1
|
Pelkey KA, Vargish GA, Pellegrini LV, Calvigioni D, Chapeton J, Yuan X, Hunt S, Cummins AC, Eldridge MAG, Pickel J, Chittajallu R, Averbeck BB, Tóth K, Zaghloul K, McBain CJ. Evolutionary conservation of hippocampal mossy fiber synapse properties. Neuron 2023; 111:3802-3818.e5. [PMID: 37776852 PMCID: PMC10841147 DOI: 10.1016/j.neuron.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/03/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023]
Abstract
Various specialized structural/functional properties are considered essential for contextual memory encoding by hippocampal mossy fiber (MF) synapses. Although investigated to exquisite detail in model organisms, synapses, including MFs, have undergone minimal functional interrogation in humans. To determine the translational relevance of rodent findings, we evaluated MF properties within human tissue resected to treat epilepsy. Human MFs exhibit remarkably similar hallmark features to rodents, including AMPA receptor-dominated synapses with small contributions from NMDA and kainate receptors, large dynamic range with strong frequency facilitation, NMDA receptor-independent presynaptic long-term potentiation, and strong cyclic AMP (cAMP) sensitivity of release. Array tomography confirmed the evolutionary conservation of MF ultrastructure. The astonishing congruence of rodent and human MF core features argues that the basic MF properties delineated in animal models remain critical to human MF function. Finally, a selective deficit in GABAergic inhibitory tone onto human MF postsynaptic targets suggests that unrestrained detonator excitatory drive contributes to epileptic circuit hyperexcitability.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Geoffrey A Vargish
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leonardo V Pellegrini
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Daniela Calvigioni
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julio Chapeton
- National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoqing Yuan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven Hunt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alex C Cummins
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark A G Eldridge
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - James Pickel
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ramesh Chittajallu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bruno B Averbeck
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katalin Tóth
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Kareem Zaghloul
- National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chris J McBain
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Nair JD, Wilkinson KA, Yucel BP, Mulle C, Vissel B, Mellor J, Henley JM. GluK2 Q/R editing regulates kainate receptor signaling and long-term potentiation of AMPA receptors. iScience 2023; 26:107708. [PMID: 37720087 PMCID: PMC10504484 DOI: 10.1016/j.isci.2023.107708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023] Open
Abstract
Q/R editing of the kainate receptor (KAR) subunit GluK2 radically alters recombinant KAR properties, but the effects on endogenous KARs in vivo remain largely unexplored. Here, we compared GluK2 editing-deficient mice that express ∼95% unedited GluK2(Q) to wild-type counterparts that express ∼85% edited GluK2(R). At mossy fiber-CA3 (MF-CA3) synapses GluK2(Q) mice displayed increased postsynaptic KAR function and KAR-mediated presynaptic facilitation, demonstrating enhanced ionotropic function. Conversely, GluK2(Q) mice exhibited reduced metabotropic KAR function, assessed by KAR-mediated inhibition of slow after-hyperpolarization currents (ISAHP). GluK2(Q) mice also had fewer GluA1-and GluA3-containing AMPA receptors (AMPARs) and reduced postsynaptic AMPAR currents at both MF-CA3 and CA1-Schaffer collateral synapses. Moreover, long-term potentiation of AMPAR-mediated transmission at CA1-Schaffer collateral synapses was reduced in GluK2(Q) mice. These findings suggest that GluK2 Q/R editing influences ionotropic/metabotropic balance of KAR signaling to regulate synaptic expression of AMPARs and plasticity.
Collapse
Affiliation(s)
- Jithin D. Nair
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Kevin A. Wilkinson
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Busra P. Yucel
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Christophe Mulle
- CNRS UMR 5297, Interdisciplinary Institute of Neuroscience, University of Bordeaux, France
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Jack Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Jeremy M. Henley
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
3
|
Glutamate Receptor Antibodies in Autoimmune Central Nervous System Disease: Basic Mechanisms, Clinical Features, and Antibody Detection. Methods Mol Biol 2019. [PMID: 30707437 DOI: 10.1007/978-1-4939-9077-1_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Immune-mediated inflammation of the brain has been recognized for more than 50 years, although the initial descriptions were mainly thought to be secondary to an underlying neoplasm. Some of these paraneoplastic encephalitides express serum antibodies, but these were not thought to be pathogenic but instead have a T-cell-mediated pathophysiology. Over the last two decades, several pathogenic antibodies against neuronal surface antigens have been described in autoimmune encephalitis, which are amenable to immunotherapy. Several of these antibodies are directed against glutamate receptors (GluRs). NMDAR encephalitis (NMDARE) is the most common of these antibodies, and patients often present with psychosis, hallucinations, and reduced consciousness. Patients often progress on to develop confusion, seizures, movement disorders, autonomic instability, and respiratory depression. Although initially described as exclusively occurring secondary to ovarian teratoma (and later other tumors), non-paraneoplastic forms are increasingly common, and other triggers like viral infections are now well recognized. AMPAR encephalitis is relatively less common than NMDARE but is more likely to paraneoplastic. AMPAR antibodies typically cause limbic encephalitis, with patients presenting with confusion, disorientation, memory loss, and often seizures. The syndromes associated with the metabotropic receptor antibodies are much rarer and often can be paraneoplastic-mGluR1 (cerebellar degeneration) and mGluR5 (Ophelia syndrome) being the ones described in literature.With the advance in molecular biology techniques, it is now possible to detect these antibodies using cell-based assays with high sensitivity and specificity, especially when coupled with brain tissue immunohistochemistry and binding to live cell-based neurons. The rapid and reliable identification of these antibodies aids in the timely treatment (either in the form of identifying/removing the underlying tumor or instituting immunomodulatory therapy) and has significantly improved clinical outcome in this otherwise devastating group of conditions.
Collapse
|
4
|
Qiu S, Wu Y, Lv X, Li X, Zhuo M, Koga K. Reduced synaptic function of Kainate receptors in the insular cortex of Fmr1 Knock-out mice. Mol Brain 2018; 11:54. [PMID: 30241548 PMCID: PMC6151036 DOI: 10.1186/s13041-018-0396-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/11/2018] [Indexed: 01/26/2023] Open
Abstract
Fragile X syndrome is caused by the loss of fragile X mental retardation protein (FMRP). Kainate receptor (KAR) is a subfamily of ionotropic glutamate receptors (iGluR) that acts mainly as a neuromodulator of synaptic transmission and neuronal excitability. However, little is known about the changes of synaptic KAR in the cortical area of Fmr1 KO mice. In this study, we performed whole-cell patch-clamp recordings from layer II/III pyramidal neurons in the insular cortex of Fmr1 KO mice. We found that KARs mediated currents were reduced in Fmr1 KO mice. KARs were mainly located in the synaptosomal fraction of the insular cortex. The abundance of KAR subunit GluK1 and GluK2/3 in the synaptosome was reduced in Fmr1 KO mice, whereas the total expressions of these KARs subunits were not changed. Finally, lack of FMRP impairs subsequent internalization of surface GluK2 after KAR activation, while having no effect on the surface GluK2 expression. Our studies provide evidence indicating that loss of FMRP leads to the abnormal function and localization of KARs. This finding implies a new molecular mechanism for Fragile X syndrome.
Collapse
Affiliation(s)
- Shuang Qiu
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.,Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
| | - Yu Wu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
| | - Xinyou Lv
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
| | - Xia Li
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310003, Hangzhou, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China. .,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Kohei Koga
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China. .,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
5
|
Falcón-Moya R, Sihra TS, Rodríguez-Moreno A. Kainate Receptors: Role in Epilepsy. Front Mol Neurosci 2018; 11:217. [PMID: 29988380 PMCID: PMC6023982 DOI: 10.3389/fnmol.2018.00217] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/04/2018] [Indexed: 01/01/2023] Open
Abstract
Kainate (KA) is a potent neurotoxin that has been widely used experimentally to induce acute brain seizures and, after repetitive treatments, as a chronic model of temporal lobe epilepsy (TLE), with similar features to those observed in human patients with TLE. However, whether KA activates KA receptors (KARs) as an agonist to mediate the induction of acute seizures and/or the chronic phase of epilepsy, or whether epileptogenic effects of the neurotoxin are indirect and/or mediated by other types of receptors, has yet to be satisfactorily elucidated. Positing a direct involvement of KARs in acute seizures induction, as well as a direct pathophysiological role of KARs in the chronic phase of TLE, recent studies have examined the specific subunit compositions of KARs that might underly epileptogenesis. In the present mini-review, we discuss the use of KA as a convulsant in the experimental models of acute seizures of TLE, and consider the involvement of KARs, their subunit composition and the mode of action in KAR-mediated epilepsy. In acute models, evidence points to epileptogenesis being precipitated by an overall depression of interneuron GABAergic transmission mediated by GluK1 containing KARs. On glutamatergic principal cell in the hippocampus, GluK2-containing KARs regulate post-synaptic excitability and susceptibility to KA-mediated epileptogenesis. In chronic models, a role GluK2-containing KARs in the hippocampal CA3 region provokes limbic seizures. Also observed in the hippocampus, is a ‘reactive plasticity’, where MF sprouting is seen with target granule cells at aberrant synapses recruiting de novo GluR2/GluR5 heteromeric KARs. Finally, in human epilepsy and animal models, astrocytic expression of GluK1, 2, 4, and 5 is reported.
Collapse
Affiliation(s)
- Rafael Falcón-Moya
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Sevilla, Spain
| | - Talvinder S Sihra
- Department of Physiology, Pharmacology and Neuroscience, University College London, London, United Kingdom
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Sevilla, Spain
| |
Collapse
|
6
|
Deactivation kinetics of acid-sensing ion channel 1a are strongly pH-sensitive. Proc Natl Acad Sci U S A 2017; 114:E2504-E2513. [PMID: 28265090 DOI: 10.1073/pnas.1620508114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are trimeric cation-selective ion channels activated by protons in the physiological range. Recent reports have revealed that postsynaptically localized ASICs contribute to the excitatory postsynaptic current by responding to the transient acidification of the synaptic cleft that accompanies neurotransmission. In response to such brief acidic transients, both recombinant and native ASICs show extremely rapid deactivation in outside-out patches when jumping from a pH 5 stimulus to a single resting pH of 8. Given that the resting pH of the synaptic cleft is highly dynamic and depends on recent synaptic activity, we explored the kinetics of ASIC1a and 1a/2a heteromers to such brief pH transients over a wider [H+] range to approximate neuronal conditions better. Surprisingly, the deactivation of ASICs was steeply dependent on the pH, spanning nearly three orders of magnitude from extremely fast (<1 ms) at pH 8 to very slow (>300 ms) at pH 7. This study provides an example of a ligand-gated ion channel whose deactivation is sensitive to agonist concentrations that do not directly activate the receptor. Kinetic simulations and further mutagenesis provide evidence that ASICs show such steeply agonist-dependent deactivation because of strong cooperativity in proton binding. This capacity to signal across such a large synaptically relevant bandwidth enhances the response to small-amplitude acidifications likely to occur at the cleft and may provide ASICs with the ability to shape activity in response to the recent history of the synapse.
Collapse
|
7
|
Fritsch B, Reis J, Gasior M, Kaminski RM, Rogawski MA. Role of GluK1 kainate receptors in seizures, epileptic discharges, and epileptogenesis. J Neurosci 2014; 34:5765-75. [PMID: 24760837 PMCID: PMC3996208 DOI: 10.1523/jneurosci.5307-13.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/12/2014] [Accepted: 03/07/2014] [Indexed: 11/21/2022] Open
Abstract
Kainate receptors containing the GluK1 subunit have an impact on excitatory and inhibitory neurotransmission in brain regions, such as the amygdala and hippocampus, which are relevant to seizures and epilepsy. Here we used 2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA), a potent and selective agonist of kainate receptors that include the GluK1 subunit, in conjunction with mice deficient in GluK1 and GluK2 kainate receptor subunits to assess the role of GluK1 kainate receptors in provoking seizures and in kindling epileptogenesis. We found that systemic ATPA, acting specifically via GluK1 kainate receptors, causes locomotor arrest and forelimb extension (a unique behavioral characteristic of GluK1 activation) and induces myoclonic behavioral seizures and electrographic seizure discharges in the BLA and hippocampus. In contrast, the proconvulsant activity of systemic AMPA, kainate, and pentylenetetrazol is not mediated by GluK1 kainate receptors, and deletion of these receptors does not elevate the threshold for seizures in the 6 Hz model. ATPA also specifically activates epileptiform discharges in BLA slices in vitro via GluK1 kainate receptors. Olfactory bulb kindling developed similarly in wild-type, GluK1, and GluK2 knock-out mice, demonstrating that GluK1 kainate receptors are not required for epileptogenesis or seizure expression in this model. We conclude that selective activation of kainate receptors containing the GluK1 subunit can trigger seizures, but these receptors are not necessary for seizure generation in models commonly used to identify therapeutic agents for the treatment of epilepsy.
Collapse
Affiliation(s)
- Brita Fritsch
- Epilepsy Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
- Department of Neurology, University Hospital, 79106 Freiburg, Germany, and
| | - Janine Reis
- Epilepsy Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
- Department of Neurology, University Hospital, 79106 Freiburg, Germany, and
| | - Maciej Gasior
- Epilepsy Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Rafal M. Kaminski
- Epilepsy Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Michael A. Rogawski
- Epilepsy Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
- Department of Neurology, School of Medicine and Center for Neuroscience, University of California, Davis, Sacramento, California 95817
| |
Collapse
|
8
|
Koga K, Sim SE, Chen T, Wu LJ, Kaang BK, Zhuo M. Kainate receptor-mediated synaptic transmissions in the adult rodent insular cortex. J Neurophysiol 2012; 108:1988-98. [PMID: 22786952 DOI: 10.1152/jn.00453.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Kainate (KA) receptors are expressed widely in the central nervous system and regulate both excitatory and inhibitory synaptic transmission. KA receptors play important roles in fear memory, anxiety, and pain. However, little is known about their function in synaptic transmission in the insular cortex (IC), a critical region for taste, memory, and pain. Using whole cell patch-clamp recordings, we have shown that KA receptors contribute to fast synaptic transmission in neurons in all layers of the IC. In the presence of the GABA(A) receptor antagonist picrotoxin, the NMDA receptor antagonist AP-5, and the selective AMPA receptor antagonist GYKI 53655, KA receptor-mediated excitatory postsynaptic currents (KA EPSCs) were revealed. We found that KA EPSCs are ~5-10% of AMPA/KA EPSCs in all layers of the adult mouse IC. Similar results were found in adult rat IC. KA EPSCs had a significantly slower rise time course and decay time constant compared with AMPA receptor-mediated EPSCs. High-frequency repetitive stimulations at 200 Hz significantly facilitated the summation of KA EPSCs. In addition, genetic deletion of GluK1 or GluK2 subunit partially reduced postsynaptic KA EPSCs, and exposure of GluK2 knockout mice to the selective GluK1 antagonist UBP 302 could significantly reduce the KA EPSCs. These data suggest that both GluK1 and GluK2 play functional roles in the IC. Our study may provide the synaptic basis for the physiology and pathology of KA receptors in the IC-related functions.
Collapse
Affiliation(s)
- Kohei Koga
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Han Y, Wang C, Park JS, Niu L. Channel-opening kinetic mechanism of wild-type GluK1 kainate receptors and a C-terminal mutant. Biochemistry 2012; 51:761-8. [PMID: 22191429 DOI: 10.1021/bi201446z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
GluK1 is a kainate receptor subunit in the ionotropic glutamate receptor family and can form functional channels when expressed, for instance, in HEK-293 cells. However, the channel-opening mechanism of GluK1 is poorly understood. One major challenge to studying the GluK1 channel is its apparent low level of surface expression, which results in a low whole-cell current response even to a saturating concentration of agonist. A low level of surface expression is thought to be contributed by an endoplasmic reticulum (ER) retention signal sequence. When this sequence motif is present as in the C-terminus of wild-type GluK1-2b, the receptor is significantly retained in the ER. Conversely, when this sequence is either lacking, as in wild-type GluK1-2a (i.e., a different alternatively spliced isoform at the C-terminus), or disrupted, as in a GluK1-2b mutant (i.e., R896A, R897A, R900A, and K901A), there is a higher level of surface expression and a greater whole-cell current response. Here we characterize the channel-opening kinetic mechanism for these three GluK1 receptors expressed in HEK-293 cells by using a laser-pulse photolysis technique. Our results show that wild-type GluK1-2a, wild-type GluK1-2b, and the GluK1-2b mutant have identical channel opening and channel closing rate constants. These results indicate that the amino acid sequence near or within the C-terminal ER retention signal sequence, which affects receptor trafficking and/or expression, does not affect channel gating properties. Furthermore, as compared with the GluK2 kainate receptor, the GluK1 channel is faster to open, close, and desensitize by at least 2-fold, yet the EC(50) value of GluK1 is similar to that of GluK2.
Collapse
Affiliation(s)
- Yan Han
- Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222, United States
| | | | | | | |
Collapse
|
10
|
|
11
|
GLUK1 receptor antagonists and hippocampal mossy fiber function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 85:13-27. [PMID: 19607958 DOI: 10.1016/s0074-7742(09)85002-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Kainate receptors, one of the three subtypes of ionotropic receptors for the excitatory transmitter l-glutamate, play a variety of functions in the regulation of synaptic activity. Their physiological properties and functional roles have been identified only recently, following the discovery of selective pharmacological tools that allow for isolation of kainate receptor-mediated events. A considerable amount of data indicates that this class of glutamate receptors is located both at the pre- and postsynaptic site, playing a special role in regulating transmission and controlling short- and long-term plasticity. In this review, we summarize some data obtained in our laboratory over the last decade illustrating how various ligands have contributed to our understanding of the physiological role for neuronal kainate receptors. In particular, we show that the GluK1-containing KARs are important for regulating synaptic facilitation and LTP induction at hippocampal mossy fiber synapses.
Collapse
|
12
|
Kainate receptors: Pharmacology, function and therapeutic potential. Neuropharmacology 2009; 56:90-113. [DOI: 10.1016/j.neuropharm.2008.08.023] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 08/04/2008] [Accepted: 08/07/2008] [Indexed: 01/28/2023]
|
13
|
Rousseaux CG. A Review of Glutamate Receptors I: Current Understanding of Their Biology. J Toxicol Pathol 2008. [DOI: 10.1293/tox.21.25] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Colin G. Rousseaux
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa
| |
Collapse
|
14
|
Sun HY, Dobrunz LE. Presynaptic kainate receptor activation is a novel mechanism for target cell-specific short-term facilitation at Schaffer collateral synapses. J Neurosci 2006; 26:10796-807. [PMID: 17050718 PMCID: PMC6674734 DOI: 10.1523/jneurosci.2746-06.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Target cell-specific differences in short-term plasticity have been attributed to differences in the initial release probability of synapses. Using GIN (GFP-expressing inhibitory neurons) transgenic mice that express enhanced green fluorescent protein (EGFP) in a subset of interneurons containing somatostatin, we show that Schaffer collateral synapses onto the EGFP-expressing somatostatin interneurons in CA1 have very large short-term facilitation, even larger facilitation than onto pyramidal cells, in contrast to the majority of interneurons that have little or no facilitation. Using a combination of electrophysiological recordings and mathematical modeling, we show that the large short-term facilitation is caused both by a very low initial release probability and by synaptic activation of presynaptic kainate receptors that increase release probability on subsequent stimuli. Thus, we have discovered a novel mechanism for target cell-specific short-term plasticity at Schaffer collateral synapses in which the activation of presynaptic kainate receptors by synaptically released glutamate contributes to large short-term facilitation, enabling selective enhancement of the inputs to a subset of interneurons.
Collapse
Affiliation(s)
- Hua Yu Sun
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Lynn E. Dobrunz
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
15
|
Weiss B, Alt A, Ogden AM, Gates M, Dieckman DK, Clemens-Smith A, Ho KH, Jarvie K, Rizkalla G, Wright RA, Calligaro DO, Schoepp D, Mattiuz EL, Stratford RE, Johnson B, Salhoff C, Katofiasc M, Phebus LA, Schenck K, Cohen M, Filla SA, Ornstein PL, Johnson KW, Bleakman D. Pharmacological Characterization of the Competitive GLUK5 Receptor Antagonist Decahydroisoquinoline LY466195 in Vitro and in Vivo. J Pharmacol Exp Ther 2006; 318:772-81. [PMID: 16690725 DOI: 10.1124/jpet.106.101428] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The excitatory neurotransmitter glutamate has been implicated in both migraine and persistent pain. The identification of the kainate receptor GLU(K5) in dorsal root ganglia, the dorsal horn, and trigeminal ganglia makes it a target of interest for these indications. We examined the in vitro and in vivo pharmacology of the competitive GLU(K5)-selective kainate receptor antagonist LY466195 [(3S,4aR,6S,8aR)-6-[[(2S)-2-carboxy-4,4-difluoro-1-pyrrolidinyl]-methyl]decahydro-3-isoquinolinecarboxylic acid)], the most potent GLU(K5) antagonist described to date. Comparisons were made to the competitive GLU(K5)/alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor antagonist LY293558 [(3S,4aR,6R,8aR)-6-[2-(1(2)H-tetrazole-5-yl)ethyl]-decahydroisoquinoline-3-carboxylic acid], other decahydroisoquinoline GLU(K5) receptor antagonists, and the noncompetitive AMPA receptor antagonist LY300168 [1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodi-azepine]. When characterized electrophysiologically in rat dorsal root ganglion neurons, LY466195 antagonized kainate (30 microM)-induced currents with an IC50 value of 0.045 +/- 0.011 microM. In HEK293 cells transfected with GLU(K5), GLU(K2)/GLU(K5), or GLU(K5)/GLU(K6) receptors, LY466195 produced IC50 values of 0.08 +/- 0.02, 0.34 +/- 0.17, and 0.07 +/- 0.02 microM, respectively. LY466195 was efficacious in a dural plasma protein extravasation (PPE) model of migraine with an ID100 value of 100 microg/kg i.v. LY466195 was also efficacious in the c-fos migraine model, with a dose of 1 microg/kg i.v. significantly reducing the number of Fos-positive cells in the rat nucleus caudalis after electrical stimulation of the trigeminal ganglion. Furthermore, LY466195 showed no contractile activity in the rabbit saphenous vein in vitro. The diethyl ester prodrug of LY466195 was also efficacious in the same PPE and c-fos models after oral administration at doses of 10 and 100 microg/kg, respectively while having no N-methyl-D-aspartate antagonist-like behavioral effects at oral doses up to 100 mg/kg.
Collapse
Affiliation(s)
- Brianne Weiss
- Eli Lilly and Company, Neuroscience Research, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285-0510, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Brown JT, Teriakidis A, Randall AD. A pharmacological investigation of the role of GLUK5-containing receptors in kainate-driven hippocampal gamma band oscillations. Neuropharmacology 2005; 50:47-56. [PMID: 16153668 DOI: 10.1016/j.neuropharm.2005.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 07/22/2005] [Accepted: 07/22/2005] [Indexed: 10/25/2022]
Abstract
Low concentrations of kainate can induce gamma frequency (25-80 Hz) oscillations in hippocampal slices as well as other brain structures in vitro. Little is known, however, about the kainate receptor (KAR) subtypes that underlie this type of rhythmic neuronal network activity. In this study, the role of GLU(K5) subunit-containing KARs in kainate-induced hippocampal gamma frequency oscillations was assessed using GLU(K5)-selective pharmacological ligands. Activation of GLU(K5)-containing subunits using the selective agonists (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid (ATPA; 0.1-1 microM) or iodowillardiine (0.1-1 microM) failed to induce gamma frequency oscillations in area CA3 of the rat hippocampal slice. Likewise, preincubation with a selective GLU(K5) antagonist, (RS)-3-(2-carboxybenzyl)willardiine (UBP296), did not prevent the appearance of gamma oscillations induced by 150 nM kainate. However, addition of UBP296 (10 microM) to hippocampal slices in which kainate-driven gamma oscillations were pre-established resulted in an approximately 50% reduction in gamma frequency power. These effects occurred in the absence of any effect on AMPA receptor-mediated synaptic transmission. Furthermore, carbachol-induced gamma oscillations were also unaffected by application of UBP296. These results suggest that GLU(K5)-containing KARs are not alone sufficient to generate gamma frequency oscillations, but are involved in maintaining neuronal network activity induced by the actions of kainate at other KARs such as GLU(K6).
Collapse
Affiliation(s)
- J T Brown
- Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Research and Development Limited, New Frontiers Science Park (North), Harlow, Essex, UK.
| | | | | |
Collapse
|
17
|
Wu LJ, Zhao MG, Toyoda H, Ko SW, Zhuo M. Kainate receptor-mediated synaptic transmission in the adult anterior cingulate cortex. J Neurophysiol 2005; 94:1805-13. [PMID: 15928066 DOI: 10.1152/jn.00091.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Kainate (KA) receptors are expressed widely in the CNS. However, little is known about their functional characterization, molecular identity, and role in synaptic transmission in the forebrain of adult mice. Patch-clamp recordings in genetically modified mice show that postsynaptic KA receptors contribute to fast synaptic transmission in pyramidal neurons in the anterior cingulate cortex (ACC), a forebrain region critical for higher-order cognitive brain functions such as memory and mental disorders. Single-shock stimulation could induce small KA receptor-mediated excitatory postsynaptic currents (KA EPSCs) in the presence of picrotoxin, D-2-amino-5-phosphono-pentanoic acid, and a selective AMPA receptor antagonist, GYKI 53655. KA EPSCs had a significantly slower rise time course and decay time constant compared with AMPA receptor-mediated EPSCs. High-frequency repetitive stimulation significantly facilitated the KA EPSCs. Genetic deletion of the GluR6 or GluR5 subunit significantly reduced, and GluR5 and 6 double knockout completely abolished, KA EPSCs and KA-activated currents in ACC pyramidal neurons. Our results show that KA receptors contribute to synaptic transmission in adult ACC pyramidal neurons and provide a synaptic basis for the physiology and pathology of KA receptors in ACC-related functions.
Collapse
Affiliation(s)
- Long-Jun Wu
- Department of Physiology, University of Toronto, Medical Sciences Bldg., Rm 3342, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
18
|
|
19
|
Breustedt J, Schmitz D. Assessing the role of GLUK5 and GLUK6 at hippocampal mossy fiber synapses. J Neurosci 2004; 24:10093-8. [PMID: 15537878 PMCID: PMC6730189 DOI: 10.1523/jneurosci.3078-04.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Revised: 09/13/2004] [Accepted: 09/13/2004] [Indexed: 11/21/2022] Open
Abstract
It has been suggested recently that presynaptic kainate receptors (KARs) are involved in short-term and long-term synaptic plasticity at hippocampal mossy fiber synapses. Using genetic deletion and pharmacology, we here assess the role of GLU(K5) and GLU(K6) in synaptic plasticity at hippocampal mossy fiber synapses. We found that the kainate-induced facilitation was completely abolished in the GLU(K6)-/- mice, whereas it was unaffected in the GLU(K5)-/-. Consistent with this finding, synaptic facilitation was reduced in the GLU(K6)(-/-) and was normal in the GLU(K5)-/-. In agreement with these results and ruling out any compensatory effects in the genetic deletion models, application of the GLU(K5)-specific antagonist LY382884 [(3S,4aR,6S,8aR)-6-(4-carboxyphenyl)methyl-1,2,3,4,4a,5,6,7,8,8a-decahydroisoquinoline-3-carboxylic acid] did not affect short-term and long-term synaptic plasticity at the hippocampal mossy fiber synapses. We therefore conclude that the facilitatory effects of kainate on mossy fiber synaptic transmission are mediated by GLU(K6)-containing KARs.
Collapse
MESH Headings
- 2-Amino-5-phosphonovalerate/pharmacology
- 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology
- Amino Acids, Dicarboxylic/pharmacology
- Animals
- Benzodiazepines/pharmacology
- Cyclopropanes/pharmacology
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Gene Deletion
- Glycine/analogs & derivatives
- Glycine/pharmacology
- Isoquinolines/pharmacology
- Isoxazoles/pharmacology
- Kainic Acid/pharmacology
- Mice
- Mice, Knockout
- Mossy Fibers, Hippocampal/physiology
- Neuronal Plasticity/physiology
- Patch-Clamp Techniques
- Potassium/pharmacology
- Propionates/pharmacology
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Receptors, Kainic Acid/deficiency
- Receptors, Kainic Acid/drug effects
- Receptors, Kainic Acid/genetics
- Receptors, Kainic Acid/physiology
- Synaptic Transmission/physiology
- GluK2 Kainate Receptor
Collapse
Affiliation(s)
- Jörg Breustedt
- Neurowissenschaftliches Forschungszentrum, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | |
Collapse
|
20
|
More JCA, Nistico R, Dolman NP, Clarke VRJ, Alt AJ, Ogden AM, Buelens FP, Troop HM, Kelland EE, Pilato F, Bleakman D, Bortolotto ZA, Collingridge GL, Jane DE. Characterisation of UBP296: a novel, potent and selective kainate receptor antagonist. Neuropharmacology 2004; 47:46-64. [PMID: 15165833 DOI: 10.1016/j.neuropharm.2004.03.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 02/23/2004] [Accepted: 03/01/2004] [Indexed: 10/26/2022]
Abstract
Willardiine derivatives with an N3-benzyl substituent bearing an acidic group have been synthesized with the aim of producing selective antagonists for GLUK5-containing kainate receptors. UBP296 was found to be a potent and selective antagonist of native GLUK5-containing kainate receptors in the spinal cord, with activity residing in the S enantiomer (UBP302). In cells expressing human kainate receptor subunits, UBP296 selectively depressed glutamate-induced calcium influx in cells containing GLUK5 in homomeric or heteromeric forms. In radioligand displacement binding studies, the willardiine analogues displaced [3H]kainate binding with IC50 values >100 microM at rat GLUK6, GLUK2 or GLUK6/GLUK2. An explanation of the GLUK5 selectivity of UBP296 was obtained using homology models of the antagonist bound forms of GLUK5 and GLUK6. In rat hippocampal slices, UBP296 reversibly blocked ATPA-induced depressions of synaptic transmission at concentrations subthreshold for affecting AMPA receptor-mediated synaptic transmission directly. UBP296 also completely blocked the induction of mossy fibre LTP, in medium containing 2 mM (but not 4 mM) Ca2+. These data provide further evidence for a role for GLUK5-containing kainate receptors in mossy fibre LTP. In conclusion, UBP296 is the most potent and selective antagonist of GLUK5-containing kainate receptors so far described.
Collapse
Affiliation(s)
- Julia C A More
- Department of Pharmacology, MRC Centre for Synaptic Plasticity, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Excitatory glutamatergic transmission involves a variety of different receptor types, each with distinct properties and functions. Physiological studies have identified both post- and presynaptic roles for kainate receptors, which are a subtype of the ionotropic glutamate receptors. Kainate receptors contribute to excitatory postsynaptic currents in many regions of the central nervous system including hippocampus, cortex, spinal cord and retina. In some cases, postsynaptic kainate receptors are co-distributed with alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors, but there are also synapses where transmission is mediated exclusively by postsynaptic kainate receptors: for example, in the retina at connections made by cones onto off bipolar cells. Modulation of transmitter release by presynaptic kainate receptors can occur at both excitatory and inhibitory synapses. The depolarization of nerve terminals by current flow through ionotropic kainate receptors appears sufficient to account for most examples of presynaptic regulation; however, a number of studies have provided evidence for metabotropic effects on transmitter release that can be initiated by activation of kainate receptors. Recent analysis of knockout mice lacking one or more of the subunits that contribute to kainate receptors, as well as studies with subunit-selective agonists and antagonists, have revealed the important roles that kainate receptors play in short- and long-term synaptic plasticity. This review briefly addresses the properties of kainate receptors and considers in greater detail the physiological analysis of their contributions to synaptic transmission.
Collapse
Affiliation(s)
- James E Huettner
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
22
|
Bortolotto ZA, Lauri S, Isaac JTR, Collingridge GL. Kainate receptors and the induction of mossy fibre long-term potentiation. Philos Trans R Soc Lond B Biol Sci 2003; 358:657-66. [PMID: 12740111 PMCID: PMC1693169 DOI: 10.1098/rstb.2002.1216] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is intense interest in understanding the molecular mechanisms involved in long-term potentiation (LTP) in the hippocampus. Significant progress in our understanding of LTP has followed from studies of glutamate receptors, of which there are four main subtypes (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA), N-methyl-D-aspartate (NMDA), mGlu and kainate). This article summarizes the evidence that the kainate subtype of glutamate receptor is an important trigger for the induction of LTP at mossy fibre synapses in the CA3 region of the hippocampus. The pharmacology of the first selective kainate receptor antagonists, in particular the GLU(K5) subunit selective antagonist LY382884, is described. LY382884 selectively blocks the induction of mossy fibre LTP, in response to a variety of different high-frequency stimulation protocols. This antagonist also inhibits the pronounced synaptic facilitation of mossy fibre transmission that occurs during high-frequency stimulation. These effects are attributed to the presence of presynaptic GLU(K5)-subunit-containing kainate receptors at mossy fibre synapses. Differences in kainate receptor-dependent synaptic facilitation of AMPA and NMDA receptor-mediated synaptic transmission are described. These data are discussed in the context of earlier reports that glutamate receptors are not involved in mossy fibre LTP and more recent experiments using kainate receptor knockout mice, that argue for the involvement of GLU(K6) but not GLU(K5) kainate receptor subunits. We conclude that activation of presynaptic GLU(K5)-containing kainate receptors is an important trigger for the induction of mossy fibre LTP in the hippocampus.
Collapse
Affiliation(s)
- Zuner A Bortolotto
- MRC Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
23
|
Hirbec H, Francis JC, Lauri SE, Braithwaite SP, Coussen F, Mulle C, Dev KK, Couthino V, Meyer G, Isaac JT, Collingridge GL, Henley JM. Rapid and differential regulation of AMPA and kainate receptors at hippocampal mossy fibre synapses by PICK1 and GRIP. Neuron 2003; 37:625-38. [PMID: 12597860 PMCID: PMC3314502 DOI: 10.1016/s0896-6273(02)01191-1] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We identified four PDZ domain-containing proteins, syntenin, PICK1, GRIP, and PSD95, as interactors with the kainate receptor (KAR) subunits GluR5(2b,) GluR5(2c), and GluR6. Of these, we show that both GRIP and PICK1 interactions are required to maintain KAR-mediated synaptic function at mossy fiber-CA3 synapses. In addition, PKC alpha can phosphorylate ct-GluR5(2b) at residues S880 and S886, and PKC activity is required to maintain KAR-mediated synaptic responses. We propose that PICK1 targets PKC alpha to phosphorylate KARs, causing their stabilization at the synapse by an interaction with GRIP. Importantly, this mechanism is not involved in the constitutive recycling of AMPA receptors since blockade of PDZ interactions can simultaneously increase AMPAR- and decrease KAR-mediated synaptic transmission at the same population of synapses.
Collapse
|
24
|
Smolders I, Bortolotto ZA, Clarke VRJ, Warre R, Khan GM, O'Neill MJ, Ornstein PL, Bleakman D, Ogden A, Weiss B, Stables JP, Ho KH, Ebinger G, Collingridge GL, Lodge D, Michotte Y. Antagonists of GLU(K5)-containing kainate receptors prevent pilocarpine-induced limbic seizures. Nat Neurosci 2002; 5:796-804. [PMID: 12080343 DOI: 10.1038/nn880] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Developments in the molecular biology and pharmacology of GLU(K5), a subtype of the kainate class of ionotropic glutamate receptors, have enabled insights into the roles of this subunit in synaptic transmission and plasticity. However, little is known about the possible functions of GLU(K5)-containing kainate receptors in pathological conditions. We report here that, in hippocampal slices, selective antagonists of GLU(K5)-containing kainate receptors prevented development of epileptiform activity--evoked by the muscarinic agonist, pilocarpine--and inhibited the activity when it was pre-established. In conscious rats, these GLU(K5) antagonists prevented and interrupted limbic seizures induced by intra-hippocampal pilocarpine perfusion, and attenuated accompanying rises in extracellular L-glutamate and GABA. This anticonvulsant activity occurred without overt side effects. GLU(K5) antagonism also prevented epileptiform activity induced by electrical stimulation, both in vitro and in vivo. Therefore, we propose that subtype-selective GLU(K5) kainate receptor antagonists offer a potential new therapy for epilepsy.
Collapse
Affiliation(s)
- Ilse Smolders
- Department of Pharmaceutical Chemistry & Drug Analysis, Pharmaceutical Institute, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lauri SE, Delany C, J Clarke VR, Bortolotto ZA, Ornstein PL, T R Isaac J, Collingridge GL. Synaptic activation of a presynaptic kainate receptor facilitates AMPA receptor-mediated synaptic transmission at hippocampal mossy fibre synapses. Neuropharmacology 2001; 41:907-15. [PMID: 11747895 DOI: 10.1016/s0028-3908(01)00152-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The development of GluR5-selective kainate receptor ligands is helping to elucidate the functions of kainate receptors in the CNS. Here we have further characterised the actions of a GluR5 selective agonist, ATPA, and a GluR5 selective antagonist, LY382884, in the CA3 region of rat hippocampal slices. In addition, we have used LY382884 to study a novel synaptic mechanism. This antagonist substantially reduces frequency facilitation of mossy fibre synaptic transmission, monitored as either AMPA or NMDA receptor-mediated EPSCs. This suggests that GluR5-containing kainate receptors on mossy fibres function as autoreceptors to facilitate the synaptic release of L-glutamate, in a frequency-dependent manner.
Collapse
Affiliation(s)
- S E Lauri
- MRC Centre for Synaptic Plasticity, Department of Anatomy, Medical School, University of Bristol, BS8 1TD, Bristol, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Bailey A, Kelland EE, Thomas A, Biggs J, Crawford D, Kitchen I, Toms NJ. Regional mapping of low-affinity kainate receptors in mouse brain using [(3)H](2S,4R)-4-methylglutamate autoradiography. Eur J Pharmacol 2001; 431:305-10. [PMID: 11730722 DOI: 10.1016/s0014-2999(01)01463-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent data indicate that (2S,4R)-4-methylglutamate is a selective agonist for low affinity (GluR5 and GluR6) kainate receptor subunits. In the present study, we have employed [(3)H](2S,4R)-4-methylglutamate to examine low affinity kainate receptor distribution in mouse brain. [(3)H](2S,4R)-4-Methylglutamate labelled a single site in murine cerebrocortical membranes (K(d)=9.9+/-2.7 nM, B(max)=296.3+/-27.1 fmol mg protein(-1)). The binding of 8 nM [(3)H](2S,4R)-4-methylglutamate was displaced by several non-NMDA receptor ligands (K(i)+/-S.E.M.): domoate (1.1+/-0.2 nM)>kainate (7.1+/-1.1 nM) >> L-glutamate (187.6+/-31.9 nM) >> (S)-alpha-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid (AMPA) (>50 microM). [(3)H](2S,4R)-4-Methylglutamate autoradiography revealed a widespread regional distribution of low affinity kainate receptors. Highest binding densities occurred within deep layers of the cerebral cortex, olfactory bulb, basolateral amygdala and hippocampal CA3 subregion. Moderate labelling was also evident in the nucleus accumbens, dentate gyrus, caudate putamen, hypothalamus and cerebellar granule cell layer. These data show that [(3)H](2S,4R)-4-methylglutamate is a useful radioligand for selectively labelling low affinity kainate receptors.
Collapse
Affiliation(s)
- A Bailey
- School of Biomedical and Life Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Lauri SE, Bortolotto ZA, Bleakman D, Ornstein PL, Lodge D, Isaac JT, Collingridge GL. A critical role of a facilitatory presynaptic kainate receptor in mossy fiber LTP. Neuron 2001; 32:697-709. [PMID: 11719209 DOI: 10.1016/s0896-6273(01)00511-6] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The mechanisms involved in mossy fiber LTP in the hippocampus are not well established. In the present study, we show that the kainate receptor antagonist LY382884 (10 microM) is selective for presynaptic kainate receptors in the CA3 region of the hippocampus. At a concentration at which it blocks mossy fiber LTP, LY382884 selectively blocks the synaptic activation of a presynaptic kainate receptor that facilitates AMPA receptor-mediated synaptic transmission. Following the induction of mossy fiber LTP, there is a complete loss of the presynaptic kainate receptor-mediated facilitation of synaptic transmission. These results identify a central role for the presynaptic kainate receptor in the induction of mossy fiber LTP. In addition, these results suggest that the pathway by which kainate receptors facilitate glutamate release is utilized for the expression of mossy fiber LTP.
Collapse
Affiliation(s)
- S E Lauri
- MRC Centre for Synaptic Plasticity, Department of Anatomy, Medical School, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
28
|
Kristensen BW, Noraberg J, Zimmer J. Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures. Brain Res 2001; 917:21-44. [PMID: 11602227 DOI: 10.1016/s0006-8993(01)02900-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The excitotoxic profiles of (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propionic acid (ATPA), (RS)-2-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), kainic acid (KA) and N-methyl-D-aspartate (NMDA) were evaluated using cellular uptake of propidium iodide (PI) as a measure for induced, concentration-dependent neuronal damage in hippocampal slice cultures. ATPA is in low concentrations a new selective agonist of the glutamate receptor subunit GluR5 confined to KA receptors and also in high concentrations an AMPA receptor agonist. The following rank order of estimated EC(50) values was found after 2 days of exposure: AMPA (3.7 mM)>NMDA (11 mM)=KA (13 mM)>ATPA (33 mM). Exposed to 30 microM ATPA, 3 microM AMPA and 10 microM NMDA, CA1 was the most susceptible subfield followed by fascia dentata and CA3. Using 8 microM KA, CA3 was the most susceptible subfield, followed by fascia dentata and CA1. In 100 microM concentrations, all four agonists induced the same, maximal PI uptake in all hippocampal subfields, corresponding to total neuronal degeneration. Using glutamate receptor antagonists, like GYKI 52466, NBQX and MK-801, inhibition data revealed that AMPA excitotoxicity was mediated primarily via AMPA receptors. Similar results were found for a high concentration of ATPA (30 microM). In low GluR5 selective concentrations (0.3-3 microM), ATPA did not induce an increase in PI uptake or a reduction in glutamic acid decarboxylase (GAD) activity of hippocampal interneurons. For KA, the excitotoxicity appeared to be mediated via both KA and AMPA receptors. NMDA receptors were not involved in AMPA-, ATPA- and KA-induced excitotoxicity, nor did NMDA-induced excitotoxicity require activation of AMPA and KA receptors. We conclude that hippocampal slice cultures constitute a feasible test system for evaluation of excitotoxic effects and mechanisms of new (ATPA) and classic (AMPA, KA and NMDA) glutamate receptor agonists. Comparison of concentration-response curves with calculation of EC(50) values for glutamate receptor agonists are possible, as well as comparison of inhibition data for glutamate receptor antagonists. The observation that the slice cultures respond with more in vivo-like patterns of excitotoxicity than primary neuronal cultures, suggests that slice cultures are the best model of choice for a number of glutamate agonist and antagonist studies.
Collapse
Affiliation(s)
- B W Kristensen
- Anatomy and Neurobiology, Inst. of Medical Biology, SDU-Odense University, Winsløwparken 21, DK-5000 Odense C, Denmark.
| | | | | |
Collapse
|
29
|
Silva AP, Malva JO, Ambrósio AF, Salgado AJ, Carvalho AP, Carvalho CM. Role of kainate receptor activation and desensitization on the [Ca(2+)](i) changes in cultured rat hippocampal neurons. J Neurosci Res 2001; 65:378-86. [PMID: 11536320 DOI: 10.1002/jnr.1164] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the role of kainate (KA) receptor activation and desensitization in inducing the increase in the intracellular free Ca(2+) concentration ([Ca(2+)](i)) in individual cultured rat hippocampal neurons. The rat hippocampal neurons in the cultures were shown to express kainate receptor subunits, KA2 and GluR6/7, either by immunocytochemistry or by immunoblot analysis. The effect of LY303070, an alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) receptor antagonist, on the alterations in the [Ca(2+)](i) caused by kainate showed cell-to-cell variability. The [Ca(2+)](i) increase caused by kainate was mostly mediated by the activation of AMPA receptors because LY303070 inhibited the response to kainate in a high percentage of neurons. The response to kainate was potentiated by concanavalin A (Con A), which inhibits kainate receptor desensitization, in 82.1% of the neurons, and this potentiation was not reversed by LY303070 in about 38% of the neurons. Also, upon stimulation of the cells with 4-methylglutamate (MGA), a selective kainate receptor agonist, in the presence of Con A, it was possible to observe [Ca(2+)](i) changes induced by kainate receptor activation, because LY303070 did not inhibit the response in all neurons analyzed. In toxicity studies, cultured rat hippocampal neurons were exposed to the drugs for 30 min, and the cell viability was evaluated at 24 hr using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The selective activation of kainate receptors with MGA, in the presence of Con A, induced a toxic effect, which was not prevented by LY303070, revealing a contribution of a small subpopulation of neurons expressing kainate receptors that independently mediate cytotoxicity. Taken together, these results indicate that cultured hippocampal neurons express not only AMPA receptors, but also kainate receptors, which can modulate the [Ca(2+)](i) and toxicity.
Collapse
Affiliation(s)
- A P Silva
- Center for Neuroscience of Coimbra, Department of Zoology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
30
|
Lerma J, Paternain AV, Rodríguez-Moreno A, López-García JC. Molecular physiology of kainate receptors. Physiol Rev 2001; 81:971-98. [PMID: 11427689 DOI: 10.1152/physrev.2001.81.3.971] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A decade ago, our understanding of the molecular properties of kainate receptors and their involvement in synaptic physiology was essentially null. A plethora of recent studies has altered this situation profoundly such that kainate receptors are now regarded as key players in the modulation of transmitter release, as important mediators of the postsynaptic actions of glutamate, and as possible targets for the development of antiepileptic and analgesic drugs. In this review, we summarize our current knowledge of the properties of kainate receptors focusing on four key issues: 1) their structural and biophysical features, 2) the important progress in their pharmacological characterization, 3) their pre- and postsynaptic mechanisms of action, and 4) their involvement in a series of physiological and pathological processes. Finally, although significant progress has been made toward the elucidation of their importance for brain function, kainate receptors remain largely an enigma and, therefore, we propose some new roads that should be explored to obtain a deeper understanding of this young, but intriguing, class of proteins.
Collapse
Affiliation(s)
- J Lerma
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | | | | | | |
Collapse
|
31
|
Abstract
The hippocampal mossy fiber pathway between the granule cells of the dentate gyrus and the pyramidal cells of area CA3 has been the target of numerous scientific studies. Initially, attention was focused on the mossy fiber to CA3 pyramidal cell synapse because it was suggested to be a model synapse for studying the basic properties of synaptic transmission in the CNS. However, the accumulated body of research suggests that the mossy fiber synapse is rather unique in that it has many distinct features not usually observed in cortical synapses. In this review, we have attempted to summarize the many unique features of this hippocampal pathway. We also have attempted to reconcile some discrepancies that exist in the literature concerning the pharmacology, physiology and plasticity of this pathway. In addition we also point out some of the experimental challenges that make electrophysiological study of this pathway so difficult.Finally, we suggest that understanding the functional role of the hippocampal mossy fiber pathway may lie in an appreciation of its variety of unique properties that make it a strong yet broadly modulated synaptic input to postsynaptic targets in the hilus of the dentate gyrus and area CA3 of the hippocampal formation.
Collapse
Affiliation(s)
- D A Henze
- Department of Neuroscience and Center for Neural Basis of Cognition, University of Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
32
|
Bräuner-Osborne H, Egebjerg J, Nielsen EO, Madsen U, Krogsgaard-Larsen P. Ligands for glutamate receptors: design and therapeutic prospects. J Med Chem 2000; 43:2609-45. [PMID: 10893301 DOI: 10.1021/jm000007r] [Citation(s) in RCA: 435] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
MESH Headings
- Animals
- Drug Design
- Excitatory Amino Acid Agonists/chemistry
- Excitatory Amino Acid Agonists/metabolism
- Excitatory Amino Acid Agonists/pharmacology
- Excitatory Amino Acid Agonists/therapeutic use
- Excitatory Amino Acid Antagonists/chemistry
- Excitatory Amino Acid Antagonists/metabolism
- Excitatory Amino Acid Antagonists/pharmacology
- Excitatory Amino Acid Antagonists/therapeutic use
- Humans
- Ligands
- N-Methylaspartate/agonists
- N-Methylaspartate/antagonists & inhibitors
- N-Methylaspartate/chemistry
- N-Methylaspartate/metabolism
- Receptors, AMPA/agonists
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/chemistry
- Receptors, AMPA/metabolism
- Receptors, Glutamate/chemistry
- Receptors, Glutamate/drug effects
- Receptors, Glutamate/metabolism
- Receptors, Kainic Acid/agonists
- Receptors, Kainic Acid/antagonists & inhibitors
- Receptors, Kainic Acid/chemistry
- Receptors, Kainic Acid/metabolism
- Receptors, Metabotropic Glutamate/agonists
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
- Receptors, Metabotropic Glutamate/chemistry
- Receptors, Metabotropic Glutamate/metabolism
- Synapses/metabolism
Collapse
Affiliation(s)
- H Bräuner-Osborne
- NeuroScience PharmaBiotec Research Center, Department of Medicinal Chemistry, The Royal Danish School of Pharmacy, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
33
|
Abstract
The excitatory amino acid receptor (EAAR) types involved in the generation of light-evoked excitatory postsynaptic currents (EPSCs) were examined in X-type retinal ganglion cells. Using isolated and sliced preparations of cat and ferret retina, the light-evoked EPSCs of X cells were isolated by adding picrotoxin and strychnine to the bath to remove synaptic inhibition. N-methyl-D-aspartate (NMDA) receptors contribute significantly to the light-evoked EPSCs of ON- and OFF-X cells at many different holding potentials. An NMDA receptor contribution to the EPSCs was observable when retinal synaptic inhibition was either normally present or pharmacologically blocked. NMDA receptors formed 80% of the peak light-evoked EPSC at a holding potential of -40 mV; however, even at -80 mV, 20% of the light-evoked EPSC was NMDA-mediated. An alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor-mediated component to the light-evoked EPSCs predominated at a holding potential of -80 mV. The light-evoked EPSC was blocked by the AMPA receptor-selective antagonist GYKI52466 (50-100 microM). The AMPA receptor-mediated EPSC component had a linear current-voltage relation. AMPA receptors form the main non-NMDA EAAR current on both ON- and OFF- X ganglion cell dendrites. When synaptic transmission was blocked by the addition of Cd(2+) to the Ringer, application of kainate directly to ganglion cells evoked excitatory currents that were strongly blocked by GYKI52466. Experiments using selective EAAR modulators showed the AMPA receptor-selective modulator cyclothiazide potentiated glutamate-evoked currents on X cells, while the kainate receptor-selective modulator concanavalin A (ConA) had no effect on kainate-evoked currents. Whereas the present study confirms the general notion that AMPA EAAR-mediated currents are transient and NMDA receptor-mediated currents are sustained, current-voltage relations of the light-evoked EPSC at different time points showed the contributions of these two receptor types significantly overlap. Both NMDA and AMPA EAARs can transmit transient and sustained visual signals in X ganglion cells, suggesting that much signal shaping occurs presynaptically in bipolar cells.
Collapse
MESH Headings
- Animals
- Cats
- Electrophysiology
- Excitatory Amino Acid Agonists/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Ferrets
- In Vitro Techniques
- Patch-Clamp Techniques
- Photic Stimulation
- Receptors, AMPA/agonists
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/physiology
- Receptors, Glutamate/drug effects
- Receptors, Glutamate/physiology
- Receptors, Kainic Acid/agonists
- Receptors, Kainic Acid/antagonists & inhibitors
- Receptors, Kainic Acid/physiology
- Receptors, N-Methyl-D-Aspartate/agonists
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/physiology
- Retinal Ganglion Cells/drug effects
- Retinal Ganglion Cells/physiology
- Synapses/drug effects
- Synapses/physiology
Collapse
Affiliation(s)
- E D Cohen
- Yale Vision Research Center, Yale School of Medicine, New Haven, Connecticut 06520-8061, USA
| |
Collapse
|
34
|
Abstract
Kainate receptors are a family of ionotropic glutamate receptors with poorly understood functions. Recent evidence firmly establishes kainate receptors as postsynaptic mediators of synaptic transmission. A second, presynaptic, modulatory role of kainate receptors has also been suggested, although the mechanism(s) involved remain controversial.
Collapse
Affiliation(s)
- M Frerking
- Departments of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
35
|
Abstract
We investigated the mechanisms of long-lasting depolarizing potentials (LLDs) generated in mitral cells with whole-cell patch recordings in the rat olfactory bulb slice. LLDs occur spontaneously and are evoked by either orthodromic stimulation of the olfactory nerve or antidromic stimulation of mitral and tufted (M/T) cells. LLDs are followed by a long refractory period, limiting LLD generation to approximately 1 Hz. LLD production does not appear to involve either intrinsic voltage-activated or metabotropic mechanisms. The initiation of LLDs requires activation of non-NMDA but not NMDA receptors. Dual recordings from the apical dendrites and somata of mitral cells show that LLDs are generated in the distal portion of the apical dendrite, most likely in the glomerulus. The rising phase of LLDs shows characteristics of polyneuronal input, including a high variability and sensitivity to charge screening. Paired recordings from adjacent mitral cells suggest that LLDs occur synchronously only in cells whose apical dendrites ramify in the same glomerulus. These findings suggest that LLDs involve recurrent, intraglomerular dendrodendritic interactions among M/T cells.
Collapse
|
36
|
Costa ET, Soto EE, Cardoso RA, Olivera DS, Valenzuela CF. Acute Effects of Ethanol on Kainate Receptors in Cultured Hippocampal Neurons. Alcohol Clin Exp Res 2000. [DOI: 10.1111/j.1530-0277.2000.tb04594.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
GluR5 and GluR6 kainate receptor subunits coexist in hippocampal neurons and coassemble to form functional receptors. J Neurosci 2000. [PMID: 10627597 DOI: 10.1523/jneurosci.20-01-00196.2000] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have performed nonradioactive double in situ hybridization to study the expression of glutamic acid decarboxylase and GluR6 or GluR5 subunits in hippocampal slices. Our results indicate that although GluR6 is primarily expressed by pyramidal cells and dentate granule neurons and GluR5 is prominently expressed in nonpyramidal cells, there is a significant population of GABAergic interneurons that coexpress the two glutamate receptor subunits. To assess whether the two subunits could coassemble to form heteromeric receptors, we studied the electrophysiological responses when both subunits were coexpressed in HEK293 cells. Responses evoked by rapid application of either glutamate, (RS)-alpha-amino-3-hydroxy-5-tert-butyl-4-isoxazolepropionic acid (ATPA) the selective agonist of GluR5 receptors), and AMPA in cells cotransfected with GluR6(R) and GluR5(Q) presented a similar degree of outward rectification. This can only be attributed to the fact that all receptors have at least one GluR6(R) subunit in their structure, conferring outward rectification, and at least one GluR5(Q) subunit to confer sensitivity to ATPA and AMPA. More than 80% of the receptors expressed by a single cell were found to be GluR5/R6 heteromers, presenting different desensitization and gating properties to homomeric R6 receptors. These results lead us to believe that a population of interneurons in the hippocampus express receptors made up of both GluR5 and GluR6 subunits and provide evidence for a greater diversity of kainate receptors in the brain than previously thought, that may account for a higher functional complexity.
Collapse
|
38
|
Lees GJ. Pharmacology of AMPA/kainate receptor ligands and their therapeutic potential in neurological and psychiatric disorders. Drugs 2000; 59:33-78. [PMID: 10718099 DOI: 10.2165/00003495-200059010-00004] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It has been postulated, consistent with the ubiquitous presence of glutamatergic neurons in the brain, that defects in glutamatergic neurotransmission are associated with many human neurological and psychiatric disorders. This review evaluates the possible application of ligands acting on glutamate alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and kainate (KA) receptors to minimise the pathology and/or symptoms of various diseases. Glutamate activation of AMPA receptors is thought to mediate most fast synaptic neurotransmission in the brain, while transmission via KA receptors contributes only a minor component. Variants of the protein subunits forming these receptors greatly extend the pharmacological and electrophysiological properties of AMPA/KA receptors. Disease and drug use can differentially affect the expression of the subunits and their variants. Ligands bind to AMPA receptors by competing with glutamate at the glutamate binding site, or non-competitively at other sites on the proteins (allosteric modulators). Ligands showing selective competitive antagonist actions at the AMPA/ KA class of glutamate receptors were first reported in 1988, and the systemically active antagonist 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline (NBQX) was first shown to have useful therapeutic effects on animal models of neurological diseases in 1990. Since then, newer antagonists with increased potency, higher specificity, increased water solubility, and a longer duration of action in vivo have been developed. Negative allosteric modulators such as the prototype GYKI-52466 also block AMPA receptors but have little action at KA receptors. Positive allosteric modulators enhance glutamatergic neurotransmission at AMPA receptors. Polyamines and adamantane derivatives bind within the ion channel of calcium-permeable AMPA receptors. The latest developments include ligands selective for KA receptors containing Glu-R5 subunits. Evidence for advantages of AMPA receptor antagonists over N-methyl-D-aspartate (NMDA) receptor antagonists for symptomatic treatment of neurological and psychiatric conditions, and for minimising neuronal loss occurring after acute neurological diseases, such as physical trauma, ischaemia or status epilepticus, have been shown in animal models. However, as yet AMPA receptor antagonists have not been shown to be effective in clinical trials. On the other hand, a limited number of clinical trials have been reported for AMPA receptor ligands that enhance glutamatergic neurotransmission by extending the ion channel opening time (positive allosteric modulators). These acute studies demonstrate enhanced memory capability in both young and aged humans, without any apparent serious adverse effects. The use of these allosteric modulators as antipsychotic drugs is also possible. However, the long term use of both direct agonists and positive allosteric modulators must be approached with considerable caution because of potential adverse effects.
Collapse
Affiliation(s)
- G J Lees
- Department of Psychiatry and Behavioural Science, University of Auckland School of Medicine, New Zealand.
| |
Collapse
|
39
|
Bortolotto ZA, Clarke VR, Delany CM, Parry MC, Smolders I, Vignes M, Ho KH, Miu P, Brinton BT, Fantaske R, Ogden A, Gates M, Ornstein PL, Lodge D, Bleakman D, Collingridge GL. Kainate receptors are involved in synaptic plasticity. Nature 1999; 402:297-301. [PMID: 10580501 DOI: 10.1038/46290] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability of synapses to modify their synaptic strength in response to activity is a fundamental property of the nervous system and may be an essential component of learning and memory. There are three classes of ionotropic glutamate receptor, namely NMDA (N-methyl-D-aspartate), AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid) and kainate receptors; critical roles in synaptic plasticity have been identified for two of these. Thus, at many synapses in the brain, transient activation of NMDA receptors leads to a persistent modification in the strength of synaptic transmission mediated by AMPA receptors. Here, to determine whether kainate receptors are involved in synaptic plasticity, we have used a new antagonist, LY382884 ((3S, 4aR, 6S, 8aR)-6-((4-carboxyphenyl)methyl-1,2,3,4,4a,5,6,7,8,8a-decahydro isoquinoline-3-carboxylic acid), which antagonizes kainate receptors at concentrations that do not affect AMPA or NMDA receptors. We find that LY382884 is a selective antagonist at neuronal kainate receptors containing the GluR5 subunit. It has no effect on long-term potentiation (LTP) that is dependent on NMDA receptors but prevents the induction of mossy fibre LTP, which is independent of NMDA receptors. Thus, kainate receptors can act as the induction trigger for long-term changes in synaptic transmission.
Collapse
Affiliation(s)
- Z A Bortolotto
- MRC Centre for Synaptic Plasticity, Department of Anatomy, Medical School, University of Bristol, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
In the CNS kainate subtype glutamate receptors (GluRs) are likely to be heteromeric assemblies containing multiple gene products. However, although recombinant kainate receptors from the GluR5-GluR7 gene family have been studied extensively in their homomeric forms, there have been no tests to determine whether these subunits can coassemble with each other. We used the GluR5 selective agonists (RS)-2-amino-3-(3-hydroxy-5-tertbutylisoxazol-4-yl)propanoic acid (ATPA) and (S)-5-iodowillardiine (I-will) to test for the coassembly of GluR5 with GluR6 and GluR7 by measuring changes in rectification that occur for heteromeric receptors containing both edited and unedited Q/R site subunits. Birectifying ATPA and I-will responses resulting from polyamine block for homomeric GluR5(Q) became outwardly rectifying when GluR6(R) was coexpressed with GluR5(Q), although GluR6 was not activated by ATPA or I-will, indicating the formation of heteromeric receptors. Similar approaches showed the coassembly of GluR7 with GluR6 and GluR5. Heteromeric kainate receptors containing both GluR5 and GluR6 subunits exhibited novel functional properties, including reduced desensitization and faster recovery from desensitization than those recorded for homomeric GluR5. Coexpression of GluR6 with GluR5 also enhanced the magnitude of responses to GluR5 selective agonists. In contrast, the coassembly of GluR7 with GluR6 markedly decreased the amplitude of agonist responses. Our results indicate that, similar to AMPA receptors, the kainate receptor subunits GluR5-GluR7 exhibit promiscuous coassembly. The formation of heteromeric kainate receptors may help to explain why the functional properties of native kainate receptors differ from those that have been reported for recombinant kainate receptors.
Collapse
|
41
|
Bleakman D, Ogden AM, Ornstein PL, Hoo K. Pharmacological characterization of a GluR6 kainate receptor in cultured hippocampal neurons. Eur J Pharmacol 1999; 378:331-7. [PMID: 10493110 DOI: 10.1016/s0014-2999(99)00478-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have examined the pharmacology of kainate receptors in cultured hippocampal neurons (6-8 days in vitro (DIV)) from embryonic rats (E17). Cultured neurons were pre-treated with concanavalin A to remove kainate receptor desensitization and whole-cell voltage clamp electrophysiology employed to record inward currents in response to glutamatergic agonists and antagonists. N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptor responses were blocked using MK801 (3 microM) and the 2,3-benzodiazepine, LY300168 (GYKI53655, 50 microM), respectively. Inward currents were recorded in hippocampal neurons upon application of kainate and the 2S,4R isomer of 4-methyl glutamic acid (SYM2081) with EC50 values of 3.4 +/- 0.4 microM and 1.6 +/- 0.5 microM, respectively (n = 6 cells). The GluR5 selective agonists, LY339434 (100 microM) and (RS)-2-amino-3-(3-hydroxy-5-tert-butyl-4-isoxazolyl) propionic acid (ATPA) (100 microM), did not evoke detectable inward currents in any cell responding to kainate. LY293558 and the selective GluR5 antagonist, LY382884, had weak antagonist effects on responses evoked by either kainate or (2S,4R)-4-methyl glutamate (IC50 > 300 microM). The quinoxalinedione, 2,3-dihyro-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX), blocked both kainate and (2S,4R)-4-methyl glutamate-activated currents at much lower concentrations (IC50 approximately 10 microM). These results provide pharmacological evidence that ion channels comprised of GluR6 kainate receptor subunits mediate kainate receptor responses in hippocampal neurons cultured 6-8 DIV.
Collapse
Affiliation(s)
- D Bleakman
- Eli Lilly and Company, Lilly Neuroscience, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285-0510, USA.
| | | | | | | |
Collapse
|
42
|
Chittajallu R, Braithwaite SP, Clarke VR, Henley JM. Kainate receptors: subunits, synaptic localization and function. Trends Pharmacol Sci 1999; 20:26-35. [PMID: 10101959 DOI: 10.1016/s0165-6147(98)01286-3] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although it is well established that kainate receptors constitute an entirely separate group of proteins from AMPA receptors, their physiological functions remain unclear. The molecular cloning of subunits that form kainate receptors and the ability to study recombinant receptors is leading to an increased understanding of their functional properties. Furthermore, the development of kainate receptor-selective agonists and antagonists over the past few years is now allowing the physiological roles of these receptors and, in some cases, specific subunits to be investigated. As a consequence, the synaptic activation of postsynaptic kainate receptors and the presence of presynaptic kainate receptors that serve to regulate excitatory and inhibitory synaptic transmission have been described, and will be discussed in this article by Ramesh Chittajallu, Steven Braithwaite, Vernon Clarke and Jeremy Henley.
Collapse
Affiliation(s)
- R Chittajallu
- Department of Anatomy, Medical School, University of Bristol, UK
| | | | | | | |
Collapse
|
43
|
Swanson GT, Heinemann SF. Heterogeneity of homomeric GluR5 kainate receptor desensitization expressed in HEK293 cells. J Physiol 1998; 513 ( Pt 3):639-46. [PMID: 9824706 PMCID: PMC2231309 DOI: 10.1111/j.1469-7793.1998.639ba.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
1. Kainate receptors with pharmacological properties similar to those of the GluR5 subunit have been shown to modulate inhibitory synaptic transmission in the CA1 region of the hippocampus. The kinetic properties of currents gated by GluR5 receptors have not been examined in detail. Here we describe several biophysical features of recombinant GluR5 receptors expressed in HEK293 cells. 2. We found that homomeric GluR5 receptors can exhibit striking inter-cell variability in channel kinetics in response to the agonists kainate and glutamate. Desensitization rates in response to kainate varied between individual cells by nearly 1000-fold (range, 1.5 ms to 1.5 s), while glutamate desensitization rates differed by 9-fold (range, 1.0 to 9.0 ms). 3. The time course of recovery from desensitization in response to glutamate also showed inter-cell variation. The majority of glutamate currents in GluR5-expressing cells recovered from desensitization with two widely separated exponential components: 50 +/- 10 ms and 5.1 +/- 1.0 s (contributing 37.6 % and 62.4 % of the sum of the exponential fits, respectively). In contrast, currents with the fastest desensitization kinetics had a recovery time course of 4.8 +/- 0.3 s. 4. Kainate receptors in murine dorsal root ganglion neurons are likely to be composed of homomeric GluR5 subunits. These receptor currents recovered from glutamate desensitization with a biexponential time course of 36 +/- 4 ms and 4.7 +/- 0.7 s. 5. These results suggest that aspects of GluR5 kainate receptor function are modulated by intracellular mechanism(s). At synapses such mechanisms could regulate the frequency- response relationship of synaptic kainate receptors by altering their rate of entry into and recovery from desensitization.
Collapse
Affiliation(s)
- G T Swanson
- Molecular Neurobiology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037,, USA.
| | | |
Collapse
|
44
|
Li H, Rogawski MA. GluR5 kainate receptor mediated synaptic transmission in rat basolateral amygdala in vitro. Neuropharmacology 1998; 37:1279-86. [PMID: 9849665 DOI: 10.1016/s0028-3908(98)00109-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A non-NMDA and non-AMPA receptor mediated excitatory synaptic response was identified in intracellularly recorded basolateral amygdala (BLA) neurons in an in vitro slice preparation. Synaptic potentials were evoked by stimulation of either the external capsule (EC) or basal amygdala (BA). NMDA and GABA(A) receptors were blocked by inclusion of 100 microM (+/-)-2-amino-5-phosphonopentanoic acid and 10 microM bicuculline in the perfusion solution. The AMPA receptor-selective allosteric antagonists GYKI 52466 (50 microM) and GYKI 53655 (50 microM) partially suppressed depolarizing synaptic responses evoked by single shock EC stimulation, but fully blocked synaptic responses evoked by BA stimulation. In recordings carried out in the presence of the AMPA receptor antagonists, EC stimulation with pulse trains (5-8 pulses at 50-100 Hz) evoked a large increase in the amplitude of synaptic responses. The AMPA receptor-independent component of the train-induced synaptic response had a null potential near 0 mV. Such AMPA receptor-independent, train-evoked synaptic responses were largely blocked by the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (20 microM; 85 +/- 4%). In addition, the responses were blocked by the GluR5-selective kainate receptor antagonist LY293558 (10 microM; 95 +/- 2%). These results indicate that a component of the EC (but not the BA) synaptic response is mediated by kainate receptors containing the GluR5 subunit.
Collapse
Affiliation(s)
- H Li
- Neuronal Excitability Section, Epilepsy Research Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1408, USA
| | | |
Collapse
|
45
|
Affiliation(s)
- D Bleakman
- Lilly Research Laboratories, Eli Lilly & Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | |
Collapse
|
46
|
Vignes M, Clarke VR, Parry MJ, Bleakman D, Lodge D, Ornstein PL, Collingridge GL. The GluR5 subtype of kainate receptor regulates excitatory synaptic transmission in areas CA1 and CA3 of the rat hippocampus. Neuropharmacology 1998; 37:1269-77. [PMID: 9849664 DOI: 10.1016/s0028-3908(98)00148-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Activation of kainate receptors depresses excitatory synaptic transmission in the hippocampus. In the present study, we have utilised a GluR5 selective agonist, ATPA [(RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid], and a GluR5 selective antagonist, LY294486 [(3SR,4aRS,6SR,8aRS)-6-([[(1H-tetrazol-5-y l)methyl]oxy]methyl)-1,2,3,4,4a,5,6,7,8,8a-decahydroisoquinoline-3 -carboxylic acid], to determine whether GluR5 subunits are involved in this effect. ATPA mimicked the presynaptic depressant effects of kainate in the CA1 region of the hippocampus. It depressed reversibly AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor-mediated field excitatory postsynaptic potentials (field EPSPs) with an IC50 value of approximately 0.60 microM. The dual-component excitatory postsynaptic current (EPSC) and the pharmacologically isolated NMDA (N-methyl-D-aspartate) receptor-mediated EPSC were depressed to a similar extent by 2 microM ATPA (61 +/- 7% and 58 +/- 6%, respectively). Depressions were associated with an increase in the paired-pulse facilitation ratio suggesting a presynaptic locus of action. LY294486 (20 microM) blocked the effects of 2 microM ATPA on NMDA receptor-mediated EPSCs in a reversible manner. In area CA3, 1 microM ATPA depressed reversibly mossy fibre-evoked synaptic transmission (by 82 +/- 10%). The effects of ATPA were not accompanied by any changes in the passive properties of CA1 or CA3 neurones. However, in experiments where K+, rather than Cs+, containing electrodes were used, a small outward current was observed. These results show that GluR5 subunits comprise or contribute to a kainate receptor that regulates excitatory synaptic transmission in both the CA1 and CA3 regions of the hippocampus.
Collapse
Affiliation(s)
- M Vignes
- Department of Anatomy, University of Bristol, UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Thomas NK, Hawkins LM, Miller JC, Troop HM, Roberts PJ, Jane DE. Pharmacological differentiation of kainate receptors on neonatal rat spinal motoneurones and dorsal roots. Neuropharmacology 1998; 37:1223-37. [PMID: 9849660 DOI: 10.1016/s0028-3908(98)00124-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The objectives of this study, conducted on neonatal rat spinal cord and dorsal roots in vitro, were to characterise the actions of a range of willardiine analogues on GluR5-containing kainate receptors present in dorsal roots, to determine whether GluR5-containing receptors are also present on motoneurones, and to differentiate responses mediated by kainate receptors from those mediated by AMPA receptors on motoneurones. (S)-5-Trifluoromethyl-willardiine, (S)-5-iodowillardiine, (S)-5-iodo-6-azawillardiine and ATPA were found to be potent agonists of kainate receptors on dorsal roots (EC50 values 0.108 +/- 0.002, 0.127 +/- 0.010, 0.685 +/- 0.141 and 1.3 +/- 0.3 microM, respectively) being more potent but of lower efficacy than kainate (EC50 value 14.8 +/- 1.8 microM). (S)-5-Iodo-6-azawillardiine blocked kainate-induced depolarisations of the dorsal root, probably via its desensitising action. Kainate-induced responses of dorsal roots were weakly antagonised by (RS)-3,5-dicarboxyphenylglycine (DCPG) (apparent KD 1.5 +/- 0.4 mM). Kainate receptors containing GluR5 subunits do not appear to be present on motoneurones since (RS)-3,5-DCPG (1 mM) potentiated rather than antagonised kainate-induced depolarisations of motoneurones. Although (S)-5-iodowillardiine (a potent and selective agonist at GluR5-containing kainate receptors) depolarised motoneurones (EC50 value 5.8 +/- 0.6 microM), such depolarisations were antagonised by both (RS)-3,4- and (RS)-3,5-DCPG, which are selective AMPA receptor antagonists at motoneurones, showing a KD value of 73 microM (Schild slope, 0.96 +/- 0.09) and an apparent KD value of 123 +/- 38 microM, respectively. This accords with the previously reported activity of willardiine analogues at AMPA receptors. Since neither (RS)-3,4- nor (RS)-3,5-DCPG antagonised kainate-induced motoneuronal depolarisations but cyclothiazide enhanced and GYK153655 blocked these responses it is possible that a component of the kainate response may be mediated by a population of DCPG-insensitive AMPA receptors on motoneurones. However, it is also possible that a population of kainate receptors other than those containing GluR5 subunits, are responsible for these effects. The new compounds introduced in this study are likely to be useful tools for studying the physiological role of kainate receptors in CNS function.
Collapse
Affiliation(s)
- N K Thomas
- Department of Pharmacology, School of Medical Sciences, University of Bristol, UK
| | | | | | | | | | | |
Collapse
|