
Collapse
|
38
|
Fibbi B, Marroncini G, Naldi L, Peri A. The Yin and Yang Effect of the Apelinergic System in Oxidative Stress. Int J Mol Sci 2023; 24:4745. [PMID: 36902176 PMCID: PMC10003082 DOI: 10.3390/ijms24054745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Apelin is an endogenous ligand for the G protein-coupled receptor APJ and has multiple biological activities in human tissues and organs, including the heart, blood vessels, adipose tissue, central nervous system, lungs, kidneys, and liver. This article reviews the crucial role of apelin in regulating oxidative stress-related processes by promoting prooxidant or antioxidant mechanisms. Following the binding of APJ to different active apelin isoforms and the interaction with several G proteins according to cell types, the apelin/APJ system is able to modulate different intracellular signaling pathways and biological functions, such as vascular tone, platelet aggregation and leukocytes adhesion, myocardial activity, ischemia/reperfusion injury, insulin resistance, inflammation, and cell proliferation and invasion. As a consequence of these multifaceted properties, the role of the apelinergic axis in the pathogenesis of degenerative and proliferative conditions (e.g., Alzheimer's and Parkinson's diseases, osteoporosis, and cancer) is currently investigated. In this view, the dual effect of the apelin/APJ system in the regulation of oxidative stress needs to be more extensively clarified, in order to identify new potential strategies and tools able to selectively modulate this axis according to the tissue-specific profile.
Collapse
Affiliation(s)
- Benedetta Fibbi
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| | - Giada Marroncini
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
| | - Laura Naldi
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
| | - Alessandro Peri
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| |
Collapse
|
39
|
ARMS-NF-κB signaling regulates intracellular ROS to induce autophagy-associated cell death upon oxidative stress. iScience 2023; 26:106005. [PMID: 36798436 PMCID: PMC9926119 DOI: 10.1016/j.isci.2023.106005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/23/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Ankyrin repeat-rich membrane spanning (ARMS) plays roles in neural development, neuropathies, and tumor formation. Such pleiotropic function of ARMS is often attributed to diverse ARMS-interacting molecules in different cell context. However, it might be achieved by ARMS' effect on global biological mediator like reactive oxygen species (ROS). We established ARMS-knockdown in melanoma cells (siARMS) and in Drosophila eyes (GMR>dARMS RNAi ) and challenged them with H2O2. Decreased ARMS in both systems compromises nuclear translocation of NF-κB and induces ROS, which in turn augments autophagy flux and confers susceptibility to H2O2-triggered autophagic cell death. Resuming NF-κB activity or reducing ROS by antioxidants in siARMS cells and GMR>dARMS RNAi fly decreases intracellular peroxides level concurrent with reduced autophagy and attenuated cell death. Conversely, blocking NF-κB activity in wild-type flies/melanoma enhances ROS and induces autophagy with cell death. We thus uncover intracellular ROS modulated by ARMS-NFκB signaling primes autophagy for autophagic cell death upon oxidative stress.
Collapse
|
40
|
Gonzalez-Alcocer A, Duarte-Jurado AP, Soto-Dominguez A, Loera-Arias MDJ, Villarreal-Silva EE, Saucedo-Cardenas O, de Oca-Luna RM, Garcia-Garcia A, Rodriguez-Rocha H. Unscrambling the Role of Redox-Active Biometals in Dopaminergic Neuronal Death and Promising Metal Chelation-Based Therapy for Parkinson's Disease. Int J Mol Sci 2023; 24:1256. [PMID: 36674772 PMCID: PMC9867532 DOI: 10.3390/ijms24021256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Biometals are all metal ions that are essential for all living organisms. About 40% of all enzymes with known structures require biometals to function correctly. The main target of damage by biometals is the central nervous system (CNS). Biometal dysregulation (metal deficiency or overload) is related to pathological processes. Chronic occupational and environmental exposure to biometals, including iron and copper, is related to an increased risk of developing Parkinson's disease (PD). Indeed, biometals have been shown to induce a dopaminergic neuronal loss in the substantia nigra. Although the etiology of PD is still unknown, oxidative stress dysregulation, mitochondrial dysfunction, and inhibition of both the ubiquitin-proteasome system (UPS) and autophagy are related to dopaminergic neuronal death. Herein, we addressed the involvement of redox-active biometals, iron, and copper, as oxidative stress and neuronal death inducers, as well as the current metal chelation-based therapy in PD.
Collapse
Affiliation(s)
- Alfredo Gonzalez-Alcocer
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, Monterrey 64460, Mexico
| | - Ana Patricia Duarte-Jurado
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, Monterrey 64460, Mexico
| | - Adolfo Soto-Dominguez
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, Monterrey 64460, Mexico
| | - Maria de Jesus Loera-Arias
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, Monterrey 64460, Mexico
| | - Eliud Enrique Villarreal-Silva
- Servicio de Neurocirugía y Terapia Endovascular Neurológica, Hospital Universitario, Dr. Jose Eleuterio Gonzalez, Monterrey 64460, Mexico
| | - Odila Saucedo-Cardenas
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, Monterrey 64460, Mexico
| | - Roberto Montes de Oca-Luna
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, Monterrey 64460, Mexico
| | - Aracely Garcia-Garcia
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, Monterrey 64460, Mexico
| | - Humberto Rodriguez-Rocha
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, Monterrey 64460, Mexico
| |
Collapse
|
41
|
Islam MS, Shin HY, Yoo YJ, Lee EY, Kim R, Jang YJ, Akanda MR, Tae HJ, Kim IS, Ahn D, Park BY. Fermented Mentha arvensis administration provides neuroprotection against transient global cerebral ischemia in gerbils and SH-SY5Y cells via downregulation of the MAPK signaling pathway. BMC Complement Med Ther 2022; 22:172. [PMID: 35752797 PMCID: PMC9233811 DOI: 10.1186/s12906-022-03653-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022] Open
Abstract
Background Globally, ischemic stroke is a major health threat to humans that causes lifelong disability and death. Mentha arvensis (MA) has been used in traditional medicine to alleviate oxidative stress and inflammation-related disorders. In the present study, the neuroprotective properties of fermented MA (FMA) extract were investigated in the gerbil and SH-SY5Y cells. model of transient global cerebral ischemia. Methods Bilateral common carotid artery occlusion-induced transient global cerebral ischemia in gerbil and hydrogen peroxide (H2O2)-mediated neurotoxic effects in human neuroblastoma cells (SH-SY5Y) were investigated. FMA (400 mg/kg) was orally administered for 7 days before induction of ischemic stroke. To evaluate the neuroprotective activity of FMA, we implemented various assays such as cell viability assay (MTT), lactate dehydrogenase (LDH) assay, histopathology, immunohistochemistry (IHC), histofluorescence, and western blot. Results FMA pretreatment effectively decreased transient ischemia (TI) induced neuronal cell death as well as activation of microglia and astrocytes in the hippocampal region. The protective effects of FMA extract against H2O2-induced cytotoxicity of SH-SY5Y cells were observed by MTT and LDH assay. However, FMA pretreatment significantly increased the expression of the antioxidant marker proteins such as superoxide dismutase-1 (SOD-1) and superoxide dismutase-2 (SOD-2) in the hippocampus and SH-SY5Y cells. Furthermore, the activation of mitogen-activated protein kinase (MAPK) further activated a cascade of outcomes such as neuroinflammation and apoptosis. FMA pretreatment notably decreased TI and H2O2 induced activation of MAPK (c-Jun N-terminal kinase (JNK), extracellular signal-regulated protein kinase (ERK), and p38) proteins in hippocampus and SH-SY5Y cells respectively. Besides, pretreatment with FMA markedly reduced H2O2 mediated Bax/Bcl2 expression in SH-SY5Y cells. Conclusion Thus, these results demonstrated that neuroprotective activities of FMA might contribute to regulating the MAPK signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03653-7.
Collapse
|
42
|
Tabibzadeh S. Resolving Geroplasticity to the Balance of Rejuvenins and Geriatrins. Aging Dis 2022; 13:1664-1714. [PMID: 36465174 PMCID: PMC9662275 DOI: 10.14336/ad.2022.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 09/29/2024] Open
Abstract
According to the cell centric hypotheses, the deficits that drive aging occur within cells by age dependent progressive damage to organelles, telomeres, biologic signaling pathways, bioinformational molecules, and by exhaustion of stem cells. Here, we amend these hypotheses and propose an eco-centric model for geroplasticity (aging plasticity including aging reversal). According to this model, youth and aging are plastic and require constant maintenance, and, respectively, engage a host of endogenous rejuvenating (rejuvenins) and gero-inducing [geriatrin] factors. Aging in this model is akin to atrophy that occurs as a result of damage or withdrawal of trophic factors. Rejuvenins maintain and geriatrins adversely impact cellular homeostasis, cell fitness, and proliferation, stem cell pools, damage response and repair. Rejuvenins reduce and geriatrins increase the age-related disorders, inflammatory signaling, and senescence and adjust the epigenetic clock. When viewed through this perspective, aging can be successfully reversed by supplementation with rejuvenins and by reducing the levels of geriatrins.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA 92618, USA
| |
Collapse
|
43
|
Christodoulou MC, Orellana Palacios JC, Hesami G, Jafarzadeh S, Lorenzo JM, Domínguez R, Moreno A, Hadidi M. Spectrophotometric Methods for Measurement of Antioxidant Activity in Food and Pharmaceuticals. Antioxidants (Basel) 2022; 11:2213. [PMID: 36358583 PMCID: PMC9686769 DOI: 10.3390/antiox11112213] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 07/30/2023] Open
Abstract
In recent years, there has been a growing interest in the application of antioxidants in food and pharmaceuticals due to their association with beneficial health effects against numerous oxidative-related human diseases. The antioxidant potential can be measured by various assays with specific mechanisms of action, including hydrogen atom transfer, single electron transfer, and targeted scavenging activities. Understanding the chemistry of mechanisms, advantages, and limitations of the methods is critical for the proper selection of techniques for the valid assessment of antioxidant activity in specific samples or conditions. There are various analytical techniques available for determining the antioxidant activity of biological samples, including food and plant extracts. The different methods are categorized into three main groups, such as spectrometry, chromatography, and electrochemistry techniques. Among these assays, spectrophotometric methods are considered the most common analytical technique for the determination of the antioxidant potential due to their sensitivity, rapidness, low cost, and reproducibility. This review covers the mechanism of actions and color changes that occur in each method. Furthermore, the advantages and limitations of spectrophotometric methods are described and discussed in this review.
Collapse
Affiliation(s)
| | - Jose C. Orellana Palacios
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Golnaz Hesami
- Department of Food Science and Technology, Sanandaj Branch, Islamic Azad University, Pasdaran St., Sanandaj P.O. Box 618, Iran
| | - Shima Jafarzadeh
- School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, 32004 Ourense, Spain
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
44
|
Hassan SSU, Samanta S, Dash R, Karpiński TM, Habibi E, Sadiq A, Ahmadi A, Bungau S. The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress. Front Pharmacol 2022; 13:1015835. [PMID: 36299900 PMCID: PMC9589363 DOI: 10.3389/fphar.2022.1015835] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress (OS) disrupts the chemical integrity of macromolecules and increases the risk of neurodegenerative diseases. Fisetin is a flavonoid that exhibits potent antioxidant properties and protects the cells against OS. We have viewed the NCBI database, PubMed, Science Direct (Elsevier), Springer-Nature, ResearchGate, and Google Scholar databases to search and collect relevant articles during the preparation of this review. The search keywords are OS, neurodegenerative diseases, fisetin, etc. High level of ROS in the brain tissue decreases ATP levels, and mitochondrial membrane potential and induces lipid peroxidation, chronic inflammation, DNA damage, and apoptosis. The subsequent results are various neuronal diseases. Fisetin is a polyphenolic compound, commonly present in dietary ingredients. The antioxidant properties of this flavonoid diminish oxidative stress, ROS production, neurotoxicity, neuro-inflammation, and neurological disorders. Moreover, it maintains the redox profiles, and mitochondrial functions and inhibits NO production. At the molecular level, fisetin regulates the activity of PI3K/Akt, Nrf2, NF-κB, protein kinase C, and MAPK pathways to prevent OS, inflammatory response, and cytotoxicity. The antioxidant properties of fisetin protect the neural cells from inflammation and apoptotic degeneration. Thus, it can be used in the prevention of neurodegenerative disorders.
Collapse
Affiliation(s)
- Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, India
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Emran Habibi
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
45
|
Pituitary Pars Intermedia Dysfunction (PPID) in Horses. Vet Sci 2022; 9:vetsci9100556. [PMID: 36288169 PMCID: PMC9611634 DOI: 10.3390/vetsci9100556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022] Open
Abstract
Substantial morbidity results from pituitary pars intermedia dysfunction (PPID) which is often underestimated by owners and veterinarians. Clinical signs, pathophysiology, diagnostic tests, and treatment protocols of this condition are reviewed. The importance of improved recognition of early clinical signs and diagnosis are highlighted, as initiation of treatment will result in improved quality of life. Future research should be targeted at improving the accuracy of the diagnosis of PPID, as basal adrenocorticotropic hormone (ACTH) concentration can lack sensitivity and thyrotropin releasing hormone (TRH) used to assess ACTH response to TRH stimulation is not commercially available as a sterile registered product in many countries. The relationship between PPID and insulin dysregulation and its association with laminitis, as well as additional management practices and long-term responses to treatment with pergolide also require further investigation.
Collapse
|
46
|
Lichen Extracts from Cetrarioid Clade Provide Neuroprotection against Hydrogen Peroxide-Induced Oxidative Stress. Molecules 2022; 27:molecules27196520. [PMID: 36235056 PMCID: PMC9573381 DOI: 10.3390/molecules27196520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 01/24/2023] Open
Abstract
Oxidative stress is involved in the pathophysiology of many neurodegenerative diseases. Lichens have antioxidant properties attributed to their own secondary metabolites with phenol groups. Very few studies delve into the protective capacity of lichens based on their antioxidant properties and their action mechanism. The present study evaluates the neuroprotective role of Dactylina arctica, Nephromopsis stracheyi, Tuckermannopsis americana and Vulpicida pinastri methanol extracts in a hydrogen peroxide (H2O2) oxidative stress model in neuroblastoma cell line "SH-SY5Y cells". Cells were pretreated with different concentrations of lichen extracts (24 h) before H2O2 (250 µM, 1 h). Our results showed that D. arctica (10 µg/mL), N. stracheyi (25 µg/mL), T. americana (50 µg/mL) and V. pinastri (5 µg/mL) prevented cell death and morphological changes. Moreover, these lichens significantly inhibited reactive oxygen species (ROS) production and lipid peroxidation and increased superoxide dismutase (SOD) and catalase (CAT) activities and glutathione (GSH) levels. Furthermore, they attenuated mitochondrial membrane potential decline and calcium homeostasis disruption. Finally, high-performance liquid chromatography (HPLC) analysis revealed that the secondary metabolites were gyrophoric acid and lecanoric acid in D. artica, usnic acid, pinastric acid and vulpinic acid in V. pinastri, and alectoronic acid in T. americana. In conclusion, D. arctica and V. pinastri are the most promising lichens to prevent and to treat oxidative stress-related neurodegenerative diseases.
Collapse
|
47
|
Cram DL. Oxidative stress and cognition in ecology. J Zool (1987) 2022. [DOI: 10.1111/jzo.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- D. L. Cram
- Department of Zoology University of Cambridge Cambridge UK
| |
Collapse
|
48
|
Zhai Z, Xie D, Qin T, Zhong Y, Xu Y, Sun T. Effect and Mechanism of Exogenous Melatonin on Cognitive Deficits in Animal Models of Alzheimer's Disease: A Systematic review and Meta-analysis. Neuroscience 2022; 505:91-110. [PMID: 36116555 DOI: 10.1016/j.neuroscience.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 12/09/2022]
Abstract
Melatonin (MT) has been reported to control and prevent Alzheimer's disease (AD) in the clinic; however, the effect and mechanism of MT on AD have not been specifically described. Therefore, the main purpose of this meta-analysis was to explore the effect and mechanism of MT on AD models by studying behavioural indicators and pathological features. Seven databases were searched and 583 articles were retrieved. Finally, nine studies (13 analyses, 294 animals) were included according to pre-set criteria. Three authors independently judged the selected literature and the methodological quality. Meta-analysis showed that MT markedly ameliorated the learning ability by reducing the escape latency (EL), and the memory deficit was significantly corrected by increasing the dwell time in the target quadrant and crossings over the platform location in the Morris Water Maze (MWM). Among the pathological features, subgroup analysis found that MT may ease the symptoms of AD mainly by reducing the deposition of Aβ40 and Aβ42 in the cortex. In addition, MT exerted a superior effect on ameliorating the learning ability of senescence-related and metabolic AD models, and corrected the memory deficit of the toxin-induced AD model. The study was registered at PROSPERO (CRD42021226594).
Collapse
Affiliation(s)
- Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Tao Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yanmei Zhong
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Tao Sun
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
49
|
Hullfish H, Roldan LP, Hoffer ME. The Use of Antioxidants in the Prevention and Treatment of Noise-Induced Hearing Loss. Otolaryngol Clin North Am 2022; 55:983-991. [PMID: 36088150 DOI: 10.1016/j.otc.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
As of today, there are no therapeutic measures for the prevention or treatment of noise-induced hearing loss (NIHL). The current preventative measures, including avoidance and personal protective hearing equipment, do not appear to be sufficient because there is an increasing number of people with NIHL, especially in the adolescent population. Therefore, we must find a therapy that prevents the impact of noise on hearing. Antioxidants are a promising option in preventing the damaging effects of noise by targeting free radicals but further studies are needed to confirm their efficacy in humans.
Collapse
Affiliation(s)
- Haley Hullfish
- Department of Otolaryngology, University of Miami Miller School of Medicine, 1120 Northwest 14th Street, Miami, FL 33136, USA.
| | - Luis P Roldan
- Department of Otolaryngology, University of Miami Miller School of Medicine, 1120 Northwest 14th Street, Miami, FL 33136, USA
| | - Michael E Hoffer
- Department of Otolaryngology, University of Miami Miller School of Medicine, 1120 Northwest 14th Street, Miami, FL 33136, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, 1120 Northwest 14th Street, Miami, FL 33136, USA
| |
Collapse
|
50
|
Tripathi R, Gupta R, Sahu M, Srivastava D, Das A, Ambasta RK, Kumar P. Free radical biology in neurological manifestations: mechanisms to therapeutics interventions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62160-62207. [PMID: 34617231 DOI: 10.1007/s11356-021-16693-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Recent advancements and growing attention about free radicals (ROS) and redox signaling enable the scientific fraternity to consider their involvement in the pathophysiology of inflammatory diseases, metabolic disorders, and neurological defects. Free radicals increase the concentration of reactive oxygen and nitrogen species in the biological system through different endogenous sources and thus increased the overall oxidative stress. An increase in oxidative stress causes cell death through different signaling mechanisms such as mitochondrial impairment, cell-cycle arrest, DNA damage response, inflammation, negative regulation of protein, and lipid peroxidation. Thus, an appropriate balance between free radicals and antioxidants becomes crucial to maintain physiological function. Since the 1brain requires high oxygen for its functioning, it is highly vulnerable to free radical generation and enhanced ROS in the brain adversely affects axonal regeneration and synaptic plasticity, which results in neuronal cell death. In addition, increased ROS in the brain alters various signaling pathways such as apoptosis, autophagy, inflammation and microglial activation, DNA damage response, and cell-cycle arrest, leading to memory and learning defects. Mounting evidence suggests the potential involvement of micro-RNAs, circular-RNAs, natural and dietary compounds, synthetic inhibitors, and heat-shock proteins as therapeutic agents to combat neurological diseases. Herein, we explain the mechanism of free radical generation and its role in mitochondrial, protein, and lipid peroxidation biology. Further, we discuss the negative role of free radicals in synaptic plasticity and axonal regeneration through the modulation of various signaling molecules and also in the involvement of free radicals in various neurological diseases and their potential therapeutic approaches. The primary cause of free radical generation is drug overdosing, industrial air pollution, toxic heavy metals, ionizing radiation, smoking, alcohol, pesticides, and ultraviolet radiation. Excessive generation of free radicals inside the cell R1Q1 increases reactive oxygen and nitrogen species, which causes oxidative damage. An increase in oxidative damage alters different cellular pathways and processes such as mitochondrial impairment, DNA damage response, cell cycle arrest, and inflammatory response, leading to pathogenesis and progression of neurodegenerative disease other neurological defects.
Collapse
Affiliation(s)
- Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Devesh Srivastava
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Ankita Das
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India.
- , Delhi, India.
- Molecular Neuroscience and Functional Genomics Laboratory, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|